1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001-2003 Intel Corp.
7 * Copyright (c) 2001-2002 Nokia, Inc.
8 * Copyright (c) 2001 La Monte H.P. Yarroll
9 *
10 * This file is part of the SCTP kernel implementation
11 *
12 * These functions interface with the sockets layer to implement the
13 * SCTP Extensions for the Sockets API.
14 *
15 * Note that the descriptions from the specification are USER level
16 * functions--this file is the functions which populate the struct proto
17 * for SCTP which is the BOTTOM of the sockets interface.
18 *
19 * Please send any bug reports or fixes you make to the
20 * email address(es):
21 * lksctp developers <linux-sctp@vger.kernel.org>
22 *
23 * Written or modified by:
24 * La Monte H.P. Yarroll <piggy@acm.org>
25 * Narasimha Budihal <narsi@refcode.org>
26 * Karl Knutson <karl@athena.chicago.il.us>
27 * Jon Grimm <jgrimm@us.ibm.com>
28 * Xingang Guo <xingang.guo@intel.com>
29 * Daisy Chang <daisyc@us.ibm.com>
30 * Sridhar Samudrala <samudrala@us.ibm.com>
31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
32 * Ardelle Fan <ardelle.fan@intel.com>
33 * Ryan Layer <rmlayer@us.ibm.com>
34 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
35 * Kevin Gao <kevin.gao@intel.com>
36 */
37
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62
63 #include <linux/socket.h> /* for sa_family_t */
64 #include <linux/export.h>
65 #include <net/sock.h>
66 #include <net/sctp/sctp.h>
67 #include <net/sctp/sm.h>
68 #include <net/sctp/stream_sched.h>
69
70 /* Forward declarations for internal helper functions. */
71 static bool sctp_writeable(struct sock *sk);
72 static void sctp_wfree(struct sk_buff *skb);
73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 size_t msg_len);
75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77 static int sctp_wait_for_accept(struct sock *sk, long timeo);
78 static void sctp_wait_for_close(struct sock *sk, long timeo);
79 static void sctp_destruct_sock(struct sock *sk);
80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 union sctp_addr *addr, int len);
82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf(struct sctp_association *asoc,
87 struct sctp_chunk *chunk);
88 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89 static int sctp_autobind(struct sock *sk);
90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 struct sctp_association *assoc,
92 enum sctp_socket_type type);
93
94 static unsigned long sctp_memory_pressure;
95 static atomic_long_t sctp_memory_allocated;
96 struct percpu_counter sctp_sockets_allocated;
97
sctp_enter_memory_pressure(struct sock * sk)98 static void sctp_enter_memory_pressure(struct sock *sk)
99 {
100 sctp_memory_pressure = 1;
101 }
102
103
104 /* Get the sndbuf space available at the time on the association. */
sctp_wspace(struct sctp_association * asoc)105 static inline int sctp_wspace(struct sctp_association *asoc)
106 {
107 struct sock *sk = asoc->base.sk;
108
109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 : sk_stream_wspace(sk);
111 }
112
113 /* Increment the used sndbuf space count of the corresponding association by
114 * the size of the outgoing data chunk.
115 * Also, set the skb destructor for sndbuf accounting later.
116 *
117 * Since it is always 1-1 between chunk and skb, and also a new skb is always
118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119 * destructor in the data chunk skb for the purpose of the sndbuf space
120 * tracking.
121 */
sctp_set_owner_w(struct sctp_chunk * chunk)122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123 {
124 struct sctp_association *asoc = chunk->asoc;
125 struct sock *sk = asoc->base.sk;
126
127 /* The sndbuf space is tracked per association. */
128 sctp_association_hold(asoc);
129
130 if (chunk->shkey)
131 sctp_auth_shkey_hold(chunk->shkey);
132
133 skb_set_owner_w(chunk->skb, sk);
134
135 chunk->skb->destructor = sctp_wfree;
136 /* Save the chunk pointer in skb for sctp_wfree to use later. */
137 skb_shinfo(chunk->skb)->destructor_arg = chunk;
138
139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 sk_mem_charge(sk, chunk->skb->truesize);
143 }
144
sctp_clear_owner_w(struct sctp_chunk * chunk)145 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146 {
147 skb_orphan(chunk->skb);
148 }
149
150 #define traverse_and_process() \
151 do { \
152 msg = chunk->msg; \
153 if (msg == prev_msg) \
154 continue; \
155 list_for_each_entry(c, &msg->chunks, frag_list) { \
156 if ((clear && asoc->base.sk == c->skb->sk) || \
157 (!clear && asoc->base.sk != c->skb->sk)) \
158 cb(c); \
159 } \
160 prev_msg = msg; \
161 } while (0)
162
sctp_for_each_tx_datachunk(struct sctp_association * asoc,bool clear,void (* cb)(struct sctp_chunk *))163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
164 bool clear,
165 void (*cb)(struct sctp_chunk *))
166
167 {
168 struct sctp_datamsg *msg, *prev_msg = NULL;
169 struct sctp_outq *q = &asoc->outqueue;
170 struct sctp_chunk *chunk, *c;
171 struct sctp_transport *t;
172
173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 traverse_and_process();
176
177 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 traverse_and_process();
179
180 list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 traverse_and_process();
182
183 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 traverse_and_process();
185
186 list_for_each_entry(chunk, &q->out_chunk_list, list)
187 traverse_and_process();
188 }
189
sctp_for_each_rx_skb(struct sctp_association * asoc,struct sock * sk,void (* cb)(struct sk_buff *,struct sock *))190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 void (*cb)(struct sk_buff *, struct sock *))
192
193 {
194 struct sk_buff *skb, *tmp;
195
196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 cb(skb, sk);
198
199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 cb(skb, sk);
201
202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 cb(skb, sk);
204 }
205
206 /* Verify that this is a valid address. */
sctp_verify_addr(struct sock * sk,union sctp_addr * addr,int len)207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 int len)
209 {
210 struct sctp_af *af;
211
212 /* Verify basic sockaddr. */
213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 if (!af)
215 return -EINVAL;
216
217 /* Is this a valid SCTP address? */
218 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 return -EINVAL;
220
221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 return -EINVAL;
223
224 return 0;
225 }
226
227 /* Look up the association by its id. If this is not a UDP-style
228 * socket, the ID field is always ignored.
229 */
sctp_id2assoc(struct sock * sk,sctp_assoc_t id)230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 struct sctp_association *asoc = NULL;
233
234 /* If this is not a UDP-style socket, assoc id should be ignored. */
235 if (!sctp_style(sk, UDP)) {
236 /* Return NULL if the socket state is not ESTABLISHED. It
237 * could be a TCP-style listening socket or a socket which
238 * hasn't yet called connect() to establish an association.
239 */
240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 return NULL;
242
243 /* Get the first and the only association from the list. */
244 if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 struct sctp_association, asocs);
247 return asoc;
248 }
249
250 /* Otherwise this is a UDP-style socket. */
251 if (id <= SCTP_ALL_ASSOC)
252 return NULL;
253
254 spin_lock_bh(&sctp_assocs_id_lock);
255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 asoc = NULL;
258 spin_unlock_bh(&sctp_assocs_id_lock);
259
260 return asoc;
261 }
262
263 /* Look up the transport from an address and an assoc id. If both address and
264 * id are specified, the associations matching the address and the id should be
265 * the same.
266 */
sctp_addr_id2transport(struct sock * sk,struct sockaddr_storage * addr,sctp_assoc_t id)267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 struct sockaddr_storage *addr,
269 sctp_assoc_t id)
270 {
271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 union sctp_addr *laddr = (union sctp_addr *)addr;
274 struct sctp_transport *transport;
275
276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 return NULL;
278
279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 laddr,
281 &transport);
282
283 if (!addr_asoc)
284 return NULL;
285
286 id_asoc = sctp_id2assoc(sk, id);
287 if (id_asoc && (id_asoc != addr_asoc))
288 return NULL;
289
290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 (union sctp_addr *)addr);
292
293 return transport;
294 }
295
296 /* API 3.1.2 bind() - UDP Style Syntax
297 * The syntax of bind() is,
298 *
299 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
300 *
301 * sd - the socket descriptor returned by socket().
302 * addr - the address structure (struct sockaddr_in or struct
303 * sockaddr_in6 [RFC 2553]),
304 * addr_len - the size of the address structure.
305 */
sctp_bind(struct sock * sk,struct sockaddr * addr,int addr_len)306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 int retval = 0;
309
310 lock_sock(sk);
311
312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 addr, addr_len);
314
315 /* Disallow binding twice. */
316 if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 addr_len);
319 else
320 retval = -EINVAL;
321
322 release_sock(sk);
323
324 return retval;
325 }
326
327 static int sctp_get_port_local(struct sock *, union sctp_addr *);
328
329 /* Verify this is a valid sockaddr. */
sctp_sockaddr_af(struct sctp_sock * opt,union sctp_addr * addr,int len)330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 union sctp_addr *addr, int len)
332 {
333 struct sctp_af *af;
334
335 /* Check minimum size. */
336 if (len < sizeof (struct sockaddr))
337 return NULL;
338
339 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 return NULL;
341
342 if (addr->sa.sa_family == AF_INET6) {
343 if (len < SIN6_LEN_RFC2133)
344 return NULL;
345 /* V4 mapped address are really of AF_INET family */
346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 !opt->pf->af_supported(AF_INET, opt))
348 return NULL;
349 }
350
351 /* If we get this far, af is valid. */
352 af = sctp_get_af_specific(addr->sa.sa_family);
353
354 if (len < af->sockaddr_len)
355 return NULL;
356
357 return af;
358 }
359
sctp_auto_asconf_init(struct sctp_sock * sp)360 static void sctp_auto_asconf_init(struct sctp_sock *sp)
361 {
362 struct net *net = sock_net(&sp->inet.sk);
363
364 if (net->sctp.default_auto_asconf) {
365 spin_lock(&net->sctp.addr_wq_lock);
366 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist);
367 spin_unlock(&net->sctp.addr_wq_lock);
368 sp->do_auto_asconf = 1;
369 }
370 }
371
372 /* Bind a local address either to an endpoint or to an association. */
sctp_do_bind(struct sock * sk,union sctp_addr * addr,int len)373 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
374 {
375 struct net *net = sock_net(sk);
376 struct sctp_sock *sp = sctp_sk(sk);
377 struct sctp_endpoint *ep = sp->ep;
378 struct sctp_bind_addr *bp = &ep->base.bind_addr;
379 struct sctp_af *af;
380 unsigned short snum;
381 int ret = 0;
382
383 /* Common sockaddr verification. */
384 af = sctp_sockaddr_af(sp, addr, len);
385 if (!af) {
386 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
387 __func__, sk, addr, len);
388 return -EINVAL;
389 }
390
391 snum = ntohs(addr->v4.sin_port);
392
393 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
394 __func__, sk, &addr->sa, bp->port, snum, len);
395
396 /* PF specific bind() address verification. */
397 if (!sp->pf->bind_verify(sp, addr))
398 return -EADDRNOTAVAIL;
399
400 /* We must either be unbound, or bind to the same port.
401 * It's OK to allow 0 ports if we are already bound.
402 * We'll just inhert an already bound port in this case
403 */
404 if (bp->port) {
405 if (!snum)
406 snum = bp->port;
407 else if (snum != bp->port) {
408 pr_debug("%s: new port %d doesn't match existing port "
409 "%d\n", __func__, snum, bp->port);
410 return -EINVAL;
411 }
412 }
413
414 if (snum && inet_port_requires_bind_service(net, snum) &&
415 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
416 return -EACCES;
417
418 /* See if the address matches any of the addresses we may have
419 * already bound before checking against other endpoints.
420 */
421 if (sctp_bind_addr_match(bp, addr, sp))
422 return -EINVAL;
423
424 /* Make sure we are allowed to bind here.
425 * The function sctp_get_port_local() does duplicate address
426 * detection.
427 */
428 addr->v4.sin_port = htons(snum);
429 if (sctp_get_port_local(sk, addr))
430 return -EADDRINUSE;
431
432 /* Refresh ephemeral port. */
433 if (!bp->port) {
434 bp->port = inet_sk(sk)->inet_num;
435 sctp_auto_asconf_init(sp);
436 }
437
438 /* Add the address to the bind address list.
439 * Use GFP_ATOMIC since BHs will be disabled.
440 */
441 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
442 SCTP_ADDR_SRC, GFP_ATOMIC);
443
444 if (ret) {
445 sctp_put_port(sk);
446 return ret;
447 }
448 /* Copy back into socket for getsockname() use. */
449 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
450 sp->pf->to_sk_saddr(addr, sk);
451
452 return ret;
453 }
454
455 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
456 *
457 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
458 * at any one time. If a sender, after sending an ASCONF chunk, decides
459 * it needs to transfer another ASCONF Chunk, it MUST wait until the
460 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
461 * subsequent ASCONF. Note this restriction binds each side, so at any
462 * time two ASCONF may be in-transit on any given association (one sent
463 * from each endpoint).
464 */
sctp_send_asconf(struct sctp_association * asoc,struct sctp_chunk * chunk)465 static int sctp_send_asconf(struct sctp_association *asoc,
466 struct sctp_chunk *chunk)
467 {
468 int retval = 0;
469
470 /* If there is an outstanding ASCONF chunk, queue it for later
471 * transmission.
472 */
473 if (asoc->addip_last_asconf) {
474 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
475 goto out;
476 }
477
478 /* Hold the chunk until an ASCONF_ACK is received. */
479 sctp_chunk_hold(chunk);
480 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
481 if (retval)
482 sctp_chunk_free(chunk);
483 else
484 asoc->addip_last_asconf = chunk;
485
486 out:
487 return retval;
488 }
489
490 /* Add a list of addresses as bind addresses to local endpoint or
491 * association.
492 *
493 * Basically run through each address specified in the addrs/addrcnt
494 * array/length pair, determine if it is IPv6 or IPv4 and call
495 * sctp_do_bind() on it.
496 *
497 * If any of them fails, then the operation will be reversed and the
498 * ones that were added will be removed.
499 *
500 * Only sctp_setsockopt_bindx() is supposed to call this function.
501 */
sctp_bindx_add(struct sock * sk,struct sockaddr * addrs,int addrcnt)502 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
503 {
504 int cnt;
505 int retval = 0;
506 void *addr_buf;
507 struct sockaddr *sa_addr;
508 struct sctp_af *af;
509
510 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
511 addrs, addrcnt);
512
513 addr_buf = addrs;
514 for (cnt = 0; cnt < addrcnt; cnt++) {
515 /* The list may contain either IPv4 or IPv6 address;
516 * determine the address length for walking thru the list.
517 */
518 sa_addr = addr_buf;
519 af = sctp_get_af_specific(sa_addr->sa_family);
520 if (!af) {
521 retval = -EINVAL;
522 goto err_bindx_add;
523 }
524
525 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
526 af->sockaddr_len);
527
528 addr_buf += af->sockaddr_len;
529
530 err_bindx_add:
531 if (retval < 0) {
532 /* Failed. Cleanup the ones that have been added */
533 if (cnt > 0)
534 sctp_bindx_rem(sk, addrs, cnt);
535 return retval;
536 }
537 }
538
539 return retval;
540 }
541
542 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
543 * associations that are part of the endpoint indicating that a list of local
544 * addresses are added to the endpoint.
545 *
546 * If any of the addresses is already in the bind address list of the
547 * association, we do not send the chunk for that association. But it will not
548 * affect other associations.
549 *
550 * Only sctp_setsockopt_bindx() is supposed to call this function.
551 */
sctp_send_asconf_add_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)552 static int sctp_send_asconf_add_ip(struct sock *sk,
553 struct sockaddr *addrs,
554 int addrcnt)
555 {
556 struct sctp_sock *sp;
557 struct sctp_endpoint *ep;
558 struct sctp_association *asoc;
559 struct sctp_bind_addr *bp;
560 struct sctp_chunk *chunk;
561 struct sctp_sockaddr_entry *laddr;
562 union sctp_addr *addr;
563 union sctp_addr saveaddr;
564 void *addr_buf;
565 struct sctp_af *af;
566 struct list_head *p;
567 int i;
568 int retval = 0;
569
570 sp = sctp_sk(sk);
571 ep = sp->ep;
572
573 if (!ep->asconf_enable)
574 return retval;
575
576 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
577 __func__, sk, addrs, addrcnt);
578
579 list_for_each_entry(asoc, &ep->asocs, asocs) {
580 if (!asoc->peer.asconf_capable)
581 continue;
582
583 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
584 continue;
585
586 if (!sctp_state(asoc, ESTABLISHED))
587 continue;
588
589 /* Check if any address in the packed array of addresses is
590 * in the bind address list of the association. If so,
591 * do not send the asconf chunk to its peer, but continue with
592 * other associations.
593 */
594 addr_buf = addrs;
595 for (i = 0; i < addrcnt; i++) {
596 addr = addr_buf;
597 af = sctp_get_af_specific(addr->v4.sin_family);
598 if (!af) {
599 retval = -EINVAL;
600 goto out;
601 }
602
603 if (sctp_assoc_lookup_laddr(asoc, addr))
604 break;
605
606 addr_buf += af->sockaddr_len;
607 }
608 if (i < addrcnt)
609 continue;
610
611 /* Use the first valid address in bind addr list of
612 * association as Address Parameter of ASCONF CHUNK.
613 */
614 bp = &asoc->base.bind_addr;
615 p = bp->address_list.next;
616 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
617 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
618 addrcnt, SCTP_PARAM_ADD_IP);
619 if (!chunk) {
620 retval = -ENOMEM;
621 goto out;
622 }
623
624 /* Add the new addresses to the bind address list with
625 * use_as_src set to 0.
626 */
627 addr_buf = addrs;
628 for (i = 0; i < addrcnt; i++) {
629 addr = addr_buf;
630 af = sctp_get_af_specific(addr->v4.sin_family);
631 memcpy(&saveaddr, addr, af->sockaddr_len);
632 retval = sctp_add_bind_addr(bp, &saveaddr,
633 sizeof(saveaddr),
634 SCTP_ADDR_NEW, GFP_ATOMIC);
635 addr_buf += af->sockaddr_len;
636 }
637 if (asoc->src_out_of_asoc_ok) {
638 struct sctp_transport *trans;
639
640 list_for_each_entry(trans,
641 &asoc->peer.transport_addr_list, transports) {
642 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
643 2*asoc->pathmtu, 4380));
644 trans->ssthresh = asoc->peer.i.a_rwnd;
645 trans->rto = asoc->rto_initial;
646 sctp_max_rto(asoc, trans);
647 trans->rtt = trans->srtt = trans->rttvar = 0;
648 /* Clear the source and route cache */
649 sctp_transport_route(trans, NULL,
650 sctp_sk(asoc->base.sk));
651 }
652 }
653 retval = sctp_send_asconf(asoc, chunk);
654 }
655
656 out:
657 return retval;
658 }
659
660 /* Remove a list of addresses from bind addresses list. Do not remove the
661 * last address.
662 *
663 * Basically run through each address specified in the addrs/addrcnt
664 * array/length pair, determine if it is IPv6 or IPv4 and call
665 * sctp_del_bind() on it.
666 *
667 * If any of them fails, then the operation will be reversed and the
668 * ones that were removed will be added back.
669 *
670 * At least one address has to be left; if only one address is
671 * available, the operation will return -EBUSY.
672 *
673 * Only sctp_setsockopt_bindx() is supposed to call this function.
674 */
sctp_bindx_rem(struct sock * sk,struct sockaddr * addrs,int addrcnt)675 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
676 {
677 struct sctp_sock *sp = sctp_sk(sk);
678 struct sctp_endpoint *ep = sp->ep;
679 int cnt;
680 struct sctp_bind_addr *bp = &ep->base.bind_addr;
681 int retval = 0;
682 void *addr_buf;
683 union sctp_addr *sa_addr;
684 struct sctp_af *af;
685
686 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
687 __func__, sk, addrs, addrcnt);
688
689 addr_buf = addrs;
690 for (cnt = 0; cnt < addrcnt; cnt++) {
691 /* If the bind address list is empty or if there is only one
692 * bind address, there is nothing more to be removed (we need
693 * at least one address here).
694 */
695 if (list_empty(&bp->address_list) ||
696 (sctp_list_single_entry(&bp->address_list))) {
697 retval = -EBUSY;
698 goto err_bindx_rem;
699 }
700
701 sa_addr = addr_buf;
702 af = sctp_get_af_specific(sa_addr->sa.sa_family);
703 if (!af) {
704 retval = -EINVAL;
705 goto err_bindx_rem;
706 }
707
708 if (!af->addr_valid(sa_addr, sp, NULL)) {
709 retval = -EADDRNOTAVAIL;
710 goto err_bindx_rem;
711 }
712
713 if (sa_addr->v4.sin_port &&
714 sa_addr->v4.sin_port != htons(bp->port)) {
715 retval = -EINVAL;
716 goto err_bindx_rem;
717 }
718
719 if (!sa_addr->v4.sin_port)
720 sa_addr->v4.sin_port = htons(bp->port);
721
722 /* FIXME - There is probably a need to check if sk->sk_saddr and
723 * sk->sk_rcv_addr are currently set to one of the addresses to
724 * be removed. This is something which needs to be looked into
725 * when we are fixing the outstanding issues with multi-homing
726 * socket routing and failover schemes. Refer to comments in
727 * sctp_do_bind(). -daisy
728 */
729 retval = sctp_del_bind_addr(bp, sa_addr);
730
731 addr_buf += af->sockaddr_len;
732 err_bindx_rem:
733 if (retval < 0) {
734 /* Failed. Add the ones that has been removed back */
735 if (cnt > 0)
736 sctp_bindx_add(sk, addrs, cnt);
737 return retval;
738 }
739 }
740
741 return retval;
742 }
743
744 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
745 * the associations that are part of the endpoint indicating that a list of
746 * local addresses are removed from the endpoint.
747 *
748 * If any of the addresses is already in the bind address list of the
749 * association, we do not send the chunk for that association. But it will not
750 * affect other associations.
751 *
752 * Only sctp_setsockopt_bindx() is supposed to call this function.
753 */
sctp_send_asconf_del_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)754 static int sctp_send_asconf_del_ip(struct sock *sk,
755 struct sockaddr *addrs,
756 int addrcnt)
757 {
758 struct sctp_sock *sp;
759 struct sctp_endpoint *ep;
760 struct sctp_association *asoc;
761 struct sctp_transport *transport;
762 struct sctp_bind_addr *bp;
763 struct sctp_chunk *chunk;
764 union sctp_addr *laddr;
765 void *addr_buf;
766 struct sctp_af *af;
767 struct sctp_sockaddr_entry *saddr;
768 int i;
769 int retval = 0;
770 int stored = 0;
771
772 chunk = NULL;
773 sp = sctp_sk(sk);
774 ep = sp->ep;
775
776 if (!ep->asconf_enable)
777 return retval;
778
779 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
780 __func__, sk, addrs, addrcnt);
781
782 list_for_each_entry(asoc, &ep->asocs, asocs) {
783
784 if (!asoc->peer.asconf_capable)
785 continue;
786
787 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
788 continue;
789
790 if (!sctp_state(asoc, ESTABLISHED))
791 continue;
792
793 /* Check if any address in the packed array of addresses is
794 * not present in the bind address list of the association.
795 * If so, do not send the asconf chunk to its peer, but
796 * continue with other associations.
797 */
798 addr_buf = addrs;
799 for (i = 0; i < addrcnt; i++) {
800 laddr = addr_buf;
801 af = sctp_get_af_specific(laddr->v4.sin_family);
802 if (!af) {
803 retval = -EINVAL;
804 goto out;
805 }
806
807 if (!sctp_assoc_lookup_laddr(asoc, laddr))
808 break;
809
810 addr_buf += af->sockaddr_len;
811 }
812 if (i < addrcnt)
813 continue;
814
815 /* Find one address in the association's bind address list
816 * that is not in the packed array of addresses. This is to
817 * make sure that we do not delete all the addresses in the
818 * association.
819 */
820 bp = &asoc->base.bind_addr;
821 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
822 addrcnt, sp);
823 if ((laddr == NULL) && (addrcnt == 1)) {
824 if (asoc->asconf_addr_del_pending)
825 continue;
826 asoc->asconf_addr_del_pending =
827 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
828 if (asoc->asconf_addr_del_pending == NULL) {
829 retval = -ENOMEM;
830 goto out;
831 }
832 asoc->asconf_addr_del_pending->sa.sa_family =
833 addrs->sa_family;
834 asoc->asconf_addr_del_pending->v4.sin_port =
835 htons(bp->port);
836 if (addrs->sa_family == AF_INET) {
837 struct sockaddr_in *sin;
838
839 sin = (struct sockaddr_in *)addrs;
840 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
841 } else if (addrs->sa_family == AF_INET6) {
842 struct sockaddr_in6 *sin6;
843
844 sin6 = (struct sockaddr_in6 *)addrs;
845 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
846 }
847
848 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
849 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
850 asoc->asconf_addr_del_pending);
851
852 asoc->src_out_of_asoc_ok = 1;
853 stored = 1;
854 goto skip_mkasconf;
855 }
856
857 if (laddr == NULL)
858 return -EINVAL;
859
860 /* We do not need RCU protection throughout this loop
861 * because this is done under a socket lock from the
862 * setsockopt call.
863 */
864 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
865 SCTP_PARAM_DEL_IP);
866 if (!chunk) {
867 retval = -ENOMEM;
868 goto out;
869 }
870
871 skip_mkasconf:
872 /* Reset use_as_src flag for the addresses in the bind address
873 * list that are to be deleted.
874 */
875 addr_buf = addrs;
876 for (i = 0; i < addrcnt; i++) {
877 laddr = addr_buf;
878 af = sctp_get_af_specific(laddr->v4.sin_family);
879 list_for_each_entry(saddr, &bp->address_list, list) {
880 if (sctp_cmp_addr_exact(&saddr->a, laddr))
881 saddr->state = SCTP_ADDR_DEL;
882 }
883 addr_buf += af->sockaddr_len;
884 }
885
886 /* Update the route and saddr entries for all the transports
887 * as some of the addresses in the bind address list are
888 * about to be deleted and cannot be used as source addresses.
889 */
890 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
891 transports) {
892 sctp_transport_route(transport, NULL,
893 sctp_sk(asoc->base.sk));
894 }
895
896 if (stored)
897 /* We don't need to transmit ASCONF */
898 continue;
899 retval = sctp_send_asconf(asoc, chunk);
900 }
901 out:
902 return retval;
903 }
904
905 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
sctp_asconf_mgmt(struct sctp_sock * sp,struct sctp_sockaddr_entry * addrw)906 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
907 {
908 struct sock *sk = sctp_opt2sk(sp);
909 union sctp_addr *addr;
910 struct sctp_af *af;
911
912 /* It is safe to write port space in caller. */
913 addr = &addrw->a;
914 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
915 af = sctp_get_af_specific(addr->sa.sa_family);
916 if (!af)
917 return -EINVAL;
918 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
919 return -EINVAL;
920
921 if (addrw->state == SCTP_ADDR_NEW)
922 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
923 else
924 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
925 }
926
927 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
928 *
929 * API 8.1
930 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
931 * int flags);
932 *
933 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
934 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
935 * or IPv6 addresses.
936 *
937 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
938 * Section 3.1.2 for this usage.
939 *
940 * addrs is a pointer to an array of one or more socket addresses. Each
941 * address is contained in its appropriate structure (i.e. struct
942 * sockaddr_in or struct sockaddr_in6) the family of the address type
943 * must be used to distinguish the address length (note that this
944 * representation is termed a "packed array" of addresses). The caller
945 * specifies the number of addresses in the array with addrcnt.
946 *
947 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
948 * -1, and sets errno to the appropriate error code.
949 *
950 * For SCTP, the port given in each socket address must be the same, or
951 * sctp_bindx() will fail, setting errno to EINVAL.
952 *
953 * The flags parameter is formed from the bitwise OR of zero or more of
954 * the following currently defined flags:
955 *
956 * SCTP_BINDX_ADD_ADDR
957 *
958 * SCTP_BINDX_REM_ADDR
959 *
960 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
961 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
962 * addresses from the association. The two flags are mutually exclusive;
963 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
964 * not remove all addresses from an association; sctp_bindx() will
965 * reject such an attempt with EINVAL.
966 *
967 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
968 * additional addresses with an endpoint after calling bind(). Or use
969 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
970 * socket is associated with so that no new association accepted will be
971 * associated with those addresses. If the endpoint supports dynamic
972 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
973 * endpoint to send the appropriate message to the peer to change the
974 * peers address lists.
975 *
976 * Adding and removing addresses from a connected association is
977 * optional functionality. Implementations that do not support this
978 * functionality should return EOPNOTSUPP.
979 *
980 * Basically do nothing but copying the addresses from user to kernel
981 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
982 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
983 * from userspace.
984 *
985 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
986 * it.
987 *
988 * sk The sk of the socket
989 * addrs The pointer to the addresses
990 * addrssize Size of the addrs buffer
991 * op Operation to perform (add or remove, see the flags of
992 * sctp_bindx)
993 *
994 * Returns 0 if ok, <0 errno code on error.
995 */
sctp_setsockopt_bindx(struct sock * sk,struct sockaddr * addrs,int addrs_size,int op)996 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
997 int addrs_size, int op)
998 {
999 int err;
1000 int addrcnt = 0;
1001 int walk_size = 0;
1002 struct sockaddr *sa_addr;
1003 void *addr_buf = addrs;
1004 struct sctp_af *af;
1005
1006 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1007 __func__, sk, addr_buf, addrs_size, op);
1008
1009 if (unlikely(addrs_size <= 0))
1010 return -EINVAL;
1011
1012 /* Walk through the addrs buffer and count the number of addresses. */
1013 while (walk_size < addrs_size) {
1014 if (walk_size + sizeof(sa_family_t) > addrs_size)
1015 return -EINVAL;
1016
1017 sa_addr = addr_buf;
1018 af = sctp_get_af_specific(sa_addr->sa_family);
1019
1020 /* If the address family is not supported or if this address
1021 * causes the address buffer to overflow return EINVAL.
1022 */
1023 if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1024 return -EINVAL;
1025 addrcnt++;
1026 addr_buf += af->sockaddr_len;
1027 walk_size += af->sockaddr_len;
1028 }
1029
1030 /* Do the work. */
1031 switch (op) {
1032 case SCTP_BINDX_ADD_ADDR:
1033 /* Allow security module to validate bindx addresses. */
1034 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1035 addrs, addrs_size);
1036 if (err)
1037 return err;
1038 err = sctp_bindx_add(sk, addrs, addrcnt);
1039 if (err)
1040 return err;
1041 return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1042 case SCTP_BINDX_REM_ADDR:
1043 err = sctp_bindx_rem(sk, addrs, addrcnt);
1044 if (err)
1045 return err;
1046 return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1047
1048 default:
1049 return -EINVAL;
1050 }
1051 }
1052
sctp_bind_add(struct sock * sk,struct sockaddr * addrs,int addrlen)1053 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1054 int addrlen)
1055 {
1056 int err;
1057
1058 lock_sock(sk);
1059 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1060 release_sock(sk);
1061 return err;
1062 }
1063
sctp_connect_new_asoc(struct sctp_endpoint * ep,const union sctp_addr * daddr,const struct sctp_initmsg * init,struct sctp_transport ** tp)1064 static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1065 const union sctp_addr *daddr,
1066 const struct sctp_initmsg *init,
1067 struct sctp_transport **tp)
1068 {
1069 struct sctp_association *asoc;
1070 struct sock *sk = ep->base.sk;
1071 struct net *net = sock_net(sk);
1072 enum sctp_scope scope;
1073 int err;
1074
1075 if (sctp_endpoint_is_peeled_off(ep, daddr))
1076 return -EADDRNOTAVAIL;
1077
1078 if (!ep->base.bind_addr.port) {
1079 if (sctp_autobind(sk))
1080 return -EAGAIN;
1081 } else {
1082 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1083 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1084 return -EACCES;
1085 }
1086
1087 scope = sctp_scope(daddr);
1088 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1089 if (!asoc)
1090 return -ENOMEM;
1091
1092 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1093 if (err < 0)
1094 goto free;
1095
1096 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1097 if (!*tp) {
1098 err = -ENOMEM;
1099 goto free;
1100 }
1101
1102 if (!init)
1103 return 0;
1104
1105 if (init->sinit_num_ostreams) {
1106 __u16 outcnt = init->sinit_num_ostreams;
1107
1108 asoc->c.sinit_num_ostreams = outcnt;
1109 /* outcnt has been changed, need to re-init stream */
1110 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1111 if (err)
1112 goto free;
1113 }
1114
1115 if (init->sinit_max_instreams)
1116 asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1117
1118 if (init->sinit_max_attempts)
1119 asoc->max_init_attempts = init->sinit_max_attempts;
1120
1121 if (init->sinit_max_init_timeo)
1122 asoc->max_init_timeo =
1123 msecs_to_jiffies(init->sinit_max_init_timeo);
1124
1125 return 0;
1126 free:
1127 sctp_association_free(asoc);
1128 return err;
1129 }
1130
sctp_connect_add_peer(struct sctp_association * asoc,union sctp_addr * daddr,int addr_len)1131 static int sctp_connect_add_peer(struct sctp_association *asoc,
1132 union sctp_addr *daddr, int addr_len)
1133 {
1134 struct sctp_endpoint *ep = asoc->ep;
1135 struct sctp_association *old;
1136 struct sctp_transport *t;
1137 int err;
1138
1139 err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1140 if (err)
1141 return err;
1142
1143 old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1144 if (old && old != asoc)
1145 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1146 : -EALREADY;
1147
1148 if (sctp_endpoint_is_peeled_off(ep, daddr))
1149 return -EADDRNOTAVAIL;
1150
1151 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1152 if (!t)
1153 return -ENOMEM;
1154
1155 return 0;
1156 }
1157
1158 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1159 *
1160 * Common routine for handling connect() and sctp_connectx().
1161 * Connect will come in with just a single address.
1162 */
__sctp_connect(struct sock * sk,struct sockaddr * kaddrs,int addrs_size,int flags,sctp_assoc_t * assoc_id)1163 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1164 int addrs_size, int flags, sctp_assoc_t *assoc_id)
1165 {
1166 struct sctp_sock *sp = sctp_sk(sk);
1167 struct sctp_endpoint *ep = sp->ep;
1168 struct sctp_transport *transport;
1169 struct sctp_association *asoc;
1170 void *addr_buf = kaddrs;
1171 union sctp_addr *daddr;
1172 struct sctp_af *af;
1173 int walk_size, err;
1174 long timeo;
1175
1176 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1177 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1178 return -EISCONN;
1179
1180 daddr = addr_buf;
1181 af = sctp_get_af_specific(daddr->sa.sa_family);
1182 if (!af || af->sockaddr_len > addrs_size)
1183 return -EINVAL;
1184
1185 err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1186 if (err)
1187 return err;
1188
1189 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1190 if (asoc)
1191 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1192 : -EALREADY;
1193
1194 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1195 if (err)
1196 return err;
1197 asoc = transport->asoc;
1198
1199 addr_buf += af->sockaddr_len;
1200 walk_size = af->sockaddr_len;
1201 while (walk_size < addrs_size) {
1202 err = -EINVAL;
1203 if (walk_size + sizeof(sa_family_t) > addrs_size)
1204 goto out_free;
1205
1206 daddr = addr_buf;
1207 af = sctp_get_af_specific(daddr->sa.sa_family);
1208 if (!af || af->sockaddr_len + walk_size > addrs_size)
1209 goto out_free;
1210
1211 if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1212 goto out_free;
1213
1214 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1215 if (err)
1216 goto out_free;
1217
1218 addr_buf += af->sockaddr_len;
1219 walk_size += af->sockaddr_len;
1220 }
1221
1222 /* In case the user of sctp_connectx() wants an association
1223 * id back, assign one now.
1224 */
1225 if (assoc_id) {
1226 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1227 if (err < 0)
1228 goto out_free;
1229 }
1230
1231 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1232 if (err < 0)
1233 goto out_free;
1234
1235 /* Initialize sk's dport and daddr for getpeername() */
1236 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1237 sp->pf->to_sk_daddr(daddr, sk);
1238 sk->sk_err = 0;
1239
1240 if (assoc_id)
1241 *assoc_id = asoc->assoc_id;
1242
1243 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1244 return sctp_wait_for_connect(asoc, &timeo);
1245
1246 out_free:
1247 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1248 __func__, asoc, kaddrs, err);
1249 sctp_association_free(asoc);
1250 return err;
1251 }
1252
1253 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1254 *
1255 * API 8.9
1256 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1257 * sctp_assoc_t *asoc);
1258 *
1259 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1260 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1261 * or IPv6 addresses.
1262 *
1263 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1264 * Section 3.1.2 for this usage.
1265 *
1266 * addrs is a pointer to an array of one or more socket addresses. Each
1267 * address is contained in its appropriate structure (i.e. struct
1268 * sockaddr_in or struct sockaddr_in6) the family of the address type
1269 * must be used to distengish the address length (note that this
1270 * representation is termed a "packed array" of addresses). The caller
1271 * specifies the number of addresses in the array with addrcnt.
1272 *
1273 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1274 * the association id of the new association. On failure, sctp_connectx()
1275 * returns -1, and sets errno to the appropriate error code. The assoc_id
1276 * is not touched by the kernel.
1277 *
1278 * For SCTP, the port given in each socket address must be the same, or
1279 * sctp_connectx() will fail, setting errno to EINVAL.
1280 *
1281 * An application can use sctp_connectx to initiate an association with
1282 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1283 * allows a caller to specify multiple addresses at which a peer can be
1284 * reached. The way the SCTP stack uses the list of addresses to set up
1285 * the association is implementation dependent. This function only
1286 * specifies that the stack will try to make use of all the addresses in
1287 * the list when needed.
1288 *
1289 * Note that the list of addresses passed in is only used for setting up
1290 * the association. It does not necessarily equal the set of addresses
1291 * the peer uses for the resulting association. If the caller wants to
1292 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1293 * retrieve them after the association has been set up.
1294 *
1295 * Basically do nothing but copying the addresses from user to kernel
1296 * land and invoking either sctp_connectx(). This is used for tunneling
1297 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1298 *
1299 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1300 * it.
1301 *
1302 * sk The sk of the socket
1303 * addrs The pointer to the addresses
1304 * addrssize Size of the addrs buffer
1305 *
1306 * Returns >=0 if ok, <0 errno code on error.
1307 */
__sctp_setsockopt_connectx(struct sock * sk,struct sockaddr * kaddrs,int addrs_size,sctp_assoc_t * assoc_id)1308 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1309 int addrs_size, sctp_assoc_t *assoc_id)
1310 {
1311 int err = 0, flags = 0;
1312
1313 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1314 __func__, sk, kaddrs, addrs_size);
1315
1316 /* make sure the 1st addr's sa_family is accessible later */
1317 if (unlikely(addrs_size < sizeof(sa_family_t)))
1318 return -EINVAL;
1319
1320 /* Allow security module to validate connectx addresses. */
1321 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1322 (struct sockaddr *)kaddrs,
1323 addrs_size);
1324 if (err)
1325 return err;
1326
1327 /* in-kernel sockets don't generally have a file allocated to them
1328 * if all they do is call sock_create_kern().
1329 */
1330 if (sk->sk_socket->file)
1331 flags = sk->sk_socket->file->f_flags;
1332
1333 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1334 }
1335
1336 /*
1337 * This is an older interface. It's kept for backward compatibility
1338 * to the option that doesn't provide association id.
1339 */
sctp_setsockopt_connectx_old(struct sock * sk,struct sockaddr * kaddrs,int addrs_size)1340 static int sctp_setsockopt_connectx_old(struct sock *sk,
1341 struct sockaddr *kaddrs,
1342 int addrs_size)
1343 {
1344 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1345 }
1346
1347 /*
1348 * New interface for the API. The since the API is done with a socket
1349 * option, to make it simple we feed back the association id is as a return
1350 * indication to the call. Error is always negative and association id is
1351 * always positive.
1352 */
sctp_setsockopt_connectx(struct sock * sk,struct sockaddr * kaddrs,int addrs_size)1353 static int sctp_setsockopt_connectx(struct sock *sk,
1354 struct sockaddr *kaddrs,
1355 int addrs_size)
1356 {
1357 sctp_assoc_t assoc_id = 0;
1358 int err = 0;
1359
1360 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1361
1362 if (err)
1363 return err;
1364 else
1365 return assoc_id;
1366 }
1367
1368 /*
1369 * New (hopefully final) interface for the API.
1370 * We use the sctp_getaddrs_old structure so that use-space library
1371 * can avoid any unnecessary allocations. The only different part
1372 * is that we store the actual length of the address buffer into the
1373 * addrs_num structure member. That way we can re-use the existing
1374 * code.
1375 */
1376 #ifdef CONFIG_COMPAT
1377 struct compat_sctp_getaddrs_old {
1378 sctp_assoc_t assoc_id;
1379 s32 addr_num;
1380 compat_uptr_t addrs; /* struct sockaddr * */
1381 };
1382 #endif
1383
sctp_getsockopt_connectx3(struct sock * sk,int len,char __user * optval,int __user * optlen)1384 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1385 char __user *optval,
1386 int __user *optlen)
1387 {
1388 struct sctp_getaddrs_old param;
1389 sctp_assoc_t assoc_id = 0;
1390 struct sockaddr *kaddrs;
1391 int err = 0;
1392
1393 #ifdef CONFIG_COMPAT
1394 if (in_compat_syscall()) {
1395 struct compat_sctp_getaddrs_old param32;
1396
1397 if (len < sizeof(param32))
1398 return -EINVAL;
1399 if (copy_from_user(¶m32, optval, sizeof(param32)))
1400 return -EFAULT;
1401
1402 param.assoc_id = param32.assoc_id;
1403 param.addr_num = param32.addr_num;
1404 param.addrs = compat_ptr(param32.addrs);
1405 } else
1406 #endif
1407 {
1408 if (len < sizeof(param))
1409 return -EINVAL;
1410 if (copy_from_user(¶m, optval, sizeof(param)))
1411 return -EFAULT;
1412 }
1413
1414 kaddrs = memdup_user(param.addrs, param.addr_num);
1415 if (IS_ERR(kaddrs))
1416 return PTR_ERR(kaddrs);
1417
1418 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1419 kfree(kaddrs);
1420 if (err == 0 || err == -EINPROGRESS) {
1421 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1422 return -EFAULT;
1423 if (put_user(sizeof(assoc_id), optlen))
1424 return -EFAULT;
1425 }
1426
1427 return err;
1428 }
1429
1430 /* API 3.1.4 close() - UDP Style Syntax
1431 * Applications use close() to perform graceful shutdown (as described in
1432 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1433 * by a UDP-style socket.
1434 *
1435 * The syntax is
1436 *
1437 * ret = close(int sd);
1438 *
1439 * sd - the socket descriptor of the associations to be closed.
1440 *
1441 * To gracefully shutdown a specific association represented by the
1442 * UDP-style socket, an application should use the sendmsg() call,
1443 * passing no user data, but including the appropriate flag in the
1444 * ancillary data (see Section xxxx).
1445 *
1446 * If sd in the close() call is a branched-off socket representing only
1447 * one association, the shutdown is performed on that association only.
1448 *
1449 * 4.1.6 close() - TCP Style Syntax
1450 *
1451 * Applications use close() to gracefully close down an association.
1452 *
1453 * The syntax is:
1454 *
1455 * int close(int sd);
1456 *
1457 * sd - the socket descriptor of the association to be closed.
1458 *
1459 * After an application calls close() on a socket descriptor, no further
1460 * socket operations will succeed on that descriptor.
1461 *
1462 * API 7.1.4 SO_LINGER
1463 *
1464 * An application using the TCP-style socket can use this option to
1465 * perform the SCTP ABORT primitive. The linger option structure is:
1466 *
1467 * struct linger {
1468 * int l_onoff; // option on/off
1469 * int l_linger; // linger time
1470 * };
1471 *
1472 * To enable the option, set l_onoff to 1. If the l_linger value is set
1473 * to 0, calling close() is the same as the ABORT primitive. If the
1474 * value is set to a negative value, the setsockopt() call will return
1475 * an error. If the value is set to a positive value linger_time, the
1476 * close() can be blocked for at most linger_time ms. If the graceful
1477 * shutdown phase does not finish during this period, close() will
1478 * return but the graceful shutdown phase continues in the system.
1479 */
sctp_close(struct sock * sk,long timeout)1480 static void sctp_close(struct sock *sk, long timeout)
1481 {
1482 struct net *net = sock_net(sk);
1483 struct sctp_endpoint *ep;
1484 struct sctp_association *asoc;
1485 struct list_head *pos, *temp;
1486 unsigned int data_was_unread;
1487
1488 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1489
1490 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1491 sk->sk_shutdown = SHUTDOWN_MASK;
1492 inet_sk_set_state(sk, SCTP_SS_CLOSING);
1493
1494 ep = sctp_sk(sk)->ep;
1495
1496 /* Clean up any skbs sitting on the receive queue. */
1497 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1498 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1499
1500 /* Walk all associations on an endpoint. */
1501 list_for_each_safe(pos, temp, &ep->asocs) {
1502 asoc = list_entry(pos, struct sctp_association, asocs);
1503
1504 if (sctp_style(sk, TCP)) {
1505 /* A closed association can still be in the list if
1506 * it belongs to a TCP-style listening socket that is
1507 * not yet accepted. If so, free it. If not, send an
1508 * ABORT or SHUTDOWN based on the linger options.
1509 */
1510 if (sctp_state(asoc, CLOSED)) {
1511 sctp_association_free(asoc);
1512 continue;
1513 }
1514 }
1515
1516 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1517 !skb_queue_empty(&asoc->ulpq.reasm) ||
1518 !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1519 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1520 struct sctp_chunk *chunk;
1521
1522 chunk = sctp_make_abort_user(asoc, NULL, 0);
1523 sctp_primitive_ABORT(net, asoc, chunk);
1524 } else
1525 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1526 }
1527
1528 /* On a TCP-style socket, block for at most linger_time if set. */
1529 if (sctp_style(sk, TCP) && timeout)
1530 sctp_wait_for_close(sk, timeout);
1531
1532 /* This will run the backlog queue. */
1533 release_sock(sk);
1534
1535 /* Supposedly, no process has access to the socket, but
1536 * the net layers still may.
1537 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1538 * held and that should be grabbed before socket lock.
1539 */
1540 spin_lock_bh(&net->sctp.addr_wq_lock);
1541 bh_lock_sock_nested(sk);
1542
1543 /* Hold the sock, since sk_common_release() will put sock_put()
1544 * and we have just a little more cleanup.
1545 */
1546 sock_hold(sk);
1547 sk_common_release(sk);
1548
1549 bh_unlock_sock(sk);
1550 spin_unlock_bh(&net->sctp.addr_wq_lock);
1551
1552 sock_put(sk);
1553
1554 SCTP_DBG_OBJCNT_DEC(sock);
1555 }
1556
1557 /* Handle EPIPE error. */
sctp_error(struct sock * sk,int flags,int err)1558 static int sctp_error(struct sock *sk, int flags, int err)
1559 {
1560 if (err == -EPIPE)
1561 err = sock_error(sk) ? : -EPIPE;
1562 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1563 send_sig(SIGPIPE, current, 0);
1564 return err;
1565 }
1566
1567 /* API 3.1.3 sendmsg() - UDP Style Syntax
1568 *
1569 * An application uses sendmsg() and recvmsg() calls to transmit data to
1570 * and receive data from its peer.
1571 *
1572 * ssize_t sendmsg(int socket, const struct msghdr *message,
1573 * int flags);
1574 *
1575 * socket - the socket descriptor of the endpoint.
1576 * message - pointer to the msghdr structure which contains a single
1577 * user message and possibly some ancillary data.
1578 *
1579 * See Section 5 for complete description of the data
1580 * structures.
1581 *
1582 * flags - flags sent or received with the user message, see Section
1583 * 5 for complete description of the flags.
1584 *
1585 * Note: This function could use a rewrite especially when explicit
1586 * connect support comes in.
1587 */
1588 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1589
1590 static int sctp_msghdr_parse(const struct msghdr *msg,
1591 struct sctp_cmsgs *cmsgs);
1592
sctp_sendmsg_parse(struct sock * sk,struct sctp_cmsgs * cmsgs,struct sctp_sndrcvinfo * srinfo,const struct msghdr * msg,size_t msg_len)1593 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1594 struct sctp_sndrcvinfo *srinfo,
1595 const struct msghdr *msg, size_t msg_len)
1596 {
1597 __u16 sflags;
1598 int err;
1599
1600 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1601 return -EPIPE;
1602
1603 if (msg_len > sk->sk_sndbuf)
1604 return -EMSGSIZE;
1605
1606 memset(cmsgs, 0, sizeof(*cmsgs));
1607 err = sctp_msghdr_parse(msg, cmsgs);
1608 if (err) {
1609 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1610 return err;
1611 }
1612
1613 memset(srinfo, 0, sizeof(*srinfo));
1614 if (cmsgs->srinfo) {
1615 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1616 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1617 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1618 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1619 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1620 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1621 }
1622
1623 if (cmsgs->sinfo) {
1624 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1625 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1626 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1627 srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1628 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1629 }
1630
1631 if (cmsgs->prinfo) {
1632 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1633 SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1634 cmsgs->prinfo->pr_policy);
1635 }
1636
1637 sflags = srinfo->sinfo_flags;
1638 if (!sflags && msg_len)
1639 return 0;
1640
1641 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1642 return -EINVAL;
1643
1644 if (((sflags & SCTP_EOF) && msg_len > 0) ||
1645 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1646 return -EINVAL;
1647
1648 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1649 return -EINVAL;
1650
1651 return 0;
1652 }
1653
sctp_sendmsg_new_asoc(struct sock * sk,__u16 sflags,struct sctp_cmsgs * cmsgs,union sctp_addr * daddr,struct sctp_transport ** tp)1654 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1655 struct sctp_cmsgs *cmsgs,
1656 union sctp_addr *daddr,
1657 struct sctp_transport **tp)
1658 {
1659 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1660 struct sctp_association *asoc;
1661 struct cmsghdr *cmsg;
1662 __be32 flowinfo = 0;
1663 struct sctp_af *af;
1664 int err;
1665
1666 *tp = NULL;
1667
1668 if (sflags & (SCTP_EOF | SCTP_ABORT))
1669 return -EINVAL;
1670
1671 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1672 sctp_sstate(sk, CLOSING)))
1673 return -EADDRNOTAVAIL;
1674
1675 /* Label connection socket for first association 1-to-many
1676 * style for client sequence socket()->sendmsg(). This
1677 * needs to be done before sctp_assoc_add_peer() as that will
1678 * set up the initial packet that needs to account for any
1679 * security ip options (CIPSO/CALIPSO) added to the packet.
1680 */
1681 af = sctp_get_af_specific(daddr->sa.sa_family);
1682 if (!af)
1683 return -EINVAL;
1684 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1685 (struct sockaddr *)daddr,
1686 af->sockaddr_len);
1687 if (err < 0)
1688 return err;
1689
1690 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1691 if (err)
1692 return err;
1693 asoc = (*tp)->asoc;
1694
1695 if (!cmsgs->addrs_msg)
1696 return 0;
1697
1698 if (daddr->sa.sa_family == AF_INET6)
1699 flowinfo = daddr->v6.sin6_flowinfo;
1700
1701 /* sendv addr list parse */
1702 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1703 union sctp_addr _daddr;
1704 int dlen;
1705
1706 if (cmsg->cmsg_level != IPPROTO_SCTP ||
1707 (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1708 cmsg->cmsg_type != SCTP_DSTADDRV6))
1709 continue;
1710
1711 daddr = &_daddr;
1712 memset(daddr, 0, sizeof(*daddr));
1713 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1714 if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1715 if (dlen < sizeof(struct in_addr)) {
1716 err = -EINVAL;
1717 goto free;
1718 }
1719
1720 dlen = sizeof(struct in_addr);
1721 daddr->v4.sin_family = AF_INET;
1722 daddr->v4.sin_port = htons(asoc->peer.port);
1723 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1724 } else {
1725 if (dlen < sizeof(struct in6_addr)) {
1726 err = -EINVAL;
1727 goto free;
1728 }
1729
1730 dlen = sizeof(struct in6_addr);
1731 daddr->v6.sin6_flowinfo = flowinfo;
1732 daddr->v6.sin6_family = AF_INET6;
1733 daddr->v6.sin6_port = htons(asoc->peer.port);
1734 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1735 }
1736
1737 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1738 if (err)
1739 goto free;
1740 }
1741
1742 return 0;
1743
1744 free:
1745 sctp_association_free(asoc);
1746 return err;
1747 }
1748
sctp_sendmsg_check_sflags(struct sctp_association * asoc,__u16 sflags,struct msghdr * msg,size_t msg_len)1749 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1750 __u16 sflags, struct msghdr *msg,
1751 size_t msg_len)
1752 {
1753 struct sock *sk = asoc->base.sk;
1754 struct net *net = sock_net(sk);
1755
1756 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1757 return -EPIPE;
1758
1759 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1760 !sctp_state(asoc, ESTABLISHED))
1761 return 0;
1762
1763 if (sflags & SCTP_EOF) {
1764 pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1765 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1766
1767 return 0;
1768 }
1769
1770 if (sflags & SCTP_ABORT) {
1771 struct sctp_chunk *chunk;
1772
1773 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1774 if (!chunk)
1775 return -ENOMEM;
1776
1777 pr_debug("%s: aborting association:%p\n", __func__, asoc);
1778 sctp_primitive_ABORT(net, asoc, chunk);
1779 iov_iter_revert(&msg->msg_iter, msg_len);
1780
1781 return 0;
1782 }
1783
1784 return 1;
1785 }
1786
sctp_sendmsg_to_asoc(struct sctp_association * asoc,struct msghdr * msg,size_t msg_len,struct sctp_transport * transport,struct sctp_sndrcvinfo * sinfo)1787 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1788 struct msghdr *msg, size_t msg_len,
1789 struct sctp_transport *transport,
1790 struct sctp_sndrcvinfo *sinfo)
1791 {
1792 struct sock *sk = asoc->base.sk;
1793 struct sctp_sock *sp = sctp_sk(sk);
1794 struct net *net = sock_net(sk);
1795 struct sctp_datamsg *datamsg;
1796 bool wait_connect = false;
1797 struct sctp_chunk *chunk;
1798 long timeo;
1799 int err;
1800
1801 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1802 err = -EINVAL;
1803 goto err;
1804 }
1805
1806 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1807 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1808 if (err)
1809 goto err;
1810 }
1811
1812 if (sp->disable_fragments && msg_len > asoc->frag_point) {
1813 err = -EMSGSIZE;
1814 goto err;
1815 }
1816
1817 if (asoc->pmtu_pending) {
1818 if (sp->param_flags & SPP_PMTUD_ENABLE)
1819 sctp_assoc_sync_pmtu(asoc);
1820 asoc->pmtu_pending = 0;
1821 }
1822
1823 if (sctp_wspace(asoc) < (int)msg_len)
1824 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1825
1826 if (sk_under_memory_pressure(sk))
1827 sk_mem_reclaim(sk);
1828
1829 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1830 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1831 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1832 if (err)
1833 goto err;
1834 }
1835
1836 if (sctp_state(asoc, CLOSED)) {
1837 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1838 if (err)
1839 goto err;
1840
1841 if (asoc->ep->intl_enable) {
1842 timeo = sock_sndtimeo(sk, 0);
1843 err = sctp_wait_for_connect(asoc, &timeo);
1844 if (err) {
1845 err = -ESRCH;
1846 goto err;
1847 }
1848 } else {
1849 wait_connect = true;
1850 }
1851
1852 pr_debug("%s: we associated primitively\n", __func__);
1853 }
1854
1855 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1856 if (IS_ERR(datamsg)) {
1857 err = PTR_ERR(datamsg);
1858 goto err;
1859 }
1860
1861 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1862
1863 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1864 sctp_chunk_hold(chunk);
1865 sctp_set_owner_w(chunk);
1866 chunk->transport = transport;
1867 }
1868
1869 err = sctp_primitive_SEND(net, asoc, datamsg);
1870 if (err) {
1871 sctp_datamsg_free(datamsg);
1872 goto err;
1873 }
1874
1875 pr_debug("%s: we sent primitively\n", __func__);
1876
1877 sctp_datamsg_put(datamsg);
1878
1879 if (unlikely(wait_connect)) {
1880 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1881 sctp_wait_for_connect(asoc, &timeo);
1882 }
1883
1884 err = msg_len;
1885
1886 err:
1887 return err;
1888 }
1889
sctp_sendmsg_get_daddr(struct sock * sk,const struct msghdr * msg,struct sctp_cmsgs * cmsgs)1890 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1891 const struct msghdr *msg,
1892 struct sctp_cmsgs *cmsgs)
1893 {
1894 union sctp_addr *daddr = NULL;
1895 int err;
1896
1897 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1898 int len = msg->msg_namelen;
1899
1900 if (len > sizeof(*daddr))
1901 len = sizeof(*daddr);
1902
1903 daddr = (union sctp_addr *)msg->msg_name;
1904
1905 err = sctp_verify_addr(sk, daddr, len);
1906 if (err)
1907 return ERR_PTR(err);
1908 }
1909
1910 return daddr;
1911 }
1912
sctp_sendmsg_update_sinfo(struct sctp_association * asoc,struct sctp_sndrcvinfo * sinfo,struct sctp_cmsgs * cmsgs)1913 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1914 struct sctp_sndrcvinfo *sinfo,
1915 struct sctp_cmsgs *cmsgs)
1916 {
1917 if (!cmsgs->srinfo && !cmsgs->sinfo) {
1918 sinfo->sinfo_stream = asoc->default_stream;
1919 sinfo->sinfo_ppid = asoc->default_ppid;
1920 sinfo->sinfo_context = asoc->default_context;
1921 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1922
1923 if (!cmsgs->prinfo)
1924 sinfo->sinfo_flags = asoc->default_flags;
1925 }
1926
1927 if (!cmsgs->srinfo && !cmsgs->prinfo)
1928 sinfo->sinfo_timetolive = asoc->default_timetolive;
1929
1930 if (cmsgs->authinfo) {
1931 /* Reuse sinfo_tsn to indicate that authinfo was set and
1932 * sinfo_ssn to save the keyid on tx path.
1933 */
1934 sinfo->sinfo_tsn = 1;
1935 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1936 }
1937 }
1938
sctp_sendmsg(struct sock * sk,struct msghdr * msg,size_t msg_len)1939 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1940 {
1941 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1942 struct sctp_transport *transport = NULL;
1943 struct sctp_sndrcvinfo _sinfo, *sinfo;
1944 struct sctp_association *asoc, *tmp;
1945 struct sctp_cmsgs cmsgs;
1946 union sctp_addr *daddr;
1947 bool new = false;
1948 __u16 sflags;
1949 int err;
1950
1951 /* Parse and get snd_info */
1952 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1953 if (err)
1954 goto out;
1955
1956 sinfo = &_sinfo;
1957 sflags = sinfo->sinfo_flags;
1958
1959 /* Get daddr from msg */
1960 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1961 if (IS_ERR(daddr)) {
1962 err = PTR_ERR(daddr);
1963 goto out;
1964 }
1965
1966 lock_sock(sk);
1967
1968 /* SCTP_SENDALL process */
1969 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1970 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1971 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1972 msg_len);
1973 if (err == 0)
1974 continue;
1975 if (err < 0)
1976 goto out_unlock;
1977
1978 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1979
1980 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1981 NULL, sinfo);
1982 if (err < 0)
1983 goto out_unlock;
1984
1985 iov_iter_revert(&msg->msg_iter, err);
1986 }
1987
1988 goto out_unlock;
1989 }
1990
1991 /* Get and check or create asoc */
1992 if (daddr) {
1993 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1994 if (asoc) {
1995 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1996 msg_len);
1997 if (err <= 0)
1998 goto out_unlock;
1999 } else {
2000 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2001 &transport);
2002 if (err)
2003 goto out_unlock;
2004
2005 asoc = transport->asoc;
2006 new = true;
2007 }
2008
2009 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2010 transport = NULL;
2011 } else {
2012 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2013 if (!asoc) {
2014 err = -EPIPE;
2015 goto out_unlock;
2016 }
2017
2018 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2019 if (err <= 0)
2020 goto out_unlock;
2021 }
2022
2023 /* Update snd_info with the asoc */
2024 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2025
2026 /* Send msg to the asoc */
2027 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2028 if (err < 0 && err != -ESRCH && new)
2029 sctp_association_free(asoc);
2030
2031 out_unlock:
2032 release_sock(sk);
2033 out:
2034 return sctp_error(sk, msg->msg_flags, err);
2035 }
2036
2037 /* This is an extended version of skb_pull() that removes the data from the
2038 * start of a skb even when data is spread across the list of skb's in the
2039 * frag_list. len specifies the total amount of data that needs to be removed.
2040 * when 'len' bytes could be removed from the skb, it returns 0.
2041 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2042 * could not be removed.
2043 */
sctp_skb_pull(struct sk_buff * skb,int len)2044 static int sctp_skb_pull(struct sk_buff *skb, int len)
2045 {
2046 struct sk_buff *list;
2047 int skb_len = skb_headlen(skb);
2048 int rlen;
2049
2050 if (len <= skb_len) {
2051 __skb_pull(skb, len);
2052 return 0;
2053 }
2054 len -= skb_len;
2055 __skb_pull(skb, skb_len);
2056
2057 skb_walk_frags(skb, list) {
2058 rlen = sctp_skb_pull(list, len);
2059 skb->len -= (len-rlen);
2060 skb->data_len -= (len-rlen);
2061
2062 if (!rlen)
2063 return 0;
2064
2065 len = rlen;
2066 }
2067
2068 return len;
2069 }
2070
2071 /* API 3.1.3 recvmsg() - UDP Style Syntax
2072 *
2073 * ssize_t recvmsg(int socket, struct msghdr *message,
2074 * int flags);
2075 *
2076 * socket - the socket descriptor of the endpoint.
2077 * message - pointer to the msghdr structure which contains a single
2078 * user message and possibly some ancillary data.
2079 *
2080 * See Section 5 for complete description of the data
2081 * structures.
2082 *
2083 * flags - flags sent or received with the user message, see Section
2084 * 5 for complete description of the flags.
2085 */
sctp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)2086 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2087 int noblock, int flags, int *addr_len)
2088 {
2089 struct sctp_ulpevent *event = NULL;
2090 struct sctp_sock *sp = sctp_sk(sk);
2091 struct sk_buff *skb, *head_skb;
2092 int copied;
2093 int err = 0;
2094 int skb_len;
2095
2096 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2097 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2098 addr_len);
2099
2100 lock_sock(sk);
2101
2102 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2103 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2104 err = -ENOTCONN;
2105 goto out;
2106 }
2107
2108 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2109 if (!skb)
2110 goto out;
2111
2112 /* Get the total length of the skb including any skb's in the
2113 * frag_list.
2114 */
2115 skb_len = skb->len;
2116
2117 copied = skb_len;
2118 if (copied > len)
2119 copied = len;
2120
2121 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2122
2123 event = sctp_skb2event(skb);
2124
2125 if (err)
2126 goto out_free;
2127
2128 if (event->chunk && event->chunk->head_skb)
2129 head_skb = event->chunk->head_skb;
2130 else
2131 head_skb = skb;
2132 sock_recv_ts_and_drops(msg, sk, head_skb);
2133 if (sctp_ulpevent_is_notification(event)) {
2134 msg->msg_flags |= MSG_NOTIFICATION;
2135 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2136 } else {
2137 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2138 }
2139
2140 /* Check if we allow SCTP_NXTINFO. */
2141 if (sp->recvnxtinfo)
2142 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2143 /* Check if we allow SCTP_RCVINFO. */
2144 if (sp->recvrcvinfo)
2145 sctp_ulpevent_read_rcvinfo(event, msg);
2146 /* Check if we allow SCTP_SNDRCVINFO. */
2147 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2148 sctp_ulpevent_read_sndrcvinfo(event, msg);
2149
2150 err = copied;
2151
2152 /* If skb's length exceeds the user's buffer, update the skb and
2153 * push it back to the receive_queue so that the next call to
2154 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2155 */
2156 if (skb_len > copied) {
2157 msg->msg_flags &= ~MSG_EOR;
2158 if (flags & MSG_PEEK)
2159 goto out_free;
2160 sctp_skb_pull(skb, copied);
2161 skb_queue_head(&sk->sk_receive_queue, skb);
2162
2163 /* When only partial message is copied to the user, increase
2164 * rwnd by that amount. If all the data in the skb is read,
2165 * rwnd is updated when the event is freed.
2166 */
2167 if (!sctp_ulpevent_is_notification(event))
2168 sctp_assoc_rwnd_increase(event->asoc, copied);
2169 goto out;
2170 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2171 (event->msg_flags & MSG_EOR))
2172 msg->msg_flags |= MSG_EOR;
2173 else
2174 msg->msg_flags &= ~MSG_EOR;
2175
2176 out_free:
2177 if (flags & MSG_PEEK) {
2178 /* Release the skb reference acquired after peeking the skb in
2179 * sctp_skb_recv_datagram().
2180 */
2181 kfree_skb(skb);
2182 } else {
2183 /* Free the event which includes releasing the reference to
2184 * the owner of the skb, freeing the skb and updating the
2185 * rwnd.
2186 */
2187 sctp_ulpevent_free(event);
2188 }
2189 out:
2190 release_sock(sk);
2191 return err;
2192 }
2193
2194 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2195 *
2196 * This option is a on/off flag. If enabled no SCTP message
2197 * fragmentation will be performed. Instead if a message being sent
2198 * exceeds the current PMTU size, the message will NOT be sent and
2199 * instead a error will be indicated to the user.
2200 */
sctp_setsockopt_disable_fragments(struct sock * sk,int * val,unsigned int optlen)2201 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2202 unsigned int optlen)
2203 {
2204 if (optlen < sizeof(int))
2205 return -EINVAL;
2206 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2207 return 0;
2208 }
2209
sctp_setsockopt_events(struct sock * sk,__u8 * sn_type,unsigned int optlen)2210 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2211 unsigned int optlen)
2212 {
2213 struct sctp_sock *sp = sctp_sk(sk);
2214 struct sctp_association *asoc;
2215 int i;
2216
2217 if (optlen > sizeof(struct sctp_event_subscribe))
2218 return -EINVAL;
2219
2220 for (i = 0; i < optlen; i++)
2221 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2222 sn_type[i]);
2223
2224 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2225 asoc->subscribe = sctp_sk(sk)->subscribe;
2226
2227 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2228 * if there is no data to be sent or retransmit, the stack will
2229 * immediately send up this notification.
2230 */
2231 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2232 struct sctp_ulpevent *event;
2233
2234 asoc = sctp_id2assoc(sk, 0);
2235 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2236 event = sctp_ulpevent_make_sender_dry_event(asoc,
2237 GFP_USER | __GFP_NOWARN);
2238 if (!event)
2239 return -ENOMEM;
2240
2241 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2242 }
2243 }
2244
2245 return 0;
2246 }
2247
2248 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2249 *
2250 * This socket option is applicable to the UDP-style socket only. When
2251 * set it will cause associations that are idle for more than the
2252 * specified number of seconds to automatically close. An association
2253 * being idle is defined an association that has NOT sent or received
2254 * user data. The special value of '0' indicates that no automatic
2255 * close of any associations should be performed. The option expects an
2256 * integer defining the number of seconds of idle time before an
2257 * association is closed.
2258 */
sctp_setsockopt_autoclose(struct sock * sk,u32 * optval,unsigned int optlen)2259 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2260 unsigned int optlen)
2261 {
2262 struct sctp_sock *sp = sctp_sk(sk);
2263 struct net *net = sock_net(sk);
2264
2265 /* Applicable to UDP-style socket only */
2266 if (sctp_style(sk, TCP))
2267 return -EOPNOTSUPP;
2268 if (optlen != sizeof(int))
2269 return -EINVAL;
2270
2271 sp->autoclose = *optval;
2272 if (sp->autoclose > net->sctp.max_autoclose)
2273 sp->autoclose = net->sctp.max_autoclose;
2274
2275 return 0;
2276 }
2277
2278 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2279 *
2280 * Applications can enable or disable heartbeats for any peer address of
2281 * an association, modify an address's heartbeat interval, force a
2282 * heartbeat to be sent immediately, and adjust the address's maximum
2283 * number of retransmissions sent before an address is considered
2284 * unreachable. The following structure is used to access and modify an
2285 * address's parameters:
2286 *
2287 * struct sctp_paddrparams {
2288 * sctp_assoc_t spp_assoc_id;
2289 * struct sockaddr_storage spp_address;
2290 * uint32_t spp_hbinterval;
2291 * uint16_t spp_pathmaxrxt;
2292 * uint32_t spp_pathmtu;
2293 * uint32_t spp_sackdelay;
2294 * uint32_t spp_flags;
2295 * uint32_t spp_ipv6_flowlabel;
2296 * uint8_t spp_dscp;
2297 * };
2298 *
2299 * spp_assoc_id - (one-to-many style socket) This is filled in the
2300 * application, and identifies the association for
2301 * this query.
2302 * spp_address - This specifies which address is of interest.
2303 * spp_hbinterval - This contains the value of the heartbeat interval,
2304 * in milliseconds. If a value of zero
2305 * is present in this field then no changes are to
2306 * be made to this parameter.
2307 * spp_pathmaxrxt - This contains the maximum number of
2308 * retransmissions before this address shall be
2309 * considered unreachable. If a value of zero
2310 * is present in this field then no changes are to
2311 * be made to this parameter.
2312 * spp_pathmtu - When Path MTU discovery is disabled the value
2313 * specified here will be the "fixed" path mtu.
2314 * Note that if the spp_address field is empty
2315 * then all associations on this address will
2316 * have this fixed path mtu set upon them.
2317 *
2318 * spp_sackdelay - When delayed sack is enabled, this value specifies
2319 * the number of milliseconds that sacks will be delayed
2320 * for. This value will apply to all addresses of an
2321 * association if the spp_address field is empty. Note
2322 * also, that if delayed sack is enabled and this
2323 * value is set to 0, no change is made to the last
2324 * recorded delayed sack timer value.
2325 *
2326 * spp_flags - These flags are used to control various features
2327 * on an association. The flag field may contain
2328 * zero or more of the following options.
2329 *
2330 * SPP_HB_ENABLE - Enable heartbeats on the
2331 * specified address. Note that if the address
2332 * field is empty all addresses for the association
2333 * have heartbeats enabled upon them.
2334 *
2335 * SPP_HB_DISABLE - Disable heartbeats on the
2336 * speicifed address. Note that if the address
2337 * field is empty all addresses for the association
2338 * will have their heartbeats disabled. Note also
2339 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2340 * mutually exclusive, only one of these two should
2341 * be specified. Enabling both fields will have
2342 * undetermined results.
2343 *
2344 * SPP_HB_DEMAND - Request a user initiated heartbeat
2345 * to be made immediately.
2346 *
2347 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2348 * heartbeat delayis to be set to the value of 0
2349 * milliseconds.
2350 *
2351 * SPP_PMTUD_ENABLE - This field will enable PMTU
2352 * discovery upon the specified address. Note that
2353 * if the address feild is empty then all addresses
2354 * on the association are effected.
2355 *
2356 * SPP_PMTUD_DISABLE - This field will disable PMTU
2357 * discovery upon the specified address. Note that
2358 * if the address feild is empty then all addresses
2359 * on the association are effected. Not also that
2360 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2361 * exclusive. Enabling both will have undetermined
2362 * results.
2363 *
2364 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2365 * on delayed sack. The time specified in spp_sackdelay
2366 * is used to specify the sack delay for this address. Note
2367 * that if spp_address is empty then all addresses will
2368 * enable delayed sack and take on the sack delay
2369 * value specified in spp_sackdelay.
2370 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2371 * off delayed sack. If the spp_address field is blank then
2372 * delayed sack is disabled for the entire association. Note
2373 * also that this field is mutually exclusive to
2374 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2375 * results.
2376 *
2377 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
2378 * setting of the IPV6 flow label value. The value is
2379 * contained in the spp_ipv6_flowlabel field.
2380 * Upon retrieval, this flag will be set to indicate that
2381 * the spp_ipv6_flowlabel field has a valid value returned.
2382 * If a specific destination address is set (in the
2383 * spp_address field), then the value returned is that of
2384 * the address. If just an association is specified (and
2385 * no address), then the association's default flow label
2386 * is returned. If neither an association nor a destination
2387 * is specified, then the socket's default flow label is
2388 * returned. For non-IPv6 sockets, this flag will be left
2389 * cleared.
2390 *
2391 * SPP_DSCP: Setting this flag enables the setting of the
2392 * Differentiated Services Code Point (DSCP) value
2393 * associated with either the association or a specific
2394 * address. The value is obtained in the spp_dscp field.
2395 * Upon retrieval, this flag will be set to indicate that
2396 * the spp_dscp field has a valid value returned. If a
2397 * specific destination address is set when called (in the
2398 * spp_address field), then that specific destination
2399 * address's DSCP value is returned. If just an association
2400 * is specified, then the association's default DSCP is
2401 * returned. If neither an association nor a destination is
2402 * specified, then the socket's default DSCP is returned.
2403 *
2404 * spp_ipv6_flowlabel
2405 * - This field is used in conjunction with the
2406 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2407 * The 20 least significant bits are used for the flow
2408 * label. This setting has precedence over any IPv6-layer
2409 * setting.
2410 *
2411 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
2412 * and contains the DSCP. The 6 most significant bits are
2413 * used for the DSCP. This setting has precedence over any
2414 * IPv4- or IPv6- layer setting.
2415 */
sctp_apply_peer_addr_params(struct sctp_paddrparams * params,struct sctp_transport * trans,struct sctp_association * asoc,struct sctp_sock * sp,int hb_change,int pmtud_change,int sackdelay_change)2416 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2417 struct sctp_transport *trans,
2418 struct sctp_association *asoc,
2419 struct sctp_sock *sp,
2420 int hb_change,
2421 int pmtud_change,
2422 int sackdelay_change)
2423 {
2424 int error;
2425
2426 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2427 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2428 trans->asoc, trans);
2429 if (error)
2430 return error;
2431 }
2432
2433 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2434 * this field is ignored. Note also that a value of zero indicates
2435 * the current setting should be left unchanged.
2436 */
2437 if (params->spp_flags & SPP_HB_ENABLE) {
2438
2439 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2440 * set. This lets us use 0 value when this flag
2441 * is set.
2442 */
2443 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2444 params->spp_hbinterval = 0;
2445
2446 if (params->spp_hbinterval ||
2447 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2448 if (trans) {
2449 trans->hbinterval =
2450 msecs_to_jiffies(params->spp_hbinterval);
2451 } else if (asoc) {
2452 asoc->hbinterval =
2453 msecs_to_jiffies(params->spp_hbinterval);
2454 } else {
2455 sp->hbinterval = params->spp_hbinterval;
2456 }
2457 }
2458 }
2459
2460 if (hb_change) {
2461 if (trans) {
2462 trans->param_flags =
2463 (trans->param_flags & ~SPP_HB) | hb_change;
2464 } else if (asoc) {
2465 asoc->param_flags =
2466 (asoc->param_flags & ~SPP_HB) | hb_change;
2467 } else {
2468 sp->param_flags =
2469 (sp->param_flags & ~SPP_HB) | hb_change;
2470 }
2471 }
2472
2473 /* When Path MTU discovery is disabled the value specified here will
2474 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2475 * include the flag SPP_PMTUD_DISABLE for this field to have any
2476 * effect).
2477 */
2478 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2479 if (trans) {
2480 trans->pathmtu = params->spp_pathmtu;
2481 sctp_assoc_sync_pmtu(asoc);
2482 } else if (asoc) {
2483 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2484 } else {
2485 sp->pathmtu = params->spp_pathmtu;
2486 }
2487 }
2488
2489 if (pmtud_change) {
2490 if (trans) {
2491 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2492 (params->spp_flags & SPP_PMTUD_ENABLE);
2493 trans->param_flags =
2494 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2495 if (update) {
2496 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2497 sctp_assoc_sync_pmtu(asoc);
2498 }
2499 } else if (asoc) {
2500 asoc->param_flags =
2501 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2502 } else {
2503 sp->param_flags =
2504 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2505 }
2506 }
2507
2508 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2509 * value of this field is ignored. Note also that a value of zero
2510 * indicates the current setting should be left unchanged.
2511 */
2512 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2513 if (trans) {
2514 trans->sackdelay =
2515 msecs_to_jiffies(params->spp_sackdelay);
2516 } else if (asoc) {
2517 asoc->sackdelay =
2518 msecs_to_jiffies(params->spp_sackdelay);
2519 } else {
2520 sp->sackdelay = params->spp_sackdelay;
2521 }
2522 }
2523
2524 if (sackdelay_change) {
2525 if (trans) {
2526 trans->param_flags =
2527 (trans->param_flags & ~SPP_SACKDELAY) |
2528 sackdelay_change;
2529 } else if (asoc) {
2530 asoc->param_flags =
2531 (asoc->param_flags & ~SPP_SACKDELAY) |
2532 sackdelay_change;
2533 } else {
2534 sp->param_flags =
2535 (sp->param_flags & ~SPP_SACKDELAY) |
2536 sackdelay_change;
2537 }
2538 }
2539
2540 /* Note that a value of zero indicates the current setting should be
2541 left unchanged.
2542 */
2543 if (params->spp_pathmaxrxt) {
2544 if (trans) {
2545 trans->pathmaxrxt = params->spp_pathmaxrxt;
2546 } else if (asoc) {
2547 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2548 } else {
2549 sp->pathmaxrxt = params->spp_pathmaxrxt;
2550 }
2551 }
2552
2553 if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2554 if (trans) {
2555 if (trans->ipaddr.sa.sa_family == AF_INET6) {
2556 trans->flowlabel = params->spp_ipv6_flowlabel &
2557 SCTP_FLOWLABEL_VAL_MASK;
2558 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2559 }
2560 } else if (asoc) {
2561 struct sctp_transport *t;
2562
2563 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2564 transports) {
2565 if (t->ipaddr.sa.sa_family != AF_INET6)
2566 continue;
2567 t->flowlabel = params->spp_ipv6_flowlabel &
2568 SCTP_FLOWLABEL_VAL_MASK;
2569 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2570 }
2571 asoc->flowlabel = params->spp_ipv6_flowlabel &
2572 SCTP_FLOWLABEL_VAL_MASK;
2573 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2574 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2575 sp->flowlabel = params->spp_ipv6_flowlabel &
2576 SCTP_FLOWLABEL_VAL_MASK;
2577 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2578 }
2579 }
2580
2581 if (params->spp_flags & SPP_DSCP) {
2582 if (trans) {
2583 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2584 trans->dscp |= SCTP_DSCP_SET_MASK;
2585 } else if (asoc) {
2586 struct sctp_transport *t;
2587
2588 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2589 transports) {
2590 t->dscp = params->spp_dscp &
2591 SCTP_DSCP_VAL_MASK;
2592 t->dscp |= SCTP_DSCP_SET_MASK;
2593 }
2594 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2595 asoc->dscp |= SCTP_DSCP_SET_MASK;
2596 } else {
2597 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2598 sp->dscp |= SCTP_DSCP_SET_MASK;
2599 }
2600 }
2601
2602 return 0;
2603 }
2604
sctp_setsockopt_peer_addr_params(struct sock * sk,struct sctp_paddrparams * params,unsigned int optlen)2605 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2606 struct sctp_paddrparams *params,
2607 unsigned int optlen)
2608 {
2609 struct sctp_transport *trans = NULL;
2610 struct sctp_association *asoc = NULL;
2611 struct sctp_sock *sp = sctp_sk(sk);
2612 int error;
2613 int hb_change, pmtud_change, sackdelay_change;
2614
2615 if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2616 spp_ipv6_flowlabel), 4)) {
2617 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2618 return -EINVAL;
2619 } else if (optlen != sizeof(*params)) {
2620 return -EINVAL;
2621 }
2622
2623 /* Validate flags and value parameters. */
2624 hb_change = params->spp_flags & SPP_HB;
2625 pmtud_change = params->spp_flags & SPP_PMTUD;
2626 sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2627
2628 if (hb_change == SPP_HB ||
2629 pmtud_change == SPP_PMTUD ||
2630 sackdelay_change == SPP_SACKDELAY ||
2631 params->spp_sackdelay > 500 ||
2632 (params->spp_pathmtu &&
2633 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2634 return -EINVAL;
2635
2636 /* If an address other than INADDR_ANY is specified, and
2637 * no transport is found, then the request is invalid.
2638 */
2639 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) {
2640 trans = sctp_addr_id2transport(sk, ¶ms->spp_address,
2641 params->spp_assoc_id);
2642 if (!trans)
2643 return -EINVAL;
2644 }
2645
2646 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2647 * socket is a one to many style socket, and an association
2648 * was not found, then the id was invalid.
2649 */
2650 asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2651 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2652 sctp_style(sk, UDP))
2653 return -EINVAL;
2654
2655 /* Heartbeat demand can only be sent on a transport or
2656 * association, but not a socket.
2657 */
2658 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2659 return -EINVAL;
2660
2661 /* Process parameters. */
2662 error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2663 hb_change, pmtud_change,
2664 sackdelay_change);
2665
2666 if (error)
2667 return error;
2668
2669 /* If changes are for association, also apply parameters to each
2670 * transport.
2671 */
2672 if (!trans && asoc) {
2673 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2674 transports) {
2675 sctp_apply_peer_addr_params(params, trans, asoc, sp,
2676 hb_change, pmtud_change,
2677 sackdelay_change);
2678 }
2679 }
2680
2681 return 0;
2682 }
2683
sctp_spp_sackdelay_enable(__u32 param_flags)2684 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2685 {
2686 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2687 }
2688
sctp_spp_sackdelay_disable(__u32 param_flags)2689 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2690 {
2691 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2692 }
2693
sctp_apply_asoc_delayed_ack(struct sctp_sack_info * params,struct sctp_association * asoc)2694 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2695 struct sctp_association *asoc)
2696 {
2697 struct sctp_transport *trans;
2698
2699 if (params->sack_delay) {
2700 asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2701 asoc->param_flags =
2702 sctp_spp_sackdelay_enable(asoc->param_flags);
2703 }
2704 if (params->sack_freq == 1) {
2705 asoc->param_flags =
2706 sctp_spp_sackdelay_disable(asoc->param_flags);
2707 } else if (params->sack_freq > 1) {
2708 asoc->sackfreq = params->sack_freq;
2709 asoc->param_flags =
2710 sctp_spp_sackdelay_enable(asoc->param_flags);
2711 }
2712
2713 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2714 transports) {
2715 if (params->sack_delay) {
2716 trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2717 trans->param_flags =
2718 sctp_spp_sackdelay_enable(trans->param_flags);
2719 }
2720 if (params->sack_freq == 1) {
2721 trans->param_flags =
2722 sctp_spp_sackdelay_disable(trans->param_flags);
2723 } else if (params->sack_freq > 1) {
2724 trans->sackfreq = params->sack_freq;
2725 trans->param_flags =
2726 sctp_spp_sackdelay_enable(trans->param_flags);
2727 }
2728 }
2729 }
2730
2731 /*
2732 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2733 *
2734 * This option will effect the way delayed acks are performed. This
2735 * option allows you to get or set the delayed ack time, in
2736 * milliseconds. It also allows changing the delayed ack frequency.
2737 * Changing the frequency to 1 disables the delayed sack algorithm. If
2738 * the assoc_id is 0, then this sets or gets the endpoints default
2739 * values. If the assoc_id field is non-zero, then the set or get
2740 * effects the specified association for the one to many model (the
2741 * assoc_id field is ignored by the one to one model). Note that if
2742 * sack_delay or sack_freq are 0 when setting this option, then the
2743 * current values will remain unchanged.
2744 *
2745 * struct sctp_sack_info {
2746 * sctp_assoc_t sack_assoc_id;
2747 * uint32_t sack_delay;
2748 * uint32_t sack_freq;
2749 * };
2750 *
2751 * sack_assoc_id - This parameter, indicates which association the user
2752 * is performing an action upon. Note that if this field's value is
2753 * zero then the endpoints default value is changed (effecting future
2754 * associations only).
2755 *
2756 * sack_delay - This parameter contains the number of milliseconds that
2757 * the user is requesting the delayed ACK timer be set to. Note that
2758 * this value is defined in the standard to be between 200 and 500
2759 * milliseconds.
2760 *
2761 * sack_freq - This parameter contains the number of packets that must
2762 * be received before a sack is sent without waiting for the delay
2763 * timer to expire. The default value for this is 2, setting this
2764 * value to 1 will disable the delayed sack algorithm.
2765 */
__sctp_setsockopt_delayed_ack(struct sock * sk,struct sctp_sack_info * params)2766 static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2767 struct sctp_sack_info *params)
2768 {
2769 struct sctp_sock *sp = sctp_sk(sk);
2770 struct sctp_association *asoc;
2771
2772 /* Validate value parameter. */
2773 if (params->sack_delay > 500)
2774 return -EINVAL;
2775
2776 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2777 * socket is a one to many style socket, and an association
2778 * was not found, then the id was invalid.
2779 */
2780 asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2781 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2782 sctp_style(sk, UDP))
2783 return -EINVAL;
2784
2785 if (asoc) {
2786 sctp_apply_asoc_delayed_ack(params, asoc);
2787
2788 return 0;
2789 }
2790
2791 if (sctp_style(sk, TCP))
2792 params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2793
2794 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2795 params->sack_assoc_id == SCTP_ALL_ASSOC) {
2796 if (params->sack_delay) {
2797 sp->sackdelay = params->sack_delay;
2798 sp->param_flags =
2799 sctp_spp_sackdelay_enable(sp->param_flags);
2800 }
2801 if (params->sack_freq == 1) {
2802 sp->param_flags =
2803 sctp_spp_sackdelay_disable(sp->param_flags);
2804 } else if (params->sack_freq > 1) {
2805 sp->sackfreq = params->sack_freq;
2806 sp->param_flags =
2807 sctp_spp_sackdelay_enable(sp->param_flags);
2808 }
2809 }
2810
2811 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2812 params->sack_assoc_id == SCTP_ALL_ASSOC)
2813 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2814 sctp_apply_asoc_delayed_ack(params, asoc);
2815
2816 return 0;
2817 }
2818
sctp_setsockopt_delayed_ack(struct sock * sk,struct sctp_sack_info * params,unsigned int optlen)2819 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2820 struct sctp_sack_info *params,
2821 unsigned int optlen)
2822 {
2823 if (optlen == sizeof(struct sctp_assoc_value)) {
2824 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2825 struct sctp_sack_info p;
2826
2827 pr_warn_ratelimited(DEPRECATED
2828 "%s (pid %d) "
2829 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2830 "Use struct sctp_sack_info instead\n",
2831 current->comm, task_pid_nr(current));
2832
2833 p.sack_assoc_id = v->assoc_id;
2834 p.sack_delay = v->assoc_value;
2835 p.sack_freq = v->assoc_value ? 0 : 1;
2836 return __sctp_setsockopt_delayed_ack(sk, &p);
2837 }
2838
2839 if (optlen != sizeof(struct sctp_sack_info))
2840 return -EINVAL;
2841 if (params->sack_delay == 0 && params->sack_freq == 0)
2842 return 0;
2843 return __sctp_setsockopt_delayed_ack(sk, params);
2844 }
2845
2846 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2847 *
2848 * Applications can specify protocol parameters for the default association
2849 * initialization. The option name argument to setsockopt() and getsockopt()
2850 * is SCTP_INITMSG.
2851 *
2852 * Setting initialization parameters is effective only on an unconnected
2853 * socket (for UDP-style sockets only future associations are effected
2854 * by the change). With TCP-style sockets, this option is inherited by
2855 * sockets derived from a listener socket.
2856 */
sctp_setsockopt_initmsg(struct sock * sk,struct sctp_initmsg * sinit,unsigned int optlen)2857 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2858 unsigned int optlen)
2859 {
2860 struct sctp_sock *sp = sctp_sk(sk);
2861
2862 if (optlen != sizeof(struct sctp_initmsg))
2863 return -EINVAL;
2864
2865 if (sinit->sinit_num_ostreams)
2866 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2867 if (sinit->sinit_max_instreams)
2868 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2869 if (sinit->sinit_max_attempts)
2870 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2871 if (sinit->sinit_max_init_timeo)
2872 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2873
2874 return 0;
2875 }
2876
2877 /*
2878 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2879 *
2880 * Applications that wish to use the sendto() system call may wish to
2881 * specify a default set of parameters that would normally be supplied
2882 * through the inclusion of ancillary data. This socket option allows
2883 * such an application to set the default sctp_sndrcvinfo structure.
2884 * The application that wishes to use this socket option simply passes
2885 * in to this call the sctp_sndrcvinfo structure defined in Section
2886 * 5.2.2) The input parameters accepted by this call include
2887 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2888 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2889 * to this call if the caller is using the UDP model.
2890 */
sctp_setsockopt_default_send_param(struct sock * sk,struct sctp_sndrcvinfo * info,unsigned int optlen)2891 static int sctp_setsockopt_default_send_param(struct sock *sk,
2892 struct sctp_sndrcvinfo *info,
2893 unsigned int optlen)
2894 {
2895 struct sctp_sock *sp = sctp_sk(sk);
2896 struct sctp_association *asoc;
2897
2898 if (optlen != sizeof(*info))
2899 return -EINVAL;
2900 if (info->sinfo_flags &
2901 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2902 SCTP_ABORT | SCTP_EOF))
2903 return -EINVAL;
2904
2905 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2906 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2907 sctp_style(sk, UDP))
2908 return -EINVAL;
2909
2910 if (asoc) {
2911 asoc->default_stream = info->sinfo_stream;
2912 asoc->default_flags = info->sinfo_flags;
2913 asoc->default_ppid = info->sinfo_ppid;
2914 asoc->default_context = info->sinfo_context;
2915 asoc->default_timetolive = info->sinfo_timetolive;
2916
2917 return 0;
2918 }
2919
2920 if (sctp_style(sk, TCP))
2921 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2922
2923 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2924 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2925 sp->default_stream = info->sinfo_stream;
2926 sp->default_flags = info->sinfo_flags;
2927 sp->default_ppid = info->sinfo_ppid;
2928 sp->default_context = info->sinfo_context;
2929 sp->default_timetolive = info->sinfo_timetolive;
2930 }
2931
2932 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2933 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2934 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2935 asoc->default_stream = info->sinfo_stream;
2936 asoc->default_flags = info->sinfo_flags;
2937 asoc->default_ppid = info->sinfo_ppid;
2938 asoc->default_context = info->sinfo_context;
2939 asoc->default_timetolive = info->sinfo_timetolive;
2940 }
2941 }
2942
2943 return 0;
2944 }
2945
2946 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2947 * (SCTP_DEFAULT_SNDINFO)
2948 */
sctp_setsockopt_default_sndinfo(struct sock * sk,struct sctp_sndinfo * info,unsigned int optlen)2949 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2950 struct sctp_sndinfo *info,
2951 unsigned int optlen)
2952 {
2953 struct sctp_sock *sp = sctp_sk(sk);
2954 struct sctp_association *asoc;
2955
2956 if (optlen != sizeof(*info))
2957 return -EINVAL;
2958 if (info->snd_flags &
2959 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2960 SCTP_ABORT | SCTP_EOF))
2961 return -EINVAL;
2962
2963 asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2964 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2965 sctp_style(sk, UDP))
2966 return -EINVAL;
2967
2968 if (asoc) {
2969 asoc->default_stream = info->snd_sid;
2970 asoc->default_flags = info->snd_flags;
2971 asoc->default_ppid = info->snd_ppid;
2972 asoc->default_context = info->snd_context;
2973
2974 return 0;
2975 }
2976
2977 if (sctp_style(sk, TCP))
2978 info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2979
2980 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2981 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2982 sp->default_stream = info->snd_sid;
2983 sp->default_flags = info->snd_flags;
2984 sp->default_ppid = info->snd_ppid;
2985 sp->default_context = info->snd_context;
2986 }
2987
2988 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2989 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2990 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2991 asoc->default_stream = info->snd_sid;
2992 asoc->default_flags = info->snd_flags;
2993 asoc->default_ppid = info->snd_ppid;
2994 asoc->default_context = info->snd_context;
2995 }
2996 }
2997
2998 return 0;
2999 }
3000
3001 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3002 *
3003 * Requests that the local SCTP stack use the enclosed peer address as
3004 * the association primary. The enclosed address must be one of the
3005 * association peer's addresses.
3006 */
sctp_setsockopt_primary_addr(struct sock * sk,struct sctp_prim * prim,unsigned int optlen)3007 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
3008 unsigned int optlen)
3009 {
3010 struct sctp_transport *trans;
3011 struct sctp_af *af;
3012 int err;
3013
3014 if (optlen != sizeof(struct sctp_prim))
3015 return -EINVAL;
3016
3017 /* Allow security module to validate address but need address len. */
3018 af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3019 if (!af)
3020 return -EINVAL;
3021
3022 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3023 (struct sockaddr *)&prim->ssp_addr,
3024 af->sockaddr_len);
3025 if (err)
3026 return err;
3027
3028 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3029 if (!trans)
3030 return -EINVAL;
3031
3032 sctp_assoc_set_primary(trans->asoc, trans);
3033
3034 return 0;
3035 }
3036
3037 /*
3038 * 7.1.5 SCTP_NODELAY
3039 *
3040 * Turn on/off any Nagle-like algorithm. This means that packets are
3041 * generally sent as soon as possible and no unnecessary delays are
3042 * introduced, at the cost of more packets in the network. Expects an
3043 * integer boolean flag.
3044 */
sctp_setsockopt_nodelay(struct sock * sk,int * val,unsigned int optlen)3045 static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3046 unsigned int optlen)
3047 {
3048 if (optlen < sizeof(int))
3049 return -EINVAL;
3050 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3051 return 0;
3052 }
3053
3054 /*
3055 *
3056 * 7.1.1 SCTP_RTOINFO
3057 *
3058 * The protocol parameters used to initialize and bound retransmission
3059 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3060 * and modify these parameters.
3061 * All parameters are time values, in milliseconds. A value of 0, when
3062 * modifying the parameters, indicates that the current value should not
3063 * be changed.
3064 *
3065 */
sctp_setsockopt_rtoinfo(struct sock * sk,struct sctp_rtoinfo * rtoinfo,unsigned int optlen)3066 static int sctp_setsockopt_rtoinfo(struct sock *sk,
3067 struct sctp_rtoinfo *rtoinfo,
3068 unsigned int optlen)
3069 {
3070 struct sctp_association *asoc;
3071 unsigned long rto_min, rto_max;
3072 struct sctp_sock *sp = sctp_sk(sk);
3073
3074 if (optlen != sizeof (struct sctp_rtoinfo))
3075 return -EINVAL;
3076
3077 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3078
3079 /* Set the values to the specific association */
3080 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3081 sctp_style(sk, UDP))
3082 return -EINVAL;
3083
3084 rto_max = rtoinfo->srto_max;
3085 rto_min = rtoinfo->srto_min;
3086
3087 if (rto_max)
3088 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3089 else
3090 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3091
3092 if (rto_min)
3093 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3094 else
3095 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3096
3097 if (rto_min > rto_max)
3098 return -EINVAL;
3099
3100 if (asoc) {
3101 if (rtoinfo->srto_initial != 0)
3102 asoc->rto_initial =
3103 msecs_to_jiffies(rtoinfo->srto_initial);
3104 asoc->rto_max = rto_max;
3105 asoc->rto_min = rto_min;
3106 } else {
3107 /* If there is no association or the association-id = 0
3108 * set the values to the endpoint.
3109 */
3110 if (rtoinfo->srto_initial != 0)
3111 sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3112 sp->rtoinfo.srto_max = rto_max;
3113 sp->rtoinfo.srto_min = rto_min;
3114 }
3115
3116 return 0;
3117 }
3118
3119 /*
3120 *
3121 * 7.1.2 SCTP_ASSOCINFO
3122 *
3123 * This option is used to tune the maximum retransmission attempts
3124 * of the association.
3125 * Returns an error if the new association retransmission value is
3126 * greater than the sum of the retransmission value of the peer.
3127 * See [SCTP] for more information.
3128 *
3129 */
sctp_setsockopt_associnfo(struct sock * sk,struct sctp_assocparams * assocparams,unsigned int optlen)3130 static int sctp_setsockopt_associnfo(struct sock *sk,
3131 struct sctp_assocparams *assocparams,
3132 unsigned int optlen)
3133 {
3134
3135 struct sctp_association *asoc;
3136
3137 if (optlen != sizeof(struct sctp_assocparams))
3138 return -EINVAL;
3139
3140 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3141
3142 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3143 sctp_style(sk, UDP))
3144 return -EINVAL;
3145
3146 /* Set the values to the specific association */
3147 if (asoc) {
3148 if (assocparams->sasoc_asocmaxrxt != 0) {
3149 __u32 path_sum = 0;
3150 int paths = 0;
3151 struct sctp_transport *peer_addr;
3152
3153 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3154 transports) {
3155 path_sum += peer_addr->pathmaxrxt;
3156 paths++;
3157 }
3158
3159 /* Only validate asocmaxrxt if we have more than
3160 * one path/transport. We do this because path
3161 * retransmissions are only counted when we have more
3162 * then one path.
3163 */
3164 if (paths > 1 &&
3165 assocparams->sasoc_asocmaxrxt > path_sum)
3166 return -EINVAL;
3167
3168 asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3169 }
3170
3171 if (assocparams->sasoc_cookie_life != 0)
3172 asoc->cookie_life =
3173 ms_to_ktime(assocparams->sasoc_cookie_life);
3174 } else {
3175 /* Set the values to the endpoint */
3176 struct sctp_sock *sp = sctp_sk(sk);
3177
3178 if (assocparams->sasoc_asocmaxrxt != 0)
3179 sp->assocparams.sasoc_asocmaxrxt =
3180 assocparams->sasoc_asocmaxrxt;
3181 if (assocparams->sasoc_cookie_life != 0)
3182 sp->assocparams.sasoc_cookie_life =
3183 assocparams->sasoc_cookie_life;
3184 }
3185 return 0;
3186 }
3187
3188 /*
3189 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3190 *
3191 * This socket option is a boolean flag which turns on or off mapped V4
3192 * addresses. If this option is turned on and the socket is type
3193 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3194 * If this option is turned off, then no mapping will be done of V4
3195 * addresses and a user will receive both PF_INET6 and PF_INET type
3196 * addresses on the socket.
3197 */
sctp_setsockopt_mappedv4(struct sock * sk,int * val,unsigned int optlen)3198 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3199 unsigned int optlen)
3200 {
3201 struct sctp_sock *sp = sctp_sk(sk);
3202
3203 if (optlen < sizeof(int))
3204 return -EINVAL;
3205 if (*val)
3206 sp->v4mapped = 1;
3207 else
3208 sp->v4mapped = 0;
3209
3210 return 0;
3211 }
3212
3213 /*
3214 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3215 * This option will get or set the maximum size to put in any outgoing
3216 * SCTP DATA chunk. If a message is larger than this size it will be
3217 * fragmented by SCTP into the specified size. Note that the underlying
3218 * SCTP implementation may fragment into smaller sized chunks when the
3219 * PMTU of the underlying association is smaller than the value set by
3220 * the user. The default value for this option is '0' which indicates
3221 * the user is NOT limiting fragmentation and only the PMTU will effect
3222 * SCTP's choice of DATA chunk size. Note also that values set larger
3223 * than the maximum size of an IP datagram will effectively let SCTP
3224 * control fragmentation (i.e. the same as setting this option to 0).
3225 *
3226 * The following structure is used to access and modify this parameter:
3227 *
3228 * struct sctp_assoc_value {
3229 * sctp_assoc_t assoc_id;
3230 * uint32_t assoc_value;
3231 * };
3232 *
3233 * assoc_id: This parameter is ignored for one-to-one style sockets.
3234 * For one-to-many style sockets this parameter indicates which
3235 * association the user is performing an action upon. Note that if
3236 * this field's value is zero then the endpoints default value is
3237 * changed (effecting future associations only).
3238 * assoc_value: This parameter specifies the maximum size in bytes.
3239 */
sctp_setsockopt_maxseg(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3240 static int sctp_setsockopt_maxseg(struct sock *sk,
3241 struct sctp_assoc_value *params,
3242 unsigned int optlen)
3243 {
3244 struct sctp_sock *sp = sctp_sk(sk);
3245 struct sctp_association *asoc;
3246 sctp_assoc_t assoc_id;
3247 int val;
3248
3249 if (optlen == sizeof(int)) {
3250 pr_warn_ratelimited(DEPRECATED
3251 "%s (pid %d) "
3252 "Use of int in maxseg socket option.\n"
3253 "Use struct sctp_assoc_value instead\n",
3254 current->comm, task_pid_nr(current));
3255 assoc_id = SCTP_FUTURE_ASSOC;
3256 val = *(int *)params;
3257 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3258 assoc_id = params->assoc_id;
3259 val = params->assoc_value;
3260 } else {
3261 return -EINVAL;
3262 }
3263
3264 asoc = sctp_id2assoc(sk, assoc_id);
3265 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3266 sctp_style(sk, UDP))
3267 return -EINVAL;
3268
3269 if (val) {
3270 int min_len, max_len;
3271 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3272 sizeof(struct sctp_data_chunk);
3273
3274 min_len = sctp_min_frag_point(sp, datasize);
3275 max_len = SCTP_MAX_CHUNK_LEN - datasize;
3276
3277 if (val < min_len || val > max_len)
3278 return -EINVAL;
3279 }
3280
3281 if (asoc) {
3282 asoc->user_frag = val;
3283 sctp_assoc_update_frag_point(asoc);
3284 } else {
3285 sp->user_frag = val;
3286 }
3287
3288 return 0;
3289 }
3290
3291
3292 /*
3293 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3294 *
3295 * Requests that the peer mark the enclosed address as the association
3296 * primary. The enclosed address must be one of the association's
3297 * locally bound addresses. The following structure is used to make a
3298 * set primary request:
3299 */
sctp_setsockopt_peer_primary_addr(struct sock * sk,struct sctp_setpeerprim * prim,unsigned int optlen)3300 static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3301 struct sctp_setpeerprim *prim,
3302 unsigned int optlen)
3303 {
3304 struct sctp_sock *sp;
3305 struct sctp_association *asoc = NULL;
3306 struct sctp_chunk *chunk;
3307 struct sctp_af *af;
3308 int err;
3309
3310 sp = sctp_sk(sk);
3311
3312 if (!sp->ep->asconf_enable)
3313 return -EPERM;
3314
3315 if (optlen != sizeof(struct sctp_setpeerprim))
3316 return -EINVAL;
3317
3318 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3319 if (!asoc)
3320 return -EINVAL;
3321
3322 if (!asoc->peer.asconf_capable)
3323 return -EPERM;
3324
3325 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3326 return -EPERM;
3327
3328 if (!sctp_state(asoc, ESTABLISHED))
3329 return -ENOTCONN;
3330
3331 af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3332 if (!af)
3333 return -EINVAL;
3334
3335 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3336 return -EADDRNOTAVAIL;
3337
3338 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3339 return -EADDRNOTAVAIL;
3340
3341 /* Allow security module to validate address. */
3342 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3343 (struct sockaddr *)&prim->sspp_addr,
3344 af->sockaddr_len);
3345 if (err)
3346 return err;
3347
3348 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3349 chunk = sctp_make_asconf_set_prim(asoc,
3350 (union sctp_addr *)&prim->sspp_addr);
3351 if (!chunk)
3352 return -ENOMEM;
3353
3354 err = sctp_send_asconf(asoc, chunk);
3355
3356 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3357
3358 return err;
3359 }
3360
sctp_setsockopt_adaptation_layer(struct sock * sk,struct sctp_setadaptation * adapt,unsigned int optlen)3361 static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3362 struct sctp_setadaptation *adapt,
3363 unsigned int optlen)
3364 {
3365 if (optlen != sizeof(struct sctp_setadaptation))
3366 return -EINVAL;
3367
3368 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3369
3370 return 0;
3371 }
3372
3373 /*
3374 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3375 *
3376 * The context field in the sctp_sndrcvinfo structure is normally only
3377 * used when a failed message is retrieved holding the value that was
3378 * sent down on the actual send call. This option allows the setting of
3379 * a default context on an association basis that will be received on
3380 * reading messages from the peer. This is especially helpful in the
3381 * one-2-many model for an application to keep some reference to an
3382 * internal state machine that is processing messages on the
3383 * association. Note that the setting of this value only effects
3384 * received messages from the peer and does not effect the value that is
3385 * saved with outbound messages.
3386 */
sctp_setsockopt_context(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3387 static int sctp_setsockopt_context(struct sock *sk,
3388 struct sctp_assoc_value *params,
3389 unsigned int optlen)
3390 {
3391 struct sctp_sock *sp = sctp_sk(sk);
3392 struct sctp_association *asoc;
3393
3394 if (optlen != sizeof(struct sctp_assoc_value))
3395 return -EINVAL;
3396
3397 asoc = sctp_id2assoc(sk, params->assoc_id);
3398 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3399 sctp_style(sk, UDP))
3400 return -EINVAL;
3401
3402 if (asoc) {
3403 asoc->default_rcv_context = params->assoc_value;
3404
3405 return 0;
3406 }
3407
3408 if (sctp_style(sk, TCP))
3409 params->assoc_id = SCTP_FUTURE_ASSOC;
3410
3411 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3412 params->assoc_id == SCTP_ALL_ASSOC)
3413 sp->default_rcv_context = params->assoc_value;
3414
3415 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3416 params->assoc_id == SCTP_ALL_ASSOC)
3417 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3418 asoc->default_rcv_context = params->assoc_value;
3419
3420 return 0;
3421 }
3422
3423 /*
3424 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3425 *
3426 * This options will at a minimum specify if the implementation is doing
3427 * fragmented interleave. Fragmented interleave, for a one to many
3428 * socket, is when subsequent calls to receive a message may return
3429 * parts of messages from different associations. Some implementations
3430 * may allow you to turn this value on or off. If so, when turned off,
3431 * no fragment interleave will occur (which will cause a head of line
3432 * blocking amongst multiple associations sharing the same one to many
3433 * socket). When this option is turned on, then each receive call may
3434 * come from a different association (thus the user must receive data
3435 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3436 * association each receive belongs to.
3437 *
3438 * This option takes a boolean value. A non-zero value indicates that
3439 * fragmented interleave is on. A value of zero indicates that
3440 * fragmented interleave is off.
3441 *
3442 * Note that it is important that an implementation that allows this
3443 * option to be turned on, have it off by default. Otherwise an unaware
3444 * application using the one to many model may become confused and act
3445 * incorrectly.
3446 */
sctp_setsockopt_fragment_interleave(struct sock * sk,int * val,unsigned int optlen)3447 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3448 unsigned int optlen)
3449 {
3450 if (optlen != sizeof(int))
3451 return -EINVAL;
3452
3453 sctp_sk(sk)->frag_interleave = !!*val;
3454
3455 if (!sctp_sk(sk)->frag_interleave)
3456 sctp_sk(sk)->ep->intl_enable = 0;
3457
3458 return 0;
3459 }
3460
3461 /*
3462 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3463 * (SCTP_PARTIAL_DELIVERY_POINT)
3464 *
3465 * This option will set or get the SCTP partial delivery point. This
3466 * point is the size of a message where the partial delivery API will be
3467 * invoked to help free up rwnd space for the peer. Setting this to a
3468 * lower value will cause partial deliveries to happen more often. The
3469 * calls argument is an integer that sets or gets the partial delivery
3470 * point. Note also that the call will fail if the user attempts to set
3471 * this value larger than the socket receive buffer size.
3472 *
3473 * Note that any single message having a length smaller than or equal to
3474 * the SCTP partial delivery point will be delivered in one single read
3475 * call as long as the user provided buffer is large enough to hold the
3476 * message.
3477 */
sctp_setsockopt_partial_delivery_point(struct sock * sk,u32 * val,unsigned int optlen)3478 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3479 unsigned int optlen)
3480 {
3481 if (optlen != sizeof(u32))
3482 return -EINVAL;
3483
3484 /* Note: We double the receive buffer from what the user sets
3485 * it to be, also initial rwnd is based on rcvbuf/2.
3486 */
3487 if (*val > (sk->sk_rcvbuf >> 1))
3488 return -EINVAL;
3489
3490 sctp_sk(sk)->pd_point = *val;
3491
3492 return 0; /* is this the right error code? */
3493 }
3494
3495 /*
3496 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3497 *
3498 * This option will allow a user to change the maximum burst of packets
3499 * that can be emitted by this association. Note that the default value
3500 * is 4, and some implementations may restrict this setting so that it
3501 * can only be lowered.
3502 *
3503 * NOTE: This text doesn't seem right. Do this on a socket basis with
3504 * future associations inheriting the socket value.
3505 */
sctp_setsockopt_maxburst(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3506 static int sctp_setsockopt_maxburst(struct sock *sk,
3507 struct sctp_assoc_value *params,
3508 unsigned int optlen)
3509 {
3510 struct sctp_sock *sp = sctp_sk(sk);
3511 struct sctp_association *asoc;
3512 sctp_assoc_t assoc_id;
3513 u32 assoc_value;
3514
3515 if (optlen == sizeof(int)) {
3516 pr_warn_ratelimited(DEPRECATED
3517 "%s (pid %d) "
3518 "Use of int in max_burst socket option deprecated.\n"
3519 "Use struct sctp_assoc_value instead\n",
3520 current->comm, task_pid_nr(current));
3521 assoc_id = SCTP_FUTURE_ASSOC;
3522 assoc_value = *((int *)params);
3523 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3524 assoc_id = params->assoc_id;
3525 assoc_value = params->assoc_value;
3526 } else
3527 return -EINVAL;
3528
3529 asoc = sctp_id2assoc(sk, assoc_id);
3530 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3531 return -EINVAL;
3532
3533 if (asoc) {
3534 asoc->max_burst = assoc_value;
3535
3536 return 0;
3537 }
3538
3539 if (sctp_style(sk, TCP))
3540 assoc_id = SCTP_FUTURE_ASSOC;
3541
3542 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3543 sp->max_burst = assoc_value;
3544
3545 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3546 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3547 asoc->max_burst = assoc_value;
3548
3549 return 0;
3550 }
3551
3552 /*
3553 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3554 *
3555 * This set option adds a chunk type that the user is requesting to be
3556 * received only in an authenticated way. Changes to the list of chunks
3557 * will only effect future associations on the socket.
3558 */
sctp_setsockopt_auth_chunk(struct sock * sk,struct sctp_authchunk * val,unsigned int optlen)3559 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3560 struct sctp_authchunk *val,
3561 unsigned int optlen)
3562 {
3563 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3564
3565 if (!ep->auth_enable)
3566 return -EACCES;
3567
3568 if (optlen != sizeof(struct sctp_authchunk))
3569 return -EINVAL;
3570
3571 switch (val->sauth_chunk) {
3572 case SCTP_CID_INIT:
3573 case SCTP_CID_INIT_ACK:
3574 case SCTP_CID_SHUTDOWN_COMPLETE:
3575 case SCTP_CID_AUTH:
3576 return -EINVAL;
3577 }
3578
3579 /* add this chunk id to the endpoint */
3580 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3581 }
3582
3583 /*
3584 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3585 *
3586 * This option gets or sets the list of HMAC algorithms that the local
3587 * endpoint requires the peer to use.
3588 */
sctp_setsockopt_hmac_ident(struct sock * sk,struct sctp_hmacalgo * hmacs,unsigned int optlen)3589 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3590 struct sctp_hmacalgo *hmacs,
3591 unsigned int optlen)
3592 {
3593 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3594 u32 idents;
3595
3596 if (!ep->auth_enable)
3597 return -EACCES;
3598
3599 if (optlen < sizeof(struct sctp_hmacalgo))
3600 return -EINVAL;
3601 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3602 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3603
3604 idents = hmacs->shmac_num_idents;
3605 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3606 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3607 return -EINVAL;
3608
3609 return sctp_auth_ep_set_hmacs(ep, hmacs);
3610 }
3611
3612 /*
3613 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3614 *
3615 * This option will set a shared secret key which is used to build an
3616 * association shared key.
3617 */
sctp_setsockopt_auth_key(struct sock * sk,struct sctp_authkey * authkey,unsigned int optlen)3618 static int sctp_setsockopt_auth_key(struct sock *sk,
3619 struct sctp_authkey *authkey,
3620 unsigned int optlen)
3621 {
3622 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3623 struct sctp_association *asoc;
3624 int ret = -EINVAL;
3625
3626 if (optlen <= sizeof(struct sctp_authkey))
3627 return -EINVAL;
3628 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3629 * this.
3630 */
3631 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3632
3633 if (authkey->sca_keylength > optlen - sizeof(*authkey))
3634 goto out;
3635
3636 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3637 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3638 sctp_style(sk, UDP))
3639 goto out;
3640
3641 if (asoc) {
3642 ret = sctp_auth_set_key(ep, asoc, authkey);
3643 goto out;
3644 }
3645
3646 if (sctp_style(sk, TCP))
3647 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3648
3649 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3650 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3651 ret = sctp_auth_set_key(ep, asoc, authkey);
3652 if (ret)
3653 goto out;
3654 }
3655
3656 ret = 0;
3657
3658 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3659 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3660 list_for_each_entry(asoc, &ep->asocs, asocs) {
3661 int res = sctp_auth_set_key(ep, asoc, authkey);
3662
3663 if (res && !ret)
3664 ret = res;
3665 }
3666 }
3667
3668 out:
3669 memzero_explicit(authkey, optlen);
3670 return ret;
3671 }
3672
3673 /*
3674 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3675 *
3676 * This option will get or set the active shared key to be used to build
3677 * the association shared key.
3678 */
sctp_setsockopt_active_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3679 static int sctp_setsockopt_active_key(struct sock *sk,
3680 struct sctp_authkeyid *val,
3681 unsigned int optlen)
3682 {
3683 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3684 struct sctp_association *asoc;
3685 int ret = 0;
3686
3687 if (optlen != sizeof(struct sctp_authkeyid))
3688 return -EINVAL;
3689
3690 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3691 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3692 sctp_style(sk, UDP))
3693 return -EINVAL;
3694
3695 if (asoc)
3696 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3697
3698 if (sctp_style(sk, TCP))
3699 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3700
3701 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3702 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3703 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3704 if (ret)
3705 return ret;
3706 }
3707
3708 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3709 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3710 list_for_each_entry(asoc, &ep->asocs, asocs) {
3711 int res = sctp_auth_set_active_key(ep, asoc,
3712 val->scact_keynumber);
3713
3714 if (res && !ret)
3715 ret = res;
3716 }
3717 }
3718
3719 return ret;
3720 }
3721
3722 /*
3723 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3724 *
3725 * This set option will delete a shared secret key from use.
3726 */
sctp_setsockopt_del_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3727 static int sctp_setsockopt_del_key(struct sock *sk,
3728 struct sctp_authkeyid *val,
3729 unsigned int optlen)
3730 {
3731 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3732 struct sctp_association *asoc;
3733 int ret = 0;
3734
3735 if (optlen != sizeof(struct sctp_authkeyid))
3736 return -EINVAL;
3737
3738 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3739 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3740 sctp_style(sk, UDP))
3741 return -EINVAL;
3742
3743 if (asoc)
3744 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3745
3746 if (sctp_style(sk, TCP))
3747 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3748
3749 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3750 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3751 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3752 if (ret)
3753 return ret;
3754 }
3755
3756 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3757 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3758 list_for_each_entry(asoc, &ep->asocs, asocs) {
3759 int res = sctp_auth_del_key_id(ep, asoc,
3760 val->scact_keynumber);
3761
3762 if (res && !ret)
3763 ret = res;
3764 }
3765 }
3766
3767 return ret;
3768 }
3769
3770 /*
3771 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3772 *
3773 * This set option will deactivate a shared secret key.
3774 */
sctp_setsockopt_deactivate_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3775 static int sctp_setsockopt_deactivate_key(struct sock *sk,
3776 struct sctp_authkeyid *val,
3777 unsigned int optlen)
3778 {
3779 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3780 struct sctp_association *asoc;
3781 int ret = 0;
3782
3783 if (optlen != sizeof(struct sctp_authkeyid))
3784 return -EINVAL;
3785
3786 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3787 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3788 sctp_style(sk, UDP))
3789 return -EINVAL;
3790
3791 if (asoc)
3792 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3793
3794 if (sctp_style(sk, TCP))
3795 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3796
3797 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3798 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3799 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3800 if (ret)
3801 return ret;
3802 }
3803
3804 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3805 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3806 list_for_each_entry(asoc, &ep->asocs, asocs) {
3807 int res = sctp_auth_deact_key_id(ep, asoc,
3808 val->scact_keynumber);
3809
3810 if (res && !ret)
3811 ret = res;
3812 }
3813 }
3814
3815 return ret;
3816 }
3817
3818 /*
3819 * 8.1.23 SCTP_AUTO_ASCONF
3820 *
3821 * This option will enable or disable the use of the automatic generation of
3822 * ASCONF chunks to add and delete addresses to an existing association. Note
3823 * that this option has two caveats namely: a) it only affects sockets that
3824 * are bound to all addresses available to the SCTP stack, and b) the system
3825 * administrator may have an overriding control that turns the ASCONF feature
3826 * off no matter what setting the socket option may have.
3827 * This option expects an integer boolean flag, where a non-zero value turns on
3828 * the option, and a zero value turns off the option.
3829 * Note. In this implementation, socket operation overrides default parameter
3830 * being set by sysctl as well as FreeBSD implementation
3831 */
sctp_setsockopt_auto_asconf(struct sock * sk,int * val,unsigned int optlen)3832 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3833 unsigned int optlen)
3834 {
3835 struct sctp_sock *sp = sctp_sk(sk);
3836
3837 if (optlen < sizeof(int))
3838 return -EINVAL;
3839 if (!sctp_is_ep_boundall(sk) && *val)
3840 return -EINVAL;
3841 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3842 return 0;
3843
3844 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3845 if (*val == 0 && sp->do_auto_asconf) {
3846 list_del(&sp->auto_asconf_list);
3847 sp->do_auto_asconf = 0;
3848 } else if (*val && !sp->do_auto_asconf) {
3849 list_add_tail(&sp->auto_asconf_list,
3850 &sock_net(sk)->sctp.auto_asconf_splist);
3851 sp->do_auto_asconf = 1;
3852 }
3853 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3854 return 0;
3855 }
3856
3857 /*
3858 * SCTP_PEER_ADDR_THLDS
3859 *
3860 * This option allows us to alter the partially failed threshold for one or all
3861 * transports in an association. See Section 6.1 of:
3862 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3863 */
sctp_setsockopt_paddr_thresholds(struct sock * sk,struct sctp_paddrthlds_v2 * val,unsigned int optlen,bool v2)3864 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3865 struct sctp_paddrthlds_v2 *val,
3866 unsigned int optlen, bool v2)
3867 {
3868 struct sctp_transport *trans;
3869 struct sctp_association *asoc;
3870 int len;
3871
3872 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3873 if (optlen < len)
3874 return -EINVAL;
3875
3876 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3877 return -EINVAL;
3878
3879 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3880 trans = sctp_addr_id2transport(sk, &val->spt_address,
3881 val->spt_assoc_id);
3882 if (!trans)
3883 return -ENOENT;
3884
3885 if (val->spt_pathmaxrxt)
3886 trans->pathmaxrxt = val->spt_pathmaxrxt;
3887 if (v2)
3888 trans->ps_retrans = val->spt_pathcpthld;
3889 trans->pf_retrans = val->spt_pathpfthld;
3890
3891 return 0;
3892 }
3893
3894 asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3895 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3896 sctp_style(sk, UDP))
3897 return -EINVAL;
3898
3899 if (asoc) {
3900 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3901 transports) {
3902 if (val->spt_pathmaxrxt)
3903 trans->pathmaxrxt = val->spt_pathmaxrxt;
3904 if (v2)
3905 trans->ps_retrans = val->spt_pathcpthld;
3906 trans->pf_retrans = val->spt_pathpfthld;
3907 }
3908
3909 if (val->spt_pathmaxrxt)
3910 asoc->pathmaxrxt = val->spt_pathmaxrxt;
3911 if (v2)
3912 asoc->ps_retrans = val->spt_pathcpthld;
3913 asoc->pf_retrans = val->spt_pathpfthld;
3914 } else {
3915 struct sctp_sock *sp = sctp_sk(sk);
3916
3917 if (val->spt_pathmaxrxt)
3918 sp->pathmaxrxt = val->spt_pathmaxrxt;
3919 if (v2)
3920 sp->ps_retrans = val->spt_pathcpthld;
3921 sp->pf_retrans = val->spt_pathpfthld;
3922 }
3923
3924 return 0;
3925 }
3926
sctp_setsockopt_recvrcvinfo(struct sock * sk,int * val,unsigned int optlen)3927 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3928 unsigned int optlen)
3929 {
3930 if (optlen < sizeof(int))
3931 return -EINVAL;
3932
3933 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3934
3935 return 0;
3936 }
3937
sctp_setsockopt_recvnxtinfo(struct sock * sk,int * val,unsigned int optlen)3938 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3939 unsigned int optlen)
3940 {
3941 if (optlen < sizeof(int))
3942 return -EINVAL;
3943
3944 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3945
3946 return 0;
3947 }
3948
sctp_setsockopt_pr_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3949 static int sctp_setsockopt_pr_supported(struct sock *sk,
3950 struct sctp_assoc_value *params,
3951 unsigned int optlen)
3952 {
3953 struct sctp_association *asoc;
3954
3955 if (optlen != sizeof(*params))
3956 return -EINVAL;
3957
3958 asoc = sctp_id2assoc(sk, params->assoc_id);
3959 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3960 sctp_style(sk, UDP))
3961 return -EINVAL;
3962
3963 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3964
3965 return 0;
3966 }
3967
sctp_setsockopt_default_prinfo(struct sock * sk,struct sctp_default_prinfo * info,unsigned int optlen)3968 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3969 struct sctp_default_prinfo *info,
3970 unsigned int optlen)
3971 {
3972 struct sctp_sock *sp = sctp_sk(sk);
3973 struct sctp_association *asoc;
3974 int retval = -EINVAL;
3975
3976 if (optlen != sizeof(*info))
3977 goto out;
3978
3979 if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3980 goto out;
3981
3982 if (info->pr_policy == SCTP_PR_SCTP_NONE)
3983 info->pr_value = 0;
3984
3985 asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3986 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3987 sctp_style(sk, UDP))
3988 goto out;
3989
3990 retval = 0;
3991
3992 if (asoc) {
3993 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3994 asoc->default_timetolive = info->pr_value;
3995 goto out;
3996 }
3997
3998 if (sctp_style(sk, TCP))
3999 info->pr_assoc_id = SCTP_FUTURE_ASSOC;
4000
4001 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
4002 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4003 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
4004 sp->default_timetolive = info->pr_value;
4005 }
4006
4007 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
4008 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4009 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4010 SCTP_PR_SET_POLICY(asoc->default_flags,
4011 info->pr_policy);
4012 asoc->default_timetolive = info->pr_value;
4013 }
4014 }
4015
4016 out:
4017 return retval;
4018 }
4019
sctp_setsockopt_reconfig_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4020 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4021 struct sctp_assoc_value *params,
4022 unsigned int optlen)
4023 {
4024 struct sctp_association *asoc;
4025 int retval = -EINVAL;
4026
4027 if (optlen != sizeof(*params))
4028 goto out;
4029
4030 asoc = sctp_id2assoc(sk, params->assoc_id);
4031 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4032 sctp_style(sk, UDP))
4033 goto out;
4034
4035 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4036
4037 retval = 0;
4038
4039 out:
4040 return retval;
4041 }
4042
sctp_setsockopt_enable_strreset(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4043 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4044 struct sctp_assoc_value *params,
4045 unsigned int optlen)
4046 {
4047 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4048 struct sctp_association *asoc;
4049 int retval = -EINVAL;
4050
4051 if (optlen != sizeof(*params))
4052 goto out;
4053
4054 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4055 goto out;
4056
4057 asoc = sctp_id2assoc(sk, params->assoc_id);
4058 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4059 sctp_style(sk, UDP))
4060 goto out;
4061
4062 retval = 0;
4063
4064 if (asoc) {
4065 asoc->strreset_enable = params->assoc_value;
4066 goto out;
4067 }
4068
4069 if (sctp_style(sk, TCP))
4070 params->assoc_id = SCTP_FUTURE_ASSOC;
4071
4072 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4073 params->assoc_id == SCTP_ALL_ASSOC)
4074 ep->strreset_enable = params->assoc_value;
4075
4076 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4077 params->assoc_id == SCTP_ALL_ASSOC)
4078 list_for_each_entry(asoc, &ep->asocs, asocs)
4079 asoc->strreset_enable = params->assoc_value;
4080
4081 out:
4082 return retval;
4083 }
4084
sctp_setsockopt_reset_streams(struct sock * sk,struct sctp_reset_streams * params,unsigned int optlen)4085 static int sctp_setsockopt_reset_streams(struct sock *sk,
4086 struct sctp_reset_streams *params,
4087 unsigned int optlen)
4088 {
4089 struct sctp_association *asoc;
4090
4091 if (optlen < sizeof(*params))
4092 return -EINVAL;
4093 /* srs_number_streams is u16, so optlen can't be bigger than this. */
4094 optlen = min_t(unsigned int, optlen, USHRT_MAX +
4095 sizeof(__u16) * sizeof(*params));
4096
4097 if (params->srs_number_streams * sizeof(__u16) >
4098 optlen - sizeof(*params))
4099 return -EINVAL;
4100
4101 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4102 if (!asoc)
4103 return -EINVAL;
4104
4105 return sctp_send_reset_streams(asoc, params);
4106 }
4107
sctp_setsockopt_reset_assoc(struct sock * sk,sctp_assoc_t * associd,unsigned int optlen)4108 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4109 unsigned int optlen)
4110 {
4111 struct sctp_association *asoc;
4112
4113 if (optlen != sizeof(*associd))
4114 return -EINVAL;
4115
4116 asoc = sctp_id2assoc(sk, *associd);
4117 if (!asoc)
4118 return -EINVAL;
4119
4120 return sctp_send_reset_assoc(asoc);
4121 }
4122
sctp_setsockopt_add_streams(struct sock * sk,struct sctp_add_streams * params,unsigned int optlen)4123 static int sctp_setsockopt_add_streams(struct sock *sk,
4124 struct sctp_add_streams *params,
4125 unsigned int optlen)
4126 {
4127 struct sctp_association *asoc;
4128
4129 if (optlen != sizeof(*params))
4130 return -EINVAL;
4131
4132 asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4133 if (!asoc)
4134 return -EINVAL;
4135
4136 return sctp_send_add_streams(asoc, params);
4137 }
4138
sctp_setsockopt_scheduler(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4139 static int sctp_setsockopt_scheduler(struct sock *sk,
4140 struct sctp_assoc_value *params,
4141 unsigned int optlen)
4142 {
4143 struct sctp_sock *sp = sctp_sk(sk);
4144 struct sctp_association *asoc;
4145 int retval = 0;
4146
4147 if (optlen < sizeof(*params))
4148 return -EINVAL;
4149
4150 if (params->assoc_value > SCTP_SS_MAX)
4151 return -EINVAL;
4152
4153 asoc = sctp_id2assoc(sk, params->assoc_id);
4154 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4155 sctp_style(sk, UDP))
4156 return -EINVAL;
4157
4158 if (asoc)
4159 return sctp_sched_set_sched(asoc, params->assoc_value);
4160
4161 if (sctp_style(sk, TCP))
4162 params->assoc_id = SCTP_FUTURE_ASSOC;
4163
4164 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4165 params->assoc_id == SCTP_ALL_ASSOC)
4166 sp->default_ss = params->assoc_value;
4167
4168 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4169 params->assoc_id == SCTP_ALL_ASSOC) {
4170 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4171 int ret = sctp_sched_set_sched(asoc,
4172 params->assoc_value);
4173
4174 if (ret && !retval)
4175 retval = ret;
4176 }
4177 }
4178
4179 return retval;
4180 }
4181
sctp_setsockopt_scheduler_value(struct sock * sk,struct sctp_stream_value * params,unsigned int optlen)4182 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4183 struct sctp_stream_value *params,
4184 unsigned int optlen)
4185 {
4186 struct sctp_association *asoc;
4187 int retval = -EINVAL;
4188
4189 if (optlen < sizeof(*params))
4190 goto out;
4191
4192 asoc = sctp_id2assoc(sk, params->assoc_id);
4193 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4194 sctp_style(sk, UDP))
4195 goto out;
4196
4197 if (asoc) {
4198 retval = sctp_sched_set_value(asoc, params->stream_id,
4199 params->stream_value, GFP_KERNEL);
4200 goto out;
4201 }
4202
4203 retval = 0;
4204
4205 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4206 int ret = sctp_sched_set_value(asoc, params->stream_id,
4207 params->stream_value,
4208 GFP_KERNEL);
4209 if (ret && !retval) /* try to return the 1st error. */
4210 retval = ret;
4211 }
4212
4213 out:
4214 return retval;
4215 }
4216
sctp_setsockopt_interleaving_supported(struct sock * sk,struct sctp_assoc_value * p,unsigned int optlen)4217 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4218 struct sctp_assoc_value *p,
4219 unsigned int optlen)
4220 {
4221 struct sctp_sock *sp = sctp_sk(sk);
4222 struct sctp_association *asoc;
4223
4224 if (optlen < sizeof(*p))
4225 return -EINVAL;
4226
4227 asoc = sctp_id2assoc(sk, p->assoc_id);
4228 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4229 return -EINVAL;
4230
4231 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4232 return -EPERM;
4233 }
4234
4235 sp->ep->intl_enable = !!p->assoc_value;
4236 return 0;
4237 }
4238
sctp_setsockopt_reuse_port(struct sock * sk,int * val,unsigned int optlen)4239 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4240 unsigned int optlen)
4241 {
4242 if (!sctp_style(sk, TCP))
4243 return -EOPNOTSUPP;
4244
4245 if (sctp_sk(sk)->ep->base.bind_addr.port)
4246 return -EFAULT;
4247
4248 if (optlen < sizeof(int))
4249 return -EINVAL;
4250
4251 sctp_sk(sk)->reuse = !!*val;
4252
4253 return 0;
4254 }
4255
sctp_assoc_ulpevent_type_set(struct sctp_event * param,struct sctp_association * asoc)4256 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4257 struct sctp_association *asoc)
4258 {
4259 struct sctp_ulpevent *event;
4260
4261 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4262
4263 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4264 if (sctp_outq_is_empty(&asoc->outqueue)) {
4265 event = sctp_ulpevent_make_sender_dry_event(asoc,
4266 GFP_USER | __GFP_NOWARN);
4267 if (!event)
4268 return -ENOMEM;
4269
4270 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4271 }
4272 }
4273
4274 return 0;
4275 }
4276
sctp_setsockopt_event(struct sock * sk,struct sctp_event * param,unsigned int optlen)4277 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4278 unsigned int optlen)
4279 {
4280 struct sctp_sock *sp = sctp_sk(sk);
4281 struct sctp_association *asoc;
4282 int retval = 0;
4283
4284 if (optlen < sizeof(*param))
4285 return -EINVAL;
4286
4287 if (param->se_type < SCTP_SN_TYPE_BASE ||
4288 param->se_type > SCTP_SN_TYPE_MAX)
4289 return -EINVAL;
4290
4291 asoc = sctp_id2assoc(sk, param->se_assoc_id);
4292 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4293 sctp_style(sk, UDP))
4294 return -EINVAL;
4295
4296 if (asoc)
4297 return sctp_assoc_ulpevent_type_set(param, asoc);
4298
4299 if (sctp_style(sk, TCP))
4300 param->se_assoc_id = SCTP_FUTURE_ASSOC;
4301
4302 if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4303 param->se_assoc_id == SCTP_ALL_ASSOC)
4304 sctp_ulpevent_type_set(&sp->subscribe,
4305 param->se_type, param->se_on);
4306
4307 if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4308 param->se_assoc_id == SCTP_ALL_ASSOC) {
4309 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4310 int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4311
4312 if (ret && !retval)
4313 retval = ret;
4314 }
4315 }
4316
4317 return retval;
4318 }
4319
sctp_setsockopt_asconf_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4320 static int sctp_setsockopt_asconf_supported(struct sock *sk,
4321 struct sctp_assoc_value *params,
4322 unsigned int optlen)
4323 {
4324 struct sctp_association *asoc;
4325 struct sctp_endpoint *ep;
4326 int retval = -EINVAL;
4327
4328 if (optlen != sizeof(*params))
4329 goto out;
4330
4331 asoc = sctp_id2assoc(sk, params->assoc_id);
4332 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4333 sctp_style(sk, UDP))
4334 goto out;
4335
4336 ep = sctp_sk(sk)->ep;
4337 ep->asconf_enable = !!params->assoc_value;
4338
4339 if (ep->asconf_enable && ep->auth_enable) {
4340 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4341 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4342 }
4343
4344 retval = 0;
4345
4346 out:
4347 return retval;
4348 }
4349
sctp_setsockopt_auth_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4350 static int sctp_setsockopt_auth_supported(struct sock *sk,
4351 struct sctp_assoc_value *params,
4352 unsigned int optlen)
4353 {
4354 struct sctp_association *asoc;
4355 struct sctp_endpoint *ep;
4356 int retval = -EINVAL;
4357
4358 if (optlen != sizeof(*params))
4359 goto out;
4360
4361 asoc = sctp_id2assoc(sk, params->assoc_id);
4362 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4363 sctp_style(sk, UDP))
4364 goto out;
4365
4366 ep = sctp_sk(sk)->ep;
4367 if (params->assoc_value) {
4368 retval = sctp_auth_init(ep, GFP_KERNEL);
4369 if (retval)
4370 goto out;
4371 if (ep->asconf_enable) {
4372 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4373 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4374 }
4375 }
4376
4377 ep->auth_enable = !!params->assoc_value;
4378 retval = 0;
4379
4380 out:
4381 return retval;
4382 }
4383
sctp_setsockopt_ecn_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4384 static int sctp_setsockopt_ecn_supported(struct sock *sk,
4385 struct sctp_assoc_value *params,
4386 unsigned int optlen)
4387 {
4388 struct sctp_association *asoc;
4389 int retval = -EINVAL;
4390
4391 if (optlen != sizeof(*params))
4392 goto out;
4393
4394 asoc = sctp_id2assoc(sk, params->assoc_id);
4395 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4396 sctp_style(sk, UDP))
4397 goto out;
4398
4399 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4400 retval = 0;
4401
4402 out:
4403 return retval;
4404 }
4405
sctp_setsockopt_pf_expose(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4406 static int sctp_setsockopt_pf_expose(struct sock *sk,
4407 struct sctp_assoc_value *params,
4408 unsigned int optlen)
4409 {
4410 struct sctp_association *asoc;
4411 int retval = -EINVAL;
4412
4413 if (optlen != sizeof(*params))
4414 goto out;
4415
4416 if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4417 goto out;
4418
4419 asoc = sctp_id2assoc(sk, params->assoc_id);
4420 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4421 sctp_style(sk, UDP))
4422 goto out;
4423
4424 if (asoc)
4425 asoc->pf_expose = params->assoc_value;
4426 else
4427 sctp_sk(sk)->pf_expose = params->assoc_value;
4428 retval = 0;
4429
4430 out:
4431 return retval;
4432 }
4433
sctp_setsockopt_encap_port(struct sock * sk,struct sctp_udpencaps * encap,unsigned int optlen)4434 static int sctp_setsockopt_encap_port(struct sock *sk,
4435 struct sctp_udpencaps *encap,
4436 unsigned int optlen)
4437 {
4438 struct sctp_association *asoc;
4439 struct sctp_transport *t;
4440 __be16 encap_port;
4441
4442 if (optlen != sizeof(*encap))
4443 return -EINVAL;
4444
4445 /* If an address other than INADDR_ANY is specified, and
4446 * no transport is found, then the request is invalid.
4447 */
4448 encap_port = (__force __be16)encap->sue_port;
4449 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) {
4450 t = sctp_addr_id2transport(sk, &encap->sue_address,
4451 encap->sue_assoc_id);
4452 if (!t)
4453 return -EINVAL;
4454
4455 t->encap_port = encap_port;
4456 return 0;
4457 }
4458
4459 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4460 * socket is a one to many style socket, and an association
4461 * was not found, then the id was invalid.
4462 */
4463 asoc = sctp_id2assoc(sk, encap->sue_assoc_id);
4464 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
4465 sctp_style(sk, UDP))
4466 return -EINVAL;
4467
4468 /* If changes are for association, also apply encap_port to
4469 * each transport.
4470 */
4471 if (asoc) {
4472 list_for_each_entry(t, &asoc->peer.transport_addr_list,
4473 transports)
4474 t->encap_port = encap_port;
4475
4476 return 0;
4477 }
4478
4479 sctp_sk(sk)->encap_port = encap_port;
4480 return 0;
4481 }
4482
4483 /* API 6.2 setsockopt(), getsockopt()
4484 *
4485 * Applications use setsockopt() and getsockopt() to set or retrieve
4486 * socket options. Socket options are used to change the default
4487 * behavior of sockets calls. They are described in Section 7.
4488 *
4489 * The syntax is:
4490 *
4491 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4492 * int __user *optlen);
4493 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4494 * int optlen);
4495 *
4496 * sd - the socket descript.
4497 * level - set to IPPROTO_SCTP for all SCTP options.
4498 * optname - the option name.
4499 * optval - the buffer to store the value of the option.
4500 * optlen - the size of the buffer.
4501 */
sctp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4502 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4503 sockptr_t optval, unsigned int optlen)
4504 {
4505 void *kopt = NULL;
4506 int retval = 0;
4507
4508 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4509
4510 /* I can hardly begin to describe how wrong this is. This is
4511 * so broken as to be worse than useless. The API draft
4512 * REALLY is NOT helpful here... I am not convinced that the
4513 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4514 * are at all well-founded.
4515 */
4516 if (level != SOL_SCTP) {
4517 struct sctp_af *af = sctp_sk(sk)->pf->af;
4518
4519 return af->setsockopt(sk, level, optname, optval, optlen);
4520 }
4521
4522 if (optlen > 0) {
4523 kopt = memdup_sockptr(optval, optlen);
4524 if (IS_ERR(kopt))
4525 return PTR_ERR(kopt);
4526 }
4527
4528 lock_sock(sk);
4529
4530 switch (optname) {
4531 case SCTP_SOCKOPT_BINDX_ADD:
4532 /* 'optlen' is the size of the addresses buffer. */
4533 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4534 SCTP_BINDX_ADD_ADDR);
4535 break;
4536
4537 case SCTP_SOCKOPT_BINDX_REM:
4538 /* 'optlen' is the size of the addresses buffer. */
4539 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4540 SCTP_BINDX_REM_ADDR);
4541 break;
4542
4543 case SCTP_SOCKOPT_CONNECTX_OLD:
4544 /* 'optlen' is the size of the addresses buffer. */
4545 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4546 break;
4547
4548 case SCTP_SOCKOPT_CONNECTX:
4549 /* 'optlen' is the size of the addresses buffer. */
4550 retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4551 break;
4552
4553 case SCTP_DISABLE_FRAGMENTS:
4554 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4555 break;
4556
4557 case SCTP_EVENTS:
4558 retval = sctp_setsockopt_events(sk, kopt, optlen);
4559 break;
4560
4561 case SCTP_AUTOCLOSE:
4562 retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4563 break;
4564
4565 case SCTP_PEER_ADDR_PARAMS:
4566 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4567 break;
4568
4569 case SCTP_DELAYED_SACK:
4570 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4571 break;
4572 case SCTP_PARTIAL_DELIVERY_POINT:
4573 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4574 break;
4575
4576 case SCTP_INITMSG:
4577 retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4578 break;
4579 case SCTP_DEFAULT_SEND_PARAM:
4580 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4581 break;
4582 case SCTP_DEFAULT_SNDINFO:
4583 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4584 break;
4585 case SCTP_PRIMARY_ADDR:
4586 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4587 break;
4588 case SCTP_SET_PEER_PRIMARY_ADDR:
4589 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4590 break;
4591 case SCTP_NODELAY:
4592 retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4593 break;
4594 case SCTP_RTOINFO:
4595 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4596 break;
4597 case SCTP_ASSOCINFO:
4598 retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4599 break;
4600 case SCTP_I_WANT_MAPPED_V4_ADDR:
4601 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4602 break;
4603 case SCTP_MAXSEG:
4604 retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4605 break;
4606 case SCTP_ADAPTATION_LAYER:
4607 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4608 break;
4609 case SCTP_CONTEXT:
4610 retval = sctp_setsockopt_context(sk, kopt, optlen);
4611 break;
4612 case SCTP_FRAGMENT_INTERLEAVE:
4613 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4614 break;
4615 case SCTP_MAX_BURST:
4616 retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4617 break;
4618 case SCTP_AUTH_CHUNK:
4619 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4620 break;
4621 case SCTP_HMAC_IDENT:
4622 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4623 break;
4624 case SCTP_AUTH_KEY:
4625 retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4626 break;
4627 case SCTP_AUTH_ACTIVE_KEY:
4628 retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4629 break;
4630 case SCTP_AUTH_DELETE_KEY:
4631 retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4632 break;
4633 case SCTP_AUTH_DEACTIVATE_KEY:
4634 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4635 break;
4636 case SCTP_AUTO_ASCONF:
4637 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4638 break;
4639 case SCTP_PEER_ADDR_THLDS:
4640 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4641 false);
4642 break;
4643 case SCTP_PEER_ADDR_THLDS_V2:
4644 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4645 true);
4646 break;
4647 case SCTP_RECVRCVINFO:
4648 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4649 break;
4650 case SCTP_RECVNXTINFO:
4651 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4652 break;
4653 case SCTP_PR_SUPPORTED:
4654 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4655 break;
4656 case SCTP_DEFAULT_PRINFO:
4657 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4658 break;
4659 case SCTP_RECONFIG_SUPPORTED:
4660 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4661 break;
4662 case SCTP_ENABLE_STREAM_RESET:
4663 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4664 break;
4665 case SCTP_RESET_STREAMS:
4666 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4667 break;
4668 case SCTP_RESET_ASSOC:
4669 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4670 break;
4671 case SCTP_ADD_STREAMS:
4672 retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4673 break;
4674 case SCTP_STREAM_SCHEDULER:
4675 retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4676 break;
4677 case SCTP_STREAM_SCHEDULER_VALUE:
4678 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4679 break;
4680 case SCTP_INTERLEAVING_SUPPORTED:
4681 retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4682 optlen);
4683 break;
4684 case SCTP_REUSE_PORT:
4685 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4686 break;
4687 case SCTP_EVENT:
4688 retval = sctp_setsockopt_event(sk, kopt, optlen);
4689 break;
4690 case SCTP_ASCONF_SUPPORTED:
4691 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4692 break;
4693 case SCTP_AUTH_SUPPORTED:
4694 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4695 break;
4696 case SCTP_ECN_SUPPORTED:
4697 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4698 break;
4699 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4700 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4701 break;
4702 case SCTP_REMOTE_UDP_ENCAPS_PORT:
4703 retval = sctp_setsockopt_encap_port(sk, kopt, optlen);
4704 break;
4705 default:
4706 retval = -ENOPROTOOPT;
4707 break;
4708 }
4709
4710 release_sock(sk);
4711 kfree(kopt);
4712 return retval;
4713 }
4714
4715 /* API 3.1.6 connect() - UDP Style Syntax
4716 *
4717 * An application may use the connect() call in the UDP model to initiate an
4718 * association without sending data.
4719 *
4720 * The syntax is:
4721 *
4722 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4723 *
4724 * sd: the socket descriptor to have a new association added to.
4725 *
4726 * nam: the address structure (either struct sockaddr_in or struct
4727 * sockaddr_in6 defined in RFC2553 [7]).
4728 *
4729 * len: the size of the address.
4730 */
sctp_connect(struct sock * sk,struct sockaddr * addr,int addr_len,int flags)4731 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4732 int addr_len, int flags)
4733 {
4734 struct sctp_af *af;
4735 int err = -EINVAL;
4736
4737 lock_sock(sk);
4738 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4739 addr, addr_len);
4740
4741 /* Validate addr_len before calling common connect/connectx routine. */
4742 af = sctp_get_af_specific(addr->sa_family);
4743 if (af && addr_len >= af->sockaddr_len)
4744 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4745
4746 release_sock(sk);
4747 return err;
4748 }
4749
sctp_inet_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)4750 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4751 int addr_len, int flags)
4752 {
4753 if (addr_len < sizeof(uaddr->sa_family))
4754 return -EINVAL;
4755
4756 if (uaddr->sa_family == AF_UNSPEC)
4757 return -EOPNOTSUPP;
4758
4759 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4760 }
4761
4762 /* FIXME: Write comments. */
sctp_disconnect(struct sock * sk,int flags)4763 static int sctp_disconnect(struct sock *sk, int flags)
4764 {
4765 return -EOPNOTSUPP; /* STUB */
4766 }
4767
4768 /* 4.1.4 accept() - TCP Style Syntax
4769 *
4770 * Applications use accept() call to remove an established SCTP
4771 * association from the accept queue of the endpoint. A new socket
4772 * descriptor will be returned from accept() to represent the newly
4773 * formed association.
4774 */
sctp_accept(struct sock * sk,int flags,int * err,bool kern)4775 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4776 {
4777 struct sctp_sock *sp;
4778 struct sctp_endpoint *ep;
4779 struct sock *newsk = NULL;
4780 struct sctp_association *asoc;
4781 long timeo;
4782 int error = 0;
4783
4784 lock_sock(sk);
4785
4786 sp = sctp_sk(sk);
4787 ep = sp->ep;
4788
4789 if (!sctp_style(sk, TCP)) {
4790 error = -EOPNOTSUPP;
4791 goto out;
4792 }
4793
4794 if (!sctp_sstate(sk, LISTENING)) {
4795 error = -EINVAL;
4796 goto out;
4797 }
4798
4799 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4800
4801 error = sctp_wait_for_accept(sk, timeo);
4802 if (error)
4803 goto out;
4804
4805 /* We treat the list of associations on the endpoint as the accept
4806 * queue and pick the first association on the list.
4807 */
4808 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4809
4810 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4811 if (!newsk) {
4812 error = -ENOMEM;
4813 goto out;
4814 }
4815
4816 /* Populate the fields of the newsk from the oldsk and migrate the
4817 * asoc to the newsk.
4818 */
4819 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4820 if (error) {
4821 sk_common_release(newsk);
4822 newsk = NULL;
4823 }
4824
4825 out:
4826 release_sock(sk);
4827 *err = error;
4828 return newsk;
4829 }
4830
4831 /* The SCTP ioctl handler. */
sctp_ioctl(struct sock * sk,int cmd,unsigned long arg)4832 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4833 {
4834 int rc = -ENOTCONN;
4835
4836 lock_sock(sk);
4837
4838 /*
4839 * SEQPACKET-style sockets in LISTENING state are valid, for
4840 * SCTP, so only discard TCP-style sockets in LISTENING state.
4841 */
4842 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4843 goto out;
4844
4845 switch (cmd) {
4846 case SIOCINQ: {
4847 struct sk_buff *skb;
4848 unsigned int amount = 0;
4849
4850 skb = skb_peek(&sk->sk_receive_queue);
4851 if (skb != NULL) {
4852 /*
4853 * We will only return the amount of this packet since
4854 * that is all that will be read.
4855 */
4856 amount = skb->len;
4857 }
4858 rc = put_user(amount, (int __user *)arg);
4859 break;
4860 }
4861 default:
4862 rc = -ENOIOCTLCMD;
4863 break;
4864 }
4865 out:
4866 release_sock(sk);
4867 return rc;
4868 }
4869
4870 /* This is the function which gets called during socket creation to
4871 * initialized the SCTP-specific portion of the sock.
4872 * The sock structure should already be zero-filled memory.
4873 */
sctp_init_sock(struct sock * sk)4874 static int sctp_init_sock(struct sock *sk)
4875 {
4876 struct net *net = sock_net(sk);
4877 struct sctp_sock *sp;
4878
4879 pr_debug("%s: sk:%p\n", __func__, sk);
4880
4881 sp = sctp_sk(sk);
4882
4883 /* Initialize the SCTP per socket area. */
4884 switch (sk->sk_type) {
4885 case SOCK_SEQPACKET:
4886 sp->type = SCTP_SOCKET_UDP;
4887 break;
4888 case SOCK_STREAM:
4889 sp->type = SCTP_SOCKET_TCP;
4890 break;
4891 default:
4892 return -ESOCKTNOSUPPORT;
4893 }
4894
4895 sk->sk_gso_type = SKB_GSO_SCTP;
4896
4897 /* Initialize default send parameters. These parameters can be
4898 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4899 */
4900 sp->default_stream = 0;
4901 sp->default_ppid = 0;
4902 sp->default_flags = 0;
4903 sp->default_context = 0;
4904 sp->default_timetolive = 0;
4905
4906 sp->default_rcv_context = 0;
4907 sp->max_burst = net->sctp.max_burst;
4908
4909 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4910
4911 /* Initialize default setup parameters. These parameters
4912 * can be modified with the SCTP_INITMSG socket option or
4913 * overridden by the SCTP_INIT CMSG.
4914 */
4915 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4916 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4917 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4918 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4919
4920 /* Initialize default RTO related parameters. These parameters can
4921 * be modified for with the SCTP_RTOINFO socket option.
4922 */
4923 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4924 sp->rtoinfo.srto_max = net->sctp.rto_max;
4925 sp->rtoinfo.srto_min = net->sctp.rto_min;
4926
4927 /* Initialize default association related parameters. These parameters
4928 * can be modified with the SCTP_ASSOCINFO socket option.
4929 */
4930 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4931 sp->assocparams.sasoc_number_peer_destinations = 0;
4932 sp->assocparams.sasoc_peer_rwnd = 0;
4933 sp->assocparams.sasoc_local_rwnd = 0;
4934 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4935
4936 /* Initialize default event subscriptions. By default, all the
4937 * options are off.
4938 */
4939 sp->subscribe = 0;
4940
4941 /* Default Peer Address Parameters. These defaults can
4942 * be modified via SCTP_PEER_ADDR_PARAMS
4943 */
4944 sp->hbinterval = net->sctp.hb_interval;
4945 sp->udp_port = htons(net->sctp.udp_port);
4946 sp->encap_port = htons(net->sctp.encap_port);
4947 sp->pathmaxrxt = net->sctp.max_retrans_path;
4948 sp->pf_retrans = net->sctp.pf_retrans;
4949 sp->ps_retrans = net->sctp.ps_retrans;
4950 sp->pf_expose = net->sctp.pf_expose;
4951 sp->pathmtu = 0; /* allow default discovery */
4952 sp->sackdelay = net->sctp.sack_timeout;
4953 sp->sackfreq = 2;
4954 sp->param_flags = SPP_HB_ENABLE |
4955 SPP_PMTUD_ENABLE |
4956 SPP_SACKDELAY_ENABLE;
4957 sp->default_ss = SCTP_SS_DEFAULT;
4958
4959 /* If enabled no SCTP message fragmentation will be performed.
4960 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4961 */
4962 sp->disable_fragments = 0;
4963
4964 /* Enable Nagle algorithm by default. */
4965 sp->nodelay = 0;
4966
4967 sp->recvrcvinfo = 0;
4968 sp->recvnxtinfo = 0;
4969
4970 /* Enable by default. */
4971 sp->v4mapped = 1;
4972
4973 /* Auto-close idle associations after the configured
4974 * number of seconds. A value of 0 disables this
4975 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4976 * for UDP-style sockets only.
4977 */
4978 sp->autoclose = 0;
4979
4980 /* User specified fragmentation limit. */
4981 sp->user_frag = 0;
4982
4983 sp->adaptation_ind = 0;
4984
4985 sp->pf = sctp_get_pf_specific(sk->sk_family);
4986
4987 /* Control variables for partial data delivery. */
4988 atomic_set(&sp->pd_mode, 0);
4989 skb_queue_head_init(&sp->pd_lobby);
4990 sp->frag_interleave = 0;
4991
4992 /* Create a per socket endpoint structure. Even if we
4993 * change the data structure relationships, this may still
4994 * be useful for storing pre-connect address information.
4995 */
4996 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4997 if (!sp->ep)
4998 return -ENOMEM;
4999
5000 sp->hmac = NULL;
5001
5002 sk->sk_destruct = sctp_destruct_sock;
5003
5004 SCTP_DBG_OBJCNT_INC(sock);
5005
5006 local_bh_disable();
5007 sk_sockets_allocated_inc(sk);
5008 sock_prot_inuse_add(net, sk->sk_prot, 1);
5009
5010 local_bh_enable();
5011
5012 return 0;
5013 }
5014
5015 /* Cleanup any SCTP per socket resources. Must be called with
5016 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5017 */
sctp_destroy_sock(struct sock * sk)5018 static void sctp_destroy_sock(struct sock *sk)
5019 {
5020 struct sctp_sock *sp;
5021
5022 pr_debug("%s: sk:%p\n", __func__, sk);
5023
5024 /* Release our hold on the endpoint. */
5025 sp = sctp_sk(sk);
5026 /* This could happen during socket init, thus we bail out
5027 * early, since the rest of the below is not setup either.
5028 */
5029 if (sp->ep == NULL)
5030 return;
5031
5032 if (sp->do_auto_asconf) {
5033 sp->do_auto_asconf = 0;
5034 list_del(&sp->auto_asconf_list);
5035 }
5036 sctp_endpoint_free(sp->ep);
5037 local_bh_disable();
5038 sk_sockets_allocated_dec(sk);
5039 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5040 local_bh_enable();
5041 }
5042
5043 /* Triggered when there are no references on the socket anymore */
sctp_destruct_sock(struct sock * sk)5044 static void sctp_destruct_sock(struct sock *sk)
5045 {
5046 struct sctp_sock *sp = sctp_sk(sk);
5047
5048 /* Free up the HMAC transform. */
5049 crypto_free_shash(sp->hmac);
5050
5051 inet_sock_destruct(sk);
5052 }
5053
5054 /* API 4.1.7 shutdown() - TCP Style Syntax
5055 * int shutdown(int socket, int how);
5056 *
5057 * sd - the socket descriptor of the association to be closed.
5058 * how - Specifies the type of shutdown. The values are
5059 * as follows:
5060 * SHUT_RD
5061 * Disables further receive operations. No SCTP
5062 * protocol action is taken.
5063 * SHUT_WR
5064 * Disables further send operations, and initiates
5065 * the SCTP shutdown sequence.
5066 * SHUT_RDWR
5067 * Disables further send and receive operations
5068 * and initiates the SCTP shutdown sequence.
5069 */
sctp_shutdown(struct sock * sk,int how)5070 static void sctp_shutdown(struct sock *sk, int how)
5071 {
5072 struct net *net = sock_net(sk);
5073 struct sctp_endpoint *ep;
5074
5075 if (!sctp_style(sk, TCP))
5076 return;
5077
5078 ep = sctp_sk(sk)->ep;
5079 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5080 struct sctp_association *asoc;
5081
5082 inet_sk_set_state(sk, SCTP_SS_CLOSING);
5083 asoc = list_entry(ep->asocs.next,
5084 struct sctp_association, asocs);
5085 sctp_primitive_SHUTDOWN(net, asoc, NULL);
5086 }
5087 }
5088
sctp_get_sctp_info(struct sock * sk,struct sctp_association * asoc,struct sctp_info * info)5089 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5090 struct sctp_info *info)
5091 {
5092 struct sctp_transport *prim;
5093 struct list_head *pos;
5094 int mask;
5095
5096 memset(info, 0, sizeof(*info));
5097 if (!asoc) {
5098 struct sctp_sock *sp = sctp_sk(sk);
5099
5100 info->sctpi_s_autoclose = sp->autoclose;
5101 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5102 info->sctpi_s_pd_point = sp->pd_point;
5103 info->sctpi_s_nodelay = sp->nodelay;
5104 info->sctpi_s_disable_fragments = sp->disable_fragments;
5105 info->sctpi_s_v4mapped = sp->v4mapped;
5106 info->sctpi_s_frag_interleave = sp->frag_interleave;
5107 info->sctpi_s_type = sp->type;
5108
5109 return 0;
5110 }
5111
5112 info->sctpi_tag = asoc->c.my_vtag;
5113 info->sctpi_state = asoc->state;
5114 info->sctpi_rwnd = asoc->a_rwnd;
5115 info->sctpi_unackdata = asoc->unack_data;
5116 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5117 info->sctpi_instrms = asoc->stream.incnt;
5118 info->sctpi_outstrms = asoc->stream.outcnt;
5119 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5120 info->sctpi_inqueue++;
5121 list_for_each(pos, &asoc->outqueue.out_chunk_list)
5122 info->sctpi_outqueue++;
5123 info->sctpi_overall_error = asoc->overall_error_count;
5124 info->sctpi_max_burst = asoc->max_burst;
5125 info->sctpi_maxseg = asoc->frag_point;
5126 info->sctpi_peer_rwnd = asoc->peer.rwnd;
5127 info->sctpi_peer_tag = asoc->c.peer_vtag;
5128
5129 mask = asoc->peer.ecn_capable << 1;
5130 mask = (mask | asoc->peer.ipv4_address) << 1;
5131 mask = (mask | asoc->peer.ipv6_address) << 1;
5132 mask = (mask | asoc->peer.hostname_address) << 1;
5133 mask = (mask | asoc->peer.asconf_capable) << 1;
5134 mask = (mask | asoc->peer.prsctp_capable) << 1;
5135 mask = (mask | asoc->peer.auth_capable);
5136 info->sctpi_peer_capable = mask;
5137 mask = asoc->peer.sack_needed << 1;
5138 mask = (mask | asoc->peer.sack_generation) << 1;
5139 mask = (mask | asoc->peer.zero_window_announced);
5140 info->sctpi_peer_sack = mask;
5141
5142 info->sctpi_isacks = asoc->stats.isacks;
5143 info->sctpi_osacks = asoc->stats.osacks;
5144 info->sctpi_opackets = asoc->stats.opackets;
5145 info->sctpi_ipackets = asoc->stats.ipackets;
5146 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5147 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5148 info->sctpi_idupchunks = asoc->stats.idupchunks;
5149 info->sctpi_gapcnt = asoc->stats.gapcnt;
5150 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5151 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5152 info->sctpi_oodchunks = asoc->stats.oodchunks;
5153 info->sctpi_iodchunks = asoc->stats.iodchunks;
5154 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5155 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5156
5157 prim = asoc->peer.primary_path;
5158 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5159 info->sctpi_p_state = prim->state;
5160 info->sctpi_p_cwnd = prim->cwnd;
5161 info->sctpi_p_srtt = prim->srtt;
5162 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5163 info->sctpi_p_hbinterval = prim->hbinterval;
5164 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5165 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5166 info->sctpi_p_ssthresh = prim->ssthresh;
5167 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5168 info->sctpi_p_flight_size = prim->flight_size;
5169 info->sctpi_p_error = prim->error_count;
5170
5171 return 0;
5172 }
5173 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5174
5175 /* use callback to avoid exporting the core structure */
sctp_transport_walk_start(struct rhashtable_iter * iter)5176 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5177 {
5178 rhltable_walk_enter(&sctp_transport_hashtable, iter);
5179
5180 rhashtable_walk_start(iter);
5181 }
5182
sctp_transport_walk_stop(struct rhashtable_iter * iter)5183 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5184 {
5185 rhashtable_walk_stop(iter);
5186 rhashtable_walk_exit(iter);
5187 }
5188
sctp_transport_get_next(struct net * net,struct rhashtable_iter * iter)5189 struct sctp_transport *sctp_transport_get_next(struct net *net,
5190 struct rhashtable_iter *iter)
5191 {
5192 struct sctp_transport *t;
5193
5194 t = rhashtable_walk_next(iter);
5195 for (; t; t = rhashtable_walk_next(iter)) {
5196 if (IS_ERR(t)) {
5197 if (PTR_ERR(t) == -EAGAIN)
5198 continue;
5199 break;
5200 }
5201
5202 if (!sctp_transport_hold(t))
5203 continue;
5204
5205 if (net_eq(t->asoc->base.net, net) &&
5206 t->asoc->peer.primary_path == t)
5207 break;
5208
5209 sctp_transport_put(t);
5210 }
5211
5212 return t;
5213 }
5214
sctp_transport_get_idx(struct net * net,struct rhashtable_iter * iter,int pos)5215 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5216 struct rhashtable_iter *iter,
5217 int pos)
5218 {
5219 struct sctp_transport *t;
5220
5221 if (!pos)
5222 return SEQ_START_TOKEN;
5223
5224 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5225 if (!--pos)
5226 break;
5227 sctp_transport_put(t);
5228 }
5229
5230 return t;
5231 }
5232
sctp_for_each_endpoint(int (* cb)(struct sctp_endpoint *,void *),void * p)5233 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5234 void *p) {
5235 int err = 0;
5236 int hash = 0;
5237 struct sctp_ep_common *epb;
5238 struct sctp_hashbucket *head;
5239
5240 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5241 hash++, head++) {
5242 read_lock_bh(&head->lock);
5243 sctp_for_each_hentry(epb, &head->chain) {
5244 err = cb(sctp_ep(epb), p);
5245 if (err)
5246 break;
5247 }
5248 read_unlock_bh(&head->lock);
5249 }
5250
5251 return err;
5252 }
5253 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5254
sctp_transport_lookup_process(int (* cb)(struct sctp_transport *,void *),struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr,void * p)5255 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5256 struct net *net,
5257 const union sctp_addr *laddr,
5258 const union sctp_addr *paddr, void *p)
5259 {
5260 struct sctp_transport *transport;
5261 int err;
5262
5263 rcu_read_lock();
5264 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5265 rcu_read_unlock();
5266 if (!transport)
5267 return -ENOENT;
5268
5269 err = cb(transport, p);
5270 sctp_transport_put(transport);
5271
5272 return err;
5273 }
5274 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5275
sctp_for_each_transport(int (* cb)(struct sctp_transport *,void *),int (* cb_done)(struct sctp_transport *,void *),struct net * net,int * pos,void * p)5276 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5277 int (*cb_done)(struct sctp_transport *, void *),
5278 struct net *net, int *pos, void *p) {
5279 struct rhashtable_iter hti;
5280 struct sctp_transport *tsp;
5281 int ret;
5282
5283 again:
5284 ret = 0;
5285 sctp_transport_walk_start(&hti);
5286
5287 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5288 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5289 ret = cb(tsp, p);
5290 if (ret)
5291 break;
5292 (*pos)++;
5293 sctp_transport_put(tsp);
5294 }
5295 sctp_transport_walk_stop(&hti);
5296
5297 if (ret) {
5298 if (cb_done && !cb_done(tsp, p)) {
5299 (*pos)++;
5300 sctp_transport_put(tsp);
5301 goto again;
5302 }
5303 sctp_transport_put(tsp);
5304 }
5305
5306 return ret;
5307 }
5308 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5309
5310 /* 7.2.1 Association Status (SCTP_STATUS)
5311
5312 * Applications can retrieve current status information about an
5313 * association, including association state, peer receiver window size,
5314 * number of unacked data chunks, and number of data chunks pending
5315 * receipt. This information is read-only.
5316 */
sctp_getsockopt_sctp_status(struct sock * sk,int len,char __user * optval,int __user * optlen)5317 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5318 char __user *optval,
5319 int __user *optlen)
5320 {
5321 struct sctp_status status;
5322 struct sctp_association *asoc = NULL;
5323 struct sctp_transport *transport;
5324 sctp_assoc_t associd;
5325 int retval = 0;
5326
5327 if (len < sizeof(status)) {
5328 retval = -EINVAL;
5329 goto out;
5330 }
5331
5332 len = sizeof(status);
5333 if (copy_from_user(&status, optval, len)) {
5334 retval = -EFAULT;
5335 goto out;
5336 }
5337
5338 associd = status.sstat_assoc_id;
5339 asoc = sctp_id2assoc(sk, associd);
5340 if (!asoc) {
5341 retval = -EINVAL;
5342 goto out;
5343 }
5344
5345 transport = asoc->peer.primary_path;
5346
5347 status.sstat_assoc_id = sctp_assoc2id(asoc);
5348 status.sstat_state = sctp_assoc_to_state(asoc);
5349 status.sstat_rwnd = asoc->peer.rwnd;
5350 status.sstat_unackdata = asoc->unack_data;
5351
5352 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5353 status.sstat_instrms = asoc->stream.incnt;
5354 status.sstat_outstrms = asoc->stream.outcnt;
5355 status.sstat_fragmentation_point = asoc->frag_point;
5356 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5357 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5358 transport->af_specific->sockaddr_len);
5359 /* Map ipv4 address into v4-mapped-on-v6 address. */
5360 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5361 (union sctp_addr *)&status.sstat_primary.spinfo_address);
5362 status.sstat_primary.spinfo_state = transport->state;
5363 status.sstat_primary.spinfo_cwnd = transport->cwnd;
5364 status.sstat_primary.spinfo_srtt = transport->srtt;
5365 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5366 status.sstat_primary.spinfo_mtu = transport->pathmtu;
5367
5368 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5369 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5370
5371 if (put_user(len, optlen)) {
5372 retval = -EFAULT;
5373 goto out;
5374 }
5375
5376 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5377 __func__, len, status.sstat_state, status.sstat_rwnd,
5378 status.sstat_assoc_id);
5379
5380 if (copy_to_user(optval, &status, len)) {
5381 retval = -EFAULT;
5382 goto out;
5383 }
5384
5385 out:
5386 return retval;
5387 }
5388
5389
5390 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5391 *
5392 * Applications can retrieve information about a specific peer address
5393 * of an association, including its reachability state, congestion
5394 * window, and retransmission timer values. This information is
5395 * read-only.
5396 */
sctp_getsockopt_peer_addr_info(struct sock * sk,int len,char __user * optval,int __user * optlen)5397 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5398 char __user *optval,
5399 int __user *optlen)
5400 {
5401 struct sctp_paddrinfo pinfo;
5402 struct sctp_transport *transport;
5403 int retval = 0;
5404
5405 if (len < sizeof(pinfo)) {
5406 retval = -EINVAL;
5407 goto out;
5408 }
5409
5410 len = sizeof(pinfo);
5411 if (copy_from_user(&pinfo, optval, len)) {
5412 retval = -EFAULT;
5413 goto out;
5414 }
5415
5416 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5417 pinfo.spinfo_assoc_id);
5418 if (!transport) {
5419 retval = -EINVAL;
5420 goto out;
5421 }
5422
5423 if (transport->state == SCTP_PF &&
5424 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5425 retval = -EACCES;
5426 goto out;
5427 }
5428
5429 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5430 pinfo.spinfo_state = transport->state;
5431 pinfo.spinfo_cwnd = transport->cwnd;
5432 pinfo.spinfo_srtt = transport->srtt;
5433 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5434 pinfo.spinfo_mtu = transport->pathmtu;
5435
5436 if (pinfo.spinfo_state == SCTP_UNKNOWN)
5437 pinfo.spinfo_state = SCTP_ACTIVE;
5438
5439 if (put_user(len, optlen)) {
5440 retval = -EFAULT;
5441 goto out;
5442 }
5443
5444 if (copy_to_user(optval, &pinfo, len)) {
5445 retval = -EFAULT;
5446 goto out;
5447 }
5448
5449 out:
5450 return retval;
5451 }
5452
5453 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5454 *
5455 * This option is a on/off flag. If enabled no SCTP message
5456 * fragmentation will be performed. Instead if a message being sent
5457 * exceeds the current PMTU size, the message will NOT be sent and
5458 * instead a error will be indicated to the user.
5459 */
sctp_getsockopt_disable_fragments(struct sock * sk,int len,char __user * optval,int __user * optlen)5460 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5461 char __user *optval, int __user *optlen)
5462 {
5463 int val;
5464
5465 if (len < sizeof(int))
5466 return -EINVAL;
5467
5468 len = sizeof(int);
5469 val = (sctp_sk(sk)->disable_fragments == 1);
5470 if (put_user(len, optlen))
5471 return -EFAULT;
5472 if (copy_to_user(optval, &val, len))
5473 return -EFAULT;
5474 return 0;
5475 }
5476
5477 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5478 *
5479 * This socket option is used to specify various notifications and
5480 * ancillary data the user wishes to receive.
5481 */
sctp_getsockopt_events(struct sock * sk,int len,char __user * optval,int __user * optlen)5482 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5483 int __user *optlen)
5484 {
5485 struct sctp_event_subscribe subscribe;
5486 __u8 *sn_type = (__u8 *)&subscribe;
5487 int i;
5488
5489 if (len == 0)
5490 return -EINVAL;
5491 if (len > sizeof(struct sctp_event_subscribe))
5492 len = sizeof(struct sctp_event_subscribe);
5493 if (put_user(len, optlen))
5494 return -EFAULT;
5495
5496 for (i = 0; i < len; i++)
5497 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5498 SCTP_SN_TYPE_BASE + i);
5499
5500 if (copy_to_user(optval, &subscribe, len))
5501 return -EFAULT;
5502
5503 return 0;
5504 }
5505
5506 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5507 *
5508 * This socket option is applicable to the UDP-style socket only. When
5509 * set it will cause associations that are idle for more than the
5510 * specified number of seconds to automatically close. An association
5511 * being idle is defined an association that has NOT sent or received
5512 * user data. The special value of '0' indicates that no automatic
5513 * close of any associations should be performed. The option expects an
5514 * integer defining the number of seconds of idle time before an
5515 * association is closed.
5516 */
sctp_getsockopt_autoclose(struct sock * sk,int len,char __user * optval,int __user * optlen)5517 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5518 {
5519 /* Applicable to UDP-style socket only */
5520 if (sctp_style(sk, TCP))
5521 return -EOPNOTSUPP;
5522 if (len < sizeof(int))
5523 return -EINVAL;
5524 len = sizeof(int);
5525 if (put_user(len, optlen))
5526 return -EFAULT;
5527 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5528 return -EFAULT;
5529 return 0;
5530 }
5531
5532 /* Helper routine to branch off an association to a new socket. */
sctp_do_peeloff(struct sock * sk,sctp_assoc_t id,struct socket ** sockp)5533 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5534 {
5535 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5536 struct sctp_sock *sp = sctp_sk(sk);
5537 struct socket *sock;
5538 int err = 0;
5539
5540 /* Do not peel off from one netns to another one. */
5541 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5542 return -EINVAL;
5543
5544 if (!asoc)
5545 return -EINVAL;
5546
5547 /* An association cannot be branched off from an already peeled-off
5548 * socket, nor is this supported for tcp style sockets.
5549 */
5550 if (!sctp_style(sk, UDP))
5551 return -EINVAL;
5552
5553 /* Create a new socket. */
5554 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5555 if (err < 0)
5556 return err;
5557
5558 sctp_copy_sock(sock->sk, sk, asoc);
5559
5560 /* Make peeled-off sockets more like 1-1 accepted sockets.
5561 * Set the daddr and initialize id to something more random and also
5562 * copy over any ip options.
5563 */
5564 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5565 sp->pf->copy_ip_options(sk, sock->sk);
5566
5567 /* Populate the fields of the newsk from the oldsk and migrate the
5568 * asoc to the newsk.
5569 */
5570 err = sctp_sock_migrate(sk, sock->sk, asoc,
5571 SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5572 if (err) {
5573 sock_release(sock);
5574 sock = NULL;
5575 }
5576
5577 *sockp = sock;
5578
5579 return err;
5580 }
5581 EXPORT_SYMBOL(sctp_do_peeloff);
5582
sctp_getsockopt_peeloff_common(struct sock * sk,sctp_peeloff_arg_t * peeloff,struct file ** newfile,unsigned flags)5583 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5584 struct file **newfile, unsigned flags)
5585 {
5586 struct socket *newsock;
5587 int retval;
5588
5589 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5590 if (retval < 0)
5591 goto out;
5592
5593 /* Map the socket to an unused fd that can be returned to the user. */
5594 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5595 if (retval < 0) {
5596 sock_release(newsock);
5597 goto out;
5598 }
5599
5600 *newfile = sock_alloc_file(newsock, 0, NULL);
5601 if (IS_ERR(*newfile)) {
5602 put_unused_fd(retval);
5603 retval = PTR_ERR(*newfile);
5604 *newfile = NULL;
5605 return retval;
5606 }
5607
5608 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5609 retval);
5610
5611 peeloff->sd = retval;
5612
5613 if (flags & SOCK_NONBLOCK)
5614 (*newfile)->f_flags |= O_NONBLOCK;
5615 out:
5616 return retval;
5617 }
5618
sctp_getsockopt_peeloff(struct sock * sk,int len,char __user * optval,int __user * optlen)5619 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5620 {
5621 sctp_peeloff_arg_t peeloff;
5622 struct file *newfile = NULL;
5623 int retval = 0;
5624
5625 if (len < sizeof(sctp_peeloff_arg_t))
5626 return -EINVAL;
5627 len = sizeof(sctp_peeloff_arg_t);
5628 if (copy_from_user(&peeloff, optval, len))
5629 return -EFAULT;
5630
5631 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5632 if (retval < 0)
5633 goto out;
5634
5635 /* Return the fd mapped to the new socket. */
5636 if (put_user(len, optlen)) {
5637 fput(newfile);
5638 put_unused_fd(retval);
5639 return -EFAULT;
5640 }
5641
5642 if (copy_to_user(optval, &peeloff, len)) {
5643 fput(newfile);
5644 put_unused_fd(retval);
5645 return -EFAULT;
5646 }
5647 fd_install(retval, newfile);
5648 out:
5649 return retval;
5650 }
5651
sctp_getsockopt_peeloff_flags(struct sock * sk,int len,char __user * optval,int __user * optlen)5652 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5653 char __user *optval, int __user *optlen)
5654 {
5655 sctp_peeloff_flags_arg_t peeloff;
5656 struct file *newfile = NULL;
5657 int retval = 0;
5658
5659 if (len < sizeof(sctp_peeloff_flags_arg_t))
5660 return -EINVAL;
5661 len = sizeof(sctp_peeloff_flags_arg_t);
5662 if (copy_from_user(&peeloff, optval, len))
5663 return -EFAULT;
5664
5665 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5666 &newfile, peeloff.flags);
5667 if (retval < 0)
5668 goto out;
5669
5670 /* Return the fd mapped to the new socket. */
5671 if (put_user(len, optlen)) {
5672 fput(newfile);
5673 put_unused_fd(retval);
5674 return -EFAULT;
5675 }
5676
5677 if (copy_to_user(optval, &peeloff, len)) {
5678 fput(newfile);
5679 put_unused_fd(retval);
5680 return -EFAULT;
5681 }
5682 fd_install(retval, newfile);
5683 out:
5684 return retval;
5685 }
5686
5687 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5688 *
5689 * Applications can enable or disable heartbeats for any peer address of
5690 * an association, modify an address's heartbeat interval, force a
5691 * heartbeat to be sent immediately, and adjust the address's maximum
5692 * number of retransmissions sent before an address is considered
5693 * unreachable. The following structure is used to access and modify an
5694 * address's parameters:
5695 *
5696 * struct sctp_paddrparams {
5697 * sctp_assoc_t spp_assoc_id;
5698 * struct sockaddr_storage spp_address;
5699 * uint32_t spp_hbinterval;
5700 * uint16_t spp_pathmaxrxt;
5701 * uint32_t spp_pathmtu;
5702 * uint32_t spp_sackdelay;
5703 * uint32_t spp_flags;
5704 * };
5705 *
5706 * spp_assoc_id - (one-to-many style socket) This is filled in the
5707 * application, and identifies the association for
5708 * this query.
5709 * spp_address - This specifies which address is of interest.
5710 * spp_hbinterval - This contains the value of the heartbeat interval,
5711 * in milliseconds. If a value of zero
5712 * is present in this field then no changes are to
5713 * be made to this parameter.
5714 * spp_pathmaxrxt - This contains the maximum number of
5715 * retransmissions before this address shall be
5716 * considered unreachable. If a value of zero
5717 * is present in this field then no changes are to
5718 * be made to this parameter.
5719 * spp_pathmtu - When Path MTU discovery is disabled the value
5720 * specified here will be the "fixed" path mtu.
5721 * Note that if the spp_address field is empty
5722 * then all associations on this address will
5723 * have this fixed path mtu set upon them.
5724 *
5725 * spp_sackdelay - When delayed sack is enabled, this value specifies
5726 * the number of milliseconds that sacks will be delayed
5727 * for. This value will apply to all addresses of an
5728 * association if the spp_address field is empty. Note
5729 * also, that if delayed sack is enabled and this
5730 * value is set to 0, no change is made to the last
5731 * recorded delayed sack timer value.
5732 *
5733 * spp_flags - These flags are used to control various features
5734 * on an association. The flag field may contain
5735 * zero or more of the following options.
5736 *
5737 * SPP_HB_ENABLE - Enable heartbeats on the
5738 * specified address. Note that if the address
5739 * field is empty all addresses for the association
5740 * have heartbeats enabled upon them.
5741 *
5742 * SPP_HB_DISABLE - Disable heartbeats on the
5743 * speicifed address. Note that if the address
5744 * field is empty all addresses for the association
5745 * will have their heartbeats disabled. Note also
5746 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5747 * mutually exclusive, only one of these two should
5748 * be specified. Enabling both fields will have
5749 * undetermined results.
5750 *
5751 * SPP_HB_DEMAND - Request a user initiated heartbeat
5752 * to be made immediately.
5753 *
5754 * SPP_PMTUD_ENABLE - This field will enable PMTU
5755 * discovery upon the specified address. Note that
5756 * if the address feild is empty then all addresses
5757 * on the association are effected.
5758 *
5759 * SPP_PMTUD_DISABLE - This field will disable PMTU
5760 * discovery upon the specified address. Note that
5761 * if the address feild is empty then all addresses
5762 * on the association are effected. Not also that
5763 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5764 * exclusive. Enabling both will have undetermined
5765 * results.
5766 *
5767 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5768 * on delayed sack. The time specified in spp_sackdelay
5769 * is used to specify the sack delay for this address. Note
5770 * that if spp_address is empty then all addresses will
5771 * enable delayed sack and take on the sack delay
5772 * value specified in spp_sackdelay.
5773 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5774 * off delayed sack. If the spp_address field is blank then
5775 * delayed sack is disabled for the entire association. Note
5776 * also that this field is mutually exclusive to
5777 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5778 * results.
5779 *
5780 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
5781 * setting of the IPV6 flow label value. The value is
5782 * contained in the spp_ipv6_flowlabel field.
5783 * Upon retrieval, this flag will be set to indicate that
5784 * the spp_ipv6_flowlabel field has a valid value returned.
5785 * If a specific destination address is set (in the
5786 * spp_address field), then the value returned is that of
5787 * the address. If just an association is specified (and
5788 * no address), then the association's default flow label
5789 * is returned. If neither an association nor a destination
5790 * is specified, then the socket's default flow label is
5791 * returned. For non-IPv6 sockets, this flag will be left
5792 * cleared.
5793 *
5794 * SPP_DSCP: Setting this flag enables the setting of the
5795 * Differentiated Services Code Point (DSCP) value
5796 * associated with either the association or a specific
5797 * address. The value is obtained in the spp_dscp field.
5798 * Upon retrieval, this flag will be set to indicate that
5799 * the spp_dscp field has a valid value returned. If a
5800 * specific destination address is set when called (in the
5801 * spp_address field), then that specific destination
5802 * address's DSCP value is returned. If just an association
5803 * is specified, then the association's default DSCP is
5804 * returned. If neither an association nor a destination is
5805 * specified, then the socket's default DSCP is returned.
5806 *
5807 * spp_ipv6_flowlabel
5808 * - This field is used in conjunction with the
5809 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5810 * The 20 least significant bits are used for the flow
5811 * label. This setting has precedence over any IPv6-layer
5812 * setting.
5813 *
5814 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
5815 * and contains the DSCP. The 6 most significant bits are
5816 * used for the DSCP. This setting has precedence over any
5817 * IPv4- or IPv6- layer setting.
5818 */
sctp_getsockopt_peer_addr_params(struct sock * sk,int len,char __user * optval,int __user * optlen)5819 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5820 char __user *optval, int __user *optlen)
5821 {
5822 struct sctp_paddrparams params;
5823 struct sctp_transport *trans = NULL;
5824 struct sctp_association *asoc = NULL;
5825 struct sctp_sock *sp = sctp_sk(sk);
5826
5827 if (len >= sizeof(params))
5828 len = sizeof(params);
5829 else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5830 spp_ipv6_flowlabel), 4))
5831 len = ALIGN(offsetof(struct sctp_paddrparams,
5832 spp_ipv6_flowlabel), 4);
5833 else
5834 return -EINVAL;
5835
5836 if (copy_from_user(¶ms, optval, len))
5837 return -EFAULT;
5838
5839 /* If an address other than INADDR_ANY is specified, and
5840 * no transport is found, then the request is invalid.
5841 */
5842 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
5843 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
5844 params.spp_assoc_id);
5845 if (!trans) {
5846 pr_debug("%s: failed no transport\n", __func__);
5847 return -EINVAL;
5848 }
5849 }
5850
5851 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5852 * socket is a one to many style socket, and an association
5853 * was not found, then the id was invalid.
5854 */
5855 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5856 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5857 sctp_style(sk, UDP)) {
5858 pr_debug("%s: failed no association\n", __func__);
5859 return -EINVAL;
5860 }
5861
5862 if (trans) {
5863 /* Fetch transport values. */
5864 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5865 params.spp_pathmtu = trans->pathmtu;
5866 params.spp_pathmaxrxt = trans->pathmaxrxt;
5867 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5868
5869 /*draft-11 doesn't say what to return in spp_flags*/
5870 params.spp_flags = trans->param_flags;
5871 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5872 params.spp_ipv6_flowlabel = trans->flowlabel &
5873 SCTP_FLOWLABEL_VAL_MASK;
5874 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5875 }
5876 if (trans->dscp & SCTP_DSCP_SET_MASK) {
5877 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK;
5878 params.spp_flags |= SPP_DSCP;
5879 }
5880 } else if (asoc) {
5881 /* Fetch association values. */
5882 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5883 params.spp_pathmtu = asoc->pathmtu;
5884 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5885 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5886
5887 /*draft-11 doesn't say what to return in spp_flags*/
5888 params.spp_flags = asoc->param_flags;
5889 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5890 params.spp_ipv6_flowlabel = asoc->flowlabel &
5891 SCTP_FLOWLABEL_VAL_MASK;
5892 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5893 }
5894 if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5895 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK;
5896 params.spp_flags |= SPP_DSCP;
5897 }
5898 } else {
5899 /* Fetch socket values. */
5900 params.spp_hbinterval = sp->hbinterval;
5901 params.spp_pathmtu = sp->pathmtu;
5902 params.spp_sackdelay = sp->sackdelay;
5903 params.spp_pathmaxrxt = sp->pathmaxrxt;
5904
5905 /*draft-11 doesn't say what to return in spp_flags*/
5906 params.spp_flags = sp->param_flags;
5907 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5908 params.spp_ipv6_flowlabel = sp->flowlabel &
5909 SCTP_FLOWLABEL_VAL_MASK;
5910 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5911 }
5912 if (sp->dscp & SCTP_DSCP_SET_MASK) {
5913 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK;
5914 params.spp_flags |= SPP_DSCP;
5915 }
5916 }
5917
5918 if (copy_to_user(optval, ¶ms, len))
5919 return -EFAULT;
5920
5921 if (put_user(len, optlen))
5922 return -EFAULT;
5923
5924 return 0;
5925 }
5926
5927 /*
5928 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
5929 *
5930 * This option will effect the way delayed acks are performed. This
5931 * option allows you to get or set the delayed ack time, in
5932 * milliseconds. It also allows changing the delayed ack frequency.
5933 * Changing the frequency to 1 disables the delayed sack algorithm. If
5934 * the assoc_id is 0, then this sets or gets the endpoints default
5935 * values. If the assoc_id field is non-zero, then the set or get
5936 * effects the specified association for the one to many model (the
5937 * assoc_id field is ignored by the one to one model). Note that if
5938 * sack_delay or sack_freq are 0 when setting this option, then the
5939 * current values will remain unchanged.
5940 *
5941 * struct sctp_sack_info {
5942 * sctp_assoc_t sack_assoc_id;
5943 * uint32_t sack_delay;
5944 * uint32_t sack_freq;
5945 * };
5946 *
5947 * sack_assoc_id - This parameter, indicates which association the user
5948 * is performing an action upon. Note that if this field's value is
5949 * zero then the endpoints default value is changed (effecting future
5950 * associations only).
5951 *
5952 * sack_delay - This parameter contains the number of milliseconds that
5953 * the user is requesting the delayed ACK timer be set to. Note that
5954 * this value is defined in the standard to be between 200 and 500
5955 * milliseconds.
5956 *
5957 * sack_freq - This parameter contains the number of packets that must
5958 * be received before a sack is sent without waiting for the delay
5959 * timer to expire. The default value for this is 2, setting this
5960 * value to 1 will disable the delayed sack algorithm.
5961 */
sctp_getsockopt_delayed_ack(struct sock * sk,int len,char __user * optval,int __user * optlen)5962 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5963 char __user *optval,
5964 int __user *optlen)
5965 {
5966 struct sctp_sack_info params;
5967 struct sctp_association *asoc = NULL;
5968 struct sctp_sock *sp = sctp_sk(sk);
5969
5970 if (len >= sizeof(struct sctp_sack_info)) {
5971 len = sizeof(struct sctp_sack_info);
5972
5973 if (copy_from_user(¶ms, optval, len))
5974 return -EFAULT;
5975 } else if (len == sizeof(struct sctp_assoc_value)) {
5976 pr_warn_ratelimited(DEPRECATED
5977 "%s (pid %d) "
5978 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5979 "Use struct sctp_sack_info instead\n",
5980 current->comm, task_pid_nr(current));
5981 if (copy_from_user(¶ms, optval, len))
5982 return -EFAULT;
5983 } else
5984 return -EINVAL;
5985
5986 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
5987 * socket is a one to many style socket, and an association
5988 * was not found, then the id was invalid.
5989 */
5990 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5991 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
5992 sctp_style(sk, UDP))
5993 return -EINVAL;
5994
5995 if (asoc) {
5996 /* Fetch association values. */
5997 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5998 params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
5999 params.sack_freq = asoc->sackfreq;
6000
6001 } else {
6002 params.sack_delay = 0;
6003 params.sack_freq = 1;
6004 }
6005 } else {
6006 /* Fetch socket values. */
6007 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6008 params.sack_delay = sp->sackdelay;
6009 params.sack_freq = sp->sackfreq;
6010 } else {
6011 params.sack_delay = 0;
6012 params.sack_freq = 1;
6013 }
6014 }
6015
6016 if (copy_to_user(optval, ¶ms, len))
6017 return -EFAULT;
6018
6019 if (put_user(len, optlen))
6020 return -EFAULT;
6021
6022 return 0;
6023 }
6024
6025 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6026 *
6027 * Applications can specify protocol parameters for the default association
6028 * initialization. The option name argument to setsockopt() and getsockopt()
6029 * is SCTP_INITMSG.
6030 *
6031 * Setting initialization parameters is effective only on an unconnected
6032 * socket (for UDP-style sockets only future associations are effected
6033 * by the change). With TCP-style sockets, this option is inherited by
6034 * sockets derived from a listener socket.
6035 */
sctp_getsockopt_initmsg(struct sock * sk,int len,char __user * optval,int __user * optlen)6036 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6037 {
6038 if (len < sizeof(struct sctp_initmsg))
6039 return -EINVAL;
6040 len = sizeof(struct sctp_initmsg);
6041 if (put_user(len, optlen))
6042 return -EFAULT;
6043 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6044 return -EFAULT;
6045 return 0;
6046 }
6047
6048
sctp_getsockopt_peer_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)6049 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6050 char __user *optval, int __user *optlen)
6051 {
6052 struct sctp_association *asoc;
6053 int cnt = 0;
6054 struct sctp_getaddrs getaddrs;
6055 struct sctp_transport *from;
6056 void __user *to;
6057 union sctp_addr temp;
6058 struct sctp_sock *sp = sctp_sk(sk);
6059 int addrlen;
6060 size_t space_left;
6061 int bytes_copied;
6062
6063 if (len < sizeof(struct sctp_getaddrs))
6064 return -EINVAL;
6065
6066 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6067 return -EFAULT;
6068
6069 /* For UDP-style sockets, id specifies the association to query. */
6070 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6071 if (!asoc)
6072 return -EINVAL;
6073
6074 to = optval + offsetof(struct sctp_getaddrs, addrs);
6075 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6076
6077 list_for_each_entry(from, &asoc->peer.transport_addr_list,
6078 transports) {
6079 memcpy(&temp, &from->ipaddr, sizeof(temp));
6080 addrlen = sctp_get_pf_specific(sk->sk_family)
6081 ->addr_to_user(sp, &temp);
6082 if (space_left < addrlen)
6083 return -ENOMEM;
6084 if (copy_to_user(to, &temp, addrlen))
6085 return -EFAULT;
6086 to += addrlen;
6087 cnt++;
6088 space_left -= addrlen;
6089 }
6090
6091 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6092 return -EFAULT;
6093 bytes_copied = ((char __user *)to) - optval;
6094 if (put_user(bytes_copied, optlen))
6095 return -EFAULT;
6096
6097 return 0;
6098 }
6099
sctp_copy_laddrs(struct sock * sk,__u16 port,void * to,size_t space_left,int * bytes_copied)6100 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6101 size_t space_left, int *bytes_copied)
6102 {
6103 struct sctp_sockaddr_entry *addr;
6104 union sctp_addr temp;
6105 int cnt = 0;
6106 int addrlen;
6107 struct net *net = sock_net(sk);
6108
6109 rcu_read_lock();
6110 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6111 if (!addr->valid)
6112 continue;
6113
6114 if ((PF_INET == sk->sk_family) &&
6115 (AF_INET6 == addr->a.sa.sa_family))
6116 continue;
6117 if ((PF_INET6 == sk->sk_family) &&
6118 inet_v6_ipv6only(sk) &&
6119 (AF_INET == addr->a.sa.sa_family))
6120 continue;
6121 memcpy(&temp, &addr->a, sizeof(temp));
6122 if (!temp.v4.sin_port)
6123 temp.v4.sin_port = htons(port);
6124
6125 addrlen = sctp_get_pf_specific(sk->sk_family)
6126 ->addr_to_user(sctp_sk(sk), &temp);
6127
6128 if (space_left < addrlen) {
6129 cnt = -ENOMEM;
6130 break;
6131 }
6132 memcpy(to, &temp, addrlen);
6133
6134 to += addrlen;
6135 cnt++;
6136 space_left -= addrlen;
6137 *bytes_copied += addrlen;
6138 }
6139 rcu_read_unlock();
6140
6141 return cnt;
6142 }
6143
6144
sctp_getsockopt_local_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)6145 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6146 char __user *optval, int __user *optlen)
6147 {
6148 struct sctp_bind_addr *bp;
6149 struct sctp_association *asoc;
6150 int cnt = 0;
6151 struct sctp_getaddrs getaddrs;
6152 struct sctp_sockaddr_entry *addr;
6153 void __user *to;
6154 union sctp_addr temp;
6155 struct sctp_sock *sp = sctp_sk(sk);
6156 int addrlen;
6157 int err = 0;
6158 size_t space_left;
6159 int bytes_copied = 0;
6160 void *addrs;
6161 void *buf;
6162
6163 if (len < sizeof(struct sctp_getaddrs))
6164 return -EINVAL;
6165
6166 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6167 return -EFAULT;
6168
6169 /*
6170 * For UDP-style sockets, id specifies the association to query.
6171 * If the id field is set to the value '0' then the locally bound
6172 * addresses are returned without regard to any particular
6173 * association.
6174 */
6175 if (0 == getaddrs.assoc_id) {
6176 bp = &sctp_sk(sk)->ep->base.bind_addr;
6177 } else {
6178 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6179 if (!asoc)
6180 return -EINVAL;
6181 bp = &asoc->base.bind_addr;
6182 }
6183
6184 to = optval + offsetof(struct sctp_getaddrs, addrs);
6185 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6186
6187 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6188 if (!addrs)
6189 return -ENOMEM;
6190
6191 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6192 * addresses from the global local address list.
6193 */
6194 if (sctp_list_single_entry(&bp->address_list)) {
6195 addr = list_entry(bp->address_list.next,
6196 struct sctp_sockaddr_entry, list);
6197 if (sctp_is_any(sk, &addr->a)) {
6198 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6199 space_left, &bytes_copied);
6200 if (cnt < 0) {
6201 err = cnt;
6202 goto out;
6203 }
6204 goto copy_getaddrs;
6205 }
6206 }
6207
6208 buf = addrs;
6209 /* Protection on the bound address list is not needed since
6210 * in the socket option context we hold a socket lock and
6211 * thus the bound address list can't change.
6212 */
6213 list_for_each_entry(addr, &bp->address_list, list) {
6214 memcpy(&temp, &addr->a, sizeof(temp));
6215 addrlen = sctp_get_pf_specific(sk->sk_family)
6216 ->addr_to_user(sp, &temp);
6217 if (space_left < addrlen) {
6218 err = -ENOMEM; /*fixme: right error?*/
6219 goto out;
6220 }
6221 memcpy(buf, &temp, addrlen);
6222 buf += addrlen;
6223 bytes_copied += addrlen;
6224 cnt++;
6225 space_left -= addrlen;
6226 }
6227
6228 copy_getaddrs:
6229 if (copy_to_user(to, addrs, bytes_copied)) {
6230 err = -EFAULT;
6231 goto out;
6232 }
6233 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6234 err = -EFAULT;
6235 goto out;
6236 }
6237 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6238 * but we can't change it anymore.
6239 */
6240 if (put_user(bytes_copied, optlen))
6241 err = -EFAULT;
6242 out:
6243 kfree(addrs);
6244 return err;
6245 }
6246
6247 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6248 *
6249 * Requests that the local SCTP stack use the enclosed peer address as
6250 * the association primary. The enclosed address must be one of the
6251 * association peer's addresses.
6252 */
sctp_getsockopt_primary_addr(struct sock * sk,int len,char __user * optval,int __user * optlen)6253 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6254 char __user *optval, int __user *optlen)
6255 {
6256 struct sctp_prim prim;
6257 struct sctp_association *asoc;
6258 struct sctp_sock *sp = sctp_sk(sk);
6259
6260 if (len < sizeof(struct sctp_prim))
6261 return -EINVAL;
6262
6263 len = sizeof(struct sctp_prim);
6264
6265 if (copy_from_user(&prim, optval, len))
6266 return -EFAULT;
6267
6268 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6269 if (!asoc)
6270 return -EINVAL;
6271
6272 if (!asoc->peer.primary_path)
6273 return -ENOTCONN;
6274
6275 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6276 asoc->peer.primary_path->af_specific->sockaddr_len);
6277
6278 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6279 (union sctp_addr *)&prim.ssp_addr);
6280
6281 if (put_user(len, optlen))
6282 return -EFAULT;
6283 if (copy_to_user(optval, &prim, len))
6284 return -EFAULT;
6285
6286 return 0;
6287 }
6288
6289 /*
6290 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6291 *
6292 * Requests that the local endpoint set the specified Adaptation Layer
6293 * Indication parameter for all future INIT and INIT-ACK exchanges.
6294 */
sctp_getsockopt_adaptation_layer(struct sock * sk,int len,char __user * optval,int __user * optlen)6295 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6296 char __user *optval, int __user *optlen)
6297 {
6298 struct sctp_setadaptation adaptation;
6299
6300 if (len < sizeof(struct sctp_setadaptation))
6301 return -EINVAL;
6302
6303 len = sizeof(struct sctp_setadaptation);
6304
6305 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6306
6307 if (put_user(len, optlen))
6308 return -EFAULT;
6309 if (copy_to_user(optval, &adaptation, len))
6310 return -EFAULT;
6311
6312 return 0;
6313 }
6314
6315 /*
6316 *
6317 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6318 *
6319 * Applications that wish to use the sendto() system call may wish to
6320 * specify a default set of parameters that would normally be supplied
6321 * through the inclusion of ancillary data. This socket option allows
6322 * such an application to set the default sctp_sndrcvinfo structure.
6323
6324
6325 * The application that wishes to use this socket option simply passes
6326 * in to this call the sctp_sndrcvinfo structure defined in Section
6327 * 5.2.2) The input parameters accepted by this call include
6328 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6329 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
6330 * to this call if the caller is using the UDP model.
6331 *
6332 * For getsockopt, it get the default sctp_sndrcvinfo structure.
6333 */
sctp_getsockopt_default_send_param(struct sock * sk,int len,char __user * optval,int __user * optlen)6334 static int sctp_getsockopt_default_send_param(struct sock *sk,
6335 int len, char __user *optval,
6336 int __user *optlen)
6337 {
6338 struct sctp_sock *sp = sctp_sk(sk);
6339 struct sctp_association *asoc;
6340 struct sctp_sndrcvinfo info;
6341
6342 if (len < sizeof(info))
6343 return -EINVAL;
6344
6345 len = sizeof(info);
6346
6347 if (copy_from_user(&info, optval, len))
6348 return -EFAULT;
6349
6350 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6351 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6352 sctp_style(sk, UDP))
6353 return -EINVAL;
6354
6355 if (asoc) {
6356 info.sinfo_stream = asoc->default_stream;
6357 info.sinfo_flags = asoc->default_flags;
6358 info.sinfo_ppid = asoc->default_ppid;
6359 info.sinfo_context = asoc->default_context;
6360 info.sinfo_timetolive = asoc->default_timetolive;
6361 } else {
6362 info.sinfo_stream = sp->default_stream;
6363 info.sinfo_flags = sp->default_flags;
6364 info.sinfo_ppid = sp->default_ppid;
6365 info.sinfo_context = sp->default_context;
6366 info.sinfo_timetolive = sp->default_timetolive;
6367 }
6368
6369 if (put_user(len, optlen))
6370 return -EFAULT;
6371 if (copy_to_user(optval, &info, len))
6372 return -EFAULT;
6373
6374 return 0;
6375 }
6376
6377 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6378 * (SCTP_DEFAULT_SNDINFO)
6379 */
sctp_getsockopt_default_sndinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6380 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6381 char __user *optval,
6382 int __user *optlen)
6383 {
6384 struct sctp_sock *sp = sctp_sk(sk);
6385 struct sctp_association *asoc;
6386 struct sctp_sndinfo info;
6387
6388 if (len < sizeof(info))
6389 return -EINVAL;
6390
6391 len = sizeof(info);
6392
6393 if (copy_from_user(&info, optval, len))
6394 return -EFAULT;
6395
6396 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6397 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6398 sctp_style(sk, UDP))
6399 return -EINVAL;
6400
6401 if (asoc) {
6402 info.snd_sid = asoc->default_stream;
6403 info.snd_flags = asoc->default_flags;
6404 info.snd_ppid = asoc->default_ppid;
6405 info.snd_context = asoc->default_context;
6406 } else {
6407 info.snd_sid = sp->default_stream;
6408 info.snd_flags = sp->default_flags;
6409 info.snd_ppid = sp->default_ppid;
6410 info.snd_context = sp->default_context;
6411 }
6412
6413 if (put_user(len, optlen))
6414 return -EFAULT;
6415 if (copy_to_user(optval, &info, len))
6416 return -EFAULT;
6417
6418 return 0;
6419 }
6420
6421 /*
6422 *
6423 * 7.1.5 SCTP_NODELAY
6424 *
6425 * Turn on/off any Nagle-like algorithm. This means that packets are
6426 * generally sent as soon as possible and no unnecessary delays are
6427 * introduced, at the cost of more packets in the network. Expects an
6428 * integer boolean flag.
6429 */
6430
sctp_getsockopt_nodelay(struct sock * sk,int len,char __user * optval,int __user * optlen)6431 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6432 char __user *optval, int __user *optlen)
6433 {
6434 int val;
6435
6436 if (len < sizeof(int))
6437 return -EINVAL;
6438
6439 len = sizeof(int);
6440 val = (sctp_sk(sk)->nodelay == 1);
6441 if (put_user(len, optlen))
6442 return -EFAULT;
6443 if (copy_to_user(optval, &val, len))
6444 return -EFAULT;
6445 return 0;
6446 }
6447
6448 /*
6449 *
6450 * 7.1.1 SCTP_RTOINFO
6451 *
6452 * The protocol parameters used to initialize and bound retransmission
6453 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6454 * and modify these parameters.
6455 * All parameters are time values, in milliseconds. A value of 0, when
6456 * modifying the parameters, indicates that the current value should not
6457 * be changed.
6458 *
6459 */
sctp_getsockopt_rtoinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6460 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6461 char __user *optval,
6462 int __user *optlen) {
6463 struct sctp_rtoinfo rtoinfo;
6464 struct sctp_association *asoc;
6465
6466 if (len < sizeof (struct sctp_rtoinfo))
6467 return -EINVAL;
6468
6469 len = sizeof(struct sctp_rtoinfo);
6470
6471 if (copy_from_user(&rtoinfo, optval, len))
6472 return -EFAULT;
6473
6474 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6475
6476 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6477 sctp_style(sk, UDP))
6478 return -EINVAL;
6479
6480 /* Values corresponding to the specific association. */
6481 if (asoc) {
6482 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6483 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6484 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6485 } else {
6486 /* Values corresponding to the endpoint. */
6487 struct sctp_sock *sp = sctp_sk(sk);
6488
6489 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6490 rtoinfo.srto_max = sp->rtoinfo.srto_max;
6491 rtoinfo.srto_min = sp->rtoinfo.srto_min;
6492 }
6493
6494 if (put_user(len, optlen))
6495 return -EFAULT;
6496
6497 if (copy_to_user(optval, &rtoinfo, len))
6498 return -EFAULT;
6499
6500 return 0;
6501 }
6502
6503 /*
6504 *
6505 * 7.1.2 SCTP_ASSOCINFO
6506 *
6507 * This option is used to tune the maximum retransmission attempts
6508 * of the association.
6509 * Returns an error if the new association retransmission value is
6510 * greater than the sum of the retransmission value of the peer.
6511 * See [SCTP] for more information.
6512 *
6513 */
sctp_getsockopt_associnfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6514 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6515 char __user *optval,
6516 int __user *optlen)
6517 {
6518
6519 struct sctp_assocparams assocparams;
6520 struct sctp_association *asoc;
6521 struct list_head *pos;
6522 int cnt = 0;
6523
6524 if (len < sizeof (struct sctp_assocparams))
6525 return -EINVAL;
6526
6527 len = sizeof(struct sctp_assocparams);
6528
6529 if (copy_from_user(&assocparams, optval, len))
6530 return -EFAULT;
6531
6532 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6533
6534 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6535 sctp_style(sk, UDP))
6536 return -EINVAL;
6537
6538 /* Values correspoinding to the specific association */
6539 if (asoc) {
6540 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6541 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6542 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6543 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6544
6545 list_for_each(pos, &asoc->peer.transport_addr_list) {
6546 cnt++;
6547 }
6548
6549 assocparams.sasoc_number_peer_destinations = cnt;
6550 } else {
6551 /* Values corresponding to the endpoint */
6552 struct sctp_sock *sp = sctp_sk(sk);
6553
6554 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6555 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6556 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6557 assocparams.sasoc_cookie_life =
6558 sp->assocparams.sasoc_cookie_life;
6559 assocparams.sasoc_number_peer_destinations =
6560 sp->assocparams.
6561 sasoc_number_peer_destinations;
6562 }
6563
6564 if (put_user(len, optlen))
6565 return -EFAULT;
6566
6567 if (copy_to_user(optval, &assocparams, len))
6568 return -EFAULT;
6569
6570 return 0;
6571 }
6572
6573 /*
6574 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6575 *
6576 * This socket option is a boolean flag which turns on or off mapped V4
6577 * addresses. If this option is turned on and the socket is type
6578 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6579 * If this option is turned off, then no mapping will be done of V4
6580 * addresses and a user will receive both PF_INET6 and PF_INET type
6581 * addresses on the socket.
6582 */
sctp_getsockopt_mappedv4(struct sock * sk,int len,char __user * optval,int __user * optlen)6583 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6584 char __user *optval, int __user *optlen)
6585 {
6586 int val;
6587 struct sctp_sock *sp = sctp_sk(sk);
6588
6589 if (len < sizeof(int))
6590 return -EINVAL;
6591
6592 len = sizeof(int);
6593 val = sp->v4mapped;
6594 if (put_user(len, optlen))
6595 return -EFAULT;
6596 if (copy_to_user(optval, &val, len))
6597 return -EFAULT;
6598
6599 return 0;
6600 }
6601
6602 /*
6603 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6604 * (chapter and verse is quoted at sctp_setsockopt_context())
6605 */
sctp_getsockopt_context(struct sock * sk,int len,char __user * optval,int __user * optlen)6606 static int sctp_getsockopt_context(struct sock *sk, int len,
6607 char __user *optval, int __user *optlen)
6608 {
6609 struct sctp_assoc_value params;
6610 struct sctp_association *asoc;
6611
6612 if (len < sizeof(struct sctp_assoc_value))
6613 return -EINVAL;
6614
6615 len = sizeof(struct sctp_assoc_value);
6616
6617 if (copy_from_user(¶ms, optval, len))
6618 return -EFAULT;
6619
6620 asoc = sctp_id2assoc(sk, params.assoc_id);
6621 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6622 sctp_style(sk, UDP))
6623 return -EINVAL;
6624
6625 params.assoc_value = asoc ? asoc->default_rcv_context
6626 : sctp_sk(sk)->default_rcv_context;
6627
6628 if (put_user(len, optlen))
6629 return -EFAULT;
6630 if (copy_to_user(optval, ¶ms, len))
6631 return -EFAULT;
6632
6633 return 0;
6634 }
6635
6636 /*
6637 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6638 * This option will get or set the maximum size to put in any outgoing
6639 * SCTP DATA chunk. If a message is larger than this size it will be
6640 * fragmented by SCTP into the specified size. Note that the underlying
6641 * SCTP implementation may fragment into smaller sized chunks when the
6642 * PMTU of the underlying association is smaller than the value set by
6643 * the user. The default value for this option is '0' which indicates
6644 * the user is NOT limiting fragmentation and only the PMTU will effect
6645 * SCTP's choice of DATA chunk size. Note also that values set larger
6646 * than the maximum size of an IP datagram will effectively let SCTP
6647 * control fragmentation (i.e. the same as setting this option to 0).
6648 *
6649 * The following structure is used to access and modify this parameter:
6650 *
6651 * struct sctp_assoc_value {
6652 * sctp_assoc_t assoc_id;
6653 * uint32_t assoc_value;
6654 * };
6655 *
6656 * assoc_id: This parameter is ignored for one-to-one style sockets.
6657 * For one-to-many style sockets this parameter indicates which
6658 * association the user is performing an action upon. Note that if
6659 * this field's value is zero then the endpoints default value is
6660 * changed (effecting future associations only).
6661 * assoc_value: This parameter specifies the maximum size in bytes.
6662 */
sctp_getsockopt_maxseg(struct sock * sk,int len,char __user * optval,int __user * optlen)6663 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6664 char __user *optval, int __user *optlen)
6665 {
6666 struct sctp_assoc_value params;
6667 struct sctp_association *asoc;
6668
6669 if (len == sizeof(int)) {
6670 pr_warn_ratelimited(DEPRECATED
6671 "%s (pid %d) "
6672 "Use of int in maxseg socket option.\n"
6673 "Use struct sctp_assoc_value instead\n",
6674 current->comm, task_pid_nr(current));
6675 params.assoc_id = SCTP_FUTURE_ASSOC;
6676 } else if (len >= sizeof(struct sctp_assoc_value)) {
6677 len = sizeof(struct sctp_assoc_value);
6678 if (copy_from_user(¶ms, optval, len))
6679 return -EFAULT;
6680 } else
6681 return -EINVAL;
6682
6683 asoc = sctp_id2assoc(sk, params.assoc_id);
6684 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6685 sctp_style(sk, UDP))
6686 return -EINVAL;
6687
6688 if (asoc)
6689 params.assoc_value = asoc->frag_point;
6690 else
6691 params.assoc_value = sctp_sk(sk)->user_frag;
6692
6693 if (put_user(len, optlen))
6694 return -EFAULT;
6695 if (len == sizeof(int)) {
6696 if (copy_to_user(optval, ¶ms.assoc_value, len))
6697 return -EFAULT;
6698 } else {
6699 if (copy_to_user(optval, ¶ms, len))
6700 return -EFAULT;
6701 }
6702
6703 return 0;
6704 }
6705
6706 /*
6707 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6708 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6709 */
sctp_getsockopt_fragment_interleave(struct sock * sk,int len,char __user * optval,int __user * optlen)6710 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6711 char __user *optval, int __user *optlen)
6712 {
6713 int val;
6714
6715 if (len < sizeof(int))
6716 return -EINVAL;
6717
6718 len = sizeof(int);
6719
6720 val = sctp_sk(sk)->frag_interleave;
6721 if (put_user(len, optlen))
6722 return -EFAULT;
6723 if (copy_to_user(optval, &val, len))
6724 return -EFAULT;
6725
6726 return 0;
6727 }
6728
6729 /*
6730 * 7.1.25. Set or Get the sctp partial delivery point
6731 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6732 */
sctp_getsockopt_partial_delivery_point(struct sock * sk,int len,char __user * optval,int __user * optlen)6733 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6734 char __user *optval,
6735 int __user *optlen)
6736 {
6737 u32 val;
6738
6739 if (len < sizeof(u32))
6740 return -EINVAL;
6741
6742 len = sizeof(u32);
6743
6744 val = sctp_sk(sk)->pd_point;
6745 if (put_user(len, optlen))
6746 return -EFAULT;
6747 if (copy_to_user(optval, &val, len))
6748 return -EFAULT;
6749
6750 return 0;
6751 }
6752
6753 /*
6754 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6755 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6756 */
sctp_getsockopt_maxburst(struct sock * sk,int len,char __user * optval,int __user * optlen)6757 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6758 char __user *optval,
6759 int __user *optlen)
6760 {
6761 struct sctp_assoc_value params;
6762 struct sctp_association *asoc;
6763
6764 if (len == sizeof(int)) {
6765 pr_warn_ratelimited(DEPRECATED
6766 "%s (pid %d) "
6767 "Use of int in max_burst socket option.\n"
6768 "Use struct sctp_assoc_value instead\n",
6769 current->comm, task_pid_nr(current));
6770 params.assoc_id = SCTP_FUTURE_ASSOC;
6771 } else if (len >= sizeof(struct sctp_assoc_value)) {
6772 len = sizeof(struct sctp_assoc_value);
6773 if (copy_from_user(¶ms, optval, len))
6774 return -EFAULT;
6775 } else
6776 return -EINVAL;
6777
6778 asoc = sctp_id2assoc(sk, params.assoc_id);
6779 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6780 sctp_style(sk, UDP))
6781 return -EINVAL;
6782
6783 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6784
6785 if (len == sizeof(int)) {
6786 if (copy_to_user(optval, ¶ms.assoc_value, len))
6787 return -EFAULT;
6788 } else {
6789 if (copy_to_user(optval, ¶ms, len))
6790 return -EFAULT;
6791 }
6792
6793 return 0;
6794
6795 }
6796
sctp_getsockopt_hmac_ident(struct sock * sk,int len,char __user * optval,int __user * optlen)6797 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6798 char __user *optval, int __user *optlen)
6799 {
6800 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6801 struct sctp_hmacalgo __user *p = (void __user *)optval;
6802 struct sctp_hmac_algo_param *hmacs;
6803 __u16 data_len = 0;
6804 u32 num_idents;
6805 int i;
6806
6807 if (!ep->auth_enable)
6808 return -EACCES;
6809
6810 hmacs = ep->auth_hmacs_list;
6811 data_len = ntohs(hmacs->param_hdr.length) -
6812 sizeof(struct sctp_paramhdr);
6813
6814 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6815 return -EINVAL;
6816
6817 len = sizeof(struct sctp_hmacalgo) + data_len;
6818 num_idents = data_len / sizeof(u16);
6819
6820 if (put_user(len, optlen))
6821 return -EFAULT;
6822 if (put_user(num_idents, &p->shmac_num_idents))
6823 return -EFAULT;
6824 for (i = 0; i < num_idents; i++) {
6825 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6826
6827 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6828 return -EFAULT;
6829 }
6830 return 0;
6831 }
6832
sctp_getsockopt_active_key(struct sock * sk,int len,char __user * optval,int __user * optlen)6833 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6834 char __user *optval, int __user *optlen)
6835 {
6836 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6837 struct sctp_authkeyid val;
6838 struct sctp_association *asoc;
6839
6840 if (len < sizeof(struct sctp_authkeyid))
6841 return -EINVAL;
6842
6843 len = sizeof(struct sctp_authkeyid);
6844 if (copy_from_user(&val, optval, len))
6845 return -EFAULT;
6846
6847 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6848 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6849 return -EINVAL;
6850
6851 if (asoc) {
6852 if (!asoc->peer.auth_capable)
6853 return -EACCES;
6854 val.scact_keynumber = asoc->active_key_id;
6855 } else {
6856 if (!ep->auth_enable)
6857 return -EACCES;
6858 val.scact_keynumber = ep->active_key_id;
6859 }
6860
6861 if (put_user(len, optlen))
6862 return -EFAULT;
6863 if (copy_to_user(optval, &val, len))
6864 return -EFAULT;
6865
6866 return 0;
6867 }
6868
sctp_getsockopt_peer_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)6869 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6870 char __user *optval, int __user *optlen)
6871 {
6872 struct sctp_authchunks __user *p = (void __user *)optval;
6873 struct sctp_authchunks val;
6874 struct sctp_association *asoc;
6875 struct sctp_chunks_param *ch;
6876 u32 num_chunks = 0;
6877 char __user *to;
6878
6879 if (len < sizeof(struct sctp_authchunks))
6880 return -EINVAL;
6881
6882 if (copy_from_user(&val, optval, sizeof(val)))
6883 return -EFAULT;
6884
6885 to = p->gauth_chunks;
6886 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6887 if (!asoc)
6888 return -EINVAL;
6889
6890 if (!asoc->peer.auth_capable)
6891 return -EACCES;
6892
6893 ch = asoc->peer.peer_chunks;
6894 if (!ch)
6895 goto num;
6896
6897 /* See if the user provided enough room for all the data */
6898 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6899 if (len < num_chunks)
6900 return -EINVAL;
6901
6902 if (copy_to_user(to, ch->chunks, num_chunks))
6903 return -EFAULT;
6904 num:
6905 len = sizeof(struct sctp_authchunks) + num_chunks;
6906 if (put_user(len, optlen))
6907 return -EFAULT;
6908 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6909 return -EFAULT;
6910 return 0;
6911 }
6912
sctp_getsockopt_local_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)6913 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6914 char __user *optval, int __user *optlen)
6915 {
6916 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6917 struct sctp_authchunks __user *p = (void __user *)optval;
6918 struct sctp_authchunks val;
6919 struct sctp_association *asoc;
6920 struct sctp_chunks_param *ch;
6921 u32 num_chunks = 0;
6922 char __user *to;
6923
6924 if (len < sizeof(struct sctp_authchunks))
6925 return -EINVAL;
6926
6927 if (copy_from_user(&val, optval, sizeof(val)))
6928 return -EFAULT;
6929
6930 to = p->gauth_chunks;
6931 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6932 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
6933 sctp_style(sk, UDP))
6934 return -EINVAL;
6935
6936 if (asoc) {
6937 if (!asoc->peer.auth_capable)
6938 return -EACCES;
6939 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6940 } else {
6941 if (!ep->auth_enable)
6942 return -EACCES;
6943 ch = ep->auth_chunk_list;
6944 }
6945 if (!ch)
6946 goto num;
6947
6948 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6949 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6950 return -EINVAL;
6951
6952 if (copy_to_user(to, ch->chunks, num_chunks))
6953 return -EFAULT;
6954 num:
6955 len = sizeof(struct sctp_authchunks) + num_chunks;
6956 if (put_user(len, optlen))
6957 return -EFAULT;
6958 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6959 return -EFAULT;
6960
6961 return 0;
6962 }
6963
6964 /*
6965 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6966 * This option gets the current number of associations that are attached
6967 * to a one-to-many style socket. The option value is an uint32_t.
6968 */
sctp_getsockopt_assoc_number(struct sock * sk,int len,char __user * optval,int __user * optlen)6969 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6970 char __user *optval, int __user *optlen)
6971 {
6972 struct sctp_sock *sp = sctp_sk(sk);
6973 struct sctp_association *asoc;
6974 u32 val = 0;
6975
6976 if (sctp_style(sk, TCP))
6977 return -EOPNOTSUPP;
6978
6979 if (len < sizeof(u32))
6980 return -EINVAL;
6981
6982 len = sizeof(u32);
6983
6984 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6985 val++;
6986 }
6987
6988 if (put_user(len, optlen))
6989 return -EFAULT;
6990 if (copy_to_user(optval, &val, len))
6991 return -EFAULT;
6992
6993 return 0;
6994 }
6995
6996 /*
6997 * 8.1.23 SCTP_AUTO_ASCONF
6998 * See the corresponding setsockopt entry as description
6999 */
sctp_getsockopt_auto_asconf(struct sock * sk,int len,char __user * optval,int __user * optlen)7000 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7001 char __user *optval, int __user *optlen)
7002 {
7003 int val = 0;
7004
7005 if (len < sizeof(int))
7006 return -EINVAL;
7007
7008 len = sizeof(int);
7009 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7010 val = 1;
7011 if (put_user(len, optlen))
7012 return -EFAULT;
7013 if (copy_to_user(optval, &val, len))
7014 return -EFAULT;
7015 return 0;
7016 }
7017
7018 /*
7019 * 8.2.6. Get the Current Identifiers of Associations
7020 * (SCTP_GET_ASSOC_ID_LIST)
7021 *
7022 * This option gets the current list of SCTP association identifiers of
7023 * the SCTP associations handled by a one-to-many style socket.
7024 */
sctp_getsockopt_assoc_ids(struct sock * sk,int len,char __user * optval,int __user * optlen)7025 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7026 char __user *optval, int __user *optlen)
7027 {
7028 struct sctp_sock *sp = sctp_sk(sk);
7029 struct sctp_association *asoc;
7030 struct sctp_assoc_ids *ids;
7031 u32 num = 0;
7032
7033 if (sctp_style(sk, TCP))
7034 return -EOPNOTSUPP;
7035
7036 if (len < sizeof(struct sctp_assoc_ids))
7037 return -EINVAL;
7038
7039 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7040 num++;
7041 }
7042
7043 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7044 return -EINVAL;
7045
7046 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7047
7048 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7049 if (unlikely(!ids))
7050 return -ENOMEM;
7051
7052 ids->gaids_number_of_ids = num;
7053 num = 0;
7054 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7055 ids->gaids_assoc_id[num++] = asoc->assoc_id;
7056 }
7057
7058 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7059 kfree(ids);
7060 return -EFAULT;
7061 }
7062
7063 kfree(ids);
7064 return 0;
7065 }
7066
7067 /*
7068 * SCTP_PEER_ADDR_THLDS
7069 *
7070 * This option allows us to fetch the partially failed threshold for one or all
7071 * transports in an association. See Section 6.1 of:
7072 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7073 */
sctp_getsockopt_paddr_thresholds(struct sock * sk,char __user * optval,int len,int __user * optlen,bool v2)7074 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7075 char __user *optval, int len,
7076 int __user *optlen, bool v2)
7077 {
7078 struct sctp_paddrthlds_v2 val;
7079 struct sctp_transport *trans;
7080 struct sctp_association *asoc;
7081 int min;
7082
7083 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7084 if (len < min)
7085 return -EINVAL;
7086 len = min;
7087 if (copy_from_user(&val, optval, len))
7088 return -EFAULT;
7089
7090 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7091 trans = sctp_addr_id2transport(sk, &val.spt_address,
7092 val.spt_assoc_id);
7093 if (!trans)
7094 return -ENOENT;
7095
7096 val.spt_pathmaxrxt = trans->pathmaxrxt;
7097 val.spt_pathpfthld = trans->pf_retrans;
7098 val.spt_pathcpthld = trans->ps_retrans;
7099
7100 goto out;
7101 }
7102
7103 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7104 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7105 sctp_style(sk, UDP))
7106 return -EINVAL;
7107
7108 if (asoc) {
7109 val.spt_pathpfthld = asoc->pf_retrans;
7110 val.spt_pathmaxrxt = asoc->pathmaxrxt;
7111 val.spt_pathcpthld = asoc->ps_retrans;
7112 } else {
7113 struct sctp_sock *sp = sctp_sk(sk);
7114
7115 val.spt_pathpfthld = sp->pf_retrans;
7116 val.spt_pathmaxrxt = sp->pathmaxrxt;
7117 val.spt_pathcpthld = sp->ps_retrans;
7118 }
7119
7120 out:
7121 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7122 return -EFAULT;
7123
7124 return 0;
7125 }
7126
7127 /*
7128 * SCTP_GET_ASSOC_STATS
7129 *
7130 * This option retrieves local per endpoint statistics. It is modeled
7131 * after OpenSolaris' implementation
7132 */
sctp_getsockopt_assoc_stats(struct sock * sk,int len,char __user * optval,int __user * optlen)7133 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7134 char __user *optval,
7135 int __user *optlen)
7136 {
7137 struct sctp_assoc_stats sas;
7138 struct sctp_association *asoc = NULL;
7139
7140 /* User must provide at least the assoc id */
7141 if (len < sizeof(sctp_assoc_t))
7142 return -EINVAL;
7143
7144 /* Allow the struct to grow and fill in as much as possible */
7145 len = min_t(size_t, len, sizeof(sas));
7146
7147 if (copy_from_user(&sas, optval, len))
7148 return -EFAULT;
7149
7150 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7151 if (!asoc)
7152 return -EINVAL;
7153
7154 sas.sas_rtxchunks = asoc->stats.rtxchunks;
7155 sas.sas_gapcnt = asoc->stats.gapcnt;
7156 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7157 sas.sas_osacks = asoc->stats.osacks;
7158 sas.sas_isacks = asoc->stats.isacks;
7159 sas.sas_octrlchunks = asoc->stats.octrlchunks;
7160 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7161 sas.sas_oodchunks = asoc->stats.oodchunks;
7162 sas.sas_iodchunks = asoc->stats.iodchunks;
7163 sas.sas_ouodchunks = asoc->stats.ouodchunks;
7164 sas.sas_iuodchunks = asoc->stats.iuodchunks;
7165 sas.sas_idupchunks = asoc->stats.idupchunks;
7166 sas.sas_opackets = asoc->stats.opackets;
7167 sas.sas_ipackets = asoc->stats.ipackets;
7168
7169 /* New high max rto observed, will return 0 if not a single
7170 * RTO update took place. obs_rto_ipaddr will be bogus
7171 * in such a case
7172 */
7173 sas.sas_maxrto = asoc->stats.max_obs_rto;
7174 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7175 sizeof(struct sockaddr_storage));
7176
7177 /* Mark beginning of a new observation period */
7178 asoc->stats.max_obs_rto = asoc->rto_min;
7179
7180 if (put_user(len, optlen))
7181 return -EFAULT;
7182
7183 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7184
7185 if (copy_to_user(optval, &sas, len))
7186 return -EFAULT;
7187
7188 return 0;
7189 }
7190
sctp_getsockopt_recvrcvinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7191 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
7192 char __user *optval,
7193 int __user *optlen)
7194 {
7195 int val = 0;
7196
7197 if (len < sizeof(int))
7198 return -EINVAL;
7199
7200 len = sizeof(int);
7201 if (sctp_sk(sk)->recvrcvinfo)
7202 val = 1;
7203 if (put_user(len, optlen))
7204 return -EFAULT;
7205 if (copy_to_user(optval, &val, len))
7206 return -EFAULT;
7207
7208 return 0;
7209 }
7210
sctp_getsockopt_recvnxtinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7211 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
7212 char __user *optval,
7213 int __user *optlen)
7214 {
7215 int val = 0;
7216
7217 if (len < sizeof(int))
7218 return -EINVAL;
7219
7220 len = sizeof(int);
7221 if (sctp_sk(sk)->recvnxtinfo)
7222 val = 1;
7223 if (put_user(len, optlen))
7224 return -EFAULT;
7225 if (copy_to_user(optval, &val, len))
7226 return -EFAULT;
7227
7228 return 0;
7229 }
7230
sctp_getsockopt_pr_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7231 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7232 char __user *optval,
7233 int __user *optlen)
7234 {
7235 struct sctp_assoc_value params;
7236 struct sctp_association *asoc;
7237 int retval = -EFAULT;
7238
7239 if (len < sizeof(params)) {
7240 retval = -EINVAL;
7241 goto out;
7242 }
7243
7244 len = sizeof(params);
7245 if (copy_from_user(¶ms, optval, len))
7246 goto out;
7247
7248 asoc = sctp_id2assoc(sk, params.assoc_id);
7249 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7250 sctp_style(sk, UDP)) {
7251 retval = -EINVAL;
7252 goto out;
7253 }
7254
7255 params.assoc_value = asoc ? asoc->peer.prsctp_capable
7256 : sctp_sk(sk)->ep->prsctp_enable;
7257
7258 if (put_user(len, optlen))
7259 goto out;
7260
7261 if (copy_to_user(optval, ¶ms, len))
7262 goto out;
7263
7264 retval = 0;
7265
7266 out:
7267 return retval;
7268 }
7269
sctp_getsockopt_default_prinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7270 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7271 char __user *optval,
7272 int __user *optlen)
7273 {
7274 struct sctp_default_prinfo info;
7275 struct sctp_association *asoc;
7276 int retval = -EFAULT;
7277
7278 if (len < sizeof(info)) {
7279 retval = -EINVAL;
7280 goto out;
7281 }
7282
7283 len = sizeof(info);
7284 if (copy_from_user(&info, optval, len))
7285 goto out;
7286
7287 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7288 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7289 sctp_style(sk, UDP)) {
7290 retval = -EINVAL;
7291 goto out;
7292 }
7293
7294 if (asoc) {
7295 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7296 info.pr_value = asoc->default_timetolive;
7297 } else {
7298 struct sctp_sock *sp = sctp_sk(sk);
7299
7300 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7301 info.pr_value = sp->default_timetolive;
7302 }
7303
7304 if (put_user(len, optlen))
7305 goto out;
7306
7307 if (copy_to_user(optval, &info, len))
7308 goto out;
7309
7310 retval = 0;
7311
7312 out:
7313 return retval;
7314 }
7315
sctp_getsockopt_pr_assocstatus(struct sock * sk,int len,char __user * optval,int __user * optlen)7316 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7317 char __user *optval,
7318 int __user *optlen)
7319 {
7320 struct sctp_prstatus params;
7321 struct sctp_association *asoc;
7322 int policy;
7323 int retval = -EINVAL;
7324
7325 if (len < sizeof(params))
7326 goto out;
7327
7328 len = sizeof(params);
7329 if (copy_from_user(¶ms, optval, len)) {
7330 retval = -EFAULT;
7331 goto out;
7332 }
7333
7334 policy = params.sprstat_policy;
7335 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7336 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7337 goto out;
7338
7339 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7340 if (!asoc)
7341 goto out;
7342
7343 if (policy == SCTP_PR_SCTP_ALL) {
7344 params.sprstat_abandoned_unsent = 0;
7345 params.sprstat_abandoned_sent = 0;
7346 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7347 params.sprstat_abandoned_unsent +=
7348 asoc->abandoned_unsent[policy];
7349 params.sprstat_abandoned_sent +=
7350 asoc->abandoned_sent[policy];
7351 }
7352 } else {
7353 params.sprstat_abandoned_unsent =
7354 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7355 params.sprstat_abandoned_sent =
7356 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7357 }
7358
7359 if (put_user(len, optlen)) {
7360 retval = -EFAULT;
7361 goto out;
7362 }
7363
7364 if (copy_to_user(optval, ¶ms, len)) {
7365 retval = -EFAULT;
7366 goto out;
7367 }
7368
7369 retval = 0;
7370
7371 out:
7372 return retval;
7373 }
7374
sctp_getsockopt_pr_streamstatus(struct sock * sk,int len,char __user * optval,int __user * optlen)7375 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7376 char __user *optval,
7377 int __user *optlen)
7378 {
7379 struct sctp_stream_out_ext *streamoute;
7380 struct sctp_association *asoc;
7381 struct sctp_prstatus params;
7382 int retval = -EINVAL;
7383 int policy;
7384
7385 if (len < sizeof(params))
7386 goto out;
7387
7388 len = sizeof(params);
7389 if (copy_from_user(¶ms, optval, len)) {
7390 retval = -EFAULT;
7391 goto out;
7392 }
7393
7394 policy = params.sprstat_policy;
7395 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7396 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7397 goto out;
7398
7399 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7400 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7401 goto out;
7402
7403 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7404 if (!streamoute) {
7405 /* Not allocated yet, means all stats are 0 */
7406 params.sprstat_abandoned_unsent = 0;
7407 params.sprstat_abandoned_sent = 0;
7408 retval = 0;
7409 goto out;
7410 }
7411
7412 if (policy == SCTP_PR_SCTP_ALL) {
7413 params.sprstat_abandoned_unsent = 0;
7414 params.sprstat_abandoned_sent = 0;
7415 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7416 params.sprstat_abandoned_unsent +=
7417 streamoute->abandoned_unsent[policy];
7418 params.sprstat_abandoned_sent +=
7419 streamoute->abandoned_sent[policy];
7420 }
7421 } else {
7422 params.sprstat_abandoned_unsent =
7423 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7424 params.sprstat_abandoned_sent =
7425 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7426 }
7427
7428 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) {
7429 retval = -EFAULT;
7430 goto out;
7431 }
7432
7433 retval = 0;
7434
7435 out:
7436 return retval;
7437 }
7438
sctp_getsockopt_reconfig_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7439 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7440 char __user *optval,
7441 int __user *optlen)
7442 {
7443 struct sctp_assoc_value params;
7444 struct sctp_association *asoc;
7445 int retval = -EFAULT;
7446
7447 if (len < sizeof(params)) {
7448 retval = -EINVAL;
7449 goto out;
7450 }
7451
7452 len = sizeof(params);
7453 if (copy_from_user(¶ms, optval, len))
7454 goto out;
7455
7456 asoc = sctp_id2assoc(sk, params.assoc_id);
7457 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7458 sctp_style(sk, UDP)) {
7459 retval = -EINVAL;
7460 goto out;
7461 }
7462
7463 params.assoc_value = asoc ? asoc->peer.reconf_capable
7464 : sctp_sk(sk)->ep->reconf_enable;
7465
7466 if (put_user(len, optlen))
7467 goto out;
7468
7469 if (copy_to_user(optval, ¶ms, len))
7470 goto out;
7471
7472 retval = 0;
7473
7474 out:
7475 return retval;
7476 }
7477
sctp_getsockopt_enable_strreset(struct sock * sk,int len,char __user * optval,int __user * optlen)7478 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7479 char __user *optval,
7480 int __user *optlen)
7481 {
7482 struct sctp_assoc_value params;
7483 struct sctp_association *asoc;
7484 int retval = -EFAULT;
7485
7486 if (len < sizeof(params)) {
7487 retval = -EINVAL;
7488 goto out;
7489 }
7490
7491 len = sizeof(params);
7492 if (copy_from_user(¶ms, optval, len))
7493 goto out;
7494
7495 asoc = sctp_id2assoc(sk, params.assoc_id);
7496 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7497 sctp_style(sk, UDP)) {
7498 retval = -EINVAL;
7499 goto out;
7500 }
7501
7502 params.assoc_value = asoc ? asoc->strreset_enable
7503 : sctp_sk(sk)->ep->strreset_enable;
7504
7505 if (put_user(len, optlen))
7506 goto out;
7507
7508 if (copy_to_user(optval, ¶ms, len))
7509 goto out;
7510
7511 retval = 0;
7512
7513 out:
7514 return retval;
7515 }
7516
sctp_getsockopt_scheduler(struct sock * sk,int len,char __user * optval,int __user * optlen)7517 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7518 char __user *optval,
7519 int __user *optlen)
7520 {
7521 struct sctp_assoc_value params;
7522 struct sctp_association *asoc;
7523 int retval = -EFAULT;
7524
7525 if (len < sizeof(params)) {
7526 retval = -EINVAL;
7527 goto out;
7528 }
7529
7530 len = sizeof(params);
7531 if (copy_from_user(¶ms, optval, len))
7532 goto out;
7533
7534 asoc = sctp_id2assoc(sk, params.assoc_id);
7535 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7536 sctp_style(sk, UDP)) {
7537 retval = -EINVAL;
7538 goto out;
7539 }
7540
7541 params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7542 : sctp_sk(sk)->default_ss;
7543
7544 if (put_user(len, optlen))
7545 goto out;
7546
7547 if (copy_to_user(optval, ¶ms, len))
7548 goto out;
7549
7550 retval = 0;
7551
7552 out:
7553 return retval;
7554 }
7555
sctp_getsockopt_scheduler_value(struct sock * sk,int len,char __user * optval,int __user * optlen)7556 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7557 char __user *optval,
7558 int __user *optlen)
7559 {
7560 struct sctp_stream_value params;
7561 struct sctp_association *asoc;
7562 int retval = -EFAULT;
7563
7564 if (len < sizeof(params)) {
7565 retval = -EINVAL;
7566 goto out;
7567 }
7568
7569 len = sizeof(params);
7570 if (copy_from_user(¶ms, optval, len))
7571 goto out;
7572
7573 asoc = sctp_id2assoc(sk, params.assoc_id);
7574 if (!asoc) {
7575 retval = -EINVAL;
7576 goto out;
7577 }
7578
7579 retval = sctp_sched_get_value(asoc, params.stream_id,
7580 ¶ms.stream_value);
7581 if (retval)
7582 goto out;
7583
7584 if (put_user(len, optlen)) {
7585 retval = -EFAULT;
7586 goto out;
7587 }
7588
7589 if (copy_to_user(optval, ¶ms, len)) {
7590 retval = -EFAULT;
7591 goto out;
7592 }
7593
7594 out:
7595 return retval;
7596 }
7597
sctp_getsockopt_interleaving_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7598 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7599 char __user *optval,
7600 int __user *optlen)
7601 {
7602 struct sctp_assoc_value params;
7603 struct sctp_association *asoc;
7604 int retval = -EFAULT;
7605
7606 if (len < sizeof(params)) {
7607 retval = -EINVAL;
7608 goto out;
7609 }
7610
7611 len = sizeof(params);
7612 if (copy_from_user(¶ms, optval, len))
7613 goto out;
7614
7615 asoc = sctp_id2assoc(sk, params.assoc_id);
7616 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7617 sctp_style(sk, UDP)) {
7618 retval = -EINVAL;
7619 goto out;
7620 }
7621
7622 params.assoc_value = asoc ? asoc->peer.intl_capable
7623 : sctp_sk(sk)->ep->intl_enable;
7624
7625 if (put_user(len, optlen))
7626 goto out;
7627
7628 if (copy_to_user(optval, ¶ms, len))
7629 goto out;
7630
7631 retval = 0;
7632
7633 out:
7634 return retval;
7635 }
7636
sctp_getsockopt_reuse_port(struct sock * sk,int len,char __user * optval,int __user * optlen)7637 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7638 char __user *optval,
7639 int __user *optlen)
7640 {
7641 int val;
7642
7643 if (len < sizeof(int))
7644 return -EINVAL;
7645
7646 len = sizeof(int);
7647 val = sctp_sk(sk)->reuse;
7648 if (put_user(len, optlen))
7649 return -EFAULT;
7650
7651 if (copy_to_user(optval, &val, len))
7652 return -EFAULT;
7653
7654 return 0;
7655 }
7656
sctp_getsockopt_event(struct sock * sk,int len,char __user * optval,int __user * optlen)7657 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7658 int __user *optlen)
7659 {
7660 struct sctp_association *asoc;
7661 struct sctp_event param;
7662 __u16 subscribe;
7663
7664 if (len < sizeof(param))
7665 return -EINVAL;
7666
7667 len = sizeof(param);
7668 if (copy_from_user(¶m, optval, len))
7669 return -EFAULT;
7670
7671 if (param.se_type < SCTP_SN_TYPE_BASE ||
7672 param.se_type > SCTP_SN_TYPE_MAX)
7673 return -EINVAL;
7674
7675 asoc = sctp_id2assoc(sk, param.se_assoc_id);
7676 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7677 sctp_style(sk, UDP))
7678 return -EINVAL;
7679
7680 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7681 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7682
7683 if (put_user(len, optlen))
7684 return -EFAULT;
7685
7686 if (copy_to_user(optval, ¶m, len))
7687 return -EFAULT;
7688
7689 return 0;
7690 }
7691
sctp_getsockopt_asconf_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7692 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7693 char __user *optval,
7694 int __user *optlen)
7695 {
7696 struct sctp_assoc_value params;
7697 struct sctp_association *asoc;
7698 int retval = -EFAULT;
7699
7700 if (len < sizeof(params)) {
7701 retval = -EINVAL;
7702 goto out;
7703 }
7704
7705 len = sizeof(params);
7706 if (copy_from_user(¶ms, optval, len))
7707 goto out;
7708
7709 asoc = sctp_id2assoc(sk, params.assoc_id);
7710 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7711 sctp_style(sk, UDP)) {
7712 retval = -EINVAL;
7713 goto out;
7714 }
7715
7716 params.assoc_value = asoc ? asoc->peer.asconf_capable
7717 : sctp_sk(sk)->ep->asconf_enable;
7718
7719 if (put_user(len, optlen))
7720 goto out;
7721
7722 if (copy_to_user(optval, ¶ms, len))
7723 goto out;
7724
7725 retval = 0;
7726
7727 out:
7728 return retval;
7729 }
7730
sctp_getsockopt_auth_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7731 static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7732 char __user *optval,
7733 int __user *optlen)
7734 {
7735 struct sctp_assoc_value params;
7736 struct sctp_association *asoc;
7737 int retval = -EFAULT;
7738
7739 if (len < sizeof(params)) {
7740 retval = -EINVAL;
7741 goto out;
7742 }
7743
7744 len = sizeof(params);
7745 if (copy_from_user(¶ms, optval, len))
7746 goto out;
7747
7748 asoc = sctp_id2assoc(sk, params.assoc_id);
7749 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7750 sctp_style(sk, UDP)) {
7751 retval = -EINVAL;
7752 goto out;
7753 }
7754
7755 params.assoc_value = asoc ? asoc->peer.auth_capable
7756 : sctp_sk(sk)->ep->auth_enable;
7757
7758 if (put_user(len, optlen))
7759 goto out;
7760
7761 if (copy_to_user(optval, ¶ms, len))
7762 goto out;
7763
7764 retval = 0;
7765
7766 out:
7767 return retval;
7768 }
7769
sctp_getsockopt_ecn_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7770 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7771 char __user *optval,
7772 int __user *optlen)
7773 {
7774 struct sctp_assoc_value params;
7775 struct sctp_association *asoc;
7776 int retval = -EFAULT;
7777
7778 if (len < sizeof(params)) {
7779 retval = -EINVAL;
7780 goto out;
7781 }
7782
7783 len = sizeof(params);
7784 if (copy_from_user(¶ms, optval, len))
7785 goto out;
7786
7787 asoc = sctp_id2assoc(sk, params.assoc_id);
7788 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7789 sctp_style(sk, UDP)) {
7790 retval = -EINVAL;
7791 goto out;
7792 }
7793
7794 params.assoc_value = asoc ? asoc->peer.ecn_capable
7795 : sctp_sk(sk)->ep->ecn_enable;
7796
7797 if (put_user(len, optlen))
7798 goto out;
7799
7800 if (copy_to_user(optval, ¶ms, len))
7801 goto out;
7802
7803 retval = 0;
7804
7805 out:
7806 return retval;
7807 }
7808
sctp_getsockopt_pf_expose(struct sock * sk,int len,char __user * optval,int __user * optlen)7809 static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7810 char __user *optval,
7811 int __user *optlen)
7812 {
7813 struct sctp_assoc_value params;
7814 struct sctp_association *asoc;
7815 int retval = -EFAULT;
7816
7817 if (len < sizeof(params)) {
7818 retval = -EINVAL;
7819 goto out;
7820 }
7821
7822 len = sizeof(params);
7823 if (copy_from_user(¶ms, optval, len))
7824 goto out;
7825
7826 asoc = sctp_id2assoc(sk, params.assoc_id);
7827 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7828 sctp_style(sk, UDP)) {
7829 retval = -EINVAL;
7830 goto out;
7831 }
7832
7833 params.assoc_value = asoc ? asoc->pf_expose
7834 : sctp_sk(sk)->pf_expose;
7835
7836 if (put_user(len, optlen))
7837 goto out;
7838
7839 if (copy_to_user(optval, ¶ms, len))
7840 goto out;
7841
7842 retval = 0;
7843
7844 out:
7845 return retval;
7846 }
7847
sctp_getsockopt_encap_port(struct sock * sk,int len,char __user * optval,int __user * optlen)7848 static int sctp_getsockopt_encap_port(struct sock *sk, int len,
7849 char __user *optval, int __user *optlen)
7850 {
7851 struct sctp_association *asoc;
7852 struct sctp_udpencaps encap;
7853 struct sctp_transport *t;
7854 __be16 encap_port;
7855
7856 if (len < sizeof(encap))
7857 return -EINVAL;
7858
7859 len = sizeof(encap);
7860 if (copy_from_user(&encap, optval, len))
7861 return -EFAULT;
7862
7863 /* If an address other than INADDR_ANY is specified, and
7864 * no transport is found, then the request is invalid.
7865 */
7866 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) {
7867 t = sctp_addr_id2transport(sk, &encap.sue_address,
7868 encap.sue_assoc_id);
7869 if (!t) {
7870 pr_debug("%s: failed no transport\n", __func__);
7871 return -EINVAL;
7872 }
7873
7874 encap_port = t->encap_port;
7875 goto out;
7876 }
7877
7878 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
7879 * socket is a one to many style socket, and an association
7880 * was not found, then the id was invalid.
7881 */
7882 asoc = sctp_id2assoc(sk, encap.sue_assoc_id);
7883 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
7884 sctp_style(sk, UDP)) {
7885 pr_debug("%s: failed no association\n", __func__);
7886 return -EINVAL;
7887 }
7888
7889 if (asoc) {
7890 encap_port = asoc->encap_port;
7891 goto out;
7892 }
7893
7894 encap_port = sctp_sk(sk)->encap_port;
7895
7896 out:
7897 encap.sue_port = (__force uint16_t)encap_port;
7898 if (copy_to_user(optval, &encap, len))
7899 return -EFAULT;
7900
7901 if (put_user(len, optlen))
7902 return -EFAULT;
7903
7904 return 0;
7905 }
7906
sctp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)7907 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7908 char __user *optval, int __user *optlen)
7909 {
7910 int retval = 0;
7911 int len;
7912
7913 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7914
7915 /* I can hardly begin to describe how wrong this is. This is
7916 * so broken as to be worse than useless. The API draft
7917 * REALLY is NOT helpful here... I am not convinced that the
7918 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7919 * are at all well-founded.
7920 */
7921 if (level != SOL_SCTP) {
7922 struct sctp_af *af = sctp_sk(sk)->pf->af;
7923
7924 retval = af->getsockopt(sk, level, optname, optval, optlen);
7925 return retval;
7926 }
7927
7928 if (get_user(len, optlen))
7929 return -EFAULT;
7930
7931 if (len < 0)
7932 return -EINVAL;
7933
7934 lock_sock(sk);
7935
7936 switch (optname) {
7937 case SCTP_STATUS:
7938 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7939 break;
7940 case SCTP_DISABLE_FRAGMENTS:
7941 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7942 optlen);
7943 break;
7944 case SCTP_EVENTS:
7945 retval = sctp_getsockopt_events(sk, len, optval, optlen);
7946 break;
7947 case SCTP_AUTOCLOSE:
7948 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7949 break;
7950 case SCTP_SOCKOPT_PEELOFF:
7951 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7952 break;
7953 case SCTP_SOCKOPT_PEELOFF_FLAGS:
7954 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7955 break;
7956 case SCTP_PEER_ADDR_PARAMS:
7957 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7958 optlen);
7959 break;
7960 case SCTP_DELAYED_SACK:
7961 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7962 optlen);
7963 break;
7964 case SCTP_INITMSG:
7965 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7966 break;
7967 case SCTP_GET_PEER_ADDRS:
7968 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7969 optlen);
7970 break;
7971 case SCTP_GET_LOCAL_ADDRS:
7972 retval = sctp_getsockopt_local_addrs(sk, len, optval,
7973 optlen);
7974 break;
7975 case SCTP_SOCKOPT_CONNECTX3:
7976 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7977 break;
7978 case SCTP_DEFAULT_SEND_PARAM:
7979 retval = sctp_getsockopt_default_send_param(sk, len,
7980 optval, optlen);
7981 break;
7982 case SCTP_DEFAULT_SNDINFO:
7983 retval = sctp_getsockopt_default_sndinfo(sk, len,
7984 optval, optlen);
7985 break;
7986 case SCTP_PRIMARY_ADDR:
7987 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7988 break;
7989 case SCTP_NODELAY:
7990 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7991 break;
7992 case SCTP_RTOINFO:
7993 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7994 break;
7995 case SCTP_ASSOCINFO:
7996 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7997 break;
7998 case SCTP_I_WANT_MAPPED_V4_ADDR:
7999 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
8000 break;
8001 case SCTP_MAXSEG:
8002 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
8003 break;
8004 case SCTP_GET_PEER_ADDR_INFO:
8005 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8006 optlen);
8007 break;
8008 case SCTP_ADAPTATION_LAYER:
8009 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8010 optlen);
8011 break;
8012 case SCTP_CONTEXT:
8013 retval = sctp_getsockopt_context(sk, len, optval, optlen);
8014 break;
8015 case SCTP_FRAGMENT_INTERLEAVE:
8016 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8017 optlen);
8018 break;
8019 case SCTP_PARTIAL_DELIVERY_POINT:
8020 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8021 optlen);
8022 break;
8023 case SCTP_MAX_BURST:
8024 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8025 break;
8026 case SCTP_AUTH_KEY:
8027 case SCTP_AUTH_CHUNK:
8028 case SCTP_AUTH_DELETE_KEY:
8029 case SCTP_AUTH_DEACTIVATE_KEY:
8030 retval = -EOPNOTSUPP;
8031 break;
8032 case SCTP_HMAC_IDENT:
8033 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8034 break;
8035 case SCTP_AUTH_ACTIVE_KEY:
8036 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8037 break;
8038 case SCTP_PEER_AUTH_CHUNKS:
8039 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8040 optlen);
8041 break;
8042 case SCTP_LOCAL_AUTH_CHUNKS:
8043 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8044 optlen);
8045 break;
8046 case SCTP_GET_ASSOC_NUMBER:
8047 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8048 break;
8049 case SCTP_GET_ASSOC_ID_LIST:
8050 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8051 break;
8052 case SCTP_AUTO_ASCONF:
8053 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8054 break;
8055 case SCTP_PEER_ADDR_THLDS:
8056 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8057 optlen, false);
8058 break;
8059 case SCTP_PEER_ADDR_THLDS_V2:
8060 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8061 optlen, true);
8062 break;
8063 case SCTP_GET_ASSOC_STATS:
8064 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8065 break;
8066 case SCTP_RECVRCVINFO:
8067 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8068 break;
8069 case SCTP_RECVNXTINFO:
8070 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8071 break;
8072 case SCTP_PR_SUPPORTED:
8073 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8074 break;
8075 case SCTP_DEFAULT_PRINFO:
8076 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8077 optlen);
8078 break;
8079 case SCTP_PR_ASSOC_STATUS:
8080 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8081 optlen);
8082 break;
8083 case SCTP_PR_STREAM_STATUS:
8084 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8085 optlen);
8086 break;
8087 case SCTP_RECONFIG_SUPPORTED:
8088 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8089 optlen);
8090 break;
8091 case SCTP_ENABLE_STREAM_RESET:
8092 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8093 optlen);
8094 break;
8095 case SCTP_STREAM_SCHEDULER:
8096 retval = sctp_getsockopt_scheduler(sk, len, optval,
8097 optlen);
8098 break;
8099 case SCTP_STREAM_SCHEDULER_VALUE:
8100 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8101 optlen);
8102 break;
8103 case SCTP_INTERLEAVING_SUPPORTED:
8104 retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8105 optlen);
8106 break;
8107 case SCTP_REUSE_PORT:
8108 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8109 break;
8110 case SCTP_EVENT:
8111 retval = sctp_getsockopt_event(sk, len, optval, optlen);
8112 break;
8113 case SCTP_ASCONF_SUPPORTED:
8114 retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8115 optlen);
8116 break;
8117 case SCTP_AUTH_SUPPORTED:
8118 retval = sctp_getsockopt_auth_supported(sk, len, optval,
8119 optlen);
8120 break;
8121 case SCTP_ECN_SUPPORTED:
8122 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8123 break;
8124 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8125 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8126 break;
8127 case SCTP_REMOTE_UDP_ENCAPS_PORT:
8128 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
8129 break;
8130 default:
8131 retval = -ENOPROTOOPT;
8132 break;
8133 }
8134
8135 release_sock(sk);
8136 return retval;
8137 }
8138
sctp_hash(struct sock * sk)8139 static int sctp_hash(struct sock *sk)
8140 {
8141 /* STUB */
8142 return 0;
8143 }
8144
sctp_unhash(struct sock * sk)8145 static void sctp_unhash(struct sock *sk)
8146 {
8147 /* STUB */
8148 }
8149
8150 /* Check if port is acceptable. Possibly find first available port.
8151 *
8152 * The port hash table (contained in the 'global' SCTP protocol storage
8153 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8154 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8155 * list (the list number is the port number hashed out, so as you
8156 * would expect from a hash function, all the ports in a given list have
8157 * such a number that hashes out to the same list number; you were
8158 * expecting that, right?); so each list has a set of ports, with a
8159 * link to the socket (struct sock) that uses it, the port number and
8160 * a fastreuse flag (FIXME: NPI ipg).
8161 */
8162 static struct sctp_bind_bucket *sctp_bucket_create(
8163 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8164
sctp_get_port_local(struct sock * sk,union sctp_addr * addr)8165 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8166 {
8167 struct sctp_sock *sp = sctp_sk(sk);
8168 bool reuse = (sk->sk_reuse || sp->reuse);
8169 struct sctp_bind_hashbucket *head; /* hash list */
8170 struct net *net = sock_net(sk);
8171 kuid_t uid = sock_i_uid(sk);
8172 struct sctp_bind_bucket *pp;
8173 unsigned short snum;
8174 int ret;
8175
8176 snum = ntohs(addr->v4.sin_port);
8177
8178 pr_debug("%s: begins, snum:%d\n", __func__, snum);
8179
8180 if (snum == 0) {
8181 /* Search for an available port. */
8182 int low, high, remaining, index;
8183 unsigned int rover;
8184
8185 inet_get_local_port_range(net, &low, &high);
8186 remaining = (high - low) + 1;
8187 rover = prandom_u32() % remaining + low;
8188
8189 do {
8190 rover++;
8191 if ((rover < low) || (rover > high))
8192 rover = low;
8193 if (inet_is_local_reserved_port(net, rover))
8194 continue;
8195 index = sctp_phashfn(net, rover);
8196 head = &sctp_port_hashtable[index];
8197 spin_lock_bh(&head->lock);
8198 sctp_for_each_hentry(pp, &head->chain)
8199 if ((pp->port == rover) &&
8200 net_eq(net, pp->net))
8201 goto next;
8202 break;
8203 next:
8204 spin_unlock_bh(&head->lock);
8205 cond_resched();
8206 } while (--remaining > 0);
8207
8208 /* Exhausted local port range during search? */
8209 ret = 1;
8210 if (remaining <= 0)
8211 return ret;
8212
8213 /* OK, here is the one we will use. HEAD (the port
8214 * hash table list entry) is non-NULL and we hold it's
8215 * mutex.
8216 */
8217 snum = rover;
8218 } else {
8219 /* We are given an specific port number; we verify
8220 * that it is not being used. If it is used, we will
8221 * exahust the search in the hash list corresponding
8222 * to the port number (snum) - we detect that with the
8223 * port iterator, pp being NULL.
8224 */
8225 head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8226 spin_lock_bh(&head->lock);
8227 sctp_for_each_hentry(pp, &head->chain) {
8228 if ((pp->port == snum) && net_eq(pp->net, net))
8229 goto pp_found;
8230 }
8231 }
8232 pp = NULL;
8233 goto pp_not_found;
8234 pp_found:
8235 if (!hlist_empty(&pp->owner)) {
8236 /* We had a port hash table hit - there is an
8237 * available port (pp != NULL) and it is being
8238 * used by other socket (pp->owner not empty); that other
8239 * socket is going to be sk2.
8240 */
8241 struct sock *sk2;
8242
8243 pr_debug("%s: found a possible match\n", __func__);
8244
8245 if ((pp->fastreuse && reuse &&
8246 sk->sk_state != SCTP_SS_LISTENING) ||
8247 (pp->fastreuseport && sk->sk_reuseport &&
8248 uid_eq(pp->fastuid, uid)))
8249 goto success;
8250
8251 /* Run through the list of sockets bound to the port
8252 * (pp->port) [via the pointers bind_next and
8253 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8254 * we get the endpoint they describe and run through
8255 * the endpoint's list of IP (v4 or v6) addresses,
8256 * comparing each of the addresses with the address of
8257 * the socket sk. If we find a match, then that means
8258 * that this port/socket (sk) combination are already
8259 * in an endpoint.
8260 */
8261 sk_for_each_bound(sk2, &pp->owner) {
8262 struct sctp_sock *sp2 = sctp_sk(sk2);
8263 struct sctp_endpoint *ep2 = sp2->ep;
8264
8265 if (sk == sk2 ||
8266 (reuse && (sk2->sk_reuse || sp2->reuse) &&
8267 sk2->sk_state != SCTP_SS_LISTENING) ||
8268 (sk->sk_reuseport && sk2->sk_reuseport &&
8269 uid_eq(uid, sock_i_uid(sk2))))
8270 continue;
8271
8272 if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8273 addr, sp2, sp)) {
8274 ret = 1;
8275 goto fail_unlock;
8276 }
8277 }
8278
8279 pr_debug("%s: found a match\n", __func__);
8280 }
8281 pp_not_found:
8282 /* If there was a hash table miss, create a new port. */
8283 ret = 1;
8284 if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8285 goto fail_unlock;
8286
8287 /* In either case (hit or miss), make sure fastreuse is 1 only
8288 * if sk->sk_reuse is too (that is, if the caller requested
8289 * SO_REUSEADDR on this socket -sk-).
8290 */
8291 if (hlist_empty(&pp->owner)) {
8292 if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8293 pp->fastreuse = 1;
8294 else
8295 pp->fastreuse = 0;
8296
8297 if (sk->sk_reuseport) {
8298 pp->fastreuseport = 1;
8299 pp->fastuid = uid;
8300 } else {
8301 pp->fastreuseport = 0;
8302 }
8303 } else {
8304 if (pp->fastreuse &&
8305 (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8306 pp->fastreuse = 0;
8307
8308 if (pp->fastreuseport &&
8309 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8310 pp->fastreuseport = 0;
8311 }
8312
8313 /* We are set, so fill up all the data in the hash table
8314 * entry, tie the socket list information with the rest of the
8315 * sockets FIXME: Blurry, NPI (ipg).
8316 */
8317 success:
8318 if (!sp->bind_hash) {
8319 inet_sk(sk)->inet_num = snum;
8320 sk_add_bind_node(sk, &pp->owner);
8321 sp->bind_hash = pp;
8322 }
8323 ret = 0;
8324
8325 fail_unlock:
8326 spin_unlock_bh(&head->lock);
8327 return ret;
8328 }
8329
8330 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
8331 * port is requested.
8332 */
sctp_get_port(struct sock * sk,unsigned short snum)8333 static int sctp_get_port(struct sock *sk, unsigned short snum)
8334 {
8335 union sctp_addr addr;
8336 struct sctp_af *af = sctp_sk(sk)->pf->af;
8337
8338 /* Set up a dummy address struct from the sk. */
8339 af->from_sk(&addr, sk);
8340 addr.v4.sin_port = htons(snum);
8341
8342 /* Note: sk->sk_num gets filled in if ephemeral port request. */
8343 return sctp_get_port_local(sk, &addr);
8344 }
8345
8346 /*
8347 * Move a socket to LISTENING state.
8348 */
sctp_listen_start(struct sock * sk,int backlog)8349 static int sctp_listen_start(struct sock *sk, int backlog)
8350 {
8351 struct sctp_sock *sp = sctp_sk(sk);
8352 struct sctp_endpoint *ep = sp->ep;
8353 struct crypto_shash *tfm = NULL;
8354 char alg[32];
8355
8356 /* Allocate HMAC for generating cookie. */
8357 if (!sp->hmac && sp->sctp_hmac_alg) {
8358 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8359 tfm = crypto_alloc_shash(alg, 0, 0);
8360 if (IS_ERR(tfm)) {
8361 net_info_ratelimited("failed to load transform for %s: %ld\n",
8362 sp->sctp_hmac_alg, PTR_ERR(tfm));
8363 return -ENOSYS;
8364 }
8365 sctp_sk(sk)->hmac = tfm;
8366 }
8367
8368 /*
8369 * If a bind() or sctp_bindx() is not called prior to a listen()
8370 * call that allows new associations to be accepted, the system
8371 * picks an ephemeral port and will choose an address set equivalent
8372 * to binding with a wildcard address.
8373 *
8374 * This is not currently spelled out in the SCTP sockets
8375 * extensions draft, but follows the practice as seen in TCP
8376 * sockets.
8377 *
8378 */
8379 inet_sk_set_state(sk, SCTP_SS_LISTENING);
8380 if (!ep->base.bind_addr.port) {
8381 if (sctp_autobind(sk))
8382 return -EAGAIN;
8383 } else {
8384 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8385 inet_sk_set_state(sk, SCTP_SS_CLOSED);
8386 return -EADDRINUSE;
8387 }
8388 }
8389
8390 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8391 return sctp_hash_endpoint(ep);
8392 }
8393
8394 /*
8395 * 4.1.3 / 5.1.3 listen()
8396 *
8397 * By default, new associations are not accepted for UDP style sockets.
8398 * An application uses listen() to mark a socket as being able to
8399 * accept new associations.
8400 *
8401 * On TCP style sockets, applications use listen() to ready the SCTP
8402 * endpoint for accepting inbound associations.
8403 *
8404 * On both types of endpoints a backlog of '0' disables listening.
8405 *
8406 * Move a socket to LISTENING state.
8407 */
sctp_inet_listen(struct socket * sock,int backlog)8408 int sctp_inet_listen(struct socket *sock, int backlog)
8409 {
8410 struct sock *sk = sock->sk;
8411 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8412 int err = -EINVAL;
8413
8414 if (unlikely(backlog < 0))
8415 return err;
8416
8417 lock_sock(sk);
8418
8419 /* Peeled-off sockets are not allowed to listen(). */
8420 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8421 goto out;
8422
8423 if (sock->state != SS_UNCONNECTED)
8424 goto out;
8425
8426 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8427 goto out;
8428
8429 /* If backlog is zero, disable listening. */
8430 if (!backlog) {
8431 if (sctp_sstate(sk, CLOSED))
8432 goto out;
8433
8434 err = 0;
8435 sctp_unhash_endpoint(ep);
8436 sk->sk_state = SCTP_SS_CLOSED;
8437 if (sk->sk_reuse || sctp_sk(sk)->reuse)
8438 sctp_sk(sk)->bind_hash->fastreuse = 1;
8439 goto out;
8440 }
8441
8442 /* If we are already listening, just update the backlog */
8443 if (sctp_sstate(sk, LISTENING))
8444 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8445 else {
8446 err = sctp_listen_start(sk, backlog);
8447 if (err)
8448 goto out;
8449 }
8450
8451 err = 0;
8452 out:
8453 release_sock(sk);
8454 return err;
8455 }
8456
8457 /*
8458 * This function is done by modeling the current datagram_poll() and the
8459 * tcp_poll(). Note that, based on these implementations, we don't
8460 * lock the socket in this function, even though it seems that,
8461 * ideally, locking or some other mechanisms can be used to ensure
8462 * the integrity of the counters (sndbuf and wmem_alloc) used
8463 * in this place. We assume that we don't need locks either until proven
8464 * otherwise.
8465 *
8466 * Another thing to note is that we include the Async I/O support
8467 * here, again, by modeling the current TCP/UDP code. We don't have
8468 * a good way to test with it yet.
8469 */
sctp_poll(struct file * file,struct socket * sock,poll_table * wait)8470 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8471 {
8472 struct sock *sk = sock->sk;
8473 struct sctp_sock *sp = sctp_sk(sk);
8474 __poll_t mask;
8475
8476 poll_wait(file, sk_sleep(sk), wait);
8477
8478 sock_rps_record_flow(sk);
8479
8480 /* A TCP-style listening socket becomes readable when the accept queue
8481 * is not empty.
8482 */
8483 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8484 return (!list_empty(&sp->ep->asocs)) ?
8485 (EPOLLIN | EPOLLRDNORM) : 0;
8486
8487 mask = 0;
8488
8489 /* Is there any exceptional events? */
8490 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8491 mask |= EPOLLERR |
8492 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8493 if (sk->sk_shutdown & RCV_SHUTDOWN)
8494 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8495 if (sk->sk_shutdown == SHUTDOWN_MASK)
8496 mask |= EPOLLHUP;
8497
8498 /* Is it readable? Reconsider this code with TCP-style support. */
8499 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8500 mask |= EPOLLIN | EPOLLRDNORM;
8501
8502 /* The association is either gone or not ready. */
8503 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8504 return mask;
8505
8506 /* Is it writable? */
8507 if (sctp_writeable(sk)) {
8508 mask |= EPOLLOUT | EPOLLWRNORM;
8509 } else {
8510 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8511 /*
8512 * Since the socket is not locked, the buffer
8513 * might be made available after the writeable check and
8514 * before the bit is set. This could cause a lost I/O
8515 * signal. tcp_poll() has a race breaker for this race
8516 * condition. Based on their implementation, we put
8517 * in the following code to cover it as well.
8518 */
8519 if (sctp_writeable(sk))
8520 mask |= EPOLLOUT | EPOLLWRNORM;
8521 }
8522 return mask;
8523 }
8524
8525 /********************************************************************
8526 * 2nd Level Abstractions
8527 ********************************************************************/
8528
sctp_bucket_create(struct sctp_bind_hashbucket * head,struct net * net,unsigned short snum)8529 static struct sctp_bind_bucket *sctp_bucket_create(
8530 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8531 {
8532 struct sctp_bind_bucket *pp;
8533
8534 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8535 if (pp) {
8536 SCTP_DBG_OBJCNT_INC(bind_bucket);
8537 pp->port = snum;
8538 pp->fastreuse = 0;
8539 INIT_HLIST_HEAD(&pp->owner);
8540 pp->net = net;
8541 hlist_add_head(&pp->node, &head->chain);
8542 }
8543 return pp;
8544 }
8545
8546 /* Caller must hold hashbucket lock for this tb with local BH disabled */
sctp_bucket_destroy(struct sctp_bind_bucket * pp)8547 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8548 {
8549 if (pp && hlist_empty(&pp->owner)) {
8550 __hlist_del(&pp->node);
8551 kmem_cache_free(sctp_bucket_cachep, pp);
8552 SCTP_DBG_OBJCNT_DEC(bind_bucket);
8553 }
8554 }
8555
8556 /* Release this socket's reference to a local port. */
__sctp_put_port(struct sock * sk)8557 static inline void __sctp_put_port(struct sock *sk)
8558 {
8559 struct sctp_bind_hashbucket *head =
8560 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8561 inet_sk(sk)->inet_num)];
8562 struct sctp_bind_bucket *pp;
8563
8564 spin_lock(&head->lock);
8565 pp = sctp_sk(sk)->bind_hash;
8566 __sk_del_bind_node(sk);
8567 sctp_sk(sk)->bind_hash = NULL;
8568 inet_sk(sk)->inet_num = 0;
8569 sctp_bucket_destroy(pp);
8570 spin_unlock(&head->lock);
8571 }
8572
sctp_put_port(struct sock * sk)8573 void sctp_put_port(struct sock *sk)
8574 {
8575 local_bh_disable();
8576 __sctp_put_port(sk);
8577 local_bh_enable();
8578 }
8579
8580 /*
8581 * The system picks an ephemeral port and choose an address set equivalent
8582 * to binding with a wildcard address.
8583 * One of those addresses will be the primary address for the association.
8584 * This automatically enables the multihoming capability of SCTP.
8585 */
sctp_autobind(struct sock * sk)8586 static int sctp_autobind(struct sock *sk)
8587 {
8588 union sctp_addr autoaddr;
8589 struct sctp_af *af;
8590 __be16 port;
8591
8592 /* Initialize a local sockaddr structure to INADDR_ANY. */
8593 af = sctp_sk(sk)->pf->af;
8594
8595 port = htons(inet_sk(sk)->inet_num);
8596 af->inaddr_any(&autoaddr, port);
8597
8598 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8599 }
8600
8601 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
8602 *
8603 * From RFC 2292
8604 * 4.2 The cmsghdr Structure *
8605 *
8606 * When ancillary data is sent or received, any number of ancillary data
8607 * objects can be specified by the msg_control and msg_controllen members of
8608 * the msghdr structure, because each object is preceded by
8609 * a cmsghdr structure defining the object's length (the cmsg_len member).
8610 * Historically Berkeley-derived implementations have passed only one object
8611 * at a time, but this API allows multiple objects to be
8612 * passed in a single call to sendmsg() or recvmsg(). The following example
8613 * shows two ancillary data objects in a control buffer.
8614 *
8615 * |<--------------------------- msg_controllen -------------------------->|
8616 * | |
8617 *
8618 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
8619 *
8620 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8621 * | | |
8622 *
8623 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
8624 *
8625 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
8626 * | | | | |
8627 *
8628 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8629 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
8630 *
8631 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
8632 *
8633 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8634 * ^
8635 * |
8636 *
8637 * msg_control
8638 * points here
8639 */
sctp_msghdr_parse(const struct msghdr * msg,struct sctp_cmsgs * cmsgs)8640 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8641 {
8642 struct msghdr *my_msg = (struct msghdr *)msg;
8643 struct cmsghdr *cmsg;
8644
8645 for_each_cmsghdr(cmsg, my_msg) {
8646 if (!CMSG_OK(my_msg, cmsg))
8647 return -EINVAL;
8648
8649 /* Should we parse this header or ignore? */
8650 if (cmsg->cmsg_level != IPPROTO_SCTP)
8651 continue;
8652
8653 /* Strictly check lengths following example in SCM code. */
8654 switch (cmsg->cmsg_type) {
8655 case SCTP_INIT:
8656 /* SCTP Socket API Extension
8657 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8658 *
8659 * This cmsghdr structure provides information for
8660 * initializing new SCTP associations with sendmsg().
8661 * The SCTP_INITMSG socket option uses this same data
8662 * structure. This structure is not used for
8663 * recvmsg().
8664 *
8665 * cmsg_level cmsg_type cmsg_data[]
8666 * ------------ ------------ ----------------------
8667 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
8668 */
8669 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8670 return -EINVAL;
8671
8672 cmsgs->init = CMSG_DATA(cmsg);
8673 break;
8674
8675 case SCTP_SNDRCV:
8676 /* SCTP Socket API Extension
8677 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8678 *
8679 * This cmsghdr structure specifies SCTP options for
8680 * sendmsg() and describes SCTP header information
8681 * about a received message through recvmsg().
8682 *
8683 * cmsg_level cmsg_type cmsg_data[]
8684 * ------------ ------------ ----------------------
8685 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
8686 */
8687 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8688 return -EINVAL;
8689
8690 cmsgs->srinfo = CMSG_DATA(cmsg);
8691
8692 if (cmsgs->srinfo->sinfo_flags &
8693 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8694 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8695 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8696 return -EINVAL;
8697 break;
8698
8699 case SCTP_SNDINFO:
8700 /* SCTP Socket API Extension
8701 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8702 *
8703 * This cmsghdr structure specifies SCTP options for
8704 * sendmsg(). This structure and SCTP_RCVINFO replaces
8705 * SCTP_SNDRCV which has been deprecated.
8706 *
8707 * cmsg_level cmsg_type cmsg_data[]
8708 * ------------ ------------ ---------------------
8709 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
8710 */
8711 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8712 return -EINVAL;
8713
8714 cmsgs->sinfo = CMSG_DATA(cmsg);
8715
8716 if (cmsgs->sinfo->snd_flags &
8717 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8718 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8719 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8720 return -EINVAL;
8721 break;
8722 case SCTP_PRINFO:
8723 /* SCTP Socket API Extension
8724 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8725 *
8726 * This cmsghdr structure specifies SCTP options for sendmsg().
8727 *
8728 * cmsg_level cmsg_type cmsg_data[]
8729 * ------------ ------------ ---------------------
8730 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
8731 */
8732 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8733 return -EINVAL;
8734
8735 cmsgs->prinfo = CMSG_DATA(cmsg);
8736 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8737 return -EINVAL;
8738
8739 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8740 cmsgs->prinfo->pr_value = 0;
8741 break;
8742 case SCTP_AUTHINFO:
8743 /* SCTP Socket API Extension
8744 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8745 *
8746 * This cmsghdr structure specifies SCTP options for sendmsg().
8747 *
8748 * cmsg_level cmsg_type cmsg_data[]
8749 * ------------ ------------ ---------------------
8750 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
8751 */
8752 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8753 return -EINVAL;
8754
8755 cmsgs->authinfo = CMSG_DATA(cmsg);
8756 break;
8757 case SCTP_DSTADDRV4:
8758 case SCTP_DSTADDRV6:
8759 /* SCTP Socket API Extension
8760 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8761 *
8762 * This cmsghdr structure specifies SCTP options for sendmsg().
8763 *
8764 * cmsg_level cmsg_type cmsg_data[]
8765 * ------------ ------------ ---------------------
8766 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
8767 * ------------ ------------ ---------------------
8768 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
8769 */
8770 cmsgs->addrs_msg = my_msg;
8771 break;
8772 default:
8773 return -EINVAL;
8774 }
8775 }
8776
8777 return 0;
8778 }
8779
8780 /*
8781 * Wait for a packet..
8782 * Note: This function is the same function as in core/datagram.c
8783 * with a few modifications to make lksctp work.
8784 */
sctp_wait_for_packet(struct sock * sk,int * err,long * timeo_p)8785 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8786 {
8787 int error;
8788 DEFINE_WAIT(wait);
8789
8790 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8791
8792 /* Socket errors? */
8793 error = sock_error(sk);
8794 if (error)
8795 goto out;
8796
8797 if (!skb_queue_empty(&sk->sk_receive_queue))
8798 goto ready;
8799
8800 /* Socket shut down? */
8801 if (sk->sk_shutdown & RCV_SHUTDOWN)
8802 goto out;
8803
8804 /* Sequenced packets can come disconnected. If so we report the
8805 * problem.
8806 */
8807 error = -ENOTCONN;
8808
8809 /* Is there a good reason to think that we may receive some data? */
8810 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8811 goto out;
8812
8813 /* Handle signals. */
8814 if (signal_pending(current))
8815 goto interrupted;
8816
8817 /* Let another process have a go. Since we are going to sleep
8818 * anyway. Note: This may cause odd behaviors if the message
8819 * does not fit in the user's buffer, but this seems to be the
8820 * only way to honor MSG_DONTWAIT realistically.
8821 */
8822 release_sock(sk);
8823 *timeo_p = schedule_timeout(*timeo_p);
8824 lock_sock(sk);
8825
8826 ready:
8827 finish_wait(sk_sleep(sk), &wait);
8828 return 0;
8829
8830 interrupted:
8831 error = sock_intr_errno(*timeo_p);
8832
8833 out:
8834 finish_wait(sk_sleep(sk), &wait);
8835 *err = error;
8836 return error;
8837 }
8838
8839 /* Receive a datagram.
8840 * Note: This is pretty much the same routine as in core/datagram.c
8841 * with a few changes to make lksctp work.
8842 */
sctp_skb_recv_datagram(struct sock * sk,int flags,int noblock,int * err)8843 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8844 int noblock, int *err)
8845 {
8846 int error;
8847 struct sk_buff *skb;
8848 long timeo;
8849
8850 timeo = sock_rcvtimeo(sk, noblock);
8851
8852 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8853 MAX_SCHEDULE_TIMEOUT);
8854
8855 do {
8856 /* Again only user level code calls this function,
8857 * so nothing interrupt level
8858 * will suddenly eat the receive_queue.
8859 *
8860 * Look at current nfs client by the way...
8861 * However, this function was correct in any case. 8)
8862 */
8863 if (flags & MSG_PEEK) {
8864 skb = skb_peek(&sk->sk_receive_queue);
8865 if (skb)
8866 refcount_inc(&skb->users);
8867 } else {
8868 skb = __skb_dequeue(&sk->sk_receive_queue);
8869 }
8870
8871 if (skb)
8872 return skb;
8873
8874 /* Caller is allowed not to check sk->sk_err before calling. */
8875 error = sock_error(sk);
8876 if (error)
8877 goto no_packet;
8878
8879 if (sk->sk_shutdown & RCV_SHUTDOWN)
8880 break;
8881
8882 if (sk_can_busy_loop(sk)) {
8883 sk_busy_loop(sk, noblock);
8884
8885 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8886 continue;
8887 }
8888
8889 /* User doesn't want to wait. */
8890 error = -EAGAIN;
8891 if (!timeo)
8892 goto no_packet;
8893 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8894
8895 return NULL;
8896
8897 no_packet:
8898 *err = error;
8899 return NULL;
8900 }
8901
8902 /* If sndbuf has changed, wake up per association sndbuf waiters. */
__sctp_write_space(struct sctp_association * asoc)8903 static void __sctp_write_space(struct sctp_association *asoc)
8904 {
8905 struct sock *sk = asoc->base.sk;
8906
8907 if (sctp_wspace(asoc) <= 0)
8908 return;
8909
8910 if (waitqueue_active(&asoc->wait))
8911 wake_up_interruptible(&asoc->wait);
8912
8913 if (sctp_writeable(sk)) {
8914 struct socket_wq *wq;
8915
8916 rcu_read_lock();
8917 wq = rcu_dereference(sk->sk_wq);
8918 if (wq) {
8919 if (waitqueue_active(&wq->wait))
8920 wake_up_interruptible(&wq->wait);
8921
8922 /* Note that we try to include the Async I/O support
8923 * here by modeling from the current TCP/UDP code.
8924 * We have not tested with it yet.
8925 */
8926 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8927 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8928 }
8929 rcu_read_unlock();
8930 }
8931 }
8932
sctp_wake_up_waiters(struct sock * sk,struct sctp_association * asoc)8933 static void sctp_wake_up_waiters(struct sock *sk,
8934 struct sctp_association *asoc)
8935 {
8936 struct sctp_association *tmp = asoc;
8937
8938 /* We do accounting for the sndbuf space per association,
8939 * so we only need to wake our own association.
8940 */
8941 if (asoc->ep->sndbuf_policy)
8942 return __sctp_write_space(asoc);
8943
8944 /* If association goes down and is just flushing its
8945 * outq, then just normally notify others.
8946 */
8947 if (asoc->base.dead)
8948 return sctp_write_space(sk);
8949
8950 /* Accounting for the sndbuf space is per socket, so we
8951 * need to wake up others, try to be fair and in case of
8952 * other associations, let them have a go first instead
8953 * of just doing a sctp_write_space() call.
8954 *
8955 * Note that we reach sctp_wake_up_waiters() only when
8956 * associations free up queued chunks, thus we are under
8957 * lock and the list of associations on a socket is
8958 * guaranteed not to change.
8959 */
8960 for (tmp = list_next_entry(tmp, asocs); 1;
8961 tmp = list_next_entry(tmp, asocs)) {
8962 /* Manually skip the head element. */
8963 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8964 continue;
8965 /* Wake up association. */
8966 __sctp_write_space(tmp);
8967 /* We've reached the end. */
8968 if (tmp == asoc)
8969 break;
8970 }
8971 }
8972
8973 /* Do accounting for the sndbuf space.
8974 * Decrement the used sndbuf space of the corresponding association by the
8975 * data size which was just transmitted(freed).
8976 */
sctp_wfree(struct sk_buff * skb)8977 static void sctp_wfree(struct sk_buff *skb)
8978 {
8979 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8980 struct sctp_association *asoc = chunk->asoc;
8981 struct sock *sk = asoc->base.sk;
8982
8983 sk_mem_uncharge(sk, skb->truesize);
8984 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8985 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8986 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8987 &sk->sk_wmem_alloc));
8988
8989 if (chunk->shkey) {
8990 struct sctp_shared_key *shkey = chunk->shkey;
8991
8992 /* refcnt == 2 and !list_empty mean after this release, it's
8993 * not being used anywhere, and it's time to notify userland
8994 * that this shkey can be freed if it's been deactivated.
8995 */
8996 if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8997 refcount_read(&shkey->refcnt) == 2) {
8998 struct sctp_ulpevent *ev;
8999
9000 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
9001 SCTP_AUTH_FREE_KEY,
9002 GFP_KERNEL);
9003 if (ev)
9004 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9005 }
9006 sctp_auth_shkey_release(chunk->shkey);
9007 }
9008
9009 sock_wfree(skb);
9010 sctp_wake_up_waiters(sk, asoc);
9011
9012 sctp_association_put(asoc);
9013 }
9014
9015 /* Do accounting for the receive space on the socket.
9016 * Accounting for the association is done in ulpevent.c
9017 * We set this as a destructor for the cloned data skbs so that
9018 * accounting is done at the correct time.
9019 */
sctp_sock_rfree(struct sk_buff * skb)9020 void sctp_sock_rfree(struct sk_buff *skb)
9021 {
9022 struct sock *sk = skb->sk;
9023 struct sctp_ulpevent *event = sctp_skb2event(skb);
9024
9025 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9026
9027 /*
9028 * Mimic the behavior of sock_rfree
9029 */
9030 sk_mem_uncharge(sk, event->rmem_len);
9031 }
9032
9033
9034 /* Helper function to wait for space in the sndbuf. */
sctp_wait_for_sndbuf(struct sctp_association * asoc,long * timeo_p,size_t msg_len)9035 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9036 size_t msg_len)
9037 {
9038 struct sock *sk = asoc->base.sk;
9039 long current_timeo = *timeo_p;
9040 DEFINE_WAIT(wait);
9041 int err = 0;
9042
9043 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9044 *timeo_p, msg_len);
9045
9046 /* Increment the association's refcnt. */
9047 sctp_association_hold(asoc);
9048
9049 /* Wait on the association specific sndbuf space. */
9050 for (;;) {
9051 prepare_to_wait_exclusive(&asoc->wait, &wait,
9052 TASK_INTERRUPTIBLE);
9053 if (asoc->base.dead)
9054 goto do_dead;
9055 if (!*timeo_p)
9056 goto do_nonblock;
9057 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9058 goto do_error;
9059 if (signal_pending(current))
9060 goto do_interrupted;
9061 if (sk_under_memory_pressure(sk))
9062 sk_mem_reclaim(sk);
9063 if ((int)msg_len <= sctp_wspace(asoc) &&
9064 sk_wmem_schedule(sk, msg_len))
9065 break;
9066
9067 /* Let another process have a go. Since we are going
9068 * to sleep anyway.
9069 */
9070 release_sock(sk);
9071 current_timeo = schedule_timeout(current_timeo);
9072 lock_sock(sk);
9073 if (sk != asoc->base.sk)
9074 goto do_error;
9075
9076 *timeo_p = current_timeo;
9077 }
9078
9079 out:
9080 finish_wait(&asoc->wait, &wait);
9081
9082 /* Release the association's refcnt. */
9083 sctp_association_put(asoc);
9084
9085 return err;
9086
9087 do_dead:
9088 err = -ESRCH;
9089 goto out;
9090
9091 do_error:
9092 err = -EPIPE;
9093 goto out;
9094
9095 do_interrupted:
9096 err = sock_intr_errno(*timeo_p);
9097 goto out;
9098
9099 do_nonblock:
9100 err = -EAGAIN;
9101 goto out;
9102 }
9103
sctp_data_ready(struct sock * sk)9104 void sctp_data_ready(struct sock *sk)
9105 {
9106 struct socket_wq *wq;
9107
9108 rcu_read_lock();
9109 wq = rcu_dereference(sk->sk_wq);
9110 if (skwq_has_sleeper(wq))
9111 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9112 EPOLLRDNORM | EPOLLRDBAND);
9113 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9114 rcu_read_unlock();
9115 }
9116
9117 /* If socket sndbuf has changed, wake up all per association waiters. */
sctp_write_space(struct sock * sk)9118 void sctp_write_space(struct sock *sk)
9119 {
9120 struct sctp_association *asoc;
9121
9122 /* Wake up the tasks in each wait queue. */
9123 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9124 __sctp_write_space(asoc);
9125 }
9126 }
9127
9128 /* Is there any sndbuf space available on the socket?
9129 *
9130 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9131 * associations on the same socket. For a UDP-style socket with
9132 * multiple associations, it is possible for it to be "unwriteable"
9133 * prematurely. I assume that this is acceptable because
9134 * a premature "unwriteable" is better than an accidental "writeable" which
9135 * would cause an unwanted block under certain circumstances. For the 1-1
9136 * UDP-style sockets or TCP-style sockets, this code should work.
9137 * - Daisy
9138 */
sctp_writeable(struct sock * sk)9139 static bool sctp_writeable(struct sock *sk)
9140 {
9141 return sk->sk_sndbuf > sk->sk_wmem_queued;
9142 }
9143
9144 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9145 * returns immediately with EINPROGRESS.
9146 */
sctp_wait_for_connect(struct sctp_association * asoc,long * timeo_p)9147 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9148 {
9149 struct sock *sk = asoc->base.sk;
9150 int err = 0;
9151 long current_timeo = *timeo_p;
9152 DEFINE_WAIT(wait);
9153
9154 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9155
9156 /* Increment the association's refcnt. */
9157 sctp_association_hold(asoc);
9158
9159 for (;;) {
9160 prepare_to_wait_exclusive(&asoc->wait, &wait,
9161 TASK_INTERRUPTIBLE);
9162 if (!*timeo_p)
9163 goto do_nonblock;
9164 if (sk->sk_shutdown & RCV_SHUTDOWN)
9165 break;
9166 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9167 asoc->base.dead)
9168 goto do_error;
9169 if (signal_pending(current))
9170 goto do_interrupted;
9171
9172 if (sctp_state(asoc, ESTABLISHED))
9173 break;
9174
9175 /* Let another process have a go. Since we are going
9176 * to sleep anyway.
9177 */
9178 release_sock(sk);
9179 current_timeo = schedule_timeout(current_timeo);
9180 lock_sock(sk);
9181
9182 *timeo_p = current_timeo;
9183 }
9184
9185 out:
9186 finish_wait(&asoc->wait, &wait);
9187
9188 /* Release the association's refcnt. */
9189 sctp_association_put(asoc);
9190
9191 return err;
9192
9193 do_error:
9194 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9195 err = -ETIMEDOUT;
9196 else
9197 err = -ECONNREFUSED;
9198 goto out;
9199
9200 do_interrupted:
9201 err = sock_intr_errno(*timeo_p);
9202 goto out;
9203
9204 do_nonblock:
9205 err = -EINPROGRESS;
9206 goto out;
9207 }
9208
sctp_wait_for_accept(struct sock * sk,long timeo)9209 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9210 {
9211 struct sctp_endpoint *ep;
9212 int err = 0;
9213 DEFINE_WAIT(wait);
9214
9215 ep = sctp_sk(sk)->ep;
9216
9217
9218 for (;;) {
9219 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9220 TASK_INTERRUPTIBLE);
9221
9222 if (list_empty(&ep->asocs)) {
9223 release_sock(sk);
9224 timeo = schedule_timeout(timeo);
9225 lock_sock(sk);
9226 }
9227
9228 err = -EINVAL;
9229 if (!sctp_sstate(sk, LISTENING))
9230 break;
9231
9232 err = 0;
9233 if (!list_empty(&ep->asocs))
9234 break;
9235
9236 err = sock_intr_errno(timeo);
9237 if (signal_pending(current))
9238 break;
9239
9240 err = -EAGAIN;
9241 if (!timeo)
9242 break;
9243 }
9244
9245 finish_wait(sk_sleep(sk), &wait);
9246
9247 return err;
9248 }
9249
sctp_wait_for_close(struct sock * sk,long timeout)9250 static void sctp_wait_for_close(struct sock *sk, long timeout)
9251 {
9252 DEFINE_WAIT(wait);
9253
9254 do {
9255 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9256 if (list_empty(&sctp_sk(sk)->ep->asocs))
9257 break;
9258 release_sock(sk);
9259 timeout = schedule_timeout(timeout);
9260 lock_sock(sk);
9261 } while (!signal_pending(current) && timeout);
9262
9263 finish_wait(sk_sleep(sk), &wait);
9264 }
9265
sctp_skb_set_owner_r_frag(struct sk_buff * skb,struct sock * sk)9266 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9267 {
9268 struct sk_buff *frag;
9269
9270 if (!skb->data_len)
9271 goto done;
9272
9273 /* Don't forget the fragments. */
9274 skb_walk_frags(skb, frag)
9275 sctp_skb_set_owner_r_frag(frag, sk);
9276
9277 done:
9278 sctp_skb_set_owner_r(skb, sk);
9279 }
9280
sctp_copy_sock(struct sock * newsk,struct sock * sk,struct sctp_association * asoc)9281 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9282 struct sctp_association *asoc)
9283 {
9284 struct inet_sock *inet = inet_sk(sk);
9285 struct inet_sock *newinet;
9286 struct sctp_sock *sp = sctp_sk(sk);
9287 struct sctp_endpoint *ep = sp->ep;
9288
9289 newsk->sk_type = sk->sk_type;
9290 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9291 newsk->sk_flags = sk->sk_flags;
9292 newsk->sk_tsflags = sk->sk_tsflags;
9293 newsk->sk_no_check_tx = sk->sk_no_check_tx;
9294 newsk->sk_no_check_rx = sk->sk_no_check_rx;
9295 newsk->sk_reuse = sk->sk_reuse;
9296 sctp_sk(newsk)->reuse = sp->reuse;
9297
9298 newsk->sk_shutdown = sk->sk_shutdown;
9299 newsk->sk_destruct = sctp_destruct_sock;
9300 newsk->sk_family = sk->sk_family;
9301 newsk->sk_protocol = IPPROTO_SCTP;
9302 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9303 newsk->sk_sndbuf = sk->sk_sndbuf;
9304 newsk->sk_rcvbuf = sk->sk_rcvbuf;
9305 newsk->sk_lingertime = sk->sk_lingertime;
9306 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9307 newsk->sk_sndtimeo = sk->sk_sndtimeo;
9308 newsk->sk_rxhash = sk->sk_rxhash;
9309
9310 newinet = inet_sk(newsk);
9311
9312 /* Initialize sk's sport, dport, rcv_saddr and daddr for
9313 * getsockname() and getpeername()
9314 */
9315 newinet->inet_sport = inet->inet_sport;
9316 newinet->inet_saddr = inet->inet_saddr;
9317 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9318 newinet->inet_dport = htons(asoc->peer.port);
9319 newinet->pmtudisc = inet->pmtudisc;
9320 newinet->inet_id = prandom_u32();
9321
9322 newinet->uc_ttl = inet->uc_ttl;
9323 newinet->mc_loop = 1;
9324 newinet->mc_ttl = 1;
9325 newinet->mc_index = 0;
9326 newinet->mc_list = NULL;
9327
9328 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9329 net_enable_timestamp();
9330
9331 /* Set newsk security attributes from original sk and connection
9332 * security attribute from ep.
9333 */
9334 security_sctp_sk_clone(ep, sk, newsk);
9335 }
9336
sctp_copy_descendant(struct sock * sk_to,const struct sock * sk_from)9337 static inline void sctp_copy_descendant(struct sock *sk_to,
9338 const struct sock *sk_from)
9339 {
9340 size_t ancestor_size = sizeof(struct inet_sock);
9341
9342 ancestor_size += sk_from->sk_prot->obj_size;
9343 ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9344 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9345 }
9346
9347 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9348 * and its messages to the newsk.
9349 */
sctp_sock_migrate(struct sock * oldsk,struct sock * newsk,struct sctp_association * assoc,enum sctp_socket_type type)9350 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9351 struct sctp_association *assoc,
9352 enum sctp_socket_type type)
9353 {
9354 struct sctp_sock *oldsp = sctp_sk(oldsk);
9355 struct sctp_sock *newsp = sctp_sk(newsk);
9356 struct sctp_bind_bucket *pp; /* hash list port iterator */
9357 struct sctp_endpoint *newep = newsp->ep;
9358 struct sk_buff *skb, *tmp;
9359 struct sctp_ulpevent *event;
9360 struct sctp_bind_hashbucket *head;
9361 int err;
9362
9363 /* Migrate socket buffer sizes and all the socket level options to the
9364 * new socket.
9365 */
9366 newsk->sk_sndbuf = oldsk->sk_sndbuf;
9367 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9368 /* Brute force copy old sctp opt. */
9369 sctp_copy_descendant(newsk, oldsk);
9370
9371 /* Restore the ep value that was overwritten with the above structure
9372 * copy.
9373 */
9374 newsp->ep = newep;
9375 newsp->hmac = NULL;
9376
9377 /* Hook this new socket in to the bind_hash list. */
9378 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9379 inet_sk(oldsk)->inet_num)];
9380 spin_lock_bh(&head->lock);
9381 pp = sctp_sk(oldsk)->bind_hash;
9382 sk_add_bind_node(newsk, &pp->owner);
9383 sctp_sk(newsk)->bind_hash = pp;
9384 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9385 spin_unlock_bh(&head->lock);
9386
9387 /* Copy the bind_addr list from the original endpoint to the new
9388 * endpoint so that we can handle restarts properly
9389 */
9390 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9391 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9392 if (err)
9393 return err;
9394
9395 /* New ep's auth_hmacs should be set if old ep's is set, in case
9396 * that net->sctp.auth_enable has been changed to 0 by users and
9397 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9398 */
9399 if (oldsp->ep->auth_hmacs) {
9400 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9401 if (err)
9402 return err;
9403 }
9404
9405 sctp_auto_asconf_init(newsp);
9406
9407 /* Move any messages in the old socket's receive queue that are for the
9408 * peeled off association to the new socket's receive queue.
9409 */
9410 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9411 event = sctp_skb2event(skb);
9412 if (event->asoc == assoc) {
9413 __skb_unlink(skb, &oldsk->sk_receive_queue);
9414 __skb_queue_tail(&newsk->sk_receive_queue, skb);
9415 sctp_skb_set_owner_r_frag(skb, newsk);
9416 }
9417 }
9418
9419 /* Clean up any messages pending delivery due to partial
9420 * delivery. Three cases:
9421 * 1) No partial deliver; no work.
9422 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9423 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9424 */
9425 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9426
9427 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9428 struct sk_buff_head *queue;
9429
9430 /* Decide which queue to move pd_lobby skbs to. */
9431 if (assoc->ulpq.pd_mode) {
9432 queue = &newsp->pd_lobby;
9433 } else
9434 queue = &newsk->sk_receive_queue;
9435
9436 /* Walk through the pd_lobby, looking for skbs that
9437 * need moved to the new socket.
9438 */
9439 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9440 event = sctp_skb2event(skb);
9441 if (event->asoc == assoc) {
9442 __skb_unlink(skb, &oldsp->pd_lobby);
9443 __skb_queue_tail(queue, skb);
9444 sctp_skb_set_owner_r_frag(skb, newsk);
9445 }
9446 }
9447
9448 /* Clear up any skbs waiting for the partial
9449 * delivery to finish.
9450 */
9451 if (assoc->ulpq.pd_mode)
9452 sctp_clear_pd(oldsk, NULL);
9453
9454 }
9455
9456 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9457
9458 /* Set the type of socket to indicate that it is peeled off from the
9459 * original UDP-style socket or created with the accept() call on a
9460 * TCP-style socket..
9461 */
9462 newsp->type = type;
9463
9464 /* Mark the new socket "in-use" by the user so that any packets
9465 * that may arrive on the association after we've moved it are
9466 * queued to the backlog. This prevents a potential race between
9467 * backlog processing on the old socket and new-packet processing
9468 * on the new socket.
9469 *
9470 * The caller has just allocated newsk so we can guarantee that other
9471 * paths won't try to lock it and then oldsk.
9472 */
9473 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9474 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9475 sctp_assoc_migrate(assoc, newsk);
9476 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9477
9478 /* If the association on the newsk is already closed before accept()
9479 * is called, set RCV_SHUTDOWN flag.
9480 */
9481 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9482 inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9483 newsk->sk_shutdown |= RCV_SHUTDOWN;
9484 } else {
9485 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9486 }
9487
9488 release_sock(newsk);
9489
9490 return 0;
9491 }
9492
9493
9494 /* This proto struct describes the ULP interface for SCTP. */
9495 struct proto sctp_prot = {
9496 .name = "SCTP",
9497 .owner = THIS_MODULE,
9498 .close = sctp_close,
9499 .disconnect = sctp_disconnect,
9500 .accept = sctp_accept,
9501 .ioctl = sctp_ioctl,
9502 .init = sctp_init_sock,
9503 .destroy = sctp_destroy_sock,
9504 .shutdown = sctp_shutdown,
9505 .setsockopt = sctp_setsockopt,
9506 .getsockopt = sctp_getsockopt,
9507 .sendmsg = sctp_sendmsg,
9508 .recvmsg = sctp_recvmsg,
9509 .bind = sctp_bind,
9510 .bind_add = sctp_bind_add,
9511 .backlog_rcv = sctp_backlog_rcv,
9512 .hash = sctp_hash,
9513 .unhash = sctp_unhash,
9514 .no_autobind = true,
9515 .obj_size = sizeof(struct sctp_sock),
9516 .useroffset = offsetof(struct sctp_sock, subscribe),
9517 .usersize = offsetof(struct sctp_sock, initmsg) -
9518 offsetof(struct sctp_sock, subscribe) +
9519 sizeof_field(struct sctp_sock, initmsg),
9520 .sysctl_mem = sysctl_sctp_mem,
9521 .sysctl_rmem = sysctl_sctp_rmem,
9522 .sysctl_wmem = sysctl_sctp_wmem,
9523 .memory_pressure = &sctp_memory_pressure,
9524 .enter_memory_pressure = sctp_enter_memory_pressure,
9525 .memory_allocated = &sctp_memory_allocated,
9526 .sockets_allocated = &sctp_sockets_allocated,
9527 };
9528
9529 #if IS_ENABLED(CONFIG_IPV6)
9530
9531 #include <net/transp_v6.h>
sctp_v6_destroy_sock(struct sock * sk)9532 static void sctp_v6_destroy_sock(struct sock *sk)
9533 {
9534 sctp_destroy_sock(sk);
9535 inet6_destroy_sock(sk);
9536 }
9537
9538 struct proto sctpv6_prot = {
9539 .name = "SCTPv6",
9540 .owner = THIS_MODULE,
9541 .close = sctp_close,
9542 .disconnect = sctp_disconnect,
9543 .accept = sctp_accept,
9544 .ioctl = sctp_ioctl,
9545 .init = sctp_init_sock,
9546 .destroy = sctp_v6_destroy_sock,
9547 .shutdown = sctp_shutdown,
9548 .setsockopt = sctp_setsockopt,
9549 .getsockopt = sctp_getsockopt,
9550 .sendmsg = sctp_sendmsg,
9551 .recvmsg = sctp_recvmsg,
9552 .bind = sctp_bind,
9553 .bind_add = sctp_bind_add,
9554 .backlog_rcv = sctp_backlog_rcv,
9555 .hash = sctp_hash,
9556 .unhash = sctp_unhash,
9557 .no_autobind = true,
9558 .obj_size = sizeof(struct sctp6_sock),
9559 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
9560 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
9561 offsetof(struct sctp6_sock, sctp.subscribe) +
9562 sizeof_field(struct sctp6_sock, sctp.initmsg),
9563 .sysctl_mem = sysctl_sctp_mem,
9564 .sysctl_rmem = sysctl_sctp_rmem,
9565 .sysctl_wmem = sysctl_sctp_wmem,
9566 .memory_pressure = &sctp_memory_pressure,
9567 .enter_memory_pressure = sctp_enter_memory_pressure,
9568 .memory_allocated = &sctp_memory_allocated,
9569 .sockets_allocated = &sctp_sockets_allocated,
9570 };
9571 #endif /* IS_ENABLED(CONFIG_IPV6) */
9572