1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 #include <linux/indirect_call_wrapper.h>
80
81 #include "datagram.h"
82
83 struct kmem_cache *skbuff_head_cache __ro_after_init;
84 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
85 #ifdef CONFIG_SKB_EXTENSIONS
86 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
87 #endif
88 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
89 EXPORT_SYMBOL(sysctl_max_skb_frags);
90
91 /**
92 * skb_panic - private function for out-of-line support
93 * @skb: buffer
94 * @sz: size
95 * @addr: address
96 * @msg: skb_over_panic or skb_under_panic
97 *
98 * Out-of-line support for skb_put() and skb_push().
99 * Called via the wrapper skb_over_panic() or skb_under_panic().
100 * Keep out of line to prevent kernel bloat.
101 * __builtin_return_address is not used because it is not always reliable.
102 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])103 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
104 const char msg[])
105 {
106 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
107 msg, addr, skb->len, sz, skb->head, skb->data,
108 (unsigned long)skb->tail, (unsigned long)skb->end,
109 skb->dev ? skb->dev->name : "<NULL>");
110 BUG();
111 }
112
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)113 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 skb_panic(skb, sz, addr, __func__);
116 }
117
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)118 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
119 {
120 skb_panic(skb, sz, addr, __func__);
121 }
122
123 #define NAPI_SKB_CACHE_SIZE 64
124 #define NAPI_SKB_CACHE_BULK 16
125 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
126
127 struct napi_alloc_cache {
128 struct page_frag_cache page;
129 unsigned int skb_count;
130 void *skb_cache[NAPI_SKB_CACHE_SIZE];
131 };
132
133 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
134 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
135
__alloc_frag_align(unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)136 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
137 unsigned int align_mask)
138 {
139 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
140
141 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
142 }
143
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)144 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
145 {
146 fragsz = SKB_DATA_ALIGN(fragsz);
147
148 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
149 }
150 EXPORT_SYMBOL(__napi_alloc_frag_align);
151
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)152 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
153 {
154 struct page_frag_cache *nc;
155 void *data;
156
157 fragsz = SKB_DATA_ALIGN(fragsz);
158 if (in_irq() || irqs_disabled()) {
159 nc = this_cpu_ptr(&netdev_alloc_cache);
160 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
161 } else {
162 local_bh_disable();
163 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
164 local_bh_enable();
165 }
166 return data;
167 }
168 EXPORT_SYMBOL(__netdev_alloc_frag_align);
169
napi_skb_cache_get(void)170 static struct sk_buff *napi_skb_cache_get(void)
171 {
172 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
173 struct sk_buff *skb;
174
175 if (unlikely(!nc->skb_count))
176 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
177 GFP_ATOMIC,
178 NAPI_SKB_CACHE_BULK,
179 nc->skb_cache);
180 if (unlikely(!nc->skb_count))
181 return NULL;
182
183 skb = nc->skb_cache[--nc->skb_count];
184 kasan_unpoison_object_data(skbuff_head_cache, skb);
185
186 return skb;
187 }
188
189 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)190 static void __build_skb_around(struct sk_buff *skb, void *data,
191 unsigned int frag_size)
192 {
193 struct skb_shared_info *shinfo;
194 unsigned int size = frag_size ? : ksize(data);
195
196 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
197
198 /* Assumes caller memset cleared SKB */
199 skb->truesize = SKB_TRUESIZE(size);
200 refcount_set(&skb->users, 1);
201 skb->head = data;
202 skb->data = data;
203 skb_reset_tail_pointer(skb);
204 skb->end = skb->tail + size;
205 skb->mac_header = (typeof(skb->mac_header))~0U;
206 skb->transport_header = (typeof(skb->transport_header))~0U;
207
208 /* make sure we initialize shinfo sequentially */
209 shinfo = skb_shinfo(skb);
210 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
211 atomic_set(&shinfo->dataref, 1);
212
213 skb_set_kcov_handle(skb, kcov_common_handle());
214 }
215
216 /**
217 * __build_skb - build a network buffer
218 * @data: data buffer provided by caller
219 * @frag_size: size of data, or 0 if head was kmalloced
220 *
221 * Allocate a new &sk_buff. Caller provides space holding head and
222 * skb_shared_info. @data must have been allocated by kmalloc() only if
223 * @frag_size is 0, otherwise data should come from the page allocator
224 * or vmalloc()
225 * The return is the new skb buffer.
226 * On a failure the return is %NULL, and @data is not freed.
227 * Notes :
228 * Before IO, driver allocates only data buffer where NIC put incoming frame
229 * Driver should add room at head (NET_SKB_PAD) and
230 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
231 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
232 * before giving packet to stack.
233 * RX rings only contains data buffers, not full skbs.
234 */
__build_skb(void * data,unsigned int frag_size)235 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
236 {
237 struct sk_buff *skb;
238
239 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
240 if (unlikely(!skb))
241 return NULL;
242
243 memset(skb, 0, offsetof(struct sk_buff, tail));
244 __build_skb_around(skb, data, frag_size);
245
246 return skb;
247 }
248
249 /* build_skb() is wrapper over __build_skb(), that specifically
250 * takes care of skb->head and skb->pfmemalloc
251 * This means that if @frag_size is not zero, then @data must be backed
252 * by a page fragment, not kmalloc() or vmalloc()
253 */
build_skb(void * data,unsigned int frag_size)254 struct sk_buff *build_skb(void *data, unsigned int frag_size)
255 {
256 struct sk_buff *skb = __build_skb(data, frag_size);
257
258 if (skb && frag_size) {
259 skb->head_frag = 1;
260 if (page_is_pfmemalloc(virt_to_head_page(data)))
261 skb->pfmemalloc = 1;
262 }
263 return skb;
264 }
265 EXPORT_SYMBOL(build_skb);
266
267 /**
268 * build_skb_around - build a network buffer around provided skb
269 * @skb: sk_buff provide by caller, must be memset cleared
270 * @data: data buffer provided by caller
271 * @frag_size: size of data, or 0 if head was kmalloced
272 */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)273 struct sk_buff *build_skb_around(struct sk_buff *skb,
274 void *data, unsigned int frag_size)
275 {
276 if (unlikely(!skb))
277 return NULL;
278
279 __build_skb_around(skb, data, frag_size);
280
281 if (frag_size) {
282 skb->head_frag = 1;
283 if (page_is_pfmemalloc(virt_to_head_page(data)))
284 skb->pfmemalloc = 1;
285 }
286 return skb;
287 }
288 EXPORT_SYMBOL(build_skb_around);
289
290 /**
291 * __napi_build_skb - build a network buffer
292 * @data: data buffer provided by caller
293 * @frag_size: size of data, or 0 if head was kmalloced
294 *
295 * Version of __build_skb() that uses NAPI percpu caches to obtain
296 * skbuff_head instead of inplace allocation.
297 *
298 * Returns a new &sk_buff on success, %NULL on allocation failure.
299 */
__napi_build_skb(void * data,unsigned int frag_size)300 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
301 {
302 struct sk_buff *skb;
303
304 skb = napi_skb_cache_get();
305 if (unlikely(!skb))
306 return NULL;
307
308 memset(skb, 0, offsetof(struct sk_buff, tail));
309 __build_skb_around(skb, data, frag_size);
310
311 return skb;
312 }
313
314 /**
315 * napi_build_skb - build a network buffer
316 * @data: data buffer provided by caller
317 * @frag_size: size of data, or 0 if head was kmalloced
318 *
319 * Version of __napi_build_skb() that takes care of skb->head_frag
320 * and skb->pfmemalloc when the data is a page or page fragment.
321 *
322 * Returns a new &sk_buff on success, %NULL on allocation failure.
323 */
napi_build_skb(void * data,unsigned int frag_size)324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
325 {
326 struct sk_buff *skb = __napi_build_skb(data, frag_size);
327
328 if (likely(skb) && frag_size) {
329 skb->head_frag = 1;
330 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
331 }
332
333 return skb;
334 }
335 EXPORT_SYMBOL(napi_build_skb);
336
337 /*
338 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
339 * the caller if emergency pfmemalloc reserves are being used. If it is and
340 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
341 * may be used. Otherwise, the packet data may be discarded until enough
342 * memory is free
343 */
kmalloc_reserve(size_t size,gfp_t flags,int node,bool * pfmemalloc)344 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
345 bool *pfmemalloc)
346 {
347 void *obj;
348 bool ret_pfmemalloc = false;
349
350 /*
351 * Try a regular allocation, when that fails and we're not entitled
352 * to the reserves, fail.
353 */
354 obj = kmalloc_node_track_caller(size,
355 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
356 node);
357 if (obj || !(gfp_pfmemalloc_allowed(flags)))
358 goto out;
359
360 /* Try again but now we are using pfmemalloc reserves */
361 ret_pfmemalloc = true;
362 obj = kmalloc_node_track_caller(size, flags, node);
363
364 out:
365 if (pfmemalloc)
366 *pfmemalloc = ret_pfmemalloc;
367
368 return obj;
369 }
370
371 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
372 * 'private' fields and also do memory statistics to find all the
373 * [BEEP] leaks.
374 *
375 */
376
377 /**
378 * __alloc_skb - allocate a network buffer
379 * @size: size to allocate
380 * @gfp_mask: allocation mask
381 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
382 * instead of head cache and allocate a cloned (child) skb.
383 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
384 * allocations in case the data is required for writeback
385 * @node: numa node to allocate memory on
386 *
387 * Allocate a new &sk_buff. The returned buffer has no headroom and a
388 * tail room of at least size bytes. The object has a reference count
389 * of one. The return is the buffer. On a failure the return is %NULL.
390 *
391 * Buffers may only be allocated from interrupts using a @gfp_mask of
392 * %GFP_ATOMIC.
393 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)394 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
395 int flags, int node)
396 {
397 struct kmem_cache *cache;
398 struct sk_buff *skb;
399 u8 *data;
400 bool pfmemalloc;
401
402 cache = (flags & SKB_ALLOC_FCLONE)
403 ? skbuff_fclone_cache : skbuff_head_cache;
404
405 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
406 gfp_mask |= __GFP_MEMALLOC;
407
408 /* Get the HEAD */
409 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
410 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
411 skb = napi_skb_cache_get();
412 else
413 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
414 if (unlikely(!skb))
415 return NULL;
416 prefetchw(skb);
417
418 /* We do our best to align skb_shared_info on a separate cache
419 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
420 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
421 * Both skb->head and skb_shared_info are cache line aligned.
422 */
423 size = SKB_DATA_ALIGN(size);
424 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
425 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
426 if (unlikely(!data))
427 goto nodata;
428 /* kmalloc(size) might give us more room than requested.
429 * Put skb_shared_info exactly at the end of allocated zone,
430 * to allow max possible filling before reallocation.
431 */
432 size = SKB_WITH_OVERHEAD(ksize(data));
433 prefetchw(data + size);
434
435 /*
436 * Only clear those fields we need to clear, not those that we will
437 * actually initialise below. Hence, don't put any more fields after
438 * the tail pointer in struct sk_buff!
439 */
440 memset(skb, 0, offsetof(struct sk_buff, tail));
441 __build_skb_around(skb, data, 0);
442 skb->pfmemalloc = pfmemalloc;
443
444 if (flags & SKB_ALLOC_FCLONE) {
445 struct sk_buff_fclones *fclones;
446
447 fclones = container_of(skb, struct sk_buff_fclones, skb1);
448
449 skb->fclone = SKB_FCLONE_ORIG;
450 refcount_set(&fclones->fclone_ref, 1);
451
452 fclones->skb2.fclone = SKB_FCLONE_CLONE;
453 }
454
455 return skb;
456
457 nodata:
458 kmem_cache_free(cache, skb);
459 return NULL;
460 }
461 EXPORT_SYMBOL(__alloc_skb);
462
463 /**
464 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
465 * @dev: network device to receive on
466 * @len: length to allocate
467 * @gfp_mask: get_free_pages mask, passed to alloc_skb
468 *
469 * Allocate a new &sk_buff and assign it a usage count of one. The
470 * buffer has NET_SKB_PAD headroom built in. Users should allocate
471 * the headroom they think they need without accounting for the
472 * built in space. The built in space is used for optimisations.
473 *
474 * %NULL is returned if there is no free memory.
475 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)476 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
477 gfp_t gfp_mask)
478 {
479 struct page_frag_cache *nc;
480 struct sk_buff *skb;
481 bool pfmemalloc;
482 void *data;
483
484 len += NET_SKB_PAD;
485
486 /* If requested length is either too small or too big,
487 * we use kmalloc() for skb->head allocation.
488 */
489 if (len <= SKB_WITH_OVERHEAD(1024) ||
490 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
491 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
492 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
493 if (!skb)
494 goto skb_fail;
495 goto skb_success;
496 }
497
498 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
499 len = SKB_DATA_ALIGN(len);
500
501 if (sk_memalloc_socks())
502 gfp_mask |= __GFP_MEMALLOC;
503
504 if (in_irq() || irqs_disabled()) {
505 nc = this_cpu_ptr(&netdev_alloc_cache);
506 data = page_frag_alloc(nc, len, gfp_mask);
507 pfmemalloc = nc->pfmemalloc;
508 } else {
509 local_bh_disable();
510 nc = this_cpu_ptr(&napi_alloc_cache.page);
511 data = page_frag_alloc(nc, len, gfp_mask);
512 pfmemalloc = nc->pfmemalloc;
513 local_bh_enable();
514 }
515
516 if (unlikely(!data))
517 return NULL;
518
519 skb = __build_skb(data, len);
520 if (unlikely(!skb)) {
521 skb_free_frag(data);
522 return NULL;
523 }
524
525 if (pfmemalloc)
526 skb->pfmemalloc = 1;
527 skb->head_frag = 1;
528
529 skb_success:
530 skb_reserve(skb, NET_SKB_PAD);
531 skb->dev = dev;
532
533 skb_fail:
534 return skb;
535 }
536 EXPORT_SYMBOL(__netdev_alloc_skb);
537
538 /**
539 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
540 * @napi: napi instance this buffer was allocated for
541 * @len: length to allocate
542 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
543 *
544 * Allocate a new sk_buff for use in NAPI receive. This buffer will
545 * attempt to allocate the head from a special reserved region used
546 * only for NAPI Rx allocation. By doing this we can save several
547 * CPU cycles by avoiding having to disable and re-enable IRQs.
548 *
549 * %NULL is returned if there is no free memory.
550 */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)551 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
552 gfp_t gfp_mask)
553 {
554 struct napi_alloc_cache *nc;
555 struct sk_buff *skb;
556 void *data;
557
558 len += NET_SKB_PAD + NET_IP_ALIGN;
559
560 /* If requested length is either too small or too big,
561 * we use kmalloc() for skb->head allocation.
562 */
563 if (len <= SKB_WITH_OVERHEAD(1024) ||
564 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
565 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
566 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
567 NUMA_NO_NODE);
568 if (!skb)
569 goto skb_fail;
570 goto skb_success;
571 }
572
573 nc = this_cpu_ptr(&napi_alloc_cache);
574 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
575 len = SKB_DATA_ALIGN(len);
576
577 if (sk_memalloc_socks())
578 gfp_mask |= __GFP_MEMALLOC;
579
580 data = page_frag_alloc(&nc->page, len, gfp_mask);
581 if (unlikely(!data))
582 return NULL;
583
584 skb = __napi_build_skb(data, len);
585 if (unlikely(!skb)) {
586 skb_free_frag(data);
587 return NULL;
588 }
589
590 if (nc->page.pfmemalloc)
591 skb->pfmemalloc = 1;
592 skb->head_frag = 1;
593
594 skb_success:
595 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
596 skb->dev = napi->dev;
597
598 skb_fail:
599 return skb;
600 }
601 EXPORT_SYMBOL(__napi_alloc_skb);
602
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)603 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
604 int size, unsigned int truesize)
605 {
606 skb_fill_page_desc(skb, i, page, off, size);
607 skb->len += size;
608 skb->data_len += size;
609 skb->truesize += truesize;
610 }
611 EXPORT_SYMBOL(skb_add_rx_frag);
612
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)613 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
614 unsigned int truesize)
615 {
616 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
617
618 skb_frag_size_add(frag, size);
619 skb->len += size;
620 skb->data_len += size;
621 skb->truesize += truesize;
622 }
623 EXPORT_SYMBOL(skb_coalesce_rx_frag);
624
skb_drop_list(struct sk_buff ** listp)625 static void skb_drop_list(struct sk_buff **listp)
626 {
627 kfree_skb_list(*listp);
628 *listp = NULL;
629 }
630
skb_drop_fraglist(struct sk_buff * skb)631 static inline void skb_drop_fraglist(struct sk_buff *skb)
632 {
633 skb_drop_list(&skb_shinfo(skb)->frag_list);
634 }
635
skb_clone_fraglist(struct sk_buff * skb)636 static void skb_clone_fraglist(struct sk_buff *skb)
637 {
638 struct sk_buff *list;
639
640 skb_walk_frags(skb, list)
641 skb_get(list);
642 }
643
skb_free_head(struct sk_buff * skb)644 static void skb_free_head(struct sk_buff *skb)
645 {
646 unsigned char *head = skb->head;
647
648 if (skb->head_frag)
649 skb_free_frag(head);
650 else
651 kfree(head);
652 }
653
skb_release_data(struct sk_buff * skb)654 static void skb_release_data(struct sk_buff *skb)
655 {
656 struct skb_shared_info *shinfo = skb_shinfo(skb);
657 int i;
658
659 if (skb->cloned &&
660 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
661 &shinfo->dataref))
662 return;
663
664 skb_zcopy_clear(skb, true);
665
666 for (i = 0; i < shinfo->nr_frags; i++)
667 __skb_frag_unref(&shinfo->frags[i]);
668
669 if (shinfo->frag_list)
670 kfree_skb_list(shinfo->frag_list);
671
672 skb_free_head(skb);
673 }
674
675 /*
676 * Free an skbuff by memory without cleaning the state.
677 */
kfree_skbmem(struct sk_buff * skb)678 static void kfree_skbmem(struct sk_buff *skb)
679 {
680 struct sk_buff_fclones *fclones;
681
682 switch (skb->fclone) {
683 case SKB_FCLONE_UNAVAILABLE:
684 kmem_cache_free(skbuff_head_cache, skb);
685 return;
686
687 case SKB_FCLONE_ORIG:
688 fclones = container_of(skb, struct sk_buff_fclones, skb1);
689
690 /* We usually free the clone (TX completion) before original skb
691 * This test would have no chance to be true for the clone,
692 * while here, branch prediction will be good.
693 */
694 if (refcount_read(&fclones->fclone_ref) == 1)
695 goto fastpath;
696 break;
697
698 default: /* SKB_FCLONE_CLONE */
699 fclones = container_of(skb, struct sk_buff_fclones, skb2);
700 break;
701 }
702 if (!refcount_dec_and_test(&fclones->fclone_ref))
703 return;
704 fastpath:
705 kmem_cache_free(skbuff_fclone_cache, fclones);
706 }
707
skb_release_head_state(struct sk_buff * skb)708 void skb_release_head_state(struct sk_buff *skb)
709 {
710 skb_dst_drop(skb);
711 if (skb->destructor) {
712 WARN_ON(in_irq());
713 skb->destructor(skb);
714 }
715 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
716 nf_conntrack_put(skb_nfct(skb));
717 #endif
718 skb_ext_put(skb);
719 }
720
721 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)722 static void skb_release_all(struct sk_buff *skb)
723 {
724 skb_release_head_state(skb);
725 if (likely(skb->head))
726 skb_release_data(skb);
727 }
728
729 /**
730 * __kfree_skb - private function
731 * @skb: buffer
732 *
733 * Free an sk_buff. Release anything attached to the buffer.
734 * Clean the state. This is an internal helper function. Users should
735 * always call kfree_skb
736 */
737
__kfree_skb(struct sk_buff * skb)738 void __kfree_skb(struct sk_buff *skb)
739 {
740 skb_release_all(skb);
741 kfree_skbmem(skb);
742 }
743 EXPORT_SYMBOL(__kfree_skb);
744
745 /**
746 * kfree_skb - free an sk_buff
747 * @skb: buffer to free
748 *
749 * Drop a reference to the buffer and free it if the usage count has
750 * hit zero.
751 */
kfree_skb(struct sk_buff * skb)752 void kfree_skb(struct sk_buff *skb)
753 {
754 if (!skb_unref(skb))
755 return;
756
757 trace_kfree_skb(skb, __builtin_return_address(0));
758 __kfree_skb(skb);
759 }
760 EXPORT_SYMBOL(kfree_skb);
761
kfree_skb_list(struct sk_buff * segs)762 void kfree_skb_list(struct sk_buff *segs)
763 {
764 while (segs) {
765 struct sk_buff *next = segs->next;
766
767 kfree_skb(segs);
768 segs = next;
769 }
770 }
771 EXPORT_SYMBOL(kfree_skb_list);
772
773 /* Dump skb information and contents.
774 *
775 * Must only be called from net_ratelimit()-ed paths.
776 *
777 * Dumps whole packets if full_pkt, only headers otherwise.
778 */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)779 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
780 {
781 struct skb_shared_info *sh = skb_shinfo(skb);
782 struct net_device *dev = skb->dev;
783 struct sock *sk = skb->sk;
784 struct sk_buff *list_skb;
785 bool has_mac, has_trans;
786 int headroom, tailroom;
787 int i, len, seg_len;
788
789 if (full_pkt)
790 len = skb->len;
791 else
792 len = min_t(int, skb->len, MAX_HEADER + 128);
793
794 headroom = skb_headroom(skb);
795 tailroom = skb_tailroom(skb);
796
797 has_mac = skb_mac_header_was_set(skb);
798 has_trans = skb_transport_header_was_set(skb);
799
800 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
801 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
802 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
803 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
804 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
805 level, skb->len, headroom, skb_headlen(skb), tailroom,
806 has_mac ? skb->mac_header : -1,
807 has_mac ? skb_mac_header_len(skb) : -1,
808 skb->network_header,
809 has_trans ? skb_network_header_len(skb) : -1,
810 has_trans ? skb->transport_header : -1,
811 sh->tx_flags, sh->nr_frags,
812 sh->gso_size, sh->gso_type, sh->gso_segs,
813 skb->csum, skb->ip_summed, skb->csum_complete_sw,
814 skb->csum_valid, skb->csum_level,
815 skb->hash, skb->sw_hash, skb->l4_hash,
816 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
817
818 if (dev)
819 printk("%sdev name=%s feat=0x%pNF\n",
820 level, dev->name, &dev->features);
821 if (sk)
822 printk("%ssk family=%hu type=%u proto=%u\n",
823 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
824
825 if (full_pkt && headroom)
826 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
827 16, 1, skb->head, headroom, false);
828
829 seg_len = min_t(int, skb_headlen(skb), len);
830 if (seg_len)
831 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
832 16, 1, skb->data, seg_len, false);
833 len -= seg_len;
834
835 if (full_pkt && tailroom)
836 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
837 16, 1, skb_tail_pointer(skb), tailroom, false);
838
839 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
840 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
841 u32 p_off, p_len, copied;
842 struct page *p;
843 u8 *vaddr;
844
845 skb_frag_foreach_page(frag, skb_frag_off(frag),
846 skb_frag_size(frag), p, p_off, p_len,
847 copied) {
848 seg_len = min_t(int, p_len, len);
849 vaddr = kmap_atomic(p);
850 print_hex_dump(level, "skb frag: ",
851 DUMP_PREFIX_OFFSET,
852 16, 1, vaddr + p_off, seg_len, false);
853 kunmap_atomic(vaddr);
854 len -= seg_len;
855 if (!len)
856 break;
857 }
858 }
859
860 if (full_pkt && skb_has_frag_list(skb)) {
861 printk("skb fraglist:\n");
862 skb_walk_frags(skb, list_skb)
863 skb_dump(level, list_skb, true);
864 }
865 }
866 EXPORT_SYMBOL(skb_dump);
867
868 /**
869 * skb_tx_error - report an sk_buff xmit error
870 * @skb: buffer that triggered an error
871 *
872 * Report xmit error if a device callback is tracking this skb.
873 * skb must be freed afterwards.
874 */
skb_tx_error(struct sk_buff * skb)875 void skb_tx_error(struct sk_buff *skb)
876 {
877 skb_zcopy_clear(skb, true);
878 }
879 EXPORT_SYMBOL(skb_tx_error);
880
881 #ifdef CONFIG_TRACEPOINTS
882 /**
883 * consume_skb - free an skbuff
884 * @skb: buffer to free
885 *
886 * Drop a ref to the buffer and free it if the usage count has hit zero
887 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
888 * is being dropped after a failure and notes that
889 */
consume_skb(struct sk_buff * skb)890 void consume_skb(struct sk_buff *skb)
891 {
892 if (!skb_unref(skb))
893 return;
894
895 trace_consume_skb(skb);
896 __kfree_skb(skb);
897 }
898 EXPORT_SYMBOL(consume_skb);
899 #endif
900
901 /**
902 * __consume_stateless_skb - free an skbuff, assuming it is stateless
903 * @skb: buffer to free
904 *
905 * Alike consume_skb(), but this variant assumes that this is the last
906 * skb reference and all the head states have been already dropped
907 */
__consume_stateless_skb(struct sk_buff * skb)908 void __consume_stateless_skb(struct sk_buff *skb)
909 {
910 trace_consume_skb(skb);
911 skb_release_data(skb);
912 kfree_skbmem(skb);
913 }
914
napi_skb_cache_put(struct sk_buff * skb)915 static void napi_skb_cache_put(struct sk_buff *skb)
916 {
917 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
918 u32 i;
919
920 kasan_poison_object_data(skbuff_head_cache, skb);
921 nc->skb_cache[nc->skb_count++] = skb;
922
923 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
924 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
925 kasan_unpoison_object_data(skbuff_head_cache,
926 nc->skb_cache[i]);
927
928 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
929 nc->skb_cache + NAPI_SKB_CACHE_HALF);
930 nc->skb_count = NAPI_SKB_CACHE_HALF;
931 }
932 }
933
__kfree_skb_defer(struct sk_buff * skb)934 void __kfree_skb_defer(struct sk_buff *skb)
935 {
936 skb_release_all(skb);
937 napi_skb_cache_put(skb);
938 }
939
napi_skb_free_stolen_head(struct sk_buff * skb)940 void napi_skb_free_stolen_head(struct sk_buff *skb)
941 {
942 skb_dst_drop(skb);
943 skb_ext_put(skb);
944 napi_skb_cache_put(skb);
945 }
946
napi_consume_skb(struct sk_buff * skb,int budget)947 void napi_consume_skb(struct sk_buff *skb, int budget)
948 {
949 /* Zero budget indicate non-NAPI context called us, like netpoll */
950 if (unlikely(!budget)) {
951 dev_consume_skb_any(skb);
952 return;
953 }
954
955 lockdep_assert_in_softirq();
956
957 if (!skb_unref(skb))
958 return;
959
960 /* if reaching here SKB is ready to free */
961 trace_consume_skb(skb);
962
963 /* if SKB is a clone, don't handle this case */
964 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
965 __kfree_skb(skb);
966 return;
967 }
968
969 skb_release_all(skb);
970 napi_skb_cache_put(skb);
971 }
972 EXPORT_SYMBOL(napi_consume_skb);
973
974 /* Make sure a field is enclosed inside headers_start/headers_end section */
975 #define CHECK_SKB_FIELD(field) \
976 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
977 offsetof(struct sk_buff, headers_start)); \
978 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
979 offsetof(struct sk_buff, headers_end)); \
980
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)981 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
982 {
983 new->tstamp = old->tstamp;
984 /* We do not copy old->sk */
985 new->dev = old->dev;
986 memcpy(new->cb, old->cb, sizeof(old->cb));
987 skb_dst_copy(new, old);
988 __skb_ext_copy(new, old);
989 __nf_copy(new, old, false);
990
991 /* Note : this field could be in headers_start/headers_end section
992 * It is not yet because we do not want to have a 16 bit hole
993 */
994 new->queue_mapping = old->queue_mapping;
995
996 memcpy(&new->headers_start, &old->headers_start,
997 offsetof(struct sk_buff, headers_end) -
998 offsetof(struct sk_buff, headers_start));
999 CHECK_SKB_FIELD(protocol);
1000 CHECK_SKB_FIELD(csum);
1001 CHECK_SKB_FIELD(hash);
1002 CHECK_SKB_FIELD(priority);
1003 CHECK_SKB_FIELD(skb_iif);
1004 CHECK_SKB_FIELD(vlan_proto);
1005 CHECK_SKB_FIELD(vlan_tci);
1006 CHECK_SKB_FIELD(transport_header);
1007 CHECK_SKB_FIELD(network_header);
1008 CHECK_SKB_FIELD(mac_header);
1009 CHECK_SKB_FIELD(inner_protocol);
1010 CHECK_SKB_FIELD(inner_transport_header);
1011 CHECK_SKB_FIELD(inner_network_header);
1012 CHECK_SKB_FIELD(inner_mac_header);
1013 CHECK_SKB_FIELD(mark);
1014 #ifdef CONFIG_NETWORK_SECMARK
1015 CHECK_SKB_FIELD(secmark);
1016 #endif
1017 #ifdef CONFIG_NET_RX_BUSY_POLL
1018 CHECK_SKB_FIELD(napi_id);
1019 #endif
1020 #ifdef CONFIG_XPS
1021 CHECK_SKB_FIELD(sender_cpu);
1022 #endif
1023 #ifdef CONFIG_NET_SCHED
1024 CHECK_SKB_FIELD(tc_index);
1025 #endif
1026
1027 }
1028
1029 /*
1030 * You should not add any new code to this function. Add it to
1031 * __copy_skb_header above instead.
1032 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1033 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1034 {
1035 #define C(x) n->x = skb->x
1036
1037 n->next = n->prev = NULL;
1038 n->sk = NULL;
1039 __copy_skb_header(n, skb);
1040
1041 C(len);
1042 C(data_len);
1043 C(mac_len);
1044 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1045 n->cloned = 1;
1046 n->nohdr = 0;
1047 n->peeked = 0;
1048 C(pfmemalloc);
1049 n->destructor = NULL;
1050 C(tail);
1051 C(end);
1052 C(head);
1053 C(head_frag);
1054 C(data);
1055 C(truesize);
1056 refcount_set(&n->users, 1);
1057
1058 atomic_inc(&(skb_shinfo(skb)->dataref));
1059 skb->cloned = 1;
1060
1061 return n;
1062 #undef C
1063 }
1064
1065 /**
1066 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1067 * @first: first sk_buff of the msg
1068 */
alloc_skb_for_msg(struct sk_buff * first)1069 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1070 {
1071 struct sk_buff *n;
1072
1073 n = alloc_skb(0, GFP_ATOMIC);
1074 if (!n)
1075 return NULL;
1076
1077 n->len = first->len;
1078 n->data_len = first->len;
1079 n->truesize = first->truesize;
1080
1081 skb_shinfo(n)->frag_list = first;
1082
1083 __copy_skb_header(n, first);
1084 n->destructor = NULL;
1085
1086 return n;
1087 }
1088 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1089
1090 /**
1091 * skb_morph - morph one skb into another
1092 * @dst: the skb to receive the contents
1093 * @src: the skb to supply the contents
1094 *
1095 * This is identical to skb_clone except that the target skb is
1096 * supplied by the user.
1097 *
1098 * The target skb is returned upon exit.
1099 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1100 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1101 {
1102 skb_release_all(dst);
1103 return __skb_clone(dst, src);
1104 }
1105 EXPORT_SYMBOL_GPL(skb_morph);
1106
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1107 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1108 {
1109 unsigned long max_pg, num_pg, new_pg, old_pg;
1110 struct user_struct *user;
1111
1112 if (capable(CAP_IPC_LOCK) || !size)
1113 return 0;
1114
1115 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1116 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1117 user = mmp->user ? : current_user();
1118
1119 do {
1120 old_pg = atomic_long_read(&user->locked_vm);
1121 new_pg = old_pg + num_pg;
1122 if (new_pg > max_pg)
1123 return -ENOBUFS;
1124 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1125 old_pg);
1126
1127 if (!mmp->user) {
1128 mmp->user = get_uid(user);
1129 mmp->num_pg = num_pg;
1130 } else {
1131 mmp->num_pg += num_pg;
1132 }
1133
1134 return 0;
1135 }
1136 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1137
mm_unaccount_pinned_pages(struct mmpin * mmp)1138 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1139 {
1140 if (mmp->user) {
1141 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1142 free_uid(mmp->user);
1143 }
1144 }
1145 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1146
msg_zerocopy_alloc(struct sock * sk,size_t size)1147 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1148 {
1149 struct ubuf_info *uarg;
1150 struct sk_buff *skb;
1151
1152 WARN_ON_ONCE(!in_task());
1153
1154 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1155 if (!skb)
1156 return NULL;
1157
1158 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1159 uarg = (void *)skb->cb;
1160 uarg->mmp.user = NULL;
1161
1162 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1163 kfree_skb(skb);
1164 return NULL;
1165 }
1166
1167 uarg->callback = msg_zerocopy_callback;
1168 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1169 uarg->len = 1;
1170 uarg->bytelen = size;
1171 uarg->zerocopy = 1;
1172 uarg->flags = SKBFL_ZEROCOPY_FRAG;
1173 refcount_set(&uarg->refcnt, 1);
1174 sock_hold(sk);
1175
1176 return uarg;
1177 }
1178 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1179
skb_from_uarg(struct ubuf_info * uarg)1180 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1181 {
1182 return container_of((void *)uarg, struct sk_buff, cb);
1183 }
1184
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1185 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1186 struct ubuf_info *uarg)
1187 {
1188 if (uarg) {
1189 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1190 u32 bytelen, next;
1191
1192 /* realloc only when socket is locked (TCP, UDP cork),
1193 * so uarg->len and sk_zckey access is serialized
1194 */
1195 if (!sock_owned_by_user(sk)) {
1196 WARN_ON_ONCE(1);
1197 return NULL;
1198 }
1199
1200 bytelen = uarg->bytelen + size;
1201 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1202 /* TCP can create new skb to attach new uarg */
1203 if (sk->sk_type == SOCK_STREAM)
1204 goto new_alloc;
1205 return NULL;
1206 }
1207
1208 next = (u32)atomic_read(&sk->sk_zckey);
1209 if ((u32)(uarg->id + uarg->len) == next) {
1210 if (mm_account_pinned_pages(&uarg->mmp, size))
1211 return NULL;
1212 uarg->len++;
1213 uarg->bytelen = bytelen;
1214 atomic_set(&sk->sk_zckey, ++next);
1215
1216 /* no extra ref when appending to datagram (MSG_MORE) */
1217 if (sk->sk_type == SOCK_STREAM)
1218 net_zcopy_get(uarg);
1219
1220 return uarg;
1221 }
1222 }
1223
1224 new_alloc:
1225 return msg_zerocopy_alloc(sk, size);
1226 }
1227 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1228
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1229 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1230 {
1231 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1232 u32 old_lo, old_hi;
1233 u64 sum_len;
1234
1235 old_lo = serr->ee.ee_info;
1236 old_hi = serr->ee.ee_data;
1237 sum_len = old_hi - old_lo + 1ULL + len;
1238
1239 if (sum_len >= (1ULL << 32))
1240 return false;
1241
1242 if (lo != old_hi + 1)
1243 return false;
1244
1245 serr->ee.ee_data += len;
1246 return true;
1247 }
1248
__msg_zerocopy_callback(struct ubuf_info * uarg)1249 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1250 {
1251 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1252 struct sock_exterr_skb *serr;
1253 struct sock *sk = skb->sk;
1254 struct sk_buff_head *q;
1255 unsigned long flags;
1256 u32 lo, hi;
1257 u16 len;
1258
1259 mm_unaccount_pinned_pages(&uarg->mmp);
1260
1261 /* if !len, there was only 1 call, and it was aborted
1262 * so do not queue a completion notification
1263 */
1264 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1265 goto release;
1266
1267 len = uarg->len;
1268 lo = uarg->id;
1269 hi = uarg->id + len - 1;
1270
1271 serr = SKB_EXT_ERR(skb);
1272 memset(serr, 0, sizeof(*serr));
1273 serr->ee.ee_errno = 0;
1274 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1275 serr->ee.ee_data = hi;
1276 serr->ee.ee_info = lo;
1277 if (!uarg->zerocopy)
1278 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1279
1280 q = &sk->sk_error_queue;
1281 spin_lock_irqsave(&q->lock, flags);
1282 tail = skb_peek_tail(q);
1283 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1284 !skb_zerocopy_notify_extend(tail, lo, len)) {
1285 __skb_queue_tail(q, skb);
1286 skb = NULL;
1287 }
1288 spin_unlock_irqrestore(&q->lock, flags);
1289
1290 sk->sk_error_report(sk);
1291
1292 release:
1293 consume_skb(skb);
1294 sock_put(sk);
1295 }
1296
msg_zerocopy_callback(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1297 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1298 bool success)
1299 {
1300 uarg->zerocopy = uarg->zerocopy & success;
1301
1302 if (refcount_dec_and_test(&uarg->refcnt))
1303 __msg_zerocopy_callback(uarg);
1304 }
1305 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1306
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1307 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1308 {
1309 struct sock *sk = skb_from_uarg(uarg)->sk;
1310
1311 atomic_dec(&sk->sk_zckey);
1312 uarg->len--;
1313
1314 if (have_uref)
1315 msg_zerocopy_callback(NULL, uarg, true);
1316 }
1317 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1318
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1319 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1320 {
1321 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1322 }
1323 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1324
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1325 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1326 struct msghdr *msg, int len,
1327 struct ubuf_info *uarg)
1328 {
1329 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1330 struct iov_iter orig_iter = msg->msg_iter;
1331 int err, orig_len = skb->len;
1332
1333 /* An skb can only point to one uarg. This edge case happens when
1334 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1335 */
1336 if (orig_uarg && uarg != orig_uarg)
1337 return -EEXIST;
1338
1339 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1340 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1341 struct sock *save_sk = skb->sk;
1342
1343 /* Streams do not free skb on error. Reset to prev state. */
1344 msg->msg_iter = orig_iter;
1345 skb->sk = sk;
1346 ___pskb_trim(skb, orig_len);
1347 skb->sk = save_sk;
1348 return err;
1349 }
1350
1351 skb_zcopy_set(skb, uarg, NULL);
1352 return skb->len - orig_len;
1353 }
1354 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1355
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1356 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1357 gfp_t gfp_mask)
1358 {
1359 if (skb_zcopy(orig)) {
1360 if (skb_zcopy(nskb)) {
1361 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1362 if (!gfp_mask) {
1363 WARN_ON_ONCE(1);
1364 return -ENOMEM;
1365 }
1366 if (skb_uarg(nskb) == skb_uarg(orig))
1367 return 0;
1368 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1369 return -EIO;
1370 }
1371 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1372 }
1373 return 0;
1374 }
1375
1376 /**
1377 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1378 * @skb: the skb to modify
1379 * @gfp_mask: allocation priority
1380 *
1381 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1382 * It will copy all frags into kernel and drop the reference
1383 * to userspace pages.
1384 *
1385 * If this function is called from an interrupt gfp_mask() must be
1386 * %GFP_ATOMIC.
1387 *
1388 * Returns 0 on success or a negative error code on failure
1389 * to allocate kernel memory to copy to.
1390 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1391 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1392 {
1393 int num_frags = skb_shinfo(skb)->nr_frags;
1394 struct page *page, *head = NULL;
1395 int i, new_frags;
1396 u32 d_off;
1397
1398 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1399 return -EINVAL;
1400
1401 if (!num_frags)
1402 goto release;
1403
1404 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1405 for (i = 0; i < new_frags; i++) {
1406 page = alloc_page(gfp_mask);
1407 if (!page) {
1408 while (head) {
1409 struct page *next = (struct page *)page_private(head);
1410 put_page(head);
1411 head = next;
1412 }
1413 return -ENOMEM;
1414 }
1415 set_page_private(page, (unsigned long)head);
1416 head = page;
1417 }
1418
1419 page = head;
1420 d_off = 0;
1421 for (i = 0; i < num_frags; i++) {
1422 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1423 u32 p_off, p_len, copied;
1424 struct page *p;
1425 u8 *vaddr;
1426
1427 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1428 p, p_off, p_len, copied) {
1429 u32 copy, done = 0;
1430 vaddr = kmap_atomic(p);
1431
1432 while (done < p_len) {
1433 if (d_off == PAGE_SIZE) {
1434 d_off = 0;
1435 page = (struct page *)page_private(page);
1436 }
1437 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1438 memcpy(page_address(page) + d_off,
1439 vaddr + p_off + done, copy);
1440 done += copy;
1441 d_off += copy;
1442 }
1443 kunmap_atomic(vaddr);
1444 }
1445 }
1446
1447 /* skb frags release userspace buffers */
1448 for (i = 0; i < num_frags; i++)
1449 skb_frag_unref(skb, i);
1450
1451 /* skb frags point to kernel buffers */
1452 for (i = 0; i < new_frags - 1; i++) {
1453 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1454 head = (struct page *)page_private(head);
1455 }
1456 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1457 skb_shinfo(skb)->nr_frags = new_frags;
1458
1459 release:
1460 skb_zcopy_clear(skb, false);
1461 return 0;
1462 }
1463 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1464
1465 /**
1466 * skb_clone - duplicate an sk_buff
1467 * @skb: buffer to clone
1468 * @gfp_mask: allocation priority
1469 *
1470 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1471 * copies share the same packet data but not structure. The new
1472 * buffer has a reference count of 1. If the allocation fails the
1473 * function returns %NULL otherwise the new buffer is returned.
1474 *
1475 * If this function is called from an interrupt gfp_mask() must be
1476 * %GFP_ATOMIC.
1477 */
1478
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1479 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1480 {
1481 struct sk_buff_fclones *fclones = container_of(skb,
1482 struct sk_buff_fclones,
1483 skb1);
1484 struct sk_buff *n;
1485
1486 if (skb_orphan_frags(skb, gfp_mask))
1487 return NULL;
1488
1489 if (skb->fclone == SKB_FCLONE_ORIG &&
1490 refcount_read(&fclones->fclone_ref) == 1) {
1491 n = &fclones->skb2;
1492 refcount_set(&fclones->fclone_ref, 2);
1493 } else {
1494 if (skb_pfmemalloc(skb))
1495 gfp_mask |= __GFP_MEMALLOC;
1496
1497 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1498 if (!n)
1499 return NULL;
1500
1501 n->fclone = SKB_FCLONE_UNAVAILABLE;
1502 }
1503
1504 return __skb_clone(n, skb);
1505 }
1506 EXPORT_SYMBOL(skb_clone);
1507
skb_headers_offset_update(struct sk_buff * skb,int off)1508 void skb_headers_offset_update(struct sk_buff *skb, int off)
1509 {
1510 /* Only adjust this if it actually is csum_start rather than csum */
1511 if (skb->ip_summed == CHECKSUM_PARTIAL)
1512 skb->csum_start += off;
1513 /* {transport,network,mac}_header and tail are relative to skb->head */
1514 skb->transport_header += off;
1515 skb->network_header += off;
1516 if (skb_mac_header_was_set(skb))
1517 skb->mac_header += off;
1518 skb->inner_transport_header += off;
1519 skb->inner_network_header += off;
1520 skb->inner_mac_header += off;
1521 }
1522 EXPORT_SYMBOL(skb_headers_offset_update);
1523
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1524 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1525 {
1526 __copy_skb_header(new, old);
1527
1528 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1529 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1530 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1531 }
1532 EXPORT_SYMBOL(skb_copy_header);
1533
skb_alloc_rx_flag(const struct sk_buff * skb)1534 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1535 {
1536 if (skb_pfmemalloc(skb))
1537 return SKB_ALLOC_RX;
1538 return 0;
1539 }
1540
1541 /**
1542 * skb_copy - create private copy of an sk_buff
1543 * @skb: buffer to copy
1544 * @gfp_mask: allocation priority
1545 *
1546 * Make a copy of both an &sk_buff and its data. This is used when the
1547 * caller wishes to modify the data and needs a private copy of the
1548 * data to alter. Returns %NULL on failure or the pointer to the buffer
1549 * on success. The returned buffer has a reference count of 1.
1550 *
1551 * As by-product this function converts non-linear &sk_buff to linear
1552 * one, so that &sk_buff becomes completely private and caller is allowed
1553 * to modify all the data of returned buffer. This means that this
1554 * function is not recommended for use in circumstances when only
1555 * header is going to be modified. Use pskb_copy() instead.
1556 */
1557
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1558 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1559 {
1560 int headerlen = skb_headroom(skb);
1561 unsigned int size = skb_end_offset(skb) + skb->data_len;
1562 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1563 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1564
1565 if (!n)
1566 return NULL;
1567
1568 /* Set the data pointer */
1569 skb_reserve(n, headerlen);
1570 /* Set the tail pointer and length */
1571 skb_put(n, skb->len);
1572
1573 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1574
1575 skb_copy_header(n, skb);
1576 return n;
1577 }
1578 EXPORT_SYMBOL(skb_copy);
1579
1580 /**
1581 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1582 * @skb: buffer to copy
1583 * @headroom: headroom of new skb
1584 * @gfp_mask: allocation priority
1585 * @fclone: if true allocate the copy of the skb from the fclone
1586 * cache instead of the head cache; it is recommended to set this
1587 * to true for the cases where the copy will likely be cloned
1588 *
1589 * Make a copy of both an &sk_buff and part of its data, located
1590 * in header. Fragmented data remain shared. This is used when
1591 * the caller wishes to modify only header of &sk_buff and needs
1592 * private copy of the header to alter. Returns %NULL on failure
1593 * or the pointer to the buffer on success.
1594 * The returned buffer has a reference count of 1.
1595 */
1596
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1597 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1598 gfp_t gfp_mask, bool fclone)
1599 {
1600 unsigned int size = skb_headlen(skb) + headroom;
1601 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1602 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1603
1604 if (!n)
1605 goto out;
1606
1607 /* Set the data pointer */
1608 skb_reserve(n, headroom);
1609 /* Set the tail pointer and length */
1610 skb_put(n, skb_headlen(skb));
1611 /* Copy the bytes */
1612 skb_copy_from_linear_data(skb, n->data, n->len);
1613
1614 n->truesize += skb->data_len;
1615 n->data_len = skb->data_len;
1616 n->len = skb->len;
1617
1618 if (skb_shinfo(skb)->nr_frags) {
1619 int i;
1620
1621 if (skb_orphan_frags(skb, gfp_mask) ||
1622 skb_zerocopy_clone(n, skb, gfp_mask)) {
1623 kfree_skb(n);
1624 n = NULL;
1625 goto out;
1626 }
1627 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1628 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1629 skb_frag_ref(skb, i);
1630 }
1631 skb_shinfo(n)->nr_frags = i;
1632 }
1633
1634 if (skb_has_frag_list(skb)) {
1635 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1636 skb_clone_fraglist(n);
1637 }
1638
1639 skb_copy_header(n, skb);
1640 out:
1641 return n;
1642 }
1643 EXPORT_SYMBOL(__pskb_copy_fclone);
1644
1645 /**
1646 * pskb_expand_head - reallocate header of &sk_buff
1647 * @skb: buffer to reallocate
1648 * @nhead: room to add at head
1649 * @ntail: room to add at tail
1650 * @gfp_mask: allocation priority
1651 *
1652 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1653 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1654 * reference count of 1. Returns zero in the case of success or error,
1655 * if expansion failed. In the last case, &sk_buff is not changed.
1656 *
1657 * All the pointers pointing into skb header may change and must be
1658 * reloaded after call to this function.
1659 */
1660
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1661 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1662 gfp_t gfp_mask)
1663 {
1664 int i, osize = skb_end_offset(skb);
1665 int size = osize + nhead + ntail;
1666 long off;
1667 u8 *data;
1668
1669 BUG_ON(nhead < 0);
1670
1671 BUG_ON(skb_shared(skb));
1672
1673 size = SKB_DATA_ALIGN(size);
1674
1675 if (skb_pfmemalloc(skb))
1676 gfp_mask |= __GFP_MEMALLOC;
1677 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1678 gfp_mask, NUMA_NO_NODE, NULL);
1679 if (!data)
1680 goto nodata;
1681 size = SKB_WITH_OVERHEAD(ksize(data));
1682
1683 /* Copy only real data... and, alas, header. This should be
1684 * optimized for the cases when header is void.
1685 */
1686 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1687
1688 memcpy((struct skb_shared_info *)(data + size),
1689 skb_shinfo(skb),
1690 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1691
1692 /*
1693 * if shinfo is shared we must drop the old head gracefully, but if it
1694 * is not we can just drop the old head and let the existing refcount
1695 * be since all we did is relocate the values
1696 */
1697 if (skb_cloned(skb)) {
1698 if (skb_orphan_frags(skb, gfp_mask))
1699 goto nofrags;
1700 if (skb_zcopy(skb))
1701 refcount_inc(&skb_uarg(skb)->refcnt);
1702 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1703 skb_frag_ref(skb, i);
1704
1705 if (skb_has_frag_list(skb))
1706 skb_clone_fraglist(skb);
1707
1708 skb_release_data(skb);
1709 } else {
1710 skb_free_head(skb);
1711 }
1712 off = (data + nhead) - skb->head;
1713
1714 skb->head = data;
1715 skb->head_frag = 0;
1716 skb->data += off;
1717 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1718 skb->end = size;
1719 off = nhead;
1720 #else
1721 skb->end = skb->head + size;
1722 #endif
1723 skb->tail += off;
1724 skb_headers_offset_update(skb, nhead);
1725 skb->cloned = 0;
1726 skb->hdr_len = 0;
1727 skb->nohdr = 0;
1728 atomic_set(&skb_shinfo(skb)->dataref, 1);
1729
1730 skb_metadata_clear(skb);
1731
1732 /* It is not generally safe to change skb->truesize.
1733 * For the moment, we really care of rx path, or
1734 * when skb is orphaned (not attached to a socket).
1735 */
1736 if (!skb->sk || skb->destructor == sock_edemux)
1737 skb->truesize += size - osize;
1738
1739 return 0;
1740
1741 nofrags:
1742 kfree(data);
1743 nodata:
1744 return -ENOMEM;
1745 }
1746 EXPORT_SYMBOL(pskb_expand_head);
1747
1748 /* Make private copy of skb with writable head and some headroom */
1749
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1750 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1751 {
1752 struct sk_buff *skb2;
1753 int delta = headroom - skb_headroom(skb);
1754
1755 if (delta <= 0)
1756 skb2 = pskb_copy(skb, GFP_ATOMIC);
1757 else {
1758 skb2 = skb_clone(skb, GFP_ATOMIC);
1759 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1760 GFP_ATOMIC)) {
1761 kfree_skb(skb2);
1762 skb2 = NULL;
1763 }
1764 }
1765 return skb2;
1766 }
1767 EXPORT_SYMBOL(skb_realloc_headroom);
1768
1769 /**
1770 * skb_copy_expand - copy and expand sk_buff
1771 * @skb: buffer to copy
1772 * @newheadroom: new free bytes at head
1773 * @newtailroom: new free bytes at tail
1774 * @gfp_mask: allocation priority
1775 *
1776 * Make a copy of both an &sk_buff and its data and while doing so
1777 * allocate additional space.
1778 *
1779 * This is used when the caller wishes to modify the data and needs a
1780 * private copy of the data to alter as well as more space for new fields.
1781 * Returns %NULL on failure or the pointer to the buffer
1782 * on success. The returned buffer has a reference count of 1.
1783 *
1784 * You must pass %GFP_ATOMIC as the allocation priority if this function
1785 * is called from an interrupt.
1786 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1787 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1788 int newheadroom, int newtailroom,
1789 gfp_t gfp_mask)
1790 {
1791 /*
1792 * Allocate the copy buffer
1793 */
1794 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1795 gfp_mask, skb_alloc_rx_flag(skb),
1796 NUMA_NO_NODE);
1797 int oldheadroom = skb_headroom(skb);
1798 int head_copy_len, head_copy_off;
1799
1800 if (!n)
1801 return NULL;
1802
1803 skb_reserve(n, newheadroom);
1804
1805 /* Set the tail pointer and length */
1806 skb_put(n, skb->len);
1807
1808 head_copy_len = oldheadroom;
1809 head_copy_off = 0;
1810 if (newheadroom <= head_copy_len)
1811 head_copy_len = newheadroom;
1812 else
1813 head_copy_off = newheadroom - head_copy_len;
1814
1815 /* Copy the linear header and data. */
1816 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1817 skb->len + head_copy_len));
1818
1819 skb_copy_header(n, skb);
1820
1821 skb_headers_offset_update(n, newheadroom - oldheadroom);
1822
1823 return n;
1824 }
1825 EXPORT_SYMBOL(skb_copy_expand);
1826
1827 /**
1828 * __skb_pad - zero pad the tail of an skb
1829 * @skb: buffer to pad
1830 * @pad: space to pad
1831 * @free_on_error: free buffer on error
1832 *
1833 * Ensure that a buffer is followed by a padding area that is zero
1834 * filled. Used by network drivers which may DMA or transfer data
1835 * beyond the buffer end onto the wire.
1836 *
1837 * May return error in out of memory cases. The skb is freed on error
1838 * if @free_on_error is true.
1839 */
1840
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1841 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1842 {
1843 int err;
1844 int ntail;
1845
1846 /* If the skbuff is non linear tailroom is always zero.. */
1847 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1848 memset(skb->data+skb->len, 0, pad);
1849 return 0;
1850 }
1851
1852 ntail = skb->data_len + pad - (skb->end - skb->tail);
1853 if (likely(skb_cloned(skb) || ntail > 0)) {
1854 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1855 if (unlikely(err))
1856 goto free_skb;
1857 }
1858
1859 /* FIXME: The use of this function with non-linear skb's really needs
1860 * to be audited.
1861 */
1862 err = skb_linearize(skb);
1863 if (unlikely(err))
1864 goto free_skb;
1865
1866 memset(skb->data + skb->len, 0, pad);
1867 return 0;
1868
1869 free_skb:
1870 if (free_on_error)
1871 kfree_skb(skb);
1872 return err;
1873 }
1874 EXPORT_SYMBOL(__skb_pad);
1875
1876 /**
1877 * pskb_put - add data to the tail of a potentially fragmented buffer
1878 * @skb: start of the buffer to use
1879 * @tail: tail fragment of the buffer to use
1880 * @len: amount of data to add
1881 *
1882 * This function extends the used data area of the potentially
1883 * fragmented buffer. @tail must be the last fragment of @skb -- or
1884 * @skb itself. If this would exceed the total buffer size the kernel
1885 * will panic. A pointer to the first byte of the extra data is
1886 * returned.
1887 */
1888
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1889 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1890 {
1891 if (tail != skb) {
1892 skb->data_len += len;
1893 skb->len += len;
1894 }
1895 return skb_put(tail, len);
1896 }
1897 EXPORT_SYMBOL_GPL(pskb_put);
1898
1899 /**
1900 * skb_put - add data to a buffer
1901 * @skb: buffer to use
1902 * @len: amount of data to add
1903 *
1904 * This function extends the used data area of the buffer. If this would
1905 * exceed the total buffer size the kernel will panic. A pointer to the
1906 * first byte of the extra data is returned.
1907 */
skb_put(struct sk_buff * skb,unsigned int len)1908 void *skb_put(struct sk_buff *skb, unsigned int len)
1909 {
1910 void *tmp = skb_tail_pointer(skb);
1911 SKB_LINEAR_ASSERT(skb);
1912 skb->tail += len;
1913 skb->len += len;
1914 if (unlikely(skb->tail > skb->end))
1915 skb_over_panic(skb, len, __builtin_return_address(0));
1916 return tmp;
1917 }
1918 EXPORT_SYMBOL(skb_put);
1919
1920 /**
1921 * skb_push - add data to the start of a buffer
1922 * @skb: buffer to use
1923 * @len: amount of data to add
1924 *
1925 * This function extends the used data area of the buffer at the buffer
1926 * start. If this would exceed the total buffer headroom the kernel will
1927 * panic. A pointer to the first byte of the extra data is returned.
1928 */
skb_push(struct sk_buff * skb,unsigned int len)1929 void *skb_push(struct sk_buff *skb, unsigned int len)
1930 {
1931 skb->data -= len;
1932 skb->len += len;
1933 if (unlikely(skb->data < skb->head))
1934 skb_under_panic(skb, len, __builtin_return_address(0));
1935 return skb->data;
1936 }
1937 EXPORT_SYMBOL(skb_push);
1938
1939 /**
1940 * skb_pull - remove data from the start of a buffer
1941 * @skb: buffer to use
1942 * @len: amount of data to remove
1943 *
1944 * This function removes data from the start of a buffer, returning
1945 * the memory to the headroom. A pointer to the next data in the buffer
1946 * is returned. Once the data has been pulled future pushes will overwrite
1947 * the old data.
1948 */
skb_pull(struct sk_buff * skb,unsigned int len)1949 void *skb_pull(struct sk_buff *skb, unsigned int len)
1950 {
1951 return skb_pull_inline(skb, len);
1952 }
1953 EXPORT_SYMBOL(skb_pull);
1954
1955 /**
1956 * skb_trim - remove end from a buffer
1957 * @skb: buffer to alter
1958 * @len: new length
1959 *
1960 * Cut the length of a buffer down by removing data from the tail. If
1961 * the buffer is already under the length specified it is not modified.
1962 * The skb must be linear.
1963 */
skb_trim(struct sk_buff * skb,unsigned int len)1964 void skb_trim(struct sk_buff *skb, unsigned int len)
1965 {
1966 if (skb->len > len)
1967 __skb_trim(skb, len);
1968 }
1969 EXPORT_SYMBOL(skb_trim);
1970
1971 /* Trims skb to length len. It can change skb pointers.
1972 */
1973
___pskb_trim(struct sk_buff * skb,unsigned int len)1974 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1975 {
1976 struct sk_buff **fragp;
1977 struct sk_buff *frag;
1978 int offset = skb_headlen(skb);
1979 int nfrags = skb_shinfo(skb)->nr_frags;
1980 int i;
1981 int err;
1982
1983 if (skb_cloned(skb) &&
1984 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1985 return err;
1986
1987 i = 0;
1988 if (offset >= len)
1989 goto drop_pages;
1990
1991 for (; i < nfrags; i++) {
1992 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1993
1994 if (end < len) {
1995 offset = end;
1996 continue;
1997 }
1998
1999 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2000
2001 drop_pages:
2002 skb_shinfo(skb)->nr_frags = i;
2003
2004 for (; i < nfrags; i++)
2005 skb_frag_unref(skb, i);
2006
2007 if (skb_has_frag_list(skb))
2008 skb_drop_fraglist(skb);
2009 goto done;
2010 }
2011
2012 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2013 fragp = &frag->next) {
2014 int end = offset + frag->len;
2015
2016 if (skb_shared(frag)) {
2017 struct sk_buff *nfrag;
2018
2019 nfrag = skb_clone(frag, GFP_ATOMIC);
2020 if (unlikely(!nfrag))
2021 return -ENOMEM;
2022
2023 nfrag->next = frag->next;
2024 consume_skb(frag);
2025 frag = nfrag;
2026 *fragp = frag;
2027 }
2028
2029 if (end < len) {
2030 offset = end;
2031 continue;
2032 }
2033
2034 if (end > len &&
2035 unlikely((err = pskb_trim(frag, len - offset))))
2036 return err;
2037
2038 if (frag->next)
2039 skb_drop_list(&frag->next);
2040 break;
2041 }
2042
2043 done:
2044 if (len > skb_headlen(skb)) {
2045 skb->data_len -= skb->len - len;
2046 skb->len = len;
2047 } else {
2048 skb->len = len;
2049 skb->data_len = 0;
2050 skb_set_tail_pointer(skb, len);
2051 }
2052
2053 if (!skb->sk || skb->destructor == sock_edemux)
2054 skb_condense(skb);
2055 return 0;
2056 }
2057 EXPORT_SYMBOL(___pskb_trim);
2058
2059 /* Note : use pskb_trim_rcsum() instead of calling this directly
2060 */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2061 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2062 {
2063 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2064 int delta = skb->len - len;
2065
2066 skb->csum = csum_block_sub(skb->csum,
2067 skb_checksum(skb, len, delta, 0),
2068 len);
2069 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2070 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2071 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2072
2073 if (offset + sizeof(__sum16) > hdlen)
2074 return -EINVAL;
2075 }
2076 return __pskb_trim(skb, len);
2077 }
2078 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2079
2080 /**
2081 * __pskb_pull_tail - advance tail of skb header
2082 * @skb: buffer to reallocate
2083 * @delta: number of bytes to advance tail
2084 *
2085 * The function makes a sense only on a fragmented &sk_buff,
2086 * it expands header moving its tail forward and copying necessary
2087 * data from fragmented part.
2088 *
2089 * &sk_buff MUST have reference count of 1.
2090 *
2091 * Returns %NULL (and &sk_buff does not change) if pull failed
2092 * or value of new tail of skb in the case of success.
2093 *
2094 * All the pointers pointing into skb header may change and must be
2095 * reloaded after call to this function.
2096 */
2097
2098 /* Moves tail of skb head forward, copying data from fragmented part,
2099 * when it is necessary.
2100 * 1. It may fail due to malloc failure.
2101 * 2. It may change skb pointers.
2102 *
2103 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2104 */
__pskb_pull_tail(struct sk_buff * skb,int delta)2105 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2106 {
2107 /* If skb has not enough free space at tail, get new one
2108 * plus 128 bytes for future expansions. If we have enough
2109 * room at tail, reallocate without expansion only if skb is cloned.
2110 */
2111 int i, k, eat = (skb->tail + delta) - skb->end;
2112
2113 if (eat > 0 || skb_cloned(skb)) {
2114 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2115 GFP_ATOMIC))
2116 return NULL;
2117 }
2118
2119 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2120 skb_tail_pointer(skb), delta));
2121
2122 /* Optimization: no fragments, no reasons to preestimate
2123 * size of pulled pages. Superb.
2124 */
2125 if (!skb_has_frag_list(skb))
2126 goto pull_pages;
2127
2128 /* Estimate size of pulled pages. */
2129 eat = delta;
2130 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2131 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2132
2133 if (size >= eat)
2134 goto pull_pages;
2135 eat -= size;
2136 }
2137
2138 /* If we need update frag list, we are in troubles.
2139 * Certainly, it is possible to add an offset to skb data,
2140 * but taking into account that pulling is expected to
2141 * be very rare operation, it is worth to fight against
2142 * further bloating skb head and crucify ourselves here instead.
2143 * Pure masohism, indeed. 8)8)
2144 */
2145 if (eat) {
2146 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2147 struct sk_buff *clone = NULL;
2148 struct sk_buff *insp = NULL;
2149
2150 do {
2151 if (list->len <= eat) {
2152 /* Eaten as whole. */
2153 eat -= list->len;
2154 list = list->next;
2155 insp = list;
2156 } else {
2157 /* Eaten partially. */
2158
2159 if (skb_shared(list)) {
2160 /* Sucks! We need to fork list. :-( */
2161 clone = skb_clone(list, GFP_ATOMIC);
2162 if (!clone)
2163 return NULL;
2164 insp = list->next;
2165 list = clone;
2166 } else {
2167 /* This may be pulled without
2168 * problems. */
2169 insp = list;
2170 }
2171 if (!pskb_pull(list, eat)) {
2172 kfree_skb(clone);
2173 return NULL;
2174 }
2175 break;
2176 }
2177 } while (eat);
2178
2179 /* Free pulled out fragments. */
2180 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2181 skb_shinfo(skb)->frag_list = list->next;
2182 kfree_skb(list);
2183 }
2184 /* And insert new clone at head. */
2185 if (clone) {
2186 clone->next = list;
2187 skb_shinfo(skb)->frag_list = clone;
2188 }
2189 }
2190 /* Success! Now we may commit changes to skb data. */
2191
2192 pull_pages:
2193 eat = delta;
2194 k = 0;
2195 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2196 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2197
2198 if (size <= eat) {
2199 skb_frag_unref(skb, i);
2200 eat -= size;
2201 } else {
2202 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2203
2204 *frag = skb_shinfo(skb)->frags[i];
2205 if (eat) {
2206 skb_frag_off_add(frag, eat);
2207 skb_frag_size_sub(frag, eat);
2208 if (!i)
2209 goto end;
2210 eat = 0;
2211 }
2212 k++;
2213 }
2214 }
2215 skb_shinfo(skb)->nr_frags = k;
2216
2217 end:
2218 skb->tail += delta;
2219 skb->data_len -= delta;
2220
2221 if (!skb->data_len)
2222 skb_zcopy_clear(skb, false);
2223
2224 return skb_tail_pointer(skb);
2225 }
2226 EXPORT_SYMBOL(__pskb_pull_tail);
2227
2228 /**
2229 * skb_copy_bits - copy bits from skb to kernel buffer
2230 * @skb: source skb
2231 * @offset: offset in source
2232 * @to: destination buffer
2233 * @len: number of bytes to copy
2234 *
2235 * Copy the specified number of bytes from the source skb to the
2236 * destination buffer.
2237 *
2238 * CAUTION ! :
2239 * If its prototype is ever changed,
2240 * check arch/{*}/net/{*}.S files,
2241 * since it is called from BPF assembly code.
2242 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2243 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2244 {
2245 int start = skb_headlen(skb);
2246 struct sk_buff *frag_iter;
2247 int i, copy;
2248
2249 if (offset > (int)skb->len - len)
2250 goto fault;
2251
2252 /* Copy header. */
2253 if ((copy = start - offset) > 0) {
2254 if (copy > len)
2255 copy = len;
2256 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2257 if ((len -= copy) == 0)
2258 return 0;
2259 offset += copy;
2260 to += copy;
2261 }
2262
2263 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2264 int end;
2265 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2266
2267 WARN_ON(start > offset + len);
2268
2269 end = start + skb_frag_size(f);
2270 if ((copy = end - offset) > 0) {
2271 u32 p_off, p_len, copied;
2272 struct page *p;
2273 u8 *vaddr;
2274
2275 if (copy > len)
2276 copy = len;
2277
2278 skb_frag_foreach_page(f,
2279 skb_frag_off(f) + offset - start,
2280 copy, p, p_off, p_len, copied) {
2281 vaddr = kmap_atomic(p);
2282 memcpy(to + copied, vaddr + p_off, p_len);
2283 kunmap_atomic(vaddr);
2284 }
2285
2286 if ((len -= copy) == 0)
2287 return 0;
2288 offset += copy;
2289 to += copy;
2290 }
2291 start = end;
2292 }
2293
2294 skb_walk_frags(skb, frag_iter) {
2295 int end;
2296
2297 WARN_ON(start > offset + len);
2298
2299 end = start + frag_iter->len;
2300 if ((copy = end - offset) > 0) {
2301 if (copy > len)
2302 copy = len;
2303 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2304 goto fault;
2305 if ((len -= copy) == 0)
2306 return 0;
2307 offset += copy;
2308 to += copy;
2309 }
2310 start = end;
2311 }
2312
2313 if (!len)
2314 return 0;
2315
2316 fault:
2317 return -EFAULT;
2318 }
2319 EXPORT_SYMBOL(skb_copy_bits);
2320
2321 /*
2322 * Callback from splice_to_pipe(), if we need to release some pages
2323 * at the end of the spd in case we error'ed out in filling the pipe.
2324 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2325 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2326 {
2327 put_page(spd->pages[i]);
2328 }
2329
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2330 static struct page *linear_to_page(struct page *page, unsigned int *len,
2331 unsigned int *offset,
2332 struct sock *sk)
2333 {
2334 struct page_frag *pfrag = sk_page_frag(sk);
2335
2336 if (!sk_page_frag_refill(sk, pfrag))
2337 return NULL;
2338
2339 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2340
2341 memcpy(page_address(pfrag->page) + pfrag->offset,
2342 page_address(page) + *offset, *len);
2343 *offset = pfrag->offset;
2344 pfrag->offset += *len;
2345
2346 return pfrag->page;
2347 }
2348
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2349 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2350 struct page *page,
2351 unsigned int offset)
2352 {
2353 return spd->nr_pages &&
2354 spd->pages[spd->nr_pages - 1] == page &&
2355 (spd->partial[spd->nr_pages - 1].offset +
2356 spd->partial[spd->nr_pages - 1].len == offset);
2357 }
2358
2359 /*
2360 * Fill page/offset/length into spd, if it can hold more pages.
2361 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2362 static bool spd_fill_page(struct splice_pipe_desc *spd,
2363 struct pipe_inode_info *pipe, struct page *page,
2364 unsigned int *len, unsigned int offset,
2365 bool linear,
2366 struct sock *sk)
2367 {
2368 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2369 return true;
2370
2371 if (linear) {
2372 page = linear_to_page(page, len, &offset, sk);
2373 if (!page)
2374 return true;
2375 }
2376 if (spd_can_coalesce(spd, page, offset)) {
2377 spd->partial[spd->nr_pages - 1].len += *len;
2378 return false;
2379 }
2380 get_page(page);
2381 spd->pages[spd->nr_pages] = page;
2382 spd->partial[spd->nr_pages].len = *len;
2383 spd->partial[spd->nr_pages].offset = offset;
2384 spd->nr_pages++;
2385
2386 return false;
2387 }
2388
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2389 static bool __splice_segment(struct page *page, unsigned int poff,
2390 unsigned int plen, unsigned int *off,
2391 unsigned int *len,
2392 struct splice_pipe_desc *spd, bool linear,
2393 struct sock *sk,
2394 struct pipe_inode_info *pipe)
2395 {
2396 if (!*len)
2397 return true;
2398
2399 /* skip this segment if already processed */
2400 if (*off >= plen) {
2401 *off -= plen;
2402 return false;
2403 }
2404
2405 /* ignore any bits we already processed */
2406 poff += *off;
2407 plen -= *off;
2408 *off = 0;
2409
2410 do {
2411 unsigned int flen = min(*len, plen);
2412
2413 if (spd_fill_page(spd, pipe, page, &flen, poff,
2414 linear, sk))
2415 return true;
2416 poff += flen;
2417 plen -= flen;
2418 *len -= flen;
2419 } while (*len && plen);
2420
2421 return false;
2422 }
2423
2424 /*
2425 * Map linear and fragment data from the skb to spd. It reports true if the
2426 * pipe is full or if we already spliced the requested length.
2427 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2428 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2429 unsigned int *offset, unsigned int *len,
2430 struct splice_pipe_desc *spd, struct sock *sk)
2431 {
2432 int seg;
2433 struct sk_buff *iter;
2434
2435 /* map the linear part :
2436 * If skb->head_frag is set, this 'linear' part is backed by a
2437 * fragment, and if the head is not shared with any clones then
2438 * we can avoid a copy since we own the head portion of this page.
2439 */
2440 if (__splice_segment(virt_to_page(skb->data),
2441 (unsigned long) skb->data & (PAGE_SIZE - 1),
2442 skb_headlen(skb),
2443 offset, len, spd,
2444 skb_head_is_locked(skb),
2445 sk, pipe))
2446 return true;
2447
2448 /*
2449 * then map the fragments
2450 */
2451 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2452 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2453
2454 if (__splice_segment(skb_frag_page(f),
2455 skb_frag_off(f), skb_frag_size(f),
2456 offset, len, spd, false, sk, pipe))
2457 return true;
2458 }
2459
2460 skb_walk_frags(skb, iter) {
2461 if (*offset >= iter->len) {
2462 *offset -= iter->len;
2463 continue;
2464 }
2465 /* __skb_splice_bits() only fails if the output has no room
2466 * left, so no point in going over the frag_list for the error
2467 * case.
2468 */
2469 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2470 return true;
2471 }
2472
2473 return false;
2474 }
2475
2476 /*
2477 * Map data from the skb to a pipe. Should handle both the linear part,
2478 * the fragments, and the frag list.
2479 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2480 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2481 struct pipe_inode_info *pipe, unsigned int tlen,
2482 unsigned int flags)
2483 {
2484 struct partial_page partial[MAX_SKB_FRAGS];
2485 struct page *pages[MAX_SKB_FRAGS];
2486 struct splice_pipe_desc spd = {
2487 .pages = pages,
2488 .partial = partial,
2489 .nr_pages_max = MAX_SKB_FRAGS,
2490 .ops = &nosteal_pipe_buf_ops,
2491 .spd_release = sock_spd_release,
2492 };
2493 int ret = 0;
2494
2495 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2496
2497 if (spd.nr_pages)
2498 ret = splice_to_pipe(pipe, &spd);
2499
2500 return ret;
2501 }
2502 EXPORT_SYMBOL_GPL(skb_splice_bits);
2503
sendmsg_unlocked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)2504 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2505 struct kvec *vec, size_t num, size_t size)
2506 {
2507 struct socket *sock = sk->sk_socket;
2508
2509 if (!sock)
2510 return -EINVAL;
2511 return kernel_sendmsg(sock, msg, vec, num, size);
2512 }
2513
sendpage_unlocked(struct sock * sk,struct page * page,int offset,size_t size,int flags)2514 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2515 size_t size, int flags)
2516 {
2517 struct socket *sock = sk->sk_socket;
2518
2519 if (!sock)
2520 return -EINVAL;
2521 return kernel_sendpage(sock, page, offset, size, flags);
2522 }
2523
2524 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2525 struct kvec *vec, size_t num, size_t size);
2526 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2527 size_t size, int flags);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg,sendpage_func sendpage)2528 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2529 int len, sendmsg_func sendmsg, sendpage_func sendpage)
2530 {
2531 unsigned int orig_len = len;
2532 struct sk_buff *head = skb;
2533 unsigned short fragidx;
2534 int slen, ret;
2535
2536 do_frag_list:
2537
2538 /* Deal with head data */
2539 while (offset < skb_headlen(skb) && len) {
2540 struct kvec kv;
2541 struct msghdr msg;
2542
2543 slen = min_t(int, len, skb_headlen(skb) - offset);
2544 kv.iov_base = skb->data + offset;
2545 kv.iov_len = slen;
2546 memset(&msg, 0, sizeof(msg));
2547 msg.msg_flags = MSG_DONTWAIT;
2548
2549 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2550 sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2551 if (ret <= 0)
2552 goto error;
2553
2554 offset += ret;
2555 len -= ret;
2556 }
2557
2558 /* All the data was skb head? */
2559 if (!len)
2560 goto out;
2561
2562 /* Make offset relative to start of frags */
2563 offset -= skb_headlen(skb);
2564
2565 /* Find where we are in frag list */
2566 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2567 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2568
2569 if (offset < skb_frag_size(frag))
2570 break;
2571
2572 offset -= skb_frag_size(frag);
2573 }
2574
2575 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2576 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2577
2578 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2579
2580 while (slen) {
2581 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2582 sendpage_unlocked, sk,
2583 skb_frag_page(frag),
2584 skb_frag_off(frag) + offset,
2585 slen, MSG_DONTWAIT);
2586 if (ret <= 0)
2587 goto error;
2588
2589 len -= ret;
2590 offset += ret;
2591 slen -= ret;
2592 }
2593
2594 offset = 0;
2595 }
2596
2597 if (len) {
2598 /* Process any frag lists */
2599
2600 if (skb == head) {
2601 if (skb_has_frag_list(skb)) {
2602 skb = skb_shinfo(skb)->frag_list;
2603 goto do_frag_list;
2604 }
2605 } else if (skb->next) {
2606 skb = skb->next;
2607 goto do_frag_list;
2608 }
2609 }
2610
2611 out:
2612 return orig_len - len;
2613
2614 error:
2615 return orig_len == len ? ret : orig_len - len;
2616 }
2617
2618 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2619 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2620 int len)
2621 {
2622 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2623 kernel_sendpage_locked);
2624 }
2625 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2626
2627 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)2628 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2629 {
2630 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2631 sendpage_unlocked);
2632 }
2633
2634 /**
2635 * skb_store_bits - store bits from kernel buffer to skb
2636 * @skb: destination buffer
2637 * @offset: offset in destination
2638 * @from: source buffer
2639 * @len: number of bytes to copy
2640 *
2641 * Copy the specified number of bytes from the source buffer to the
2642 * destination skb. This function handles all the messy bits of
2643 * traversing fragment lists and such.
2644 */
2645
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2646 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2647 {
2648 int start = skb_headlen(skb);
2649 struct sk_buff *frag_iter;
2650 int i, copy;
2651
2652 if (offset > (int)skb->len - len)
2653 goto fault;
2654
2655 if ((copy = start - offset) > 0) {
2656 if (copy > len)
2657 copy = len;
2658 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2659 if ((len -= copy) == 0)
2660 return 0;
2661 offset += copy;
2662 from += copy;
2663 }
2664
2665 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2666 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2667 int end;
2668
2669 WARN_ON(start > offset + len);
2670
2671 end = start + skb_frag_size(frag);
2672 if ((copy = end - offset) > 0) {
2673 u32 p_off, p_len, copied;
2674 struct page *p;
2675 u8 *vaddr;
2676
2677 if (copy > len)
2678 copy = len;
2679
2680 skb_frag_foreach_page(frag,
2681 skb_frag_off(frag) + offset - start,
2682 copy, p, p_off, p_len, copied) {
2683 vaddr = kmap_atomic(p);
2684 memcpy(vaddr + p_off, from + copied, p_len);
2685 kunmap_atomic(vaddr);
2686 }
2687
2688 if ((len -= copy) == 0)
2689 return 0;
2690 offset += copy;
2691 from += copy;
2692 }
2693 start = end;
2694 }
2695
2696 skb_walk_frags(skb, frag_iter) {
2697 int end;
2698
2699 WARN_ON(start > offset + len);
2700
2701 end = start + frag_iter->len;
2702 if ((copy = end - offset) > 0) {
2703 if (copy > len)
2704 copy = len;
2705 if (skb_store_bits(frag_iter, offset - start,
2706 from, copy))
2707 goto fault;
2708 if ((len -= copy) == 0)
2709 return 0;
2710 offset += copy;
2711 from += copy;
2712 }
2713 start = end;
2714 }
2715 if (!len)
2716 return 0;
2717
2718 fault:
2719 return -EFAULT;
2720 }
2721 EXPORT_SYMBOL(skb_store_bits);
2722
2723 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2724 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2725 __wsum csum, const struct skb_checksum_ops *ops)
2726 {
2727 int start = skb_headlen(skb);
2728 int i, copy = start - offset;
2729 struct sk_buff *frag_iter;
2730 int pos = 0;
2731
2732 /* Checksum header. */
2733 if (copy > 0) {
2734 if (copy > len)
2735 copy = len;
2736 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2737 skb->data + offset, copy, csum);
2738 if ((len -= copy) == 0)
2739 return csum;
2740 offset += copy;
2741 pos = copy;
2742 }
2743
2744 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2745 int end;
2746 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2747
2748 WARN_ON(start > offset + len);
2749
2750 end = start + skb_frag_size(frag);
2751 if ((copy = end - offset) > 0) {
2752 u32 p_off, p_len, copied;
2753 struct page *p;
2754 __wsum csum2;
2755 u8 *vaddr;
2756
2757 if (copy > len)
2758 copy = len;
2759
2760 skb_frag_foreach_page(frag,
2761 skb_frag_off(frag) + offset - start,
2762 copy, p, p_off, p_len, copied) {
2763 vaddr = kmap_atomic(p);
2764 csum2 = INDIRECT_CALL_1(ops->update,
2765 csum_partial_ext,
2766 vaddr + p_off, p_len, 0);
2767 kunmap_atomic(vaddr);
2768 csum = INDIRECT_CALL_1(ops->combine,
2769 csum_block_add_ext, csum,
2770 csum2, pos, p_len);
2771 pos += p_len;
2772 }
2773
2774 if (!(len -= copy))
2775 return csum;
2776 offset += copy;
2777 }
2778 start = end;
2779 }
2780
2781 skb_walk_frags(skb, frag_iter) {
2782 int end;
2783
2784 WARN_ON(start > offset + len);
2785
2786 end = start + frag_iter->len;
2787 if ((copy = end - offset) > 0) {
2788 __wsum csum2;
2789 if (copy > len)
2790 copy = len;
2791 csum2 = __skb_checksum(frag_iter, offset - start,
2792 copy, 0, ops);
2793 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2794 csum, csum2, pos, copy);
2795 if ((len -= copy) == 0)
2796 return csum;
2797 offset += copy;
2798 pos += copy;
2799 }
2800 start = end;
2801 }
2802 BUG_ON(len);
2803
2804 return csum;
2805 }
2806 EXPORT_SYMBOL(__skb_checksum);
2807
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2808 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2809 int len, __wsum csum)
2810 {
2811 const struct skb_checksum_ops ops = {
2812 .update = csum_partial_ext,
2813 .combine = csum_block_add_ext,
2814 };
2815
2816 return __skb_checksum(skb, offset, len, csum, &ops);
2817 }
2818 EXPORT_SYMBOL(skb_checksum);
2819
2820 /* Both of above in one bottle. */
2821
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)2822 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2823 u8 *to, int len)
2824 {
2825 int start = skb_headlen(skb);
2826 int i, copy = start - offset;
2827 struct sk_buff *frag_iter;
2828 int pos = 0;
2829 __wsum csum = 0;
2830
2831 /* Copy header. */
2832 if (copy > 0) {
2833 if (copy > len)
2834 copy = len;
2835 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2836 copy);
2837 if ((len -= copy) == 0)
2838 return csum;
2839 offset += copy;
2840 to += copy;
2841 pos = copy;
2842 }
2843
2844 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2845 int end;
2846
2847 WARN_ON(start > offset + len);
2848
2849 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2850 if ((copy = end - offset) > 0) {
2851 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2852 u32 p_off, p_len, copied;
2853 struct page *p;
2854 __wsum csum2;
2855 u8 *vaddr;
2856
2857 if (copy > len)
2858 copy = len;
2859
2860 skb_frag_foreach_page(frag,
2861 skb_frag_off(frag) + offset - start,
2862 copy, p, p_off, p_len, copied) {
2863 vaddr = kmap_atomic(p);
2864 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2865 to + copied,
2866 p_len);
2867 kunmap_atomic(vaddr);
2868 csum = csum_block_add(csum, csum2, pos);
2869 pos += p_len;
2870 }
2871
2872 if (!(len -= copy))
2873 return csum;
2874 offset += copy;
2875 to += copy;
2876 }
2877 start = end;
2878 }
2879
2880 skb_walk_frags(skb, frag_iter) {
2881 __wsum csum2;
2882 int end;
2883
2884 WARN_ON(start > offset + len);
2885
2886 end = start + frag_iter->len;
2887 if ((copy = end - offset) > 0) {
2888 if (copy > len)
2889 copy = len;
2890 csum2 = skb_copy_and_csum_bits(frag_iter,
2891 offset - start,
2892 to, copy);
2893 csum = csum_block_add(csum, csum2, pos);
2894 if ((len -= copy) == 0)
2895 return csum;
2896 offset += copy;
2897 to += copy;
2898 pos += copy;
2899 }
2900 start = end;
2901 }
2902 BUG_ON(len);
2903 return csum;
2904 }
2905 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2906
__skb_checksum_complete_head(struct sk_buff * skb,int len)2907 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2908 {
2909 __sum16 sum;
2910
2911 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2912 /* See comments in __skb_checksum_complete(). */
2913 if (likely(!sum)) {
2914 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2915 !skb->csum_complete_sw)
2916 netdev_rx_csum_fault(skb->dev, skb);
2917 }
2918 if (!skb_shared(skb))
2919 skb->csum_valid = !sum;
2920 return sum;
2921 }
2922 EXPORT_SYMBOL(__skb_checksum_complete_head);
2923
2924 /* This function assumes skb->csum already holds pseudo header's checksum,
2925 * which has been changed from the hardware checksum, for example, by
2926 * __skb_checksum_validate_complete(). And, the original skb->csum must
2927 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2928 *
2929 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2930 * zero. The new checksum is stored back into skb->csum unless the skb is
2931 * shared.
2932 */
__skb_checksum_complete(struct sk_buff * skb)2933 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2934 {
2935 __wsum csum;
2936 __sum16 sum;
2937
2938 csum = skb_checksum(skb, 0, skb->len, 0);
2939
2940 sum = csum_fold(csum_add(skb->csum, csum));
2941 /* This check is inverted, because we already knew the hardware
2942 * checksum is invalid before calling this function. So, if the
2943 * re-computed checksum is valid instead, then we have a mismatch
2944 * between the original skb->csum and skb_checksum(). This means either
2945 * the original hardware checksum is incorrect or we screw up skb->csum
2946 * when moving skb->data around.
2947 */
2948 if (likely(!sum)) {
2949 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2950 !skb->csum_complete_sw)
2951 netdev_rx_csum_fault(skb->dev, skb);
2952 }
2953
2954 if (!skb_shared(skb)) {
2955 /* Save full packet checksum */
2956 skb->csum = csum;
2957 skb->ip_summed = CHECKSUM_COMPLETE;
2958 skb->csum_complete_sw = 1;
2959 skb->csum_valid = !sum;
2960 }
2961
2962 return sum;
2963 }
2964 EXPORT_SYMBOL(__skb_checksum_complete);
2965
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)2966 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2967 {
2968 net_warn_ratelimited(
2969 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2970 __func__);
2971 return 0;
2972 }
2973
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)2974 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2975 int offset, int len)
2976 {
2977 net_warn_ratelimited(
2978 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2979 __func__);
2980 return 0;
2981 }
2982
2983 static const struct skb_checksum_ops default_crc32c_ops = {
2984 .update = warn_crc32c_csum_update,
2985 .combine = warn_crc32c_csum_combine,
2986 };
2987
2988 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2989 &default_crc32c_ops;
2990 EXPORT_SYMBOL(crc32c_csum_stub);
2991
2992 /**
2993 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2994 * @from: source buffer
2995 *
2996 * Calculates the amount of linear headroom needed in the 'to' skb passed
2997 * into skb_zerocopy().
2998 */
2999 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3000 skb_zerocopy_headlen(const struct sk_buff *from)
3001 {
3002 unsigned int hlen = 0;
3003
3004 if (!from->head_frag ||
3005 skb_headlen(from) < L1_CACHE_BYTES ||
3006 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3007 hlen = skb_headlen(from);
3008
3009 if (skb_has_frag_list(from))
3010 hlen = from->len;
3011
3012 return hlen;
3013 }
3014 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3015
3016 /**
3017 * skb_zerocopy - Zero copy skb to skb
3018 * @to: destination buffer
3019 * @from: source buffer
3020 * @len: number of bytes to copy from source buffer
3021 * @hlen: size of linear headroom in destination buffer
3022 *
3023 * Copies up to `len` bytes from `from` to `to` by creating references
3024 * to the frags in the source buffer.
3025 *
3026 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3027 * headroom in the `to` buffer.
3028 *
3029 * Return value:
3030 * 0: everything is OK
3031 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3032 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3033 */
3034 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3035 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3036 {
3037 int i, j = 0;
3038 int plen = 0; /* length of skb->head fragment */
3039 int ret;
3040 struct page *page;
3041 unsigned int offset;
3042
3043 BUG_ON(!from->head_frag && !hlen);
3044
3045 /* dont bother with small payloads */
3046 if (len <= skb_tailroom(to))
3047 return skb_copy_bits(from, 0, skb_put(to, len), len);
3048
3049 if (hlen) {
3050 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3051 if (unlikely(ret))
3052 return ret;
3053 len -= hlen;
3054 } else {
3055 plen = min_t(int, skb_headlen(from), len);
3056 if (plen) {
3057 page = virt_to_head_page(from->head);
3058 offset = from->data - (unsigned char *)page_address(page);
3059 __skb_fill_page_desc(to, 0, page, offset, plen);
3060 get_page(page);
3061 j = 1;
3062 len -= plen;
3063 }
3064 }
3065
3066 to->truesize += len + plen;
3067 to->len += len + plen;
3068 to->data_len += len + plen;
3069
3070 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3071 skb_tx_error(from);
3072 return -ENOMEM;
3073 }
3074 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3075
3076 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3077 int size;
3078
3079 if (!len)
3080 break;
3081 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3082 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3083 len);
3084 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3085 len -= size;
3086 skb_frag_ref(to, j);
3087 j++;
3088 }
3089 skb_shinfo(to)->nr_frags = j;
3090
3091 return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(skb_zerocopy);
3094
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3095 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3096 {
3097 __wsum csum;
3098 long csstart;
3099
3100 if (skb->ip_summed == CHECKSUM_PARTIAL)
3101 csstart = skb_checksum_start_offset(skb);
3102 else
3103 csstart = skb_headlen(skb);
3104
3105 BUG_ON(csstart > skb_headlen(skb));
3106
3107 skb_copy_from_linear_data(skb, to, csstart);
3108
3109 csum = 0;
3110 if (csstart != skb->len)
3111 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3112 skb->len - csstart);
3113
3114 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3115 long csstuff = csstart + skb->csum_offset;
3116
3117 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3118 }
3119 }
3120 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3121
3122 /**
3123 * skb_dequeue - remove from the head of the queue
3124 * @list: list to dequeue from
3125 *
3126 * Remove the head of the list. The list lock is taken so the function
3127 * may be used safely with other locking list functions. The head item is
3128 * returned or %NULL if the list is empty.
3129 */
3130
skb_dequeue(struct sk_buff_head * list)3131 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3132 {
3133 unsigned long flags;
3134 struct sk_buff *result;
3135
3136 spin_lock_irqsave(&list->lock, flags);
3137 result = __skb_dequeue(list);
3138 spin_unlock_irqrestore(&list->lock, flags);
3139 return result;
3140 }
3141 EXPORT_SYMBOL(skb_dequeue);
3142
3143 /**
3144 * skb_dequeue_tail - remove from the tail of the queue
3145 * @list: list to dequeue from
3146 *
3147 * Remove the tail of the list. The list lock is taken so the function
3148 * may be used safely with other locking list functions. The tail item is
3149 * returned or %NULL if the list is empty.
3150 */
skb_dequeue_tail(struct sk_buff_head * list)3151 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3152 {
3153 unsigned long flags;
3154 struct sk_buff *result;
3155
3156 spin_lock_irqsave(&list->lock, flags);
3157 result = __skb_dequeue_tail(list);
3158 spin_unlock_irqrestore(&list->lock, flags);
3159 return result;
3160 }
3161 EXPORT_SYMBOL(skb_dequeue_tail);
3162
3163 /**
3164 * skb_queue_purge - empty a list
3165 * @list: list to empty
3166 *
3167 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3168 * the list and one reference dropped. This function takes the list
3169 * lock and is atomic with respect to other list locking functions.
3170 */
skb_queue_purge(struct sk_buff_head * list)3171 void skb_queue_purge(struct sk_buff_head *list)
3172 {
3173 struct sk_buff *skb;
3174 while ((skb = skb_dequeue(list)) != NULL)
3175 kfree_skb(skb);
3176 }
3177 EXPORT_SYMBOL(skb_queue_purge);
3178
3179 /**
3180 * skb_rbtree_purge - empty a skb rbtree
3181 * @root: root of the rbtree to empty
3182 * Return value: the sum of truesizes of all purged skbs.
3183 *
3184 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3185 * the list and one reference dropped. This function does not take
3186 * any lock. Synchronization should be handled by the caller (e.g., TCP
3187 * out-of-order queue is protected by the socket lock).
3188 */
skb_rbtree_purge(struct rb_root * root)3189 unsigned int skb_rbtree_purge(struct rb_root *root)
3190 {
3191 struct rb_node *p = rb_first(root);
3192 unsigned int sum = 0;
3193
3194 while (p) {
3195 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3196
3197 p = rb_next(p);
3198 rb_erase(&skb->rbnode, root);
3199 sum += skb->truesize;
3200 kfree_skb(skb);
3201 }
3202 return sum;
3203 }
3204
3205 /**
3206 * skb_queue_head - queue a buffer at the list head
3207 * @list: list to use
3208 * @newsk: buffer to queue
3209 *
3210 * Queue a buffer at the start of the list. This function takes the
3211 * list lock and can be used safely with other locking &sk_buff functions
3212 * safely.
3213 *
3214 * A buffer cannot be placed on two lists at the same time.
3215 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3216 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3217 {
3218 unsigned long flags;
3219
3220 spin_lock_irqsave(&list->lock, flags);
3221 __skb_queue_head(list, newsk);
3222 spin_unlock_irqrestore(&list->lock, flags);
3223 }
3224 EXPORT_SYMBOL(skb_queue_head);
3225
3226 /**
3227 * skb_queue_tail - queue a buffer at the list tail
3228 * @list: list to use
3229 * @newsk: buffer to queue
3230 *
3231 * Queue a buffer at the tail of the list. This function takes the
3232 * list lock and can be used safely with other locking &sk_buff functions
3233 * safely.
3234 *
3235 * A buffer cannot be placed on two lists at the same time.
3236 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3237 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3238 {
3239 unsigned long flags;
3240
3241 spin_lock_irqsave(&list->lock, flags);
3242 __skb_queue_tail(list, newsk);
3243 spin_unlock_irqrestore(&list->lock, flags);
3244 }
3245 EXPORT_SYMBOL(skb_queue_tail);
3246
3247 /**
3248 * skb_unlink - remove a buffer from a list
3249 * @skb: buffer to remove
3250 * @list: list to use
3251 *
3252 * Remove a packet from a list. The list locks are taken and this
3253 * function is atomic with respect to other list locked calls
3254 *
3255 * You must know what list the SKB is on.
3256 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3257 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3258 {
3259 unsigned long flags;
3260
3261 spin_lock_irqsave(&list->lock, flags);
3262 __skb_unlink(skb, list);
3263 spin_unlock_irqrestore(&list->lock, flags);
3264 }
3265 EXPORT_SYMBOL(skb_unlink);
3266
3267 /**
3268 * skb_append - append a buffer
3269 * @old: buffer to insert after
3270 * @newsk: buffer to insert
3271 * @list: list to use
3272 *
3273 * Place a packet after a given packet in a list. The list locks are taken
3274 * and this function is atomic with respect to other list locked calls.
3275 * A buffer cannot be placed on two lists at the same time.
3276 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3277 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3278 {
3279 unsigned long flags;
3280
3281 spin_lock_irqsave(&list->lock, flags);
3282 __skb_queue_after(list, old, newsk);
3283 spin_unlock_irqrestore(&list->lock, flags);
3284 }
3285 EXPORT_SYMBOL(skb_append);
3286
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3287 static inline void skb_split_inside_header(struct sk_buff *skb,
3288 struct sk_buff* skb1,
3289 const u32 len, const int pos)
3290 {
3291 int i;
3292
3293 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3294 pos - len);
3295 /* And move data appendix as is. */
3296 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3297 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3298
3299 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3300 skb_shinfo(skb)->nr_frags = 0;
3301 skb1->data_len = skb->data_len;
3302 skb1->len += skb1->data_len;
3303 skb->data_len = 0;
3304 skb->len = len;
3305 skb_set_tail_pointer(skb, len);
3306 }
3307
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3308 static inline void skb_split_no_header(struct sk_buff *skb,
3309 struct sk_buff* skb1,
3310 const u32 len, int pos)
3311 {
3312 int i, k = 0;
3313 const int nfrags = skb_shinfo(skb)->nr_frags;
3314
3315 skb_shinfo(skb)->nr_frags = 0;
3316 skb1->len = skb1->data_len = skb->len - len;
3317 skb->len = len;
3318 skb->data_len = len - pos;
3319
3320 for (i = 0; i < nfrags; i++) {
3321 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3322
3323 if (pos + size > len) {
3324 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3325
3326 if (pos < len) {
3327 /* Split frag.
3328 * We have two variants in this case:
3329 * 1. Move all the frag to the second
3330 * part, if it is possible. F.e.
3331 * this approach is mandatory for TUX,
3332 * where splitting is expensive.
3333 * 2. Split is accurately. We make this.
3334 */
3335 skb_frag_ref(skb, i);
3336 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3337 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3338 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3339 skb_shinfo(skb)->nr_frags++;
3340 }
3341 k++;
3342 } else
3343 skb_shinfo(skb)->nr_frags++;
3344 pos += size;
3345 }
3346 skb_shinfo(skb1)->nr_frags = k;
3347 }
3348
3349 /**
3350 * skb_split - Split fragmented skb to two parts at length len.
3351 * @skb: the buffer to split
3352 * @skb1: the buffer to receive the second part
3353 * @len: new length for skb
3354 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3355 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3356 {
3357 int pos = skb_headlen(skb);
3358
3359 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3360 skb_zerocopy_clone(skb1, skb, 0);
3361 if (len < pos) /* Split line is inside header. */
3362 skb_split_inside_header(skb, skb1, len, pos);
3363 else /* Second chunk has no header, nothing to copy. */
3364 skb_split_no_header(skb, skb1, len, pos);
3365 }
3366 EXPORT_SYMBOL(skb_split);
3367
3368 /* Shifting from/to a cloned skb is a no-go.
3369 *
3370 * Caller cannot keep skb_shinfo related pointers past calling here!
3371 */
skb_prepare_for_shift(struct sk_buff * skb)3372 static int skb_prepare_for_shift(struct sk_buff *skb)
3373 {
3374 int ret = 0;
3375
3376 if (skb_cloned(skb)) {
3377 /* Save and restore truesize: pskb_expand_head() may reallocate
3378 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3379 * cannot change truesize at this point.
3380 */
3381 unsigned int save_truesize = skb->truesize;
3382
3383 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3384 skb->truesize = save_truesize;
3385 }
3386 return ret;
3387 }
3388
3389 /**
3390 * skb_shift - Shifts paged data partially from skb to another
3391 * @tgt: buffer into which tail data gets added
3392 * @skb: buffer from which the paged data comes from
3393 * @shiftlen: shift up to this many bytes
3394 *
3395 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3396 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3397 * It's up to caller to free skb if everything was shifted.
3398 *
3399 * If @tgt runs out of frags, the whole operation is aborted.
3400 *
3401 * Skb cannot include anything else but paged data while tgt is allowed
3402 * to have non-paged data as well.
3403 *
3404 * TODO: full sized shift could be optimized but that would need
3405 * specialized skb free'er to handle frags without up-to-date nr_frags.
3406 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3407 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3408 {
3409 int from, to, merge, todo;
3410 skb_frag_t *fragfrom, *fragto;
3411
3412 BUG_ON(shiftlen > skb->len);
3413
3414 if (skb_headlen(skb))
3415 return 0;
3416 if (skb_zcopy(tgt) || skb_zcopy(skb))
3417 return 0;
3418
3419 todo = shiftlen;
3420 from = 0;
3421 to = skb_shinfo(tgt)->nr_frags;
3422 fragfrom = &skb_shinfo(skb)->frags[from];
3423
3424 /* Actual merge is delayed until the point when we know we can
3425 * commit all, so that we don't have to undo partial changes
3426 */
3427 if (!to ||
3428 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3429 skb_frag_off(fragfrom))) {
3430 merge = -1;
3431 } else {
3432 merge = to - 1;
3433
3434 todo -= skb_frag_size(fragfrom);
3435 if (todo < 0) {
3436 if (skb_prepare_for_shift(skb) ||
3437 skb_prepare_for_shift(tgt))
3438 return 0;
3439
3440 /* All previous frag pointers might be stale! */
3441 fragfrom = &skb_shinfo(skb)->frags[from];
3442 fragto = &skb_shinfo(tgt)->frags[merge];
3443
3444 skb_frag_size_add(fragto, shiftlen);
3445 skb_frag_size_sub(fragfrom, shiftlen);
3446 skb_frag_off_add(fragfrom, shiftlen);
3447
3448 goto onlymerged;
3449 }
3450
3451 from++;
3452 }
3453
3454 /* Skip full, not-fitting skb to avoid expensive operations */
3455 if ((shiftlen == skb->len) &&
3456 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3457 return 0;
3458
3459 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3460 return 0;
3461
3462 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3463 if (to == MAX_SKB_FRAGS)
3464 return 0;
3465
3466 fragfrom = &skb_shinfo(skb)->frags[from];
3467 fragto = &skb_shinfo(tgt)->frags[to];
3468
3469 if (todo >= skb_frag_size(fragfrom)) {
3470 *fragto = *fragfrom;
3471 todo -= skb_frag_size(fragfrom);
3472 from++;
3473 to++;
3474
3475 } else {
3476 __skb_frag_ref(fragfrom);
3477 skb_frag_page_copy(fragto, fragfrom);
3478 skb_frag_off_copy(fragto, fragfrom);
3479 skb_frag_size_set(fragto, todo);
3480
3481 skb_frag_off_add(fragfrom, todo);
3482 skb_frag_size_sub(fragfrom, todo);
3483 todo = 0;
3484
3485 to++;
3486 break;
3487 }
3488 }
3489
3490 /* Ready to "commit" this state change to tgt */
3491 skb_shinfo(tgt)->nr_frags = to;
3492
3493 if (merge >= 0) {
3494 fragfrom = &skb_shinfo(skb)->frags[0];
3495 fragto = &skb_shinfo(tgt)->frags[merge];
3496
3497 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3498 __skb_frag_unref(fragfrom);
3499 }
3500
3501 /* Reposition in the original skb */
3502 to = 0;
3503 while (from < skb_shinfo(skb)->nr_frags)
3504 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3505 skb_shinfo(skb)->nr_frags = to;
3506
3507 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3508
3509 onlymerged:
3510 /* Most likely the tgt won't ever need its checksum anymore, skb on
3511 * the other hand might need it if it needs to be resent
3512 */
3513 tgt->ip_summed = CHECKSUM_PARTIAL;
3514 skb->ip_summed = CHECKSUM_PARTIAL;
3515
3516 /* Yak, is it really working this way? Some helper please? */
3517 skb->len -= shiftlen;
3518 skb->data_len -= shiftlen;
3519 skb->truesize -= shiftlen;
3520 tgt->len += shiftlen;
3521 tgt->data_len += shiftlen;
3522 tgt->truesize += shiftlen;
3523
3524 return shiftlen;
3525 }
3526
3527 /**
3528 * skb_prepare_seq_read - Prepare a sequential read of skb data
3529 * @skb: the buffer to read
3530 * @from: lower offset of data to be read
3531 * @to: upper offset of data to be read
3532 * @st: state variable
3533 *
3534 * Initializes the specified state variable. Must be called before
3535 * invoking skb_seq_read() for the first time.
3536 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3537 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3538 unsigned int to, struct skb_seq_state *st)
3539 {
3540 st->lower_offset = from;
3541 st->upper_offset = to;
3542 st->root_skb = st->cur_skb = skb;
3543 st->frag_idx = st->stepped_offset = 0;
3544 st->frag_data = NULL;
3545 st->frag_off = 0;
3546 }
3547 EXPORT_SYMBOL(skb_prepare_seq_read);
3548
3549 /**
3550 * skb_seq_read - Sequentially read skb data
3551 * @consumed: number of bytes consumed by the caller so far
3552 * @data: destination pointer for data to be returned
3553 * @st: state variable
3554 *
3555 * Reads a block of skb data at @consumed relative to the
3556 * lower offset specified to skb_prepare_seq_read(). Assigns
3557 * the head of the data block to @data and returns the length
3558 * of the block or 0 if the end of the skb data or the upper
3559 * offset has been reached.
3560 *
3561 * The caller is not required to consume all of the data
3562 * returned, i.e. @consumed is typically set to the number
3563 * of bytes already consumed and the next call to
3564 * skb_seq_read() will return the remaining part of the block.
3565 *
3566 * Note 1: The size of each block of data returned can be arbitrary,
3567 * this limitation is the cost for zerocopy sequential
3568 * reads of potentially non linear data.
3569 *
3570 * Note 2: Fragment lists within fragments are not implemented
3571 * at the moment, state->root_skb could be replaced with
3572 * a stack for this purpose.
3573 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3574 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3575 struct skb_seq_state *st)
3576 {
3577 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3578 skb_frag_t *frag;
3579
3580 if (unlikely(abs_offset >= st->upper_offset)) {
3581 if (st->frag_data) {
3582 kunmap_atomic(st->frag_data);
3583 st->frag_data = NULL;
3584 }
3585 return 0;
3586 }
3587
3588 next_skb:
3589 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3590
3591 if (abs_offset < block_limit && !st->frag_data) {
3592 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3593 return block_limit - abs_offset;
3594 }
3595
3596 if (st->frag_idx == 0 && !st->frag_data)
3597 st->stepped_offset += skb_headlen(st->cur_skb);
3598
3599 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3600 unsigned int pg_idx, pg_off, pg_sz;
3601
3602 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3603
3604 pg_idx = 0;
3605 pg_off = skb_frag_off(frag);
3606 pg_sz = skb_frag_size(frag);
3607
3608 if (skb_frag_must_loop(skb_frag_page(frag))) {
3609 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3610 pg_off = offset_in_page(pg_off + st->frag_off);
3611 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3612 PAGE_SIZE - pg_off);
3613 }
3614
3615 block_limit = pg_sz + st->stepped_offset;
3616 if (abs_offset < block_limit) {
3617 if (!st->frag_data)
3618 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3619
3620 *data = (u8 *)st->frag_data + pg_off +
3621 (abs_offset - st->stepped_offset);
3622
3623 return block_limit - abs_offset;
3624 }
3625
3626 if (st->frag_data) {
3627 kunmap_atomic(st->frag_data);
3628 st->frag_data = NULL;
3629 }
3630
3631 st->stepped_offset += pg_sz;
3632 st->frag_off += pg_sz;
3633 if (st->frag_off == skb_frag_size(frag)) {
3634 st->frag_off = 0;
3635 st->frag_idx++;
3636 }
3637 }
3638
3639 if (st->frag_data) {
3640 kunmap_atomic(st->frag_data);
3641 st->frag_data = NULL;
3642 }
3643
3644 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3645 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3646 st->frag_idx = 0;
3647 goto next_skb;
3648 } else if (st->cur_skb->next) {
3649 st->cur_skb = st->cur_skb->next;
3650 st->frag_idx = 0;
3651 goto next_skb;
3652 }
3653
3654 return 0;
3655 }
3656 EXPORT_SYMBOL(skb_seq_read);
3657
3658 /**
3659 * skb_abort_seq_read - Abort a sequential read of skb data
3660 * @st: state variable
3661 *
3662 * Must be called if skb_seq_read() was not called until it
3663 * returned 0.
3664 */
skb_abort_seq_read(struct skb_seq_state * st)3665 void skb_abort_seq_read(struct skb_seq_state *st)
3666 {
3667 if (st->frag_data)
3668 kunmap_atomic(st->frag_data);
3669 }
3670 EXPORT_SYMBOL(skb_abort_seq_read);
3671
3672 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3673
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3674 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3675 struct ts_config *conf,
3676 struct ts_state *state)
3677 {
3678 return skb_seq_read(offset, text, TS_SKB_CB(state));
3679 }
3680
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3681 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3682 {
3683 skb_abort_seq_read(TS_SKB_CB(state));
3684 }
3685
3686 /**
3687 * skb_find_text - Find a text pattern in skb data
3688 * @skb: the buffer to look in
3689 * @from: search offset
3690 * @to: search limit
3691 * @config: textsearch configuration
3692 *
3693 * Finds a pattern in the skb data according to the specified
3694 * textsearch configuration. Use textsearch_next() to retrieve
3695 * subsequent occurrences of the pattern. Returns the offset
3696 * to the first occurrence or UINT_MAX if no match was found.
3697 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3698 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3699 unsigned int to, struct ts_config *config)
3700 {
3701 struct ts_state state;
3702 unsigned int ret;
3703
3704 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3705
3706 config->get_next_block = skb_ts_get_next_block;
3707 config->finish = skb_ts_finish;
3708
3709 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3710
3711 ret = textsearch_find(config, &state);
3712 return (ret <= to - from ? ret : UINT_MAX);
3713 }
3714 EXPORT_SYMBOL(skb_find_text);
3715
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3716 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3717 int offset, size_t size)
3718 {
3719 int i = skb_shinfo(skb)->nr_frags;
3720
3721 if (skb_can_coalesce(skb, i, page, offset)) {
3722 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3723 } else if (i < MAX_SKB_FRAGS) {
3724 get_page(page);
3725 skb_fill_page_desc(skb, i, page, offset, size);
3726 } else {
3727 return -EMSGSIZE;
3728 }
3729
3730 return 0;
3731 }
3732 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3733
3734 /**
3735 * skb_pull_rcsum - pull skb and update receive checksum
3736 * @skb: buffer to update
3737 * @len: length of data pulled
3738 *
3739 * This function performs an skb_pull on the packet and updates
3740 * the CHECKSUM_COMPLETE checksum. It should be used on
3741 * receive path processing instead of skb_pull unless you know
3742 * that the checksum difference is zero (e.g., a valid IP header)
3743 * or you are setting ip_summed to CHECKSUM_NONE.
3744 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3745 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3746 {
3747 unsigned char *data = skb->data;
3748
3749 BUG_ON(len > skb->len);
3750 __skb_pull(skb, len);
3751 skb_postpull_rcsum(skb, data, len);
3752 return skb->data;
3753 }
3754 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3755
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)3756 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3757 {
3758 skb_frag_t head_frag;
3759 struct page *page;
3760
3761 page = virt_to_head_page(frag_skb->head);
3762 __skb_frag_set_page(&head_frag, page);
3763 skb_frag_off_set(&head_frag, frag_skb->data -
3764 (unsigned char *)page_address(page));
3765 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3766 return head_frag;
3767 }
3768
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)3769 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3770 netdev_features_t features,
3771 unsigned int offset)
3772 {
3773 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3774 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3775 unsigned int delta_truesize = 0;
3776 unsigned int delta_len = 0;
3777 struct sk_buff *tail = NULL;
3778 struct sk_buff *nskb, *tmp;
3779 int err;
3780
3781 skb_push(skb, -skb_network_offset(skb) + offset);
3782
3783 skb_shinfo(skb)->frag_list = NULL;
3784
3785 do {
3786 nskb = list_skb;
3787 list_skb = list_skb->next;
3788
3789 err = 0;
3790 if (skb_shared(nskb)) {
3791 tmp = skb_clone(nskb, GFP_ATOMIC);
3792 if (tmp) {
3793 consume_skb(nskb);
3794 nskb = tmp;
3795 err = skb_unclone(nskb, GFP_ATOMIC);
3796 } else {
3797 err = -ENOMEM;
3798 }
3799 }
3800
3801 if (!tail)
3802 skb->next = nskb;
3803 else
3804 tail->next = nskb;
3805
3806 if (unlikely(err)) {
3807 nskb->next = list_skb;
3808 goto err_linearize;
3809 }
3810
3811 tail = nskb;
3812
3813 delta_len += nskb->len;
3814 delta_truesize += nskb->truesize;
3815
3816 skb_push(nskb, -skb_network_offset(nskb) + offset);
3817
3818 skb_release_head_state(nskb);
3819 __copy_skb_header(nskb, skb);
3820
3821 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3822 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3823 nskb->data - tnl_hlen,
3824 offset + tnl_hlen);
3825
3826 if (skb_needs_linearize(nskb, features) &&
3827 __skb_linearize(nskb))
3828 goto err_linearize;
3829
3830 } while (list_skb);
3831
3832 skb->truesize = skb->truesize - delta_truesize;
3833 skb->data_len = skb->data_len - delta_len;
3834 skb->len = skb->len - delta_len;
3835
3836 skb_gso_reset(skb);
3837
3838 skb->prev = tail;
3839
3840 if (skb_needs_linearize(skb, features) &&
3841 __skb_linearize(skb))
3842 goto err_linearize;
3843
3844 skb_get(skb);
3845
3846 return skb;
3847
3848 err_linearize:
3849 kfree_skb_list(skb->next);
3850 skb->next = NULL;
3851 return ERR_PTR(-ENOMEM);
3852 }
3853 EXPORT_SYMBOL_GPL(skb_segment_list);
3854
skb_gro_receive_list(struct sk_buff * p,struct sk_buff * skb)3855 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3856 {
3857 if (unlikely(p->len + skb->len >= 65536))
3858 return -E2BIG;
3859
3860 if (NAPI_GRO_CB(p)->last == p)
3861 skb_shinfo(p)->frag_list = skb;
3862 else
3863 NAPI_GRO_CB(p)->last->next = skb;
3864
3865 skb_pull(skb, skb_gro_offset(skb));
3866
3867 NAPI_GRO_CB(p)->last = skb;
3868 NAPI_GRO_CB(p)->count++;
3869 p->data_len += skb->len;
3870 p->truesize += skb->truesize;
3871 p->len += skb->len;
3872
3873 NAPI_GRO_CB(skb)->same_flow = 1;
3874
3875 return 0;
3876 }
3877
3878 /**
3879 * skb_segment - Perform protocol segmentation on skb.
3880 * @head_skb: buffer to segment
3881 * @features: features for the output path (see dev->features)
3882 *
3883 * This function performs segmentation on the given skb. It returns
3884 * a pointer to the first in a list of new skbs for the segments.
3885 * In case of error it returns ERR_PTR(err).
3886 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3887 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3888 netdev_features_t features)
3889 {
3890 struct sk_buff *segs = NULL;
3891 struct sk_buff *tail = NULL;
3892 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3893 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3894 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3895 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3896 struct sk_buff *frag_skb = head_skb;
3897 unsigned int offset = doffset;
3898 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3899 unsigned int partial_segs = 0;
3900 unsigned int headroom;
3901 unsigned int len = head_skb->len;
3902 __be16 proto;
3903 bool csum, sg;
3904 int nfrags = skb_shinfo(head_skb)->nr_frags;
3905 int err = -ENOMEM;
3906 int i = 0;
3907 int pos;
3908
3909 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3910 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3911 /* gso_size is untrusted, and we have a frag_list with a linear
3912 * non head_frag head.
3913 *
3914 * (we assume checking the first list_skb member suffices;
3915 * i.e if either of the list_skb members have non head_frag
3916 * head, then the first one has too).
3917 *
3918 * If head_skb's headlen does not fit requested gso_size, it
3919 * means that the frag_list members do NOT terminate on exact
3920 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3921 * sharing. Therefore we must fallback to copying the frag_list
3922 * skbs; we do so by disabling SG.
3923 */
3924 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3925 features &= ~NETIF_F_SG;
3926 }
3927
3928 __skb_push(head_skb, doffset);
3929 proto = skb_network_protocol(head_skb, NULL);
3930 if (unlikely(!proto))
3931 return ERR_PTR(-EINVAL);
3932
3933 sg = !!(features & NETIF_F_SG);
3934 csum = !!can_checksum_protocol(features, proto);
3935
3936 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3937 if (!(features & NETIF_F_GSO_PARTIAL)) {
3938 struct sk_buff *iter;
3939 unsigned int frag_len;
3940
3941 if (!list_skb ||
3942 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3943 goto normal;
3944
3945 /* If we get here then all the required
3946 * GSO features except frag_list are supported.
3947 * Try to split the SKB to multiple GSO SKBs
3948 * with no frag_list.
3949 * Currently we can do that only when the buffers don't
3950 * have a linear part and all the buffers except
3951 * the last are of the same length.
3952 */
3953 frag_len = list_skb->len;
3954 skb_walk_frags(head_skb, iter) {
3955 if (frag_len != iter->len && iter->next)
3956 goto normal;
3957 if (skb_headlen(iter) && !iter->head_frag)
3958 goto normal;
3959
3960 len -= iter->len;
3961 }
3962
3963 if (len != frag_len)
3964 goto normal;
3965 }
3966
3967 /* GSO partial only requires that we trim off any excess that
3968 * doesn't fit into an MSS sized block, so take care of that
3969 * now.
3970 */
3971 partial_segs = len / mss;
3972 if (partial_segs > 1)
3973 mss *= partial_segs;
3974 else
3975 partial_segs = 0;
3976 }
3977
3978 normal:
3979 headroom = skb_headroom(head_skb);
3980 pos = skb_headlen(head_skb);
3981
3982 do {
3983 struct sk_buff *nskb;
3984 skb_frag_t *nskb_frag;
3985 int hsize;
3986 int size;
3987
3988 if (unlikely(mss == GSO_BY_FRAGS)) {
3989 len = list_skb->len;
3990 } else {
3991 len = head_skb->len - offset;
3992 if (len > mss)
3993 len = mss;
3994 }
3995
3996 hsize = skb_headlen(head_skb) - offset;
3997
3998 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
3999 (skb_headlen(list_skb) == len || sg)) {
4000 BUG_ON(skb_headlen(list_skb) > len);
4001
4002 i = 0;
4003 nfrags = skb_shinfo(list_skb)->nr_frags;
4004 frag = skb_shinfo(list_skb)->frags;
4005 frag_skb = list_skb;
4006 pos += skb_headlen(list_skb);
4007
4008 while (pos < offset + len) {
4009 BUG_ON(i >= nfrags);
4010
4011 size = skb_frag_size(frag);
4012 if (pos + size > offset + len)
4013 break;
4014
4015 i++;
4016 pos += size;
4017 frag++;
4018 }
4019
4020 nskb = skb_clone(list_skb, GFP_ATOMIC);
4021 list_skb = list_skb->next;
4022
4023 if (unlikely(!nskb))
4024 goto err;
4025
4026 if (unlikely(pskb_trim(nskb, len))) {
4027 kfree_skb(nskb);
4028 goto err;
4029 }
4030
4031 hsize = skb_end_offset(nskb);
4032 if (skb_cow_head(nskb, doffset + headroom)) {
4033 kfree_skb(nskb);
4034 goto err;
4035 }
4036
4037 nskb->truesize += skb_end_offset(nskb) - hsize;
4038 skb_release_head_state(nskb);
4039 __skb_push(nskb, doffset);
4040 } else {
4041 if (hsize < 0)
4042 hsize = 0;
4043 if (hsize > len || !sg)
4044 hsize = len;
4045
4046 nskb = __alloc_skb(hsize + doffset + headroom,
4047 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4048 NUMA_NO_NODE);
4049
4050 if (unlikely(!nskb))
4051 goto err;
4052
4053 skb_reserve(nskb, headroom);
4054 __skb_put(nskb, doffset);
4055 }
4056
4057 if (segs)
4058 tail->next = nskb;
4059 else
4060 segs = nskb;
4061 tail = nskb;
4062
4063 __copy_skb_header(nskb, head_skb);
4064
4065 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4066 skb_reset_mac_len(nskb);
4067
4068 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4069 nskb->data - tnl_hlen,
4070 doffset + tnl_hlen);
4071
4072 if (nskb->len == len + doffset)
4073 goto perform_csum_check;
4074
4075 if (!sg) {
4076 if (!csum) {
4077 if (!nskb->remcsum_offload)
4078 nskb->ip_summed = CHECKSUM_NONE;
4079 SKB_GSO_CB(nskb)->csum =
4080 skb_copy_and_csum_bits(head_skb, offset,
4081 skb_put(nskb,
4082 len),
4083 len);
4084 SKB_GSO_CB(nskb)->csum_start =
4085 skb_headroom(nskb) + doffset;
4086 } else {
4087 skb_copy_bits(head_skb, offset,
4088 skb_put(nskb, len),
4089 len);
4090 }
4091 continue;
4092 }
4093
4094 nskb_frag = skb_shinfo(nskb)->frags;
4095
4096 skb_copy_from_linear_data_offset(head_skb, offset,
4097 skb_put(nskb, hsize), hsize);
4098
4099 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4100 SKBFL_SHARED_FRAG;
4101
4102 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4103 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4104 goto err;
4105
4106 while (pos < offset + len) {
4107 if (i >= nfrags) {
4108 i = 0;
4109 nfrags = skb_shinfo(list_skb)->nr_frags;
4110 frag = skb_shinfo(list_skb)->frags;
4111 frag_skb = list_skb;
4112 if (!skb_headlen(list_skb)) {
4113 BUG_ON(!nfrags);
4114 } else {
4115 BUG_ON(!list_skb->head_frag);
4116
4117 /* to make room for head_frag. */
4118 i--;
4119 frag--;
4120 }
4121 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4122 skb_zerocopy_clone(nskb, frag_skb,
4123 GFP_ATOMIC))
4124 goto err;
4125
4126 list_skb = list_skb->next;
4127 }
4128
4129 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4130 MAX_SKB_FRAGS)) {
4131 net_warn_ratelimited(
4132 "skb_segment: too many frags: %u %u\n",
4133 pos, mss);
4134 err = -EINVAL;
4135 goto err;
4136 }
4137
4138 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4139 __skb_frag_ref(nskb_frag);
4140 size = skb_frag_size(nskb_frag);
4141
4142 if (pos < offset) {
4143 skb_frag_off_add(nskb_frag, offset - pos);
4144 skb_frag_size_sub(nskb_frag, offset - pos);
4145 }
4146
4147 skb_shinfo(nskb)->nr_frags++;
4148
4149 if (pos + size <= offset + len) {
4150 i++;
4151 frag++;
4152 pos += size;
4153 } else {
4154 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4155 goto skip_fraglist;
4156 }
4157
4158 nskb_frag++;
4159 }
4160
4161 skip_fraglist:
4162 nskb->data_len = len - hsize;
4163 nskb->len += nskb->data_len;
4164 nskb->truesize += nskb->data_len;
4165
4166 perform_csum_check:
4167 if (!csum) {
4168 if (skb_has_shared_frag(nskb) &&
4169 __skb_linearize(nskb))
4170 goto err;
4171
4172 if (!nskb->remcsum_offload)
4173 nskb->ip_summed = CHECKSUM_NONE;
4174 SKB_GSO_CB(nskb)->csum =
4175 skb_checksum(nskb, doffset,
4176 nskb->len - doffset, 0);
4177 SKB_GSO_CB(nskb)->csum_start =
4178 skb_headroom(nskb) + doffset;
4179 }
4180 } while ((offset += len) < head_skb->len);
4181
4182 /* Some callers want to get the end of the list.
4183 * Put it in segs->prev to avoid walking the list.
4184 * (see validate_xmit_skb_list() for example)
4185 */
4186 segs->prev = tail;
4187
4188 if (partial_segs) {
4189 struct sk_buff *iter;
4190 int type = skb_shinfo(head_skb)->gso_type;
4191 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4192
4193 /* Update type to add partial and then remove dodgy if set */
4194 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4195 type &= ~SKB_GSO_DODGY;
4196
4197 /* Update GSO info and prepare to start updating headers on
4198 * our way back down the stack of protocols.
4199 */
4200 for (iter = segs; iter; iter = iter->next) {
4201 skb_shinfo(iter)->gso_size = gso_size;
4202 skb_shinfo(iter)->gso_segs = partial_segs;
4203 skb_shinfo(iter)->gso_type = type;
4204 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4205 }
4206
4207 if (tail->len - doffset <= gso_size)
4208 skb_shinfo(tail)->gso_size = 0;
4209 else if (tail != segs)
4210 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4211 }
4212
4213 /* Following permits correct backpressure, for protocols
4214 * using skb_set_owner_w().
4215 * Idea is to tranfert ownership from head_skb to last segment.
4216 */
4217 if (head_skb->destructor == sock_wfree) {
4218 swap(tail->truesize, head_skb->truesize);
4219 swap(tail->destructor, head_skb->destructor);
4220 swap(tail->sk, head_skb->sk);
4221 }
4222 return segs;
4223
4224 err:
4225 kfree_skb_list(segs);
4226 return ERR_PTR(err);
4227 }
4228 EXPORT_SYMBOL_GPL(skb_segment);
4229
skb_gro_receive(struct sk_buff * p,struct sk_buff * skb)4230 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4231 {
4232 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4233 unsigned int offset = skb_gro_offset(skb);
4234 unsigned int headlen = skb_headlen(skb);
4235 unsigned int len = skb_gro_len(skb);
4236 unsigned int delta_truesize;
4237 struct sk_buff *lp;
4238
4239 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4240 return -E2BIG;
4241
4242 lp = NAPI_GRO_CB(p)->last;
4243 pinfo = skb_shinfo(lp);
4244
4245 if (headlen <= offset) {
4246 skb_frag_t *frag;
4247 skb_frag_t *frag2;
4248 int i = skbinfo->nr_frags;
4249 int nr_frags = pinfo->nr_frags + i;
4250
4251 if (nr_frags > MAX_SKB_FRAGS)
4252 goto merge;
4253
4254 offset -= headlen;
4255 pinfo->nr_frags = nr_frags;
4256 skbinfo->nr_frags = 0;
4257
4258 frag = pinfo->frags + nr_frags;
4259 frag2 = skbinfo->frags + i;
4260 do {
4261 *--frag = *--frag2;
4262 } while (--i);
4263
4264 skb_frag_off_add(frag, offset);
4265 skb_frag_size_sub(frag, offset);
4266
4267 /* all fragments truesize : remove (head size + sk_buff) */
4268 delta_truesize = skb->truesize -
4269 SKB_TRUESIZE(skb_end_offset(skb));
4270
4271 skb->truesize -= skb->data_len;
4272 skb->len -= skb->data_len;
4273 skb->data_len = 0;
4274
4275 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4276 goto done;
4277 } else if (skb->head_frag) {
4278 int nr_frags = pinfo->nr_frags;
4279 skb_frag_t *frag = pinfo->frags + nr_frags;
4280 struct page *page = virt_to_head_page(skb->head);
4281 unsigned int first_size = headlen - offset;
4282 unsigned int first_offset;
4283
4284 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4285 goto merge;
4286
4287 first_offset = skb->data -
4288 (unsigned char *)page_address(page) +
4289 offset;
4290
4291 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4292
4293 __skb_frag_set_page(frag, page);
4294 skb_frag_off_set(frag, first_offset);
4295 skb_frag_size_set(frag, first_size);
4296
4297 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4298 /* We dont need to clear skbinfo->nr_frags here */
4299
4300 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4301 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4302 goto done;
4303 }
4304
4305 merge:
4306 delta_truesize = skb->truesize;
4307 if (offset > headlen) {
4308 unsigned int eat = offset - headlen;
4309
4310 skb_frag_off_add(&skbinfo->frags[0], eat);
4311 skb_frag_size_sub(&skbinfo->frags[0], eat);
4312 skb->data_len -= eat;
4313 skb->len -= eat;
4314 offset = headlen;
4315 }
4316
4317 __skb_pull(skb, offset);
4318
4319 if (NAPI_GRO_CB(p)->last == p)
4320 skb_shinfo(p)->frag_list = skb;
4321 else
4322 NAPI_GRO_CB(p)->last->next = skb;
4323 NAPI_GRO_CB(p)->last = skb;
4324 __skb_header_release(skb);
4325 lp = p;
4326
4327 done:
4328 NAPI_GRO_CB(p)->count++;
4329 p->data_len += len;
4330 p->truesize += delta_truesize;
4331 p->len += len;
4332 if (lp != p) {
4333 lp->data_len += len;
4334 lp->truesize += delta_truesize;
4335 lp->len += len;
4336 }
4337 NAPI_GRO_CB(skb)->same_flow = 1;
4338 return 0;
4339 }
4340
4341 #ifdef CONFIG_SKB_EXTENSIONS
4342 #define SKB_EXT_ALIGN_VALUE 8
4343 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4344
4345 static const u8 skb_ext_type_len[] = {
4346 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4347 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4348 #endif
4349 #ifdef CONFIG_XFRM
4350 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4351 #endif
4352 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4353 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4354 #endif
4355 #if IS_ENABLED(CONFIG_MPTCP)
4356 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4357 #endif
4358 };
4359
skb_ext_total_length(void)4360 static __always_inline unsigned int skb_ext_total_length(void)
4361 {
4362 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4363 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4364 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4365 #endif
4366 #ifdef CONFIG_XFRM
4367 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4368 #endif
4369 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4370 skb_ext_type_len[TC_SKB_EXT] +
4371 #endif
4372 #if IS_ENABLED(CONFIG_MPTCP)
4373 skb_ext_type_len[SKB_EXT_MPTCP] +
4374 #endif
4375 0;
4376 }
4377
skb_extensions_init(void)4378 static void skb_extensions_init(void)
4379 {
4380 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4381 BUILD_BUG_ON(skb_ext_total_length() > 255);
4382
4383 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4384 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4385 0,
4386 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4387 NULL);
4388 }
4389 #else
skb_extensions_init(void)4390 static void skb_extensions_init(void) {}
4391 #endif
4392
skb_init(void)4393 void __init skb_init(void)
4394 {
4395 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4396 sizeof(struct sk_buff),
4397 0,
4398 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4399 offsetof(struct sk_buff, cb),
4400 sizeof_field(struct sk_buff, cb),
4401 NULL);
4402 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4403 sizeof(struct sk_buff_fclones),
4404 0,
4405 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4406 NULL);
4407 skb_extensions_init();
4408 }
4409
4410 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4411 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4412 unsigned int recursion_level)
4413 {
4414 int start = skb_headlen(skb);
4415 int i, copy = start - offset;
4416 struct sk_buff *frag_iter;
4417 int elt = 0;
4418
4419 if (unlikely(recursion_level >= 24))
4420 return -EMSGSIZE;
4421
4422 if (copy > 0) {
4423 if (copy > len)
4424 copy = len;
4425 sg_set_buf(sg, skb->data + offset, copy);
4426 elt++;
4427 if ((len -= copy) == 0)
4428 return elt;
4429 offset += copy;
4430 }
4431
4432 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4433 int end;
4434
4435 WARN_ON(start > offset + len);
4436
4437 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4438 if ((copy = end - offset) > 0) {
4439 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4440 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4441 return -EMSGSIZE;
4442
4443 if (copy > len)
4444 copy = len;
4445 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4446 skb_frag_off(frag) + offset - start);
4447 elt++;
4448 if (!(len -= copy))
4449 return elt;
4450 offset += copy;
4451 }
4452 start = end;
4453 }
4454
4455 skb_walk_frags(skb, frag_iter) {
4456 int end, ret;
4457
4458 WARN_ON(start > offset + len);
4459
4460 end = start + frag_iter->len;
4461 if ((copy = end - offset) > 0) {
4462 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4463 return -EMSGSIZE;
4464
4465 if (copy > len)
4466 copy = len;
4467 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4468 copy, recursion_level + 1);
4469 if (unlikely(ret < 0))
4470 return ret;
4471 elt += ret;
4472 if ((len -= copy) == 0)
4473 return elt;
4474 offset += copy;
4475 }
4476 start = end;
4477 }
4478 BUG_ON(len);
4479 return elt;
4480 }
4481
4482 /**
4483 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4484 * @skb: Socket buffer containing the buffers to be mapped
4485 * @sg: The scatter-gather list to map into
4486 * @offset: The offset into the buffer's contents to start mapping
4487 * @len: Length of buffer space to be mapped
4488 *
4489 * Fill the specified scatter-gather list with mappings/pointers into a
4490 * region of the buffer space attached to a socket buffer. Returns either
4491 * the number of scatterlist items used, or -EMSGSIZE if the contents
4492 * could not fit.
4493 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4494 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4495 {
4496 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4497
4498 if (nsg <= 0)
4499 return nsg;
4500
4501 sg_mark_end(&sg[nsg - 1]);
4502
4503 return nsg;
4504 }
4505 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4506
4507 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4508 * sglist without mark the sg which contain last skb data as the end.
4509 * So the caller can mannipulate sg list as will when padding new data after
4510 * the first call without calling sg_unmark_end to expend sg list.
4511 *
4512 * Scenario to use skb_to_sgvec_nomark:
4513 * 1. sg_init_table
4514 * 2. skb_to_sgvec_nomark(payload1)
4515 * 3. skb_to_sgvec_nomark(payload2)
4516 *
4517 * This is equivalent to:
4518 * 1. sg_init_table
4519 * 2. skb_to_sgvec(payload1)
4520 * 3. sg_unmark_end
4521 * 4. skb_to_sgvec(payload2)
4522 *
4523 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4524 * is more preferable.
4525 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4526 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4527 int offset, int len)
4528 {
4529 return __skb_to_sgvec(skb, sg, offset, len, 0);
4530 }
4531 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4532
4533
4534
4535 /**
4536 * skb_cow_data - Check that a socket buffer's data buffers are writable
4537 * @skb: The socket buffer to check.
4538 * @tailbits: Amount of trailing space to be added
4539 * @trailer: Returned pointer to the skb where the @tailbits space begins
4540 *
4541 * Make sure that the data buffers attached to a socket buffer are
4542 * writable. If they are not, private copies are made of the data buffers
4543 * and the socket buffer is set to use these instead.
4544 *
4545 * If @tailbits is given, make sure that there is space to write @tailbits
4546 * bytes of data beyond current end of socket buffer. @trailer will be
4547 * set to point to the skb in which this space begins.
4548 *
4549 * The number of scatterlist elements required to completely map the
4550 * COW'd and extended socket buffer will be returned.
4551 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4552 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4553 {
4554 int copyflag;
4555 int elt;
4556 struct sk_buff *skb1, **skb_p;
4557
4558 /* If skb is cloned or its head is paged, reallocate
4559 * head pulling out all the pages (pages are considered not writable
4560 * at the moment even if they are anonymous).
4561 */
4562 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4563 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4564 return -ENOMEM;
4565
4566 /* Easy case. Most of packets will go this way. */
4567 if (!skb_has_frag_list(skb)) {
4568 /* A little of trouble, not enough of space for trailer.
4569 * This should not happen, when stack is tuned to generate
4570 * good frames. OK, on miss we reallocate and reserve even more
4571 * space, 128 bytes is fair. */
4572
4573 if (skb_tailroom(skb) < tailbits &&
4574 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4575 return -ENOMEM;
4576
4577 /* Voila! */
4578 *trailer = skb;
4579 return 1;
4580 }
4581
4582 /* Misery. We are in troubles, going to mincer fragments... */
4583
4584 elt = 1;
4585 skb_p = &skb_shinfo(skb)->frag_list;
4586 copyflag = 0;
4587
4588 while ((skb1 = *skb_p) != NULL) {
4589 int ntail = 0;
4590
4591 /* The fragment is partially pulled by someone,
4592 * this can happen on input. Copy it and everything
4593 * after it. */
4594
4595 if (skb_shared(skb1))
4596 copyflag = 1;
4597
4598 /* If the skb is the last, worry about trailer. */
4599
4600 if (skb1->next == NULL && tailbits) {
4601 if (skb_shinfo(skb1)->nr_frags ||
4602 skb_has_frag_list(skb1) ||
4603 skb_tailroom(skb1) < tailbits)
4604 ntail = tailbits + 128;
4605 }
4606
4607 if (copyflag ||
4608 skb_cloned(skb1) ||
4609 ntail ||
4610 skb_shinfo(skb1)->nr_frags ||
4611 skb_has_frag_list(skb1)) {
4612 struct sk_buff *skb2;
4613
4614 /* Fuck, we are miserable poor guys... */
4615 if (ntail == 0)
4616 skb2 = skb_copy(skb1, GFP_ATOMIC);
4617 else
4618 skb2 = skb_copy_expand(skb1,
4619 skb_headroom(skb1),
4620 ntail,
4621 GFP_ATOMIC);
4622 if (unlikely(skb2 == NULL))
4623 return -ENOMEM;
4624
4625 if (skb1->sk)
4626 skb_set_owner_w(skb2, skb1->sk);
4627
4628 /* Looking around. Are we still alive?
4629 * OK, link new skb, drop old one */
4630
4631 skb2->next = skb1->next;
4632 *skb_p = skb2;
4633 kfree_skb(skb1);
4634 skb1 = skb2;
4635 }
4636 elt++;
4637 *trailer = skb1;
4638 skb_p = &skb1->next;
4639 }
4640
4641 return elt;
4642 }
4643 EXPORT_SYMBOL_GPL(skb_cow_data);
4644
sock_rmem_free(struct sk_buff * skb)4645 static void sock_rmem_free(struct sk_buff *skb)
4646 {
4647 struct sock *sk = skb->sk;
4648
4649 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4650 }
4651
skb_set_err_queue(struct sk_buff * skb)4652 static void skb_set_err_queue(struct sk_buff *skb)
4653 {
4654 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4655 * So, it is safe to (mis)use it to mark skbs on the error queue.
4656 */
4657 skb->pkt_type = PACKET_OUTGOING;
4658 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4659 }
4660
4661 /*
4662 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4663 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4664 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4665 {
4666 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4667 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4668 return -ENOMEM;
4669
4670 skb_orphan(skb);
4671 skb->sk = sk;
4672 skb->destructor = sock_rmem_free;
4673 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4674 skb_set_err_queue(skb);
4675
4676 /* before exiting rcu section, make sure dst is refcounted */
4677 skb_dst_force(skb);
4678
4679 skb_queue_tail(&sk->sk_error_queue, skb);
4680 if (!sock_flag(sk, SOCK_DEAD))
4681 sk->sk_error_report(sk);
4682 return 0;
4683 }
4684 EXPORT_SYMBOL(sock_queue_err_skb);
4685
is_icmp_err_skb(const struct sk_buff * skb)4686 static bool is_icmp_err_skb(const struct sk_buff *skb)
4687 {
4688 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4689 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4690 }
4691
sock_dequeue_err_skb(struct sock * sk)4692 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4693 {
4694 struct sk_buff_head *q = &sk->sk_error_queue;
4695 struct sk_buff *skb, *skb_next = NULL;
4696 bool icmp_next = false;
4697 unsigned long flags;
4698
4699 spin_lock_irqsave(&q->lock, flags);
4700 skb = __skb_dequeue(q);
4701 if (skb && (skb_next = skb_peek(q))) {
4702 icmp_next = is_icmp_err_skb(skb_next);
4703 if (icmp_next)
4704 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4705 }
4706 spin_unlock_irqrestore(&q->lock, flags);
4707
4708 if (is_icmp_err_skb(skb) && !icmp_next)
4709 sk->sk_err = 0;
4710
4711 if (skb_next)
4712 sk->sk_error_report(sk);
4713
4714 return skb;
4715 }
4716 EXPORT_SYMBOL(sock_dequeue_err_skb);
4717
4718 /**
4719 * skb_clone_sk - create clone of skb, and take reference to socket
4720 * @skb: the skb to clone
4721 *
4722 * This function creates a clone of a buffer that holds a reference on
4723 * sk_refcnt. Buffers created via this function are meant to be
4724 * returned using sock_queue_err_skb, or free via kfree_skb.
4725 *
4726 * When passing buffers allocated with this function to sock_queue_err_skb
4727 * it is necessary to wrap the call with sock_hold/sock_put in order to
4728 * prevent the socket from being released prior to being enqueued on
4729 * the sk_error_queue.
4730 */
skb_clone_sk(struct sk_buff * skb)4731 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4732 {
4733 struct sock *sk = skb->sk;
4734 struct sk_buff *clone;
4735
4736 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4737 return NULL;
4738
4739 clone = skb_clone(skb, GFP_ATOMIC);
4740 if (!clone) {
4741 sock_put(sk);
4742 return NULL;
4743 }
4744
4745 clone->sk = sk;
4746 clone->destructor = sock_efree;
4747
4748 return clone;
4749 }
4750 EXPORT_SYMBOL(skb_clone_sk);
4751
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4752 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4753 struct sock *sk,
4754 int tstype,
4755 bool opt_stats)
4756 {
4757 struct sock_exterr_skb *serr;
4758 int err;
4759
4760 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4761
4762 serr = SKB_EXT_ERR(skb);
4763 memset(serr, 0, sizeof(*serr));
4764 serr->ee.ee_errno = ENOMSG;
4765 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4766 serr->ee.ee_info = tstype;
4767 serr->opt_stats = opt_stats;
4768 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4769 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4770 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4771 if (sk->sk_protocol == IPPROTO_TCP &&
4772 sk->sk_type == SOCK_STREAM)
4773 serr->ee.ee_data -= sk->sk_tskey;
4774 }
4775
4776 err = sock_queue_err_skb(sk, skb);
4777
4778 if (err)
4779 kfree_skb(skb);
4780 }
4781
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4782 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4783 {
4784 bool ret;
4785
4786 if (likely(sysctl_tstamp_allow_data || tsonly))
4787 return true;
4788
4789 read_lock_bh(&sk->sk_callback_lock);
4790 ret = sk->sk_socket && sk->sk_socket->file &&
4791 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4792 read_unlock_bh(&sk->sk_callback_lock);
4793 return ret;
4794 }
4795
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4796 void skb_complete_tx_timestamp(struct sk_buff *skb,
4797 struct skb_shared_hwtstamps *hwtstamps)
4798 {
4799 struct sock *sk = skb->sk;
4800
4801 if (!skb_may_tx_timestamp(sk, false))
4802 goto err;
4803
4804 /* Take a reference to prevent skb_orphan() from freeing the socket,
4805 * but only if the socket refcount is not zero.
4806 */
4807 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4808 *skb_hwtstamps(skb) = *hwtstamps;
4809 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4810 sock_put(sk);
4811 return;
4812 }
4813
4814 err:
4815 kfree_skb(skb);
4816 }
4817 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4818
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4819 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4820 const struct sk_buff *ack_skb,
4821 struct skb_shared_hwtstamps *hwtstamps,
4822 struct sock *sk, int tstype)
4823 {
4824 struct sk_buff *skb;
4825 bool tsonly, opt_stats = false;
4826
4827 if (!sk)
4828 return;
4829
4830 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4831 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4832 return;
4833
4834 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4835 if (!skb_may_tx_timestamp(sk, tsonly))
4836 return;
4837
4838 if (tsonly) {
4839 #ifdef CONFIG_INET
4840 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4841 sk->sk_protocol == IPPROTO_TCP &&
4842 sk->sk_type == SOCK_STREAM) {
4843 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4844 ack_skb);
4845 opt_stats = true;
4846 } else
4847 #endif
4848 skb = alloc_skb(0, GFP_ATOMIC);
4849 } else {
4850 skb = skb_clone(orig_skb, GFP_ATOMIC);
4851 }
4852 if (!skb)
4853 return;
4854
4855 if (tsonly) {
4856 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4857 SKBTX_ANY_TSTAMP;
4858 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4859 }
4860
4861 if (hwtstamps)
4862 *skb_hwtstamps(skb) = *hwtstamps;
4863 else
4864 skb->tstamp = ktime_get_real();
4865
4866 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4867 }
4868 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4869
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)4870 void skb_tstamp_tx(struct sk_buff *orig_skb,
4871 struct skb_shared_hwtstamps *hwtstamps)
4872 {
4873 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4874 SCM_TSTAMP_SND);
4875 }
4876 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4877
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)4878 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4879 {
4880 struct sock *sk = skb->sk;
4881 struct sock_exterr_skb *serr;
4882 int err = 1;
4883
4884 skb->wifi_acked_valid = 1;
4885 skb->wifi_acked = acked;
4886
4887 serr = SKB_EXT_ERR(skb);
4888 memset(serr, 0, sizeof(*serr));
4889 serr->ee.ee_errno = ENOMSG;
4890 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4891
4892 /* Take a reference to prevent skb_orphan() from freeing the socket,
4893 * but only if the socket refcount is not zero.
4894 */
4895 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4896 err = sock_queue_err_skb(sk, skb);
4897 sock_put(sk);
4898 }
4899 if (err)
4900 kfree_skb(skb);
4901 }
4902 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4903
4904 /**
4905 * skb_partial_csum_set - set up and verify partial csum values for packet
4906 * @skb: the skb to set
4907 * @start: the number of bytes after skb->data to start checksumming.
4908 * @off: the offset from start to place the checksum.
4909 *
4910 * For untrusted partially-checksummed packets, we need to make sure the values
4911 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4912 *
4913 * This function checks and sets those values and skb->ip_summed: if this
4914 * returns false you should drop the packet.
4915 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)4916 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4917 {
4918 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4919 u32 csum_start = skb_headroom(skb) + (u32)start;
4920
4921 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4922 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4923 start, off, skb_headroom(skb), skb_headlen(skb));
4924 return false;
4925 }
4926 skb->ip_summed = CHECKSUM_PARTIAL;
4927 skb->csum_start = csum_start;
4928 skb->csum_offset = off;
4929 skb_set_transport_header(skb, start);
4930 return true;
4931 }
4932 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4933
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)4934 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4935 unsigned int max)
4936 {
4937 if (skb_headlen(skb) >= len)
4938 return 0;
4939
4940 /* If we need to pullup then pullup to the max, so we
4941 * won't need to do it again.
4942 */
4943 if (max > skb->len)
4944 max = skb->len;
4945
4946 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4947 return -ENOMEM;
4948
4949 if (skb_headlen(skb) < len)
4950 return -EPROTO;
4951
4952 return 0;
4953 }
4954
4955 #define MAX_TCP_HDR_LEN (15 * 4)
4956
skb_checksum_setup_ip(struct sk_buff * skb,typeof (IPPROTO_IP)proto,unsigned int off)4957 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4958 typeof(IPPROTO_IP) proto,
4959 unsigned int off)
4960 {
4961 int err;
4962
4963 switch (proto) {
4964 case IPPROTO_TCP:
4965 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4966 off + MAX_TCP_HDR_LEN);
4967 if (!err && !skb_partial_csum_set(skb, off,
4968 offsetof(struct tcphdr,
4969 check)))
4970 err = -EPROTO;
4971 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4972
4973 case IPPROTO_UDP:
4974 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4975 off + sizeof(struct udphdr));
4976 if (!err && !skb_partial_csum_set(skb, off,
4977 offsetof(struct udphdr,
4978 check)))
4979 err = -EPROTO;
4980 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4981 }
4982
4983 return ERR_PTR(-EPROTO);
4984 }
4985
4986 /* This value should be large enough to cover a tagged ethernet header plus
4987 * maximally sized IP and TCP or UDP headers.
4988 */
4989 #define MAX_IP_HDR_LEN 128
4990
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)4991 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4992 {
4993 unsigned int off;
4994 bool fragment;
4995 __sum16 *csum;
4996 int err;
4997
4998 fragment = false;
4999
5000 err = skb_maybe_pull_tail(skb,
5001 sizeof(struct iphdr),
5002 MAX_IP_HDR_LEN);
5003 if (err < 0)
5004 goto out;
5005
5006 if (ip_is_fragment(ip_hdr(skb)))
5007 fragment = true;
5008
5009 off = ip_hdrlen(skb);
5010
5011 err = -EPROTO;
5012
5013 if (fragment)
5014 goto out;
5015
5016 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5017 if (IS_ERR(csum))
5018 return PTR_ERR(csum);
5019
5020 if (recalculate)
5021 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5022 ip_hdr(skb)->daddr,
5023 skb->len - off,
5024 ip_hdr(skb)->protocol, 0);
5025 err = 0;
5026
5027 out:
5028 return err;
5029 }
5030
5031 /* This value should be large enough to cover a tagged ethernet header plus
5032 * an IPv6 header, all options, and a maximal TCP or UDP header.
5033 */
5034 #define MAX_IPV6_HDR_LEN 256
5035
5036 #define OPT_HDR(type, skb, off) \
5037 (type *)(skb_network_header(skb) + (off))
5038
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5039 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5040 {
5041 int err;
5042 u8 nexthdr;
5043 unsigned int off;
5044 unsigned int len;
5045 bool fragment;
5046 bool done;
5047 __sum16 *csum;
5048
5049 fragment = false;
5050 done = false;
5051
5052 off = sizeof(struct ipv6hdr);
5053
5054 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5055 if (err < 0)
5056 goto out;
5057
5058 nexthdr = ipv6_hdr(skb)->nexthdr;
5059
5060 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5061 while (off <= len && !done) {
5062 switch (nexthdr) {
5063 case IPPROTO_DSTOPTS:
5064 case IPPROTO_HOPOPTS:
5065 case IPPROTO_ROUTING: {
5066 struct ipv6_opt_hdr *hp;
5067
5068 err = skb_maybe_pull_tail(skb,
5069 off +
5070 sizeof(struct ipv6_opt_hdr),
5071 MAX_IPV6_HDR_LEN);
5072 if (err < 0)
5073 goto out;
5074
5075 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5076 nexthdr = hp->nexthdr;
5077 off += ipv6_optlen(hp);
5078 break;
5079 }
5080 case IPPROTO_AH: {
5081 struct ip_auth_hdr *hp;
5082
5083 err = skb_maybe_pull_tail(skb,
5084 off +
5085 sizeof(struct ip_auth_hdr),
5086 MAX_IPV6_HDR_LEN);
5087 if (err < 0)
5088 goto out;
5089
5090 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5091 nexthdr = hp->nexthdr;
5092 off += ipv6_authlen(hp);
5093 break;
5094 }
5095 case IPPROTO_FRAGMENT: {
5096 struct frag_hdr *hp;
5097
5098 err = skb_maybe_pull_tail(skb,
5099 off +
5100 sizeof(struct frag_hdr),
5101 MAX_IPV6_HDR_LEN);
5102 if (err < 0)
5103 goto out;
5104
5105 hp = OPT_HDR(struct frag_hdr, skb, off);
5106
5107 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5108 fragment = true;
5109
5110 nexthdr = hp->nexthdr;
5111 off += sizeof(struct frag_hdr);
5112 break;
5113 }
5114 default:
5115 done = true;
5116 break;
5117 }
5118 }
5119
5120 err = -EPROTO;
5121
5122 if (!done || fragment)
5123 goto out;
5124
5125 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5126 if (IS_ERR(csum))
5127 return PTR_ERR(csum);
5128
5129 if (recalculate)
5130 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5131 &ipv6_hdr(skb)->daddr,
5132 skb->len - off, nexthdr, 0);
5133 err = 0;
5134
5135 out:
5136 return err;
5137 }
5138
5139 /**
5140 * skb_checksum_setup - set up partial checksum offset
5141 * @skb: the skb to set up
5142 * @recalculate: if true the pseudo-header checksum will be recalculated
5143 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5144 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5145 {
5146 int err;
5147
5148 switch (skb->protocol) {
5149 case htons(ETH_P_IP):
5150 err = skb_checksum_setup_ipv4(skb, recalculate);
5151 break;
5152
5153 case htons(ETH_P_IPV6):
5154 err = skb_checksum_setup_ipv6(skb, recalculate);
5155 break;
5156
5157 default:
5158 err = -EPROTO;
5159 break;
5160 }
5161
5162 return err;
5163 }
5164 EXPORT_SYMBOL(skb_checksum_setup);
5165
5166 /**
5167 * skb_checksum_maybe_trim - maybe trims the given skb
5168 * @skb: the skb to check
5169 * @transport_len: the data length beyond the network header
5170 *
5171 * Checks whether the given skb has data beyond the given transport length.
5172 * If so, returns a cloned skb trimmed to this transport length.
5173 * Otherwise returns the provided skb. Returns NULL in error cases
5174 * (e.g. transport_len exceeds skb length or out-of-memory).
5175 *
5176 * Caller needs to set the skb transport header and free any returned skb if it
5177 * differs from the provided skb.
5178 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5179 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5180 unsigned int transport_len)
5181 {
5182 struct sk_buff *skb_chk;
5183 unsigned int len = skb_transport_offset(skb) + transport_len;
5184 int ret;
5185
5186 if (skb->len < len)
5187 return NULL;
5188 else if (skb->len == len)
5189 return skb;
5190
5191 skb_chk = skb_clone(skb, GFP_ATOMIC);
5192 if (!skb_chk)
5193 return NULL;
5194
5195 ret = pskb_trim_rcsum(skb_chk, len);
5196 if (ret) {
5197 kfree_skb(skb_chk);
5198 return NULL;
5199 }
5200
5201 return skb_chk;
5202 }
5203
5204 /**
5205 * skb_checksum_trimmed - validate checksum of an skb
5206 * @skb: the skb to check
5207 * @transport_len: the data length beyond the network header
5208 * @skb_chkf: checksum function to use
5209 *
5210 * Applies the given checksum function skb_chkf to the provided skb.
5211 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5212 *
5213 * If the skb has data beyond the given transport length, then a
5214 * trimmed & cloned skb is checked and returned.
5215 *
5216 * Caller needs to set the skb transport header and free any returned skb if it
5217 * differs from the provided skb.
5218 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5219 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5220 unsigned int transport_len,
5221 __sum16(*skb_chkf)(struct sk_buff *skb))
5222 {
5223 struct sk_buff *skb_chk;
5224 unsigned int offset = skb_transport_offset(skb);
5225 __sum16 ret;
5226
5227 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5228 if (!skb_chk)
5229 goto err;
5230
5231 if (!pskb_may_pull(skb_chk, offset))
5232 goto err;
5233
5234 skb_pull_rcsum(skb_chk, offset);
5235 ret = skb_chkf(skb_chk);
5236 skb_push_rcsum(skb_chk, offset);
5237
5238 if (ret)
5239 goto err;
5240
5241 return skb_chk;
5242
5243 err:
5244 if (skb_chk && skb_chk != skb)
5245 kfree_skb(skb_chk);
5246
5247 return NULL;
5248
5249 }
5250 EXPORT_SYMBOL(skb_checksum_trimmed);
5251
__skb_warn_lro_forwarding(const struct sk_buff * skb)5252 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5253 {
5254 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5255 skb->dev->name);
5256 }
5257 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5258
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5259 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5260 {
5261 if (head_stolen) {
5262 skb_release_head_state(skb);
5263 kmem_cache_free(skbuff_head_cache, skb);
5264 } else {
5265 __kfree_skb(skb);
5266 }
5267 }
5268 EXPORT_SYMBOL(kfree_skb_partial);
5269
5270 /**
5271 * skb_try_coalesce - try to merge skb to prior one
5272 * @to: prior buffer
5273 * @from: buffer to add
5274 * @fragstolen: pointer to boolean
5275 * @delta_truesize: how much more was allocated than was requested
5276 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5277 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5278 bool *fragstolen, int *delta_truesize)
5279 {
5280 struct skb_shared_info *to_shinfo, *from_shinfo;
5281 int i, delta, len = from->len;
5282
5283 *fragstolen = false;
5284
5285 if (skb_cloned(to))
5286 return false;
5287
5288 if (len <= skb_tailroom(to)) {
5289 if (len)
5290 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5291 *delta_truesize = 0;
5292 return true;
5293 }
5294
5295 to_shinfo = skb_shinfo(to);
5296 from_shinfo = skb_shinfo(from);
5297 if (to_shinfo->frag_list || from_shinfo->frag_list)
5298 return false;
5299 if (skb_zcopy(to) || skb_zcopy(from))
5300 return false;
5301
5302 if (skb_headlen(from) != 0) {
5303 struct page *page;
5304 unsigned int offset;
5305
5306 if (to_shinfo->nr_frags +
5307 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5308 return false;
5309
5310 if (skb_head_is_locked(from))
5311 return false;
5312
5313 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5314
5315 page = virt_to_head_page(from->head);
5316 offset = from->data - (unsigned char *)page_address(page);
5317
5318 skb_fill_page_desc(to, to_shinfo->nr_frags,
5319 page, offset, skb_headlen(from));
5320 *fragstolen = true;
5321 } else {
5322 if (to_shinfo->nr_frags +
5323 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5324 return false;
5325
5326 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5327 }
5328
5329 WARN_ON_ONCE(delta < len);
5330
5331 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5332 from_shinfo->frags,
5333 from_shinfo->nr_frags * sizeof(skb_frag_t));
5334 to_shinfo->nr_frags += from_shinfo->nr_frags;
5335
5336 if (!skb_cloned(from))
5337 from_shinfo->nr_frags = 0;
5338
5339 /* if the skb is not cloned this does nothing
5340 * since we set nr_frags to 0.
5341 */
5342 for (i = 0; i < from_shinfo->nr_frags; i++)
5343 __skb_frag_ref(&from_shinfo->frags[i]);
5344
5345 to->truesize += delta;
5346 to->len += len;
5347 to->data_len += len;
5348
5349 *delta_truesize = delta;
5350 return true;
5351 }
5352 EXPORT_SYMBOL(skb_try_coalesce);
5353
5354 /**
5355 * skb_scrub_packet - scrub an skb
5356 *
5357 * @skb: buffer to clean
5358 * @xnet: packet is crossing netns
5359 *
5360 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5361 * into/from a tunnel. Some information have to be cleared during these
5362 * operations.
5363 * skb_scrub_packet can also be used to clean a skb before injecting it in
5364 * another namespace (@xnet == true). We have to clear all information in the
5365 * skb that could impact namespace isolation.
5366 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5367 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5368 {
5369 skb->pkt_type = PACKET_HOST;
5370 skb->skb_iif = 0;
5371 skb->ignore_df = 0;
5372 skb_dst_drop(skb);
5373 skb_ext_reset(skb);
5374 nf_reset_ct(skb);
5375 nf_reset_trace(skb);
5376
5377 #ifdef CONFIG_NET_SWITCHDEV
5378 skb->offload_fwd_mark = 0;
5379 skb->offload_l3_fwd_mark = 0;
5380 #endif
5381
5382 if (!xnet)
5383 return;
5384
5385 ipvs_reset(skb);
5386 skb->mark = 0;
5387 skb->tstamp = 0;
5388 }
5389 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5390
5391 /**
5392 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5393 *
5394 * @skb: GSO skb
5395 *
5396 * skb_gso_transport_seglen is used to determine the real size of the
5397 * individual segments, including Layer4 headers (TCP/UDP).
5398 *
5399 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5400 */
skb_gso_transport_seglen(const struct sk_buff * skb)5401 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5402 {
5403 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5404 unsigned int thlen = 0;
5405
5406 if (skb->encapsulation) {
5407 thlen = skb_inner_transport_header(skb) -
5408 skb_transport_header(skb);
5409
5410 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5411 thlen += inner_tcp_hdrlen(skb);
5412 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5413 thlen = tcp_hdrlen(skb);
5414 } else if (unlikely(skb_is_gso_sctp(skb))) {
5415 thlen = sizeof(struct sctphdr);
5416 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5417 thlen = sizeof(struct udphdr);
5418 }
5419 /* UFO sets gso_size to the size of the fragmentation
5420 * payload, i.e. the size of the L4 (UDP) header is already
5421 * accounted for.
5422 */
5423 return thlen + shinfo->gso_size;
5424 }
5425
5426 /**
5427 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5428 *
5429 * @skb: GSO skb
5430 *
5431 * skb_gso_network_seglen is used to determine the real size of the
5432 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5433 *
5434 * The MAC/L2 header is not accounted for.
5435 */
skb_gso_network_seglen(const struct sk_buff * skb)5436 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5437 {
5438 unsigned int hdr_len = skb_transport_header(skb) -
5439 skb_network_header(skb);
5440
5441 return hdr_len + skb_gso_transport_seglen(skb);
5442 }
5443
5444 /**
5445 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5446 *
5447 * @skb: GSO skb
5448 *
5449 * skb_gso_mac_seglen is used to determine the real size of the
5450 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5451 * headers (TCP/UDP).
5452 */
skb_gso_mac_seglen(const struct sk_buff * skb)5453 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5454 {
5455 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5456
5457 return hdr_len + skb_gso_transport_seglen(skb);
5458 }
5459
5460 /**
5461 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5462 *
5463 * There are a couple of instances where we have a GSO skb, and we
5464 * want to determine what size it would be after it is segmented.
5465 *
5466 * We might want to check:
5467 * - L3+L4+payload size (e.g. IP forwarding)
5468 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5469 *
5470 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5471 *
5472 * @skb: GSO skb
5473 *
5474 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5475 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5476 *
5477 * @max_len: The maximum permissible length.
5478 *
5479 * Returns true if the segmented length <= max length.
5480 */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5481 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5482 unsigned int seg_len,
5483 unsigned int max_len) {
5484 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5485 const struct sk_buff *iter;
5486
5487 if (shinfo->gso_size != GSO_BY_FRAGS)
5488 return seg_len <= max_len;
5489
5490 /* Undo this so we can re-use header sizes */
5491 seg_len -= GSO_BY_FRAGS;
5492
5493 skb_walk_frags(skb, iter) {
5494 if (seg_len + skb_headlen(iter) > max_len)
5495 return false;
5496 }
5497
5498 return true;
5499 }
5500
5501 /**
5502 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5503 *
5504 * @skb: GSO skb
5505 * @mtu: MTU to validate against
5506 *
5507 * skb_gso_validate_network_len validates if a given skb will fit a
5508 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5509 * payload.
5510 */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5511 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5512 {
5513 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5514 }
5515 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5516
5517 /**
5518 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5519 *
5520 * @skb: GSO skb
5521 * @len: length to validate against
5522 *
5523 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5524 * length once split, including L2, L3 and L4 headers and the payload.
5525 */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5526 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5527 {
5528 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5529 }
5530 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5531
skb_reorder_vlan_header(struct sk_buff * skb)5532 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5533 {
5534 int mac_len, meta_len;
5535 void *meta;
5536
5537 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5538 kfree_skb(skb);
5539 return NULL;
5540 }
5541
5542 mac_len = skb->data - skb_mac_header(skb);
5543 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5544 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5545 mac_len - VLAN_HLEN - ETH_TLEN);
5546 }
5547
5548 meta_len = skb_metadata_len(skb);
5549 if (meta_len) {
5550 meta = skb_metadata_end(skb) - meta_len;
5551 memmove(meta + VLAN_HLEN, meta, meta_len);
5552 }
5553
5554 skb->mac_header += VLAN_HLEN;
5555 return skb;
5556 }
5557
skb_vlan_untag(struct sk_buff * skb)5558 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5559 {
5560 struct vlan_hdr *vhdr;
5561 u16 vlan_tci;
5562
5563 if (unlikely(skb_vlan_tag_present(skb))) {
5564 /* vlan_tci is already set-up so leave this for another time */
5565 return skb;
5566 }
5567
5568 skb = skb_share_check(skb, GFP_ATOMIC);
5569 if (unlikely(!skb))
5570 goto err_free;
5571 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5572 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5573 goto err_free;
5574
5575 vhdr = (struct vlan_hdr *)skb->data;
5576 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5577 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5578
5579 skb_pull_rcsum(skb, VLAN_HLEN);
5580 vlan_set_encap_proto(skb, vhdr);
5581
5582 skb = skb_reorder_vlan_header(skb);
5583 if (unlikely(!skb))
5584 goto err_free;
5585
5586 skb_reset_network_header(skb);
5587 if (!skb_transport_header_was_set(skb))
5588 skb_reset_transport_header(skb);
5589 skb_reset_mac_len(skb);
5590
5591 return skb;
5592
5593 err_free:
5594 kfree_skb(skb);
5595 return NULL;
5596 }
5597 EXPORT_SYMBOL(skb_vlan_untag);
5598
skb_ensure_writable(struct sk_buff * skb,int write_len)5599 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5600 {
5601 if (!pskb_may_pull(skb, write_len))
5602 return -ENOMEM;
5603
5604 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5605 return 0;
5606
5607 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5608 }
5609 EXPORT_SYMBOL(skb_ensure_writable);
5610
5611 /* remove VLAN header from packet and update csum accordingly.
5612 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5613 */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5614 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5615 {
5616 struct vlan_hdr *vhdr;
5617 int offset = skb->data - skb_mac_header(skb);
5618 int err;
5619
5620 if (WARN_ONCE(offset,
5621 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5622 offset)) {
5623 return -EINVAL;
5624 }
5625
5626 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5627 if (unlikely(err))
5628 return err;
5629
5630 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5631
5632 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5633 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5634
5635 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5636 __skb_pull(skb, VLAN_HLEN);
5637
5638 vlan_set_encap_proto(skb, vhdr);
5639 skb->mac_header += VLAN_HLEN;
5640
5641 if (skb_network_offset(skb) < ETH_HLEN)
5642 skb_set_network_header(skb, ETH_HLEN);
5643
5644 skb_reset_mac_len(skb);
5645
5646 return err;
5647 }
5648 EXPORT_SYMBOL(__skb_vlan_pop);
5649
5650 /* Pop a vlan tag either from hwaccel or from payload.
5651 * Expects skb->data at mac header.
5652 */
skb_vlan_pop(struct sk_buff * skb)5653 int skb_vlan_pop(struct sk_buff *skb)
5654 {
5655 u16 vlan_tci;
5656 __be16 vlan_proto;
5657 int err;
5658
5659 if (likely(skb_vlan_tag_present(skb))) {
5660 __vlan_hwaccel_clear_tag(skb);
5661 } else {
5662 if (unlikely(!eth_type_vlan(skb->protocol)))
5663 return 0;
5664
5665 err = __skb_vlan_pop(skb, &vlan_tci);
5666 if (err)
5667 return err;
5668 }
5669 /* move next vlan tag to hw accel tag */
5670 if (likely(!eth_type_vlan(skb->protocol)))
5671 return 0;
5672
5673 vlan_proto = skb->protocol;
5674 err = __skb_vlan_pop(skb, &vlan_tci);
5675 if (unlikely(err))
5676 return err;
5677
5678 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5679 return 0;
5680 }
5681 EXPORT_SYMBOL(skb_vlan_pop);
5682
5683 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5684 * Expects skb->data at mac header.
5685 */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5686 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5687 {
5688 if (skb_vlan_tag_present(skb)) {
5689 int offset = skb->data - skb_mac_header(skb);
5690 int err;
5691
5692 if (WARN_ONCE(offset,
5693 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5694 offset)) {
5695 return -EINVAL;
5696 }
5697
5698 err = __vlan_insert_tag(skb, skb->vlan_proto,
5699 skb_vlan_tag_get(skb));
5700 if (err)
5701 return err;
5702
5703 skb->protocol = skb->vlan_proto;
5704 skb->mac_len += VLAN_HLEN;
5705
5706 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5707 }
5708 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5709 return 0;
5710 }
5711 EXPORT_SYMBOL(skb_vlan_push);
5712
5713 /**
5714 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5715 *
5716 * @skb: Socket buffer to modify
5717 *
5718 * Drop the Ethernet header of @skb.
5719 *
5720 * Expects that skb->data points to the mac header and that no VLAN tags are
5721 * present.
5722 *
5723 * Returns 0 on success, -errno otherwise.
5724 */
skb_eth_pop(struct sk_buff * skb)5725 int skb_eth_pop(struct sk_buff *skb)
5726 {
5727 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5728 skb_network_offset(skb) < ETH_HLEN)
5729 return -EPROTO;
5730
5731 skb_pull_rcsum(skb, ETH_HLEN);
5732 skb_reset_mac_header(skb);
5733 skb_reset_mac_len(skb);
5734
5735 return 0;
5736 }
5737 EXPORT_SYMBOL(skb_eth_pop);
5738
5739 /**
5740 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5741 *
5742 * @skb: Socket buffer to modify
5743 * @dst: Destination MAC address of the new header
5744 * @src: Source MAC address of the new header
5745 *
5746 * Prepend @skb with a new Ethernet header.
5747 *
5748 * Expects that skb->data points to the mac header, which must be empty.
5749 *
5750 * Returns 0 on success, -errno otherwise.
5751 */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)5752 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5753 const unsigned char *src)
5754 {
5755 struct ethhdr *eth;
5756 int err;
5757
5758 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5759 return -EPROTO;
5760
5761 err = skb_cow_head(skb, sizeof(*eth));
5762 if (err < 0)
5763 return err;
5764
5765 skb_push(skb, sizeof(*eth));
5766 skb_reset_mac_header(skb);
5767 skb_reset_mac_len(skb);
5768
5769 eth = eth_hdr(skb);
5770 ether_addr_copy(eth->h_dest, dst);
5771 ether_addr_copy(eth->h_source, src);
5772 eth->h_proto = skb->protocol;
5773
5774 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5775
5776 return 0;
5777 }
5778 EXPORT_SYMBOL(skb_eth_push);
5779
5780 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5781 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5782 __be16 ethertype)
5783 {
5784 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5785 __be16 diff[] = { ~hdr->h_proto, ethertype };
5786
5787 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5788 }
5789
5790 hdr->h_proto = ethertype;
5791 }
5792
5793 /**
5794 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5795 * the packet
5796 *
5797 * @skb: buffer
5798 * @mpls_lse: MPLS label stack entry to push
5799 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5800 * @mac_len: length of the MAC header
5801 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5802 * ethernet
5803 *
5804 * Expects skb->data at mac header.
5805 *
5806 * Returns 0 on success, -errno otherwise.
5807 */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5808 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5809 int mac_len, bool ethernet)
5810 {
5811 struct mpls_shim_hdr *lse;
5812 int err;
5813
5814 if (unlikely(!eth_p_mpls(mpls_proto)))
5815 return -EINVAL;
5816
5817 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5818 if (skb->encapsulation)
5819 return -EINVAL;
5820
5821 err = skb_cow_head(skb, MPLS_HLEN);
5822 if (unlikely(err))
5823 return err;
5824
5825 if (!skb->inner_protocol) {
5826 skb_set_inner_network_header(skb, skb_network_offset(skb));
5827 skb_set_inner_protocol(skb, skb->protocol);
5828 }
5829
5830 skb_push(skb, MPLS_HLEN);
5831 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5832 mac_len);
5833 skb_reset_mac_header(skb);
5834 skb_set_network_header(skb, mac_len);
5835 skb_reset_mac_len(skb);
5836
5837 lse = mpls_hdr(skb);
5838 lse->label_stack_entry = mpls_lse;
5839 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5840
5841 if (ethernet && mac_len >= ETH_HLEN)
5842 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5843 skb->protocol = mpls_proto;
5844
5845 return 0;
5846 }
5847 EXPORT_SYMBOL_GPL(skb_mpls_push);
5848
5849 /**
5850 * skb_mpls_pop() - pop the outermost MPLS header
5851 *
5852 * @skb: buffer
5853 * @next_proto: ethertype of header after popped MPLS header
5854 * @mac_len: length of the MAC header
5855 * @ethernet: flag to indicate if the packet is ethernet
5856 *
5857 * Expects skb->data at mac header.
5858 *
5859 * Returns 0 on success, -errno otherwise.
5860 */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)5861 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5862 bool ethernet)
5863 {
5864 int err;
5865
5866 if (unlikely(!eth_p_mpls(skb->protocol)))
5867 return 0;
5868
5869 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5870 if (unlikely(err))
5871 return err;
5872
5873 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5874 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5875 mac_len);
5876
5877 __skb_pull(skb, MPLS_HLEN);
5878 skb_reset_mac_header(skb);
5879 skb_set_network_header(skb, mac_len);
5880
5881 if (ethernet && mac_len >= ETH_HLEN) {
5882 struct ethhdr *hdr;
5883
5884 /* use mpls_hdr() to get ethertype to account for VLANs. */
5885 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5886 skb_mod_eth_type(skb, hdr, next_proto);
5887 }
5888 skb->protocol = next_proto;
5889
5890 return 0;
5891 }
5892 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5893
5894 /**
5895 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5896 *
5897 * @skb: buffer
5898 * @mpls_lse: new MPLS label stack entry to update to
5899 *
5900 * Expects skb->data at mac header.
5901 *
5902 * Returns 0 on success, -errno otherwise.
5903 */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)5904 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5905 {
5906 int err;
5907
5908 if (unlikely(!eth_p_mpls(skb->protocol)))
5909 return -EINVAL;
5910
5911 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5912 if (unlikely(err))
5913 return err;
5914
5915 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5916 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5917
5918 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5919 }
5920
5921 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5922
5923 return 0;
5924 }
5925 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5926
5927 /**
5928 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5929 *
5930 * @skb: buffer
5931 *
5932 * Expects skb->data at mac header.
5933 *
5934 * Returns 0 on success, -errno otherwise.
5935 */
skb_mpls_dec_ttl(struct sk_buff * skb)5936 int skb_mpls_dec_ttl(struct sk_buff *skb)
5937 {
5938 u32 lse;
5939 u8 ttl;
5940
5941 if (unlikely(!eth_p_mpls(skb->protocol)))
5942 return -EINVAL;
5943
5944 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5945 return -ENOMEM;
5946
5947 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5948 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5949 if (!--ttl)
5950 return -EINVAL;
5951
5952 lse &= ~MPLS_LS_TTL_MASK;
5953 lse |= ttl << MPLS_LS_TTL_SHIFT;
5954
5955 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5956 }
5957 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5958
5959 /**
5960 * alloc_skb_with_frags - allocate skb with page frags
5961 *
5962 * @header_len: size of linear part
5963 * @data_len: needed length in frags
5964 * @max_page_order: max page order desired.
5965 * @errcode: pointer to error code if any
5966 * @gfp_mask: allocation mask
5967 *
5968 * This can be used to allocate a paged skb, given a maximal order for frags.
5969 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)5970 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5971 unsigned long data_len,
5972 int max_page_order,
5973 int *errcode,
5974 gfp_t gfp_mask)
5975 {
5976 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5977 unsigned long chunk;
5978 struct sk_buff *skb;
5979 struct page *page;
5980 int i;
5981
5982 *errcode = -EMSGSIZE;
5983 /* Note this test could be relaxed, if we succeed to allocate
5984 * high order pages...
5985 */
5986 if (npages > MAX_SKB_FRAGS)
5987 return NULL;
5988
5989 *errcode = -ENOBUFS;
5990 skb = alloc_skb(header_len, gfp_mask);
5991 if (!skb)
5992 return NULL;
5993
5994 skb->truesize += npages << PAGE_SHIFT;
5995
5996 for (i = 0; npages > 0; i++) {
5997 int order = max_page_order;
5998
5999 while (order) {
6000 if (npages >= 1 << order) {
6001 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6002 __GFP_COMP |
6003 __GFP_NOWARN,
6004 order);
6005 if (page)
6006 goto fill_page;
6007 /* Do not retry other high order allocations */
6008 order = 1;
6009 max_page_order = 0;
6010 }
6011 order--;
6012 }
6013 page = alloc_page(gfp_mask);
6014 if (!page)
6015 goto failure;
6016 fill_page:
6017 chunk = min_t(unsigned long, data_len,
6018 PAGE_SIZE << order);
6019 skb_fill_page_desc(skb, i, page, 0, chunk);
6020 data_len -= chunk;
6021 npages -= 1 << order;
6022 }
6023 return skb;
6024
6025 failure:
6026 kfree_skb(skb);
6027 return NULL;
6028 }
6029 EXPORT_SYMBOL(alloc_skb_with_frags);
6030
6031 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6032 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6033 const int headlen, gfp_t gfp_mask)
6034 {
6035 int i;
6036 int size = skb_end_offset(skb);
6037 int new_hlen = headlen - off;
6038 u8 *data;
6039
6040 size = SKB_DATA_ALIGN(size);
6041
6042 if (skb_pfmemalloc(skb))
6043 gfp_mask |= __GFP_MEMALLOC;
6044 data = kmalloc_reserve(size +
6045 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6046 gfp_mask, NUMA_NO_NODE, NULL);
6047 if (!data)
6048 return -ENOMEM;
6049
6050 size = SKB_WITH_OVERHEAD(ksize(data));
6051
6052 /* Copy real data, and all frags */
6053 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6054 skb->len -= off;
6055
6056 memcpy((struct skb_shared_info *)(data + size),
6057 skb_shinfo(skb),
6058 offsetof(struct skb_shared_info,
6059 frags[skb_shinfo(skb)->nr_frags]));
6060 if (skb_cloned(skb)) {
6061 /* drop the old head gracefully */
6062 if (skb_orphan_frags(skb, gfp_mask)) {
6063 kfree(data);
6064 return -ENOMEM;
6065 }
6066 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6067 skb_frag_ref(skb, i);
6068 if (skb_has_frag_list(skb))
6069 skb_clone_fraglist(skb);
6070 skb_release_data(skb);
6071 } else {
6072 /* we can reuse existing recount- all we did was
6073 * relocate values
6074 */
6075 skb_free_head(skb);
6076 }
6077
6078 skb->head = data;
6079 skb->data = data;
6080 skb->head_frag = 0;
6081 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6082 skb->end = size;
6083 #else
6084 skb->end = skb->head + size;
6085 #endif
6086 skb_set_tail_pointer(skb, skb_headlen(skb));
6087 skb_headers_offset_update(skb, 0);
6088 skb->cloned = 0;
6089 skb->hdr_len = 0;
6090 skb->nohdr = 0;
6091 atomic_set(&skb_shinfo(skb)->dataref, 1);
6092
6093 return 0;
6094 }
6095
6096 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6097
6098 /* carve out the first eat bytes from skb's frag_list. May recurse into
6099 * pskb_carve()
6100 */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6101 static int pskb_carve_frag_list(struct sk_buff *skb,
6102 struct skb_shared_info *shinfo, int eat,
6103 gfp_t gfp_mask)
6104 {
6105 struct sk_buff *list = shinfo->frag_list;
6106 struct sk_buff *clone = NULL;
6107 struct sk_buff *insp = NULL;
6108
6109 do {
6110 if (!list) {
6111 pr_err("Not enough bytes to eat. Want %d\n", eat);
6112 return -EFAULT;
6113 }
6114 if (list->len <= eat) {
6115 /* Eaten as whole. */
6116 eat -= list->len;
6117 list = list->next;
6118 insp = list;
6119 } else {
6120 /* Eaten partially. */
6121 if (skb_shared(list)) {
6122 clone = skb_clone(list, gfp_mask);
6123 if (!clone)
6124 return -ENOMEM;
6125 insp = list->next;
6126 list = clone;
6127 } else {
6128 /* This may be pulled without problems. */
6129 insp = list;
6130 }
6131 if (pskb_carve(list, eat, gfp_mask) < 0) {
6132 kfree_skb(clone);
6133 return -ENOMEM;
6134 }
6135 break;
6136 }
6137 } while (eat);
6138
6139 /* Free pulled out fragments. */
6140 while ((list = shinfo->frag_list) != insp) {
6141 shinfo->frag_list = list->next;
6142 kfree_skb(list);
6143 }
6144 /* And insert new clone at head. */
6145 if (clone) {
6146 clone->next = list;
6147 shinfo->frag_list = clone;
6148 }
6149 return 0;
6150 }
6151
6152 /* carve off first len bytes from skb. Split line (off) is in the
6153 * non-linear part of skb
6154 */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6155 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6156 int pos, gfp_t gfp_mask)
6157 {
6158 int i, k = 0;
6159 int size = skb_end_offset(skb);
6160 u8 *data;
6161 const int nfrags = skb_shinfo(skb)->nr_frags;
6162 struct skb_shared_info *shinfo;
6163
6164 size = SKB_DATA_ALIGN(size);
6165
6166 if (skb_pfmemalloc(skb))
6167 gfp_mask |= __GFP_MEMALLOC;
6168 data = kmalloc_reserve(size +
6169 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6170 gfp_mask, NUMA_NO_NODE, NULL);
6171 if (!data)
6172 return -ENOMEM;
6173
6174 size = SKB_WITH_OVERHEAD(ksize(data));
6175
6176 memcpy((struct skb_shared_info *)(data + size),
6177 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6178 if (skb_orphan_frags(skb, gfp_mask)) {
6179 kfree(data);
6180 return -ENOMEM;
6181 }
6182 shinfo = (struct skb_shared_info *)(data + size);
6183 for (i = 0; i < nfrags; i++) {
6184 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6185
6186 if (pos + fsize > off) {
6187 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6188
6189 if (pos < off) {
6190 /* Split frag.
6191 * We have two variants in this case:
6192 * 1. Move all the frag to the second
6193 * part, if it is possible. F.e.
6194 * this approach is mandatory for TUX,
6195 * where splitting is expensive.
6196 * 2. Split is accurately. We make this.
6197 */
6198 skb_frag_off_add(&shinfo->frags[0], off - pos);
6199 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6200 }
6201 skb_frag_ref(skb, i);
6202 k++;
6203 }
6204 pos += fsize;
6205 }
6206 shinfo->nr_frags = k;
6207 if (skb_has_frag_list(skb))
6208 skb_clone_fraglist(skb);
6209
6210 /* split line is in frag list */
6211 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6212 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6213 if (skb_has_frag_list(skb))
6214 kfree_skb_list(skb_shinfo(skb)->frag_list);
6215 kfree(data);
6216 return -ENOMEM;
6217 }
6218 skb_release_data(skb);
6219
6220 skb->head = data;
6221 skb->head_frag = 0;
6222 skb->data = data;
6223 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6224 skb->end = size;
6225 #else
6226 skb->end = skb->head + size;
6227 #endif
6228 skb_reset_tail_pointer(skb);
6229 skb_headers_offset_update(skb, 0);
6230 skb->cloned = 0;
6231 skb->hdr_len = 0;
6232 skb->nohdr = 0;
6233 skb->len -= off;
6234 skb->data_len = skb->len;
6235 atomic_set(&skb_shinfo(skb)->dataref, 1);
6236 return 0;
6237 }
6238
6239 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6240 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6241 {
6242 int headlen = skb_headlen(skb);
6243
6244 if (len < headlen)
6245 return pskb_carve_inside_header(skb, len, headlen, gfp);
6246 else
6247 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6248 }
6249
6250 /* Extract to_copy bytes starting at off from skb, and return this in
6251 * a new skb
6252 */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6253 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6254 int to_copy, gfp_t gfp)
6255 {
6256 struct sk_buff *clone = skb_clone(skb, gfp);
6257
6258 if (!clone)
6259 return NULL;
6260
6261 if (pskb_carve(clone, off, gfp) < 0 ||
6262 pskb_trim(clone, to_copy)) {
6263 kfree_skb(clone);
6264 return NULL;
6265 }
6266 return clone;
6267 }
6268 EXPORT_SYMBOL(pskb_extract);
6269
6270 /**
6271 * skb_condense - try to get rid of fragments/frag_list if possible
6272 * @skb: buffer
6273 *
6274 * Can be used to save memory before skb is added to a busy queue.
6275 * If packet has bytes in frags and enough tail room in skb->head,
6276 * pull all of them, so that we can free the frags right now and adjust
6277 * truesize.
6278 * Notes:
6279 * We do not reallocate skb->head thus can not fail.
6280 * Caller must re-evaluate skb->truesize if needed.
6281 */
skb_condense(struct sk_buff * skb)6282 void skb_condense(struct sk_buff *skb)
6283 {
6284 if (skb->data_len) {
6285 if (skb->data_len > skb->end - skb->tail ||
6286 skb_cloned(skb))
6287 return;
6288
6289 /* Nice, we can free page frag(s) right now */
6290 __pskb_pull_tail(skb, skb->data_len);
6291 }
6292 /* At this point, skb->truesize might be over estimated,
6293 * because skb had a fragment, and fragments do not tell
6294 * their truesize.
6295 * When we pulled its content into skb->head, fragment
6296 * was freed, but __pskb_pull_tail() could not possibly
6297 * adjust skb->truesize, not knowing the frag truesize.
6298 */
6299 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6300 }
6301
6302 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6303 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6304 {
6305 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6306 }
6307
6308 /**
6309 * __skb_ext_alloc - allocate a new skb extensions storage
6310 *
6311 * @flags: See kmalloc().
6312 *
6313 * Returns the newly allocated pointer. The pointer can later attached to a
6314 * skb via __skb_ext_set().
6315 * Note: caller must handle the skb_ext as an opaque data.
6316 */
__skb_ext_alloc(gfp_t flags)6317 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6318 {
6319 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6320
6321 if (new) {
6322 memset(new->offset, 0, sizeof(new->offset));
6323 refcount_set(&new->refcnt, 1);
6324 }
6325
6326 return new;
6327 }
6328
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6329 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6330 unsigned int old_active)
6331 {
6332 struct skb_ext *new;
6333
6334 if (refcount_read(&old->refcnt) == 1)
6335 return old;
6336
6337 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6338 if (!new)
6339 return NULL;
6340
6341 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6342 refcount_set(&new->refcnt, 1);
6343
6344 #ifdef CONFIG_XFRM
6345 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6346 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6347 unsigned int i;
6348
6349 for (i = 0; i < sp->len; i++)
6350 xfrm_state_hold(sp->xvec[i]);
6351 }
6352 #endif
6353 __skb_ext_put(old);
6354 return new;
6355 }
6356
6357 /**
6358 * __skb_ext_set - attach the specified extension storage to this skb
6359 * @skb: buffer
6360 * @id: extension id
6361 * @ext: extension storage previously allocated via __skb_ext_alloc()
6362 *
6363 * Existing extensions, if any, are cleared.
6364 *
6365 * Returns the pointer to the extension.
6366 */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6367 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6368 struct skb_ext *ext)
6369 {
6370 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6371
6372 skb_ext_put(skb);
6373 newlen = newoff + skb_ext_type_len[id];
6374 ext->chunks = newlen;
6375 ext->offset[id] = newoff;
6376 skb->extensions = ext;
6377 skb->active_extensions = 1 << id;
6378 return skb_ext_get_ptr(ext, id);
6379 }
6380
6381 /**
6382 * skb_ext_add - allocate space for given extension, COW if needed
6383 * @skb: buffer
6384 * @id: extension to allocate space for
6385 *
6386 * Allocates enough space for the given extension.
6387 * If the extension is already present, a pointer to that extension
6388 * is returned.
6389 *
6390 * If the skb was cloned, COW applies and the returned memory can be
6391 * modified without changing the extension space of clones buffers.
6392 *
6393 * Returns pointer to the extension or NULL on allocation failure.
6394 */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6395 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6396 {
6397 struct skb_ext *new, *old = NULL;
6398 unsigned int newlen, newoff;
6399
6400 if (skb->active_extensions) {
6401 old = skb->extensions;
6402
6403 new = skb_ext_maybe_cow(old, skb->active_extensions);
6404 if (!new)
6405 return NULL;
6406
6407 if (__skb_ext_exist(new, id))
6408 goto set_active;
6409
6410 newoff = new->chunks;
6411 } else {
6412 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6413
6414 new = __skb_ext_alloc(GFP_ATOMIC);
6415 if (!new)
6416 return NULL;
6417 }
6418
6419 newlen = newoff + skb_ext_type_len[id];
6420 new->chunks = newlen;
6421 new->offset[id] = newoff;
6422 set_active:
6423 skb->extensions = new;
6424 skb->active_extensions |= 1 << id;
6425 return skb_ext_get_ptr(new, id);
6426 }
6427 EXPORT_SYMBOL(skb_ext_add);
6428
6429 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6430 static void skb_ext_put_sp(struct sec_path *sp)
6431 {
6432 unsigned int i;
6433
6434 for (i = 0; i < sp->len; i++)
6435 xfrm_state_put(sp->xvec[i]);
6436 }
6437 #endif
6438
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6439 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6440 {
6441 struct skb_ext *ext = skb->extensions;
6442
6443 skb->active_extensions &= ~(1 << id);
6444 if (skb->active_extensions == 0) {
6445 skb->extensions = NULL;
6446 __skb_ext_put(ext);
6447 #ifdef CONFIG_XFRM
6448 } else if (id == SKB_EXT_SEC_PATH &&
6449 refcount_read(&ext->refcnt) == 1) {
6450 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6451
6452 skb_ext_put_sp(sp);
6453 sp->len = 0;
6454 #endif
6455 }
6456 }
6457 EXPORT_SYMBOL(__skb_ext_del);
6458
__skb_ext_put(struct skb_ext * ext)6459 void __skb_ext_put(struct skb_ext *ext)
6460 {
6461 /* If this is last clone, nothing can increment
6462 * it after check passes. Avoids one atomic op.
6463 */
6464 if (refcount_read(&ext->refcnt) == 1)
6465 goto free_now;
6466
6467 if (!refcount_dec_and_test(&ext->refcnt))
6468 return;
6469 free_now:
6470 #ifdef CONFIG_XFRM
6471 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6472 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6473 #endif
6474
6475 kmem_cache_free(skbuff_ext_cache, ext);
6476 }
6477 EXPORT_SYMBOL(__skb_ext_put);
6478 #endif /* CONFIG_SKB_EXTENSIONS */
6479