1      SUBROUTINE CGERUF ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA )
2*     .. Scalar Arguments ..
3      COMPLEX            ALPHA
4      INTEGER            INCX, INCY, LDA, M, N
5*     .. Array Arguments ..
6      COMPLEX            A( LDA, * ), X( * ), Y( * )
7*     ..
8*
9*  Purpose
10*  =======
11*
12*  CGERU  performs the rank 1 operation
13*
14*     A := alpha*x*y' + A,
15*
16*  where alpha is a scalar, x is an m element vector, y is an n element
17*  vector and A is an m by n matrix.
18*
19*  Parameters
20*  ==========
21*
22*  M      - INTEGER.
23*           On entry, M specifies the number of rows of the matrix A.
24*           M must be at least zero.
25*           Unchanged on exit.
26*
27*  N      - INTEGER.
28*           On entry, N specifies the number of columns of the matrix A.
29*           N must be at least zero.
30*           Unchanged on exit.
31*
32*  ALPHA  - COMPLEX         .
33*           On entry, ALPHA specifies the scalar alpha.
34*           Unchanged on exit.
35*
36*  X      - COMPLEX          array of dimension at least
37*           ( 1 + ( m - 1 )*abs( INCX ) ).
38*           Before entry, the incremented array X must contain the m
39*           element vector x.
40*           Unchanged on exit.
41*
42*  INCX   - INTEGER.
43*           On entry, INCX specifies the increment for the elements of
44*           X. INCX must not be zero.
45*           Unchanged on exit.
46*
47*  Y      - COMPLEX          array of dimension at least
48*           ( 1 + ( n - 1 )*abs( INCY ) ).
49*           Before entry, the incremented array Y must contain the n
50*           element vector y.
51*           Unchanged on exit.
52*
53*  INCY   - INTEGER.
54*           On entry, INCY specifies the increment for the elements of
55*           Y. INCY must not be zero.
56*           Unchanged on exit.
57*
58*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
59*           Before entry, the leading m by n part of the array A must
60*           contain the matrix of coefficients. On exit, A is
61*           overwritten by the updated matrix.
62*
63*  LDA    - INTEGER.
64*           On entry, LDA specifies the first dimension of A as declared
65*           in the calling (sub) program. LDA must be at least
66*           max( 1, m ).
67*           Unchanged on exit.
68*
69*
70*  Level 2 Blas routine.
71*
72*  -- Written on 22-October-1986.
73*     Jack Dongarra, Argonne National Lab.
74*     Jeremy Du Croz, Nag Central Office.
75*     Sven Hammarling, Nag Central Office.
76*     Richard Hanson, Sandia National Labs.
77*
78*
79*     .. Parameters ..
80      COMPLEX            ZERO
81      PARAMETER        ( ZERO = ( 0.0E+0, 0.0E+0 ) )
82*     .. Local Scalars ..
83      COMPLEX            TEMP
84      INTEGER            I, INFO, IX, J, JY, KX
85*     .. External Subroutines ..
86      EXTERNAL           XERBLA
87*     .. Intrinsic Functions ..
88      INTRINSIC          MAX
89*     ..
90*     .. Executable Statements ..
91*
92*     Test the input parameters.
93*
94      INFO = 0
95      IF     ( M.LT.0 )THEN
96         INFO = 1
97      ELSE IF( N.LT.0 )THEN
98         INFO = 2
99      ELSE IF( INCX.EQ.0 )THEN
100         INFO = 5
101      ELSE IF( INCY.EQ.0 )THEN
102         INFO = 7
103      ELSE IF( LDA.LT.MAX( 1, M ) )THEN
104         INFO = 9
105      END IF
106      IF( INFO.NE.0 )THEN
107         CALL XERBLA( 'CGERU ', INFO )
108         RETURN
109      END IF
110*
111*     Quick return if possible.
112*
113      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) )
114     $   RETURN
115*
116*     Start the operations. In this version the elements of A are
117*     accessed sequentially with one pass through A.
118*
119      IF( INCY.GT.0 )THEN
120         JY = 1
121      ELSE
122         JY = 1 - ( N - 1 )*INCY
123      END IF
124      IF( INCX.EQ.1 )THEN
125         DO 20, J = 1, N
126            IF( Y( JY ).NE.ZERO )THEN
127               TEMP = ALPHA*Y( JY )
128               DO 10, I = 1, M
129                  A( I, J ) = A( I, J ) + X( I )*TEMP
130   10          CONTINUE
131            END IF
132            JY = JY + INCY
133   20    CONTINUE
134      ELSE
135         IF( INCX.GT.0 )THEN
136            KX = 1
137         ELSE
138            KX = 1 - ( M - 1 )*INCX
139         END IF
140         DO 40, J = 1, N
141            IF( Y( JY ).NE.ZERO )THEN
142               TEMP = ALPHA*Y( JY )
143               IX   = KX
144               DO 30, I = 1, M
145                  A( I, J ) = A( I, J ) + X( IX )*TEMP
146                  IX        = IX        + INCX
147   30          CONTINUE
148            END IF
149            JY = JY + INCY
150   40    CONTINUE
151      END IF
152*
153      RETURN
154*
155*     End of CGERU .
156*
157      END
158