1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7  * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  */
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/highmem.h>
14 #include <linux/kernel.h>
15 #include <linux/linkage.h>
16 #include <linux/preempt.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/mm.h>
20 #include <linux/export.h>
21 #include <linux/bitops.h>
22 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
23 
24 #include <asm/bcache.h>
25 #include <asm/bootinfo.h>
26 #include <asm/cache.h>
27 #include <asm/cacheops.h>
28 #include <asm/cpu.h>
29 #include <asm/cpu-features.h>
30 #include <asm/cpu-type.h>
31 #include <asm/io.h>
32 #include <asm/page.h>
33 #include <asm/r4kcache.h>
34 #include <asm/sections.h>
35 #include <asm/mmu_context.h>
36 #include <asm/war.h>
37 #include <asm/cacheflush.h> /* for run_uncached() */
38 #include <asm/traps.h>
39 #include <asm/mips-cps.h>
40 
41 /*
42  * Bits describing what cache ops an SMP callback function may perform.
43  *
44  * R4K_HIT   -	Virtual user or kernel address based cache operations. The
45  *		active_mm must be checked before using user addresses, falling
46  *		back to kmap.
47  * R4K_INDEX -	Index based cache operations.
48  */
49 
50 #define R4K_HIT		BIT(0)
51 #define R4K_INDEX	BIT(1)
52 
53 /**
54  * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
55  * @type:	Type of cache operations (R4K_HIT or R4K_INDEX).
56  *
57  * Decides whether a cache op needs to be performed on every core in the system.
58  * This may change depending on the @type of cache operation, as well as the set
59  * of online CPUs, so preemption should be disabled by the caller to prevent CPU
60  * hotplug from changing the result.
61  *
62  * Returns:	1 if the cache operation @type should be done on every core in
63  *		the system.
64  *		0 if the cache operation @type is globalized and only needs to
65  *		be performed on a simple CPU.
66  */
r4k_op_needs_ipi(unsigned int type)67 static inline bool r4k_op_needs_ipi(unsigned int type)
68 {
69 	/* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
70 	if (type == R4K_HIT && mips_cm_present())
71 		return false;
72 
73 	/*
74 	 * Hardware doesn't globalize the required cache ops, so SMP calls may
75 	 * be needed, but only if there are foreign CPUs (non-siblings with
76 	 * separate caches).
77 	 */
78 	/* cpu_foreign_map[] undeclared when !CONFIG_SMP */
79 #ifdef CONFIG_SMP
80 	return !cpumask_empty(&cpu_foreign_map[0]);
81 #else
82 	return false;
83 #endif
84 }
85 
86 /*
87  * Special Variant of smp_call_function for use by cache functions:
88  *
89  *  o No return value
90  *  o collapses to normal function call on UP kernels
91  *  o collapses to normal function call on systems with a single shared
92  *    primary cache.
93  *  o doesn't disable interrupts on the local CPU
94  */
r4k_on_each_cpu(unsigned int type,void (* func)(void * info),void * info)95 static inline void r4k_on_each_cpu(unsigned int type,
96 				   void (*func)(void *info), void *info)
97 {
98 	preempt_disable();
99 	if (r4k_op_needs_ipi(type))
100 		smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
101 				       func, info, 1);
102 	func(info);
103 	preempt_enable();
104 }
105 
106 /*
107  * Must die.
108  */
109 static unsigned long icache_size __read_mostly;
110 static unsigned long dcache_size __read_mostly;
111 static unsigned long vcache_size __read_mostly;
112 static unsigned long scache_size __read_mostly;
113 
114 /*
115  * Dummy cache handling routines for machines without boardcaches
116  */
cache_noop(void)117 static void cache_noop(void) {}
118 
119 static struct bcache_ops no_sc_ops = {
120 	.bc_enable = (void *)cache_noop,
121 	.bc_disable = (void *)cache_noop,
122 	.bc_wback_inv = (void *)cache_noop,
123 	.bc_inv = (void *)cache_noop
124 };
125 
126 struct bcache_ops *bcops = &no_sc_ops;
127 
128 #define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
129 #define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
130 
131 #define R4600_HIT_CACHEOP_WAR_IMPL					\
132 do {									\
133 	if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) &&		\
134 	    cpu_is_r4600_v2_x())					\
135 		*(volatile unsigned long *)CKSEG1;			\
136 	if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP))					\
137 		__asm__ __volatile__("nop;nop;nop;nop");		\
138 } while (0)
139 
140 static void (*r4k_blast_dcache_page)(unsigned long addr);
141 
r4k_blast_dcache_page_dc32(unsigned long addr)142 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
143 {
144 	R4600_HIT_CACHEOP_WAR_IMPL;
145 	blast_dcache32_page(addr);
146 }
147 
r4k_blast_dcache_page_dc64(unsigned long addr)148 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
149 {
150 	blast_dcache64_page(addr);
151 }
152 
r4k_blast_dcache_page_dc128(unsigned long addr)153 static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
154 {
155 	blast_dcache128_page(addr);
156 }
157 
r4k_blast_dcache_page_setup(void)158 static void r4k_blast_dcache_page_setup(void)
159 {
160 	unsigned long  dc_lsize = cpu_dcache_line_size();
161 
162 	switch (dc_lsize) {
163 	case 0:
164 		r4k_blast_dcache_page = (void *)cache_noop;
165 		break;
166 	case 16:
167 		r4k_blast_dcache_page = blast_dcache16_page;
168 		break;
169 	case 32:
170 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
171 		break;
172 	case 64:
173 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
174 		break;
175 	case 128:
176 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
177 		break;
178 	default:
179 		break;
180 	}
181 }
182 
183 #ifndef CONFIG_EVA
184 #define r4k_blast_dcache_user_page  r4k_blast_dcache_page
185 #else
186 
187 static void (*r4k_blast_dcache_user_page)(unsigned long addr);
188 
r4k_blast_dcache_user_page_setup(void)189 static void r4k_blast_dcache_user_page_setup(void)
190 {
191 	unsigned long  dc_lsize = cpu_dcache_line_size();
192 
193 	if (dc_lsize == 0)
194 		r4k_blast_dcache_user_page = (void *)cache_noop;
195 	else if (dc_lsize == 16)
196 		r4k_blast_dcache_user_page = blast_dcache16_user_page;
197 	else if (dc_lsize == 32)
198 		r4k_blast_dcache_user_page = blast_dcache32_user_page;
199 	else if (dc_lsize == 64)
200 		r4k_blast_dcache_user_page = blast_dcache64_user_page;
201 }
202 
203 #endif
204 
205 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
206 
r4k_blast_dcache_page_indexed_setup(void)207 static void r4k_blast_dcache_page_indexed_setup(void)
208 {
209 	unsigned long dc_lsize = cpu_dcache_line_size();
210 
211 	if (dc_lsize == 0)
212 		r4k_blast_dcache_page_indexed = (void *)cache_noop;
213 	else if (dc_lsize == 16)
214 		r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
215 	else if (dc_lsize == 32)
216 		r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
217 	else if (dc_lsize == 64)
218 		r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
219 	else if (dc_lsize == 128)
220 		r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
221 }
222 
223 void (* r4k_blast_dcache)(void);
224 EXPORT_SYMBOL(r4k_blast_dcache);
225 
r4k_blast_dcache_setup(void)226 static void r4k_blast_dcache_setup(void)
227 {
228 	unsigned long dc_lsize = cpu_dcache_line_size();
229 
230 	if (dc_lsize == 0)
231 		r4k_blast_dcache = (void *)cache_noop;
232 	else if (dc_lsize == 16)
233 		r4k_blast_dcache = blast_dcache16;
234 	else if (dc_lsize == 32)
235 		r4k_blast_dcache = blast_dcache32;
236 	else if (dc_lsize == 64)
237 		r4k_blast_dcache = blast_dcache64;
238 	else if (dc_lsize == 128)
239 		r4k_blast_dcache = blast_dcache128;
240 }
241 
242 /* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */
243 #define JUMP_TO_ALIGN(order) \
244 	__asm__ __volatile__( \
245 		"b\t1f\n\t" \
246 		".align\t" #order "\n\t" \
247 		"1:\n\t" \
248 		)
249 #define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
250 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
251 
blast_r4600_v1_icache32(void)252 static inline void blast_r4600_v1_icache32(void)
253 {
254 	unsigned long flags;
255 
256 	local_irq_save(flags);
257 	blast_icache32();
258 	local_irq_restore(flags);
259 }
260 
tx49_blast_icache32(void)261 static inline void tx49_blast_icache32(void)
262 {
263 	unsigned long start = INDEX_BASE;
264 	unsigned long end = start + current_cpu_data.icache.waysize;
265 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
266 	unsigned long ws_end = current_cpu_data.icache.ways <<
267 			       current_cpu_data.icache.waybit;
268 	unsigned long ws, addr;
269 
270 	CACHE32_UNROLL32_ALIGN2;
271 	/* I'm in even chunk.  blast odd chunks */
272 	for (ws = 0; ws < ws_end; ws += ws_inc)
273 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
274 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
275 				     addr | ws, 32);
276 	CACHE32_UNROLL32_ALIGN;
277 	/* I'm in odd chunk.  blast even chunks */
278 	for (ws = 0; ws < ws_end; ws += ws_inc)
279 		for (addr = start; addr < end; addr += 0x400 * 2)
280 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
281 				     addr | ws, 32);
282 }
283 
blast_icache32_r4600_v1_page_indexed(unsigned long page)284 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
285 {
286 	unsigned long flags;
287 
288 	local_irq_save(flags);
289 	blast_icache32_page_indexed(page);
290 	local_irq_restore(flags);
291 }
292 
tx49_blast_icache32_page_indexed(unsigned long page)293 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
294 {
295 	unsigned long indexmask = current_cpu_data.icache.waysize - 1;
296 	unsigned long start = INDEX_BASE + (page & indexmask);
297 	unsigned long end = start + PAGE_SIZE;
298 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
299 	unsigned long ws_end = current_cpu_data.icache.ways <<
300 			       current_cpu_data.icache.waybit;
301 	unsigned long ws, addr;
302 
303 	CACHE32_UNROLL32_ALIGN2;
304 	/* I'm in even chunk.  blast odd chunks */
305 	for (ws = 0; ws < ws_end; ws += ws_inc)
306 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
307 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
308 				     addr | ws, 32);
309 	CACHE32_UNROLL32_ALIGN;
310 	/* I'm in odd chunk.  blast even chunks */
311 	for (ws = 0; ws < ws_end; ws += ws_inc)
312 		for (addr = start; addr < end; addr += 0x400 * 2)
313 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
314 				     addr | ws, 32);
315 }
316 
317 static void (* r4k_blast_icache_page)(unsigned long addr);
318 
r4k_blast_icache_page_setup(void)319 static void r4k_blast_icache_page_setup(void)
320 {
321 	unsigned long ic_lsize = cpu_icache_line_size();
322 
323 	if (ic_lsize == 0)
324 		r4k_blast_icache_page = (void *)cache_noop;
325 	else if (ic_lsize == 16)
326 		r4k_blast_icache_page = blast_icache16_page;
327 	else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF)
328 		r4k_blast_icache_page = loongson2_blast_icache32_page;
329 	else if (ic_lsize == 32)
330 		r4k_blast_icache_page = blast_icache32_page;
331 	else if (ic_lsize == 64)
332 		r4k_blast_icache_page = blast_icache64_page;
333 	else if (ic_lsize == 128)
334 		r4k_blast_icache_page = blast_icache128_page;
335 }
336 
337 #ifndef CONFIG_EVA
338 #define r4k_blast_icache_user_page  r4k_blast_icache_page
339 #else
340 
341 static void (*r4k_blast_icache_user_page)(unsigned long addr);
342 
r4k_blast_icache_user_page_setup(void)343 static void r4k_blast_icache_user_page_setup(void)
344 {
345 	unsigned long ic_lsize = cpu_icache_line_size();
346 
347 	if (ic_lsize == 0)
348 		r4k_blast_icache_user_page = (void *)cache_noop;
349 	else if (ic_lsize == 16)
350 		r4k_blast_icache_user_page = blast_icache16_user_page;
351 	else if (ic_lsize == 32)
352 		r4k_blast_icache_user_page = blast_icache32_user_page;
353 	else if (ic_lsize == 64)
354 		r4k_blast_icache_user_page = blast_icache64_user_page;
355 }
356 
357 #endif
358 
359 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
360 
r4k_blast_icache_page_indexed_setup(void)361 static void r4k_blast_icache_page_indexed_setup(void)
362 {
363 	unsigned long ic_lsize = cpu_icache_line_size();
364 
365 	if (ic_lsize == 0)
366 		r4k_blast_icache_page_indexed = (void *)cache_noop;
367 	else if (ic_lsize == 16)
368 		r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
369 	else if (ic_lsize == 32) {
370 		if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
371 		    cpu_is_r4600_v1_x())
372 			r4k_blast_icache_page_indexed =
373 				blast_icache32_r4600_v1_page_indexed;
374 		else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
375 			r4k_blast_icache_page_indexed =
376 				tx49_blast_icache32_page_indexed;
377 		else if (current_cpu_type() == CPU_LOONGSON2EF)
378 			r4k_blast_icache_page_indexed =
379 				loongson2_blast_icache32_page_indexed;
380 		else
381 			r4k_blast_icache_page_indexed =
382 				blast_icache32_page_indexed;
383 	} else if (ic_lsize == 64)
384 		r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
385 }
386 
387 void (* r4k_blast_icache)(void);
388 EXPORT_SYMBOL(r4k_blast_icache);
389 
r4k_blast_icache_setup(void)390 static void r4k_blast_icache_setup(void)
391 {
392 	unsigned long ic_lsize = cpu_icache_line_size();
393 
394 	if (ic_lsize == 0)
395 		r4k_blast_icache = (void *)cache_noop;
396 	else if (ic_lsize == 16)
397 		r4k_blast_icache = blast_icache16;
398 	else if (ic_lsize == 32) {
399 		if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
400 		    cpu_is_r4600_v1_x())
401 			r4k_blast_icache = blast_r4600_v1_icache32;
402 		else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
403 			r4k_blast_icache = tx49_blast_icache32;
404 		else if (current_cpu_type() == CPU_LOONGSON2EF)
405 			r4k_blast_icache = loongson2_blast_icache32;
406 		else
407 			r4k_blast_icache = blast_icache32;
408 	} else if (ic_lsize == 64)
409 		r4k_blast_icache = blast_icache64;
410 	else if (ic_lsize == 128)
411 		r4k_blast_icache = blast_icache128;
412 }
413 
414 static void (* r4k_blast_scache_page)(unsigned long addr);
415 
r4k_blast_scache_page_setup(void)416 static void r4k_blast_scache_page_setup(void)
417 {
418 	unsigned long sc_lsize = cpu_scache_line_size();
419 
420 	if (scache_size == 0)
421 		r4k_blast_scache_page = (void *)cache_noop;
422 	else if (sc_lsize == 16)
423 		r4k_blast_scache_page = blast_scache16_page;
424 	else if (sc_lsize == 32)
425 		r4k_blast_scache_page = blast_scache32_page;
426 	else if (sc_lsize == 64)
427 		r4k_blast_scache_page = blast_scache64_page;
428 	else if (sc_lsize == 128)
429 		r4k_blast_scache_page = blast_scache128_page;
430 }
431 
432 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
433 
r4k_blast_scache_page_indexed_setup(void)434 static void r4k_blast_scache_page_indexed_setup(void)
435 {
436 	unsigned long sc_lsize = cpu_scache_line_size();
437 
438 	if (scache_size == 0)
439 		r4k_blast_scache_page_indexed = (void *)cache_noop;
440 	else if (sc_lsize == 16)
441 		r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
442 	else if (sc_lsize == 32)
443 		r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
444 	else if (sc_lsize == 64)
445 		r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
446 	else if (sc_lsize == 128)
447 		r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
448 }
449 
450 static void (* r4k_blast_scache)(void);
451 
r4k_blast_scache_setup(void)452 static void r4k_blast_scache_setup(void)
453 {
454 	unsigned long sc_lsize = cpu_scache_line_size();
455 
456 	if (scache_size == 0)
457 		r4k_blast_scache = (void *)cache_noop;
458 	else if (sc_lsize == 16)
459 		r4k_blast_scache = blast_scache16;
460 	else if (sc_lsize == 32)
461 		r4k_blast_scache = blast_scache32;
462 	else if (sc_lsize == 64)
463 		r4k_blast_scache = blast_scache64;
464 	else if (sc_lsize == 128)
465 		r4k_blast_scache = blast_scache128;
466 }
467 
468 static void (*r4k_blast_scache_node)(long node);
469 
r4k_blast_scache_node_setup(void)470 static void r4k_blast_scache_node_setup(void)
471 {
472 	unsigned long sc_lsize = cpu_scache_line_size();
473 
474 	if (current_cpu_type() != CPU_LOONGSON64)
475 		r4k_blast_scache_node = (void *)cache_noop;
476 	else if (sc_lsize == 16)
477 		r4k_blast_scache_node = blast_scache16_node;
478 	else if (sc_lsize == 32)
479 		r4k_blast_scache_node = blast_scache32_node;
480 	else if (sc_lsize == 64)
481 		r4k_blast_scache_node = blast_scache64_node;
482 	else if (sc_lsize == 128)
483 		r4k_blast_scache_node = blast_scache128_node;
484 }
485 
local_r4k___flush_cache_all(void * args)486 static inline void local_r4k___flush_cache_all(void * args)
487 {
488 	switch (current_cpu_type()) {
489 	case CPU_LOONGSON2EF:
490 	case CPU_R4000SC:
491 	case CPU_R4000MC:
492 	case CPU_R4400SC:
493 	case CPU_R4400MC:
494 	case CPU_R10000:
495 	case CPU_R12000:
496 	case CPU_R14000:
497 	case CPU_R16000:
498 		/*
499 		 * These caches are inclusive caches, that is, if something
500 		 * is not cached in the S-cache, we know it also won't be
501 		 * in one of the primary caches.
502 		 */
503 		r4k_blast_scache();
504 		break;
505 
506 	case CPU_LOONGSON64:
507 		/* Use get_ebase_cpunum() for both NUMA=y/n */
508 		r4k_blast_scache_node(get_ebase_cpunum() >> 2);
509 		break;
510 
511 	case CPU_BMIPS5000:
512 		r4k_blast_scache();
513 		__sync();
514 		break;
515 
516 	default:
517 		r4k_blast_dcache();
518 		r4k_blast_icache();
519 		break;
520 	}
521 }
522 
r4k___flush_cache_all(void)523 static void r4k___flush_cache_all(void)
524 {
525 	r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
526 }
527 
528 /**
529  * has_valid_asid() - Determine if an mm already has an ASID.
530  * @mm:		Memory map.
531  * @type:	R4K_HIT or R4K_INDEX, type of cache op.
532  *
533  * Determines whether @mm already has an ASID on any of the CPUs which cache ops
534  * of type @type within an r4k_on_each_cpu() call will affect. If
535  * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
536  * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
537  * will need to be checked.
538  *
539  * Must be called in non-preemptive context.
540  *
541  * Returns:	1 if the CPUs affected by @type cache ops have an ASID for @mm.
542  *		0 otherwise.
543  */
has_valid_asid(const struct mm_struct * mm,unsigned int type)544 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
545 {
546 	unsigned int i;
547 	const cpumask_t *mask = cpu_present_mask;
548 
549 	if (cpu_has_mmid)
550 		return cpu_context(0, mm) != 0;
551 
552 	/* cpu_sibling_map[] undeclared when !CONFIG_SMP */
553 #ifdef CONFIG_SMP
554 	/*
555 	 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
556 	 * each foreign core, so we only need to worry about siblings.
557 	 * Otherwise we need to worry about all present CPUs.
558 	 */
559 	if (r4k_op_needs_ipi(type))
560 		mask = &cpu_sibling_map[smp_processor_id()];
561 #endif
562 	for_each_cpu(i, mask)
563 		if (cpu_context(i, mm))
564 			return 1;
565 	return 0;
566 }
567 
r4k__flush_cache_vmap(void)568 static void r4k__flush_cache_vmap(void)
569 {
570 	r4k_blast_dcache();
571 }
572 
r4k__flush_cache_vunmap(void)573 static void r4k__flush_cache_vunmap(void)
574 {
575 	r4k_blast_dcache();
576 }
577 
578 /*
579  * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
580  * whole caches when vma is executable.
581  */
local_r4k_flush_cache_range(void * args)582 static inline void local_r4k_flush_cache_range(void * args)
583 {
584 	struct vm_area_struct *vma = args;
585 	int exec = vma->vm_flags & VM_EXEC;
586 
587 	if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
588 		return;
589 
590 	/*
591 	 * If dcache can alias, we must blast it since mapping is changing.
592 	 * If executable, we must ensure any dirty lines are written back far
593 	 * enough to be visible to icache.
594 	 */
595 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
596 		r4k_blast_dcache();
597 	/* If executable, blast stale lines from icache */
598 	if (exec)
599 		r4k_blast_icache();
600 }
601 
r4k_flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)602 static void r4k_flush_cache_range(struct vm_area_struct *vma,
603 	unsigned long start, unsigned long end)
604 {
605 	int exec = vma->vm_flags & VM_EXEC;
606 
607 	if (cpu_has_dc_aliases || exec)
608 		r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
609 }
610 
local_r4k_flush_cache_mm(void * args)611 static inline void local_r4k_flush_cache_mm(void * args)
612 {
613 	struct mm_struct *mm = args;
614 
615 	if (!has_valid_asid(mm, R4K_INDEX))
616 		return;
617 
618 	/*
619 	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
620 	 * only flush the primary caches but R1x000 behave sane ...
621 	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
622 	 * caches, so we can bail out early.
623 	 */
624 	if (current_cpu_type() == CPU_R4000SC ||
625 	    current_cpu_type() == CPU_R4000MC ||
626 	    current_cpu_type() == CPU_R4400SC ||
627 	    current_cpu_type() == CPU_R4400MC) {
628 		r4k_blast_scache();
629 		return;
630 	}
631 
632 	r4k_blast_dcache();
633 }
634 
r4k_flush_cache_mm(struct mm_struct * mm)635 static void r4k_flush_cache_mm(struct mm_struct *mm)
636 {
637 	if (!cpu_has_dc_aliases)
638 		return;
639 
640 	r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
641 }
642 
643 struct flush_cache_page_args {
644 	struct vm_area_struct *vma;
645 	unsigned long addr;
646 	unsigned long pfn;
647 };
648 
local_r4k_flush_cache_page(void * args)649 static inline void local_r4k_flush_cache_page(void *args)
650 {
651 	struct flush_cache_page_args *fcp_args = args;
652 	struct vm_area_struct *vma = fcp_args->vma;
653 	unsigned long addr = fcp_args->addr;
654 	struct page *page = pfn_to_page(fcp_args->pfn);
655 	int exec = vma->vm_flags & VM_EXEC;
656 	struct mm_struct *mm = vma->vm_mm;
657 	int map_coherent = 0;
658 	pmd_t *pmdp;
659 	pte_t *ptep;
660 	void *vaddr;
661 
662 	/*
663 	 * If owns no valid ASID yet, cannot possibly have gotten
664 	 * this page into the cache.
665 	 */
666 	if (!has_valid_asid(mm, R4K_HIT))
667 		return;
668 
669 	addr &= PAGE_MASK;
670 	pmdp = pmd_off(mm, addr);
671 	ptep = pte_offset_kernel(pmdp, addr);
672 
673 	/*
674 	 * If the page isn't marked valid, the page cannot possibly be
675 	 * in the cache.
676 	 */
677 	if (!(pte_present(*ptep)))
678 		return;
679 
680 	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
681 		vaddr = NULL;
682 	else {
683 		/*
684 		 * Use kmap_coherent or kmap_atomic to do flushes for
685 		 * another ASID than the current one.
686 		 */
687 		map_coherent = (cpu_has_dc_aliases &&
688 				page_mapcount(page) &&
689 				!Page_dcache_dirty(page));
690 		if (map_coherent)
691 			vaddr = kmap_coherent(page, addr);
692 		else
693 			vaddr = kmap_atomic(page);
694 		addr = (unsigned long)vaddr;
695 	}
696 
697 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
698 		vaddr ? r4k_blast_dcache_page(addr) :
699 			r4k_blast_dcache_user_page(addr);
700 		if (exec && !cpu_icache_snoops_remote_store)
701 			r4k_blast_scache_page(addr);
702 	}
703 	if (exec) {
704 		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
705 			drop_mmu_context(mm);
706 		} else
707 			vaddr ? r4k_blast_icache_page(addr) :
708 				r4k_blast_icache_user_page(addr);
709 	}
710 
711 	if (vaddr) {
712 		if (map_coherent)
713 			kunmap_coherent();
714 		else
715 			kunmap_atomic(vaddr);
716 	}
717 }
718 
r4k_flush_cache_page(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)719 static void r4k_flush_cache_page(struct vm_area_struct *vma,
720 	unsigned long addr, unsigned long pfn)
721 {
722 	struct flush_cache_page_args args;
723 
724 	args.vma = vma;
725 	args.addr = addr;
726 	args.pfn = pfn;
727 
728 	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
729 }
730 
local_r4k_flush_data_cache_page(void * addr)731 static inline void local_r4k_flush_data_cache_page(void * addr)
732 {
733 	r4k_blast_dcache_page((unsigned long) addr);
734 }
735 
r4k_flush_data_cache_page(unsigned long addr)736 static void r4k_flush_data_cache_page(unsigned long addr)
737 {
738 	if (in_atomic())
739 		local_r4k_flush_data_cache_page((void *)addr);
740 	else
741 		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
742 				(void *) addr);
743 }
744 
745 struct flush_icache_range_args {
746 	unsigned long start;
747 	unsigned long end;
748 	unsigned int type;
749 	bool user;
750 };
751 
__local_r4k_flush_icache_range(unsigned long start,unsigned long end,unsigned int type,bool user)752 static inline void __local_r4k_flush_icache_range(unsigned long start,
753 						  unsigned long end,
754 						  unsigned int type,
755 						  bool user)
756 {
757 	if (!cpu_has_ic_fills_f_dc) {
758 		if (type == R4K_INDEX ||
759 		    (type & R4K_INDEX && end - start >= dcache_size)) {
760 			r4k_blast_dcache();
761 		} else {
762 			R4600_HIT_CACHEOP_WAR_IMPL;
763 			if (user)
764 				protected_blast_dcache_range(start, end);
765 			else
766 				blast_dcache_range(start, end);
767 		}
768 	}
769 
770 	if (type == R4K_INDEX ||
771 	    (type & R4K_INDEX && end - start > icache_size))
772 		r4k_blast_icache();
773 	else {
774 		switch (boot_cpu_type()) {
775 		case CPU_LOONGSON2EF:
776 			protected_loongson2_blast_icache_range(start, end);
777 			break;
778 
779 		default:
780 			if (user)
781 				protected_blast_icache_range(start, end);
782 			else
783 				blast_icache_range(start, end);
784 			break;
785 		}
786 	}
787 }
788 
local_r4k_flush_icache_range(unsigned long start,unsigned long end)789 static inline void local_r4k_flush_icache_range(unsigned long start,
790 						unsigned long end)
791 {
792 	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
793 }
794 
local_r4k_flush_icache_user_range(unsigned long start,unsigned long end)795 static inline void local_r4k_flush_icache_user_range(unsigned long start,
796 						     unsigned long end)
797 {
798 	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
799 }
800 
local_r4k_flush_icache_range_ipi(void * args)801 static inline void local_r4k_flush_icache_range_ipi(void *args)
802 {
803 	struct flush_icache_range_args *fir_args = args;
804 	unsigned long start = fir_args->start;
805 	unsigned long end = fir_args->end;
806 	unsigned int type = fir_args->type;
807 	bool user = fir_args->user;
808 
809 	__local_r4k_flush_icache_range(start, end, type, user);
810 }
811 
__r4k_flush_icache_range(unsigned long start,unsigned long end,bool user)812 static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
813 				     bool user)
814 {
815 	struct flush_icache_range_args args;
816 	unsigned long size, cache_size;
817 
818 	args.start = start;
819 	args.end = end;
820 	args.type = R4K_HIT | R4K_INDEX;
821 	args.user = user;
822 
823 	/*
824 	 * Indexed cache ops require an SMP call.
825 	 * Consider if that can or should be avoided.
826 	 */
827 	preempt_disable();
828 	if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
829 		/*
830 		 * If address-based cache ops don't require an SMP call, then
831 		 * use them exclusively for small flushes.
832 		 */
833 		size = end - start;
834 		cache_size = icache_size;
835 		if (!cpu_has_ic_fills_f_dc) {
836 			size *= 2;
837 			cache_size += dcache_size;
838 		}
839 		if (size <= cache_size)
840 			args.type &= ~R4K_INDEX;
841 	}
842 	r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
843 	preempt_enable();
844 	instruction_hazard();
845 }
846 
r4k_flush_icache_range(unsigned long start,unsigned long end)847 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
848 {
849 	return __r4k_flush_icache_range(start, end, false);
850 }
851 
r4k_flush_icache_user_range(unsigned long start,unsigned long end)852 static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
853 {
854 	return __r4k_flush_icache_range(start, end, true);
855 }
856 
857 #ifdef CONFIG_DMA_NONCOHERENT
858 
r4k_dma_cache_wback_inv(unsigned long addr,unsigned long size)859 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
860 {
861 	/* Catch bad driver code */
862 	if (WARN_ON(size == 0))
863 		return;
864 
865 	preempt_disable();
866 	if (cpu_has_inclusive_pcaches) {
867 		if (size >= scache_size) {
868 			if (current_cpu_type() != CPU_LOONGSON64)
869 				r4k_blast_scache();
870 			else
871 				r4k_blast_scache_node(pa_to_nid(addr));
872 		} else {
873 			blast_scache_range(addr, addr + size);
874 		}
875 		preempt_enable();
876 		__sync();
877 		return;
878 	}
879 
880 	/*
881 	 * Either no secondary cache or the available caches don't have the
882 	 * subset property so we have to flush the primary caches
883 	 * explicitly.
884 	 * If we would need IPI to perform an INDEX-type operation, then
885 	 * we have to use the HIT-type alternative as IPI cannot be used
886 	 * here due to interrupts possibly being disabled.
887 	 */
888 	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
889 		r4k_blast_dcache();
890 	} else {
891 		R4600_HIT_CACHEOP_WAR_IMPL;
892 		blast_dcache_range(addr, addr + size);
893 	}
894 	preempt_enable();
895 
896 	bc_wback_inv(addr, size);
897 	__sync();
898 }
899 
prefetch_cache_inv(unsigned long addr,unsigned long size)900 static void prefetch_cache_inv(unsigned long addr, unsigned long size)
901 {
902 	unsigned int linesz = cpu_scache_line_size();
903 	unsigned long addr0 = addr, addr1;
904 
905 	addr0 &= ~(linesz - 1);
906 	addr1 = (addr0 + size - 1) & ~(linesz - 1);
907 
908 	protected_writeback_scache_line(addr0);
909 	if (likely(addr1 != addr0))
910 		protected_writeback_scache_line(addr1);
911 	else
912 		return;
913 
914 	addr0 += linesz;
915 	if (likely(addr1 != addr0))
916 		protected_writeback_scache_line(addr0);
917 	else
918 		return;
919 
920 	addr1 -= linesz;
921 	if (likely(addr1 > addr0))
922 		protected_writeback_scache_line(addr0);
923 }
924 
r4k_dma_cache_inv(unsigned long addr,unsigned long size)925 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
926 {
927 	/* Catch bad driver code */
928 	if (WARN_ON(size == 0))
929 		return;
930 
931 	preempt_disable();
932 
933 	if (current_cpu_type() == CPU_BMIPS5000)
934 		prefetch_cache_inv(addr, size);
935 
936 	if (cpu_has_inclusive_pcaches) {
937 		if (size >= scache_size) {
938 			if (current_cpu_type() != CPU_LOONGSON64)
939 				r4k_blast_scache();
940 			else
941 				r4k_blast_scache_node(pa_to_nid(addr));
942 		} else {
943 			/*
944 			 * There is no clearly documented alignment requirement
945 			 * for the cache instruction on MIPS processors and
946 			 * some processors, among them the RM5200 and RM7000
947 			 * QED processors will throw an address error for cache
948 			 * hit ops with insufficient alignment.	 Solved by
949 			 * aligning the address to cache line size.
950 			 */
951 			blast_inv_scache_range(addr, addr + size);
952 		}
953 		preempt_enable();
954 		__sync();
955 		return;
956 	}
957 
958 	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
959 		r4k_blast_dcache();
960 	} else {
961 		R4600_HIT_CACHEOP_WAR_IMPL;
962 		blast_inv_dcache_range(addr, addr + size);
963 	}
964 	preempt_enable();
965 
966 	bc_inv(addr, size);
967 	__sync();
968 }
969 #endif /* CONFIG_DMA_NONCOHERENT */
970 
r4k_flush_icache_all(void)971 static void r4k_flush_icache_all(void)
972 {
973 	if (cpu_has_vtag_icache)
974 		r4k_blast_icache();
975 }
976 
977 struct flush_kernel_vmap_range_args {
978 	unsigned long	vaddr;
979 	int		size;
980 };
981 
local_r4k_flush_kernel_vmap_range_index(void * args)982 static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
983 {
984 	/*
985 	 * Aliases only affect the primary caches so don't bother with
986 	 * S-caches or T-caches.
987 	 */
988 	r4k_blast_dcache();
989 }
990 
local_r4k_flush_kernel_vmap_range(void * args)991 static inline void local_r4k_flush_kernel_vmap_range(void *args)
992 {
993 	struct flush_kernel_vmap_range_args *vmra = args;
994 	unsigned long vaddr = vmra->vaddr;
995 	int size = vmra->size;
996 
997 	/*
998 	 * Aliases only affect the primary caches so don't bother with
999 	 * S-caches or T-caches.
1000 	 */
1001 	R4600_HIT_CACHEOP_WAR_IMPL;
1002 	blast_dcache_range(vaddr, vaddr + size);
1003 }
1004 
r4k_flush_kernel_vmap_range(unsigned long vaddr,int size)1005 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1006 {
1007 	struct flush_kernel_vmap_range_args args;
1008 
1009 	args.vaddr = (unsigned long) vaddr;
1010 	args.size = size;
1011 
1012 	if (size >= dcache_size)
1013 		r4k_on_each_cpu(R4K_INDEX,
1014 				local_r4k_flush_kernel_vmap_range_index, NULL);
1015 	else
1016 		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1017 				&args);
1018 }
1019 
rm7k_erratum31(void)1020 static inline void rm7k_erratum31(void)
1021 {
1022 	const unsigned long ic_lsize = 32;
1023 	unsigned long addr;
1024 
1025 	/* RM7000 erratum #31. The icache is screwed at startup. */
1026 	write_c0_taglo(0);
1027 	write_c0_taghi(0);
1028 
1029 	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1030 		__asm__ __volatile__ (
1031 			".set push\n\t"
1032 			".set noreorder\n\t"
1033 			".set mips3\n\t"
1034 			"cache\t%1, 0(%0)\n\t"
1035 			"cache\t%1, 0x1000(%0)\n\t"
1036 			"cache\t%1, 0x2000(%0)\n\t"
1037 			"cache\t%1, 0x3000(%0)\n\t"
1038 			"cache\t%2, 0(%0)\n\t"
1039 			"cache\t%2, 0x1000(%0)\n\t"
1040 			"cache\t%2, 0x2000(%0)\n\t"
1041 			"cache\t%2, 0x3000(%0)\n\t"
1042 			"cache\t%1, 0(%0)\n\t"
1043 			"cache\t%1, 0x1000(%0)\n\t"
1044 			"cache\t%1, 0x2000(%0)\n\t"
1045 			"cache\t%1, 0x3000(%0)\n\t"
1046 			".set pop\n"
1047 			:
1048 			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I));
1049 	}
1050 }
1051 
alias_74k_erratum(struct cpuinfo_mips * c)1052 static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1053 {
1054 	unsigned int imp = c->processor_id & PRID_IMP_MASK;
1055 	unsigned int rev = c->processor_id & PRID_REV_MASK;
1056 	int present = 0;
1057 
1058 	/*
1059 	 * Early versions of the 74K do not update the cache tags on a
1060 	 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1061 	 * aliases.  In this case it is better to treat the cache as always
1062 	 * having aliases.  Also disable the synonym tag update feature
1063 	 * where available.  In this case no opportunistic tag update will
1064 	 * happen where a load causes a virtual address miss but a physical
1065 	 * address hit during a D-cache look-up.
1066 	 */
1067 	switch (imp) {
1068 	case PRID_IMP_74K:
1069 		if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1070 			present = 1;
1071 		if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1072 			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1073 		break;
1074 	case PRID_IMP_1074K:
1075 		if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1076 			present = 1;
1077 			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1078 		}
1079 		break;
1080 	default:
1081 		BUG();
1082 	}
1083 
1084 	return present;
1085 }
1086 
b5k_instruction_hazard(void)1087 static void b5k_instruction_hazard(void)
1088 {
1089 	__sync();
1090 	__sync();
1091 	__asm__ __volatile__(
1092 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1093 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1094 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1095 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1096 	: : : "memory");
1097 }
1098 
1099 static char *way_string[] = { NULL, "direct mapped", "2-way",
1100 	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1101 	"9-way", "10-way", "11-way", "12-way",
1102 	"13-way", "14-way", "15-way", "16-way",
1103 };
1104 
probe_pcache(void)1105 static void probe_pcache(void)
1106 {
1107 	struct cpuinfo_mips *c = &current_cpu_data;
1108 	unsigned int config = read_c0_config();
1109 	unsigned int prid = read_c0_prid();
1110 	int has_74k_erratum = 0;
1111 	unsigned long config1;
1112 	unsigned int lsize;
1113 
1114 	switch (current_cpu_type()) {
1115 	case CPU_R4600:			/* QED style two way caches? */
1116 	case CPU_R4700:
1117 	case CPU_R5000:
1118 	case CPU_NEVADA:
1119 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1120 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1121 		c->icache.ways = 2;
1122 		c->icache.waybit = __ffs(icache_size/2);
1123 
1124 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1125 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1126 		c->dcache.ways = 2;
1127 		c->dcache.waybit= __ffs(dcache_size/2);
1128 
1129 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1130 		break;
1131 
1132 	case CPU_R5500:
1133 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1134 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1135 		c->icache.ways = 2;
1136 		c->icache.waybit= 0;
1137 
1138 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1139 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1140 		c->dcache.ways = 2;
1141 		c->dcache.waybit = 0;
1142 
1143 		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1144 		break;
1145 
1146 	case CPU_TX49XX:
1147 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1148 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1149 		c->icache.ways = 4;
1150 		c->icache.waybit= 0;
1151 
1152 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1153 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1154 		c->dcache.ways = 4;
1155 		c->dcache.waybit = 0;
1156 
1157 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1158 		c->options |= MIPS_CPU_PREFETCH;
1159 		break;
1160 
1161 	case CPU_R4000PC:
1162 	case CPU_R4000SC:
1163 	case CPU_R4000MC:
1164 	case CPU_R4400PC:
1165 	case CPU_R4400SC:
1166 	case CPU_R4400MC:
1167 	case CPU_R4300:
1168 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1169 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1170 		c->icache.ways = 1;
1171 		c->icache.waybit = 0;	/* doesn't matter */
1172 
1173 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1174 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1175 		c->dcache.ways = 1;
1176 		c->dcache.waybit = 0;	/* does not matter */
1177 
1178 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1179 		break;
1180 
1181 	case CPU_R10000:
1182 	case CPU_R12000:
1183 	case CPU_R14000:
1184 	case CPU_R16000:
1185 		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1186 		c->icache.linesz = 64;
1187 		c->icache.ways = 2;
1188 		c->icache.waybit = 0;
1189 
1190 		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1191 		c->dcache.linesz = 32;
1192 		c->dcache.ways = 2;
1193 		c->dcache.waybit = 0;
1194 
1195 		c->options |= MIPS_CPU_PREFETCH;
1196 		break;
1197 
1198 	case CPU_VR4133:
1199 		write_c0_config(config & ~VR41_CONF_P4K);
1200 		fallthrough;
1201 	case CPU_VR4131:
1202 		/* Workaround for cache instruction bug of VR4131 */
1203 		if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1204 		    c->processor_id == 0x0c82U) {
1205 			config |= 0x00400000U;
1206 			if (c->processor_id == 0x0c80U)
1207 				config |= VR41_CONF_BP;
1208 			write_c0_config(config);
1209 		} else
1210 			c->options |= MIPS_CPU_CACHE_CDEX_P;
1211 
1212 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1213 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1214 		c->icache.ways = 2;
1215 		c->icache.waybit = __ffs(icache_size/2);
1216 
1217 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1218 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1219 		c->dcache.ways = 2;
1220 		c->dcache.waybit = __ffs(dcache_size/2);
1221 		break;
1222 
1223 	case CPU_VR41XX:
1224 	case CPU_VR4111:
1225 	case CPU_VR4121:
1226 	case CPU_VR4122:
1227 	case CPU_VR4181:
1228 	case CPU_VR4181A:
1229 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1230 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1231 		c->icache.ways = 1;
1232 		c->icache.waybit = 0;	/* doesn't matter */
1233 
1234 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1235 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1236 		c->dcache.ways = 1;
1237 		c->dcache.waybit = 0;	/* does not matter */
1238 
1239 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1240 		break;
1241 
1242 	case CPU_RM7000:
1243 		rm7k_erratum31();
1244 
1245 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1246 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1247 		c->icache.ways = 4;
1248 		c->icache.waybit = __ffs(icache_size / c->icache.ways);
1249 
1250 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1251 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1252 		c->dcache.ways = 4;
1253 		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1254 
1255 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1256 		c->options |= MIPS_CPU_PREFETCH;
1257 		break;
1258 
1259 	case CPU_LOONGSON2EF:
1260 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1261 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1262 		if (prid & 0x3)
1263 			c->icache.ways = 4;
1264 		else
1265 			c->icache.ways = 2;
1266 		c->icache.waybit = 0;
1267 
1268 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1269 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1270 		if (prid & 0x3)
1271 			c->dcache.ways = 4;
1272 		else
1273 			c->dcache.ways = 2;
1274 		c->dcache.waybit = 0;
1275 		break;
1276 
1277 	case CPU_LOONGSON64:
1278 		config1 = read_c0_config1();
1279 		lsize = (config1 >> 19) & 7;
1280 		if (lsize)
1281 			c->icache.linesz = 2 << lsize;
1282 		else
1283 			c->icache.linesz = 0;
1284 		c->icache.sets = 64 << ((config1 >> 22) & 7);
1285 		c->icache.ways = 1 + ((config1 >> 16) & 7);
1286 		icache_size = c->icache.sets *
1287 					  c->icache.ways *
1288 					  c->icache.linesz;
1289 		c->icache.waybit = 0;
1290 
1291 		lsize = (config1 >> 10) & 7;
1292 		if (lsize)
1293 			c->dcache.linesz = 2 << lsize;
1294 		else
1295 			c->dcache.linesz = 0;
1296 		c->dcache.sets = 64 << ((config1 >> 13) & 7);
1297 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1298 		dcache_size = c->dcache.sets *
1299 					  c->dcache.ways *
1300 					  c->dcache.linesz;
1301 		c->dcache.waybit = 0;
1302 		if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
1303 				(PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
1304 				(c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1305 			c->options |= MIPS_CPU_PREFETCH;
1306 		break;
1307 
1308 	case CPU_CAVIUM_OCTEON3:
1309 		/* For now lie about the number of ways. */
1310 		c->icache.linesz = 128;
1311 		c->icache.sets = 16;
1312 		c->icache.ways = 8;
1313 		c->icache.flags |= MIPS_CACHE_VTAG;
1314 		icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1315 
1316 		c->dcache.linesz = 128;
1317 		c->dcache.ways = 8;
1318 		c->dcache.sets = 8;
1319 		dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1320 		c->options |= MIPS_CPU_PREFETCH;
1321 		break;
1322 
1323 	default:
1324 		if (!(config & MIPS_CONF_M))
1325 			panic("Don't know how to probe P-caches on this cpu.");
1326 
1327 		/*
1328 		 * So we seem to be a MIPS32 or MIPS64 CPU
1329 		 * So let's probe the I-cache ...
1330 		 */
1331 		config1 = read_c0_config1();
1332 
1333 		lsize = (config1 >> 19) & 7;
1334 
1335 		/* IL == 7 is reserved */
1336 		if (lsize == 7)
1337 			panic("Invalid icache line size");
1338 
1339 		c->icache.linesz = lsize ? 2 << lsize : 0;
1340 
1341 		c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1342 		c->icache.ways = 1 + ((config1 >> 16) & 7);
1343 
1344 		icache_size = c->icache.sets *
1345 			      c->icache.ways *
1346 			      c->icache.linesz;
1347 		c->icache.waybit = __ffs(icache_size/c->icache.ways);
1348 
1349 		if (config & MIPS_CONF_VI)
1350 			c->icache.flags |= MIPS_CACHE_VTAG;
1351 
1352 		/*
1353 		 * Now probe the MIPS32 / MIPS64 data cache.
1354 		 */
1355 		c->dcache.flags = 0;
1356 
1357 		lsize = (config1 >> 10) & 7;
1358 
1359 		/* DL == 7 is reserved */
1360 		if (lsize == 7)
1361 			panic("Invalid dcache line size");
1362 
1363 		c->dcache.linesz = lsize ? 2 << lsize : 0;
1364 
1365 		c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1366 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1367 
1368 		dcache_size = c->dcache.sets *
1369 			      c->dcache.ways *
1370 			      c->dcache.linesz;
1371 		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1372 
1373 		c->options |= MIPS_CPU_PREFETCH;
1374 		break;
1375 	}
1376 
1377 	/*
1378 	 * Processor configuration sanity check for the R4000SC erratum
1379 	 * #5.	With page sizes larger than 32kB there is no possibility
1380 	 * to get a VCE exception anymore so we don't care about this
1381 	 * misconfiguration.  The case is rather theoretical anyway;
1382 	 * presumably no vendor is shipping his hardware in the "bad"
1383 	 * configuration.
1384 	 */
1385 	if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1386 	    (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1387 	    !(config & CONF_SC) && c->icache.linesz != 16 &&
1388 	    PAGE_SIZE <= 0x8000)
1389 		panic("Improper R4000SC processor configuration detected");
1390 
1391 	/* compute a couple of other cache variables */
1392 	c->icache.waysize = icache_size / c->icache.ways;
1393 	c->dcache.waysize = dcache_size / c->dcache.ways;
1394 
1395 	c->icache.sets = c->icache.linesz ?
1396 		icache_size / (c->icache.linesz * c->icache.ways) : 0;
1397 	c->dcache.sets = c->dcache.linesz ?
1398 		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1399 
1400 	/*
1401 	 * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1402 	 * virtually indexed so normally would suffer from aliases.  So
1403 	 * normally they'd suffer from aliases but magic in the hardware deals
1404 	 * with that for us so we don't need to take care ourselves.
1405 	 */
1406 	switch (current_cpu_type()) {
1407 	case CPU_20KC:
1408 	case CPU_25KF:
1409 	case CPU_I6400:
1410 	case CPU_I6500:
1411 	case CPU_SB1:
1412 	case CPU_SB1A:
1413 	case CPU_XLR:
1414 		c->dcache.flags |= MIPS_CACHE_PINDEX;
1415 		break;
1416 
1417 	case CPU_R10000:
1418 	case CPU_R12000:
1419 	case CPU_R14000:
1420 	case CPU_R16000:
1421 		break;
1422 
1423 	case CPU_74K:
1424 	case CPU_1074K:
1425 		has_74k_erratum = alias_74k_erratum(c);
1426 		fallthrough;
1427 	case CPU_M14KC:
1428 	case CPU_M14KEC:
1429 	case CPU_24K:
1430 	case CPU_34K:
1431 	case CPU_1004K:
1432 	case CPU_INTERAPTIV:
1433 	case CPU_P5600:
1434 	case CPU_PROAPTIV:
1435 	case CPU_M5150:
1436 	case CPU_QEMU_GENERIC:
1437 	case CPU_P6600:
1438 	case CPU_M6250:
1439 		if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1440 		    (c->icache.waysize > PAGE_SIZE))
1441 			c->icache.flags |= MIPS_CACHE_ALIASES;
1442 		if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1443 			/*
1444 			 * Effectively physically indexed dcache,
1445 			 * thus no virtual aliases.
1446 			*/
1447 			c->dcache.flags |= MIPS_CACHE_PINDEX;
1448 			break;
1449 		}
1450 		fallthrough;
1451 	default:
1452 		if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1453 			c->dcache.flags |= MIPS_CACHE_ALIASES;
1454 	}
1455 
1456 	/* Physically indexed caches don't suffer from virtual aliasing */
1457 	if (c->dcache.flags & MIPS_CACHE_PINDEX)
1458 		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1459 
1460 	/*
1461 	 * In systems with CM the icache fills from L2 or closer caches, and
1462 	 * thus sees remote stores without needing to write them back any
1463 	 * further than that.
1464 	 */
1465 	if (mips_cm_present())
1466 		c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1467 
1468 	switch (current_cpu_type()) {
1469 	case CPU_20KC:
1470 		/*
1471 		 * Some older 20Kc chips doesn't have the 'VI' bit in
1472 		 * the config register.
1473 		 */
1474 		c->icache.flags |= MIPS_CACHE_VTAG;
1475 		break;
1476 
1477 	case CPU_ALCHEMY:
1478 	case CPU_I6400:
1479 	case CPU_I6500:
1480 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1481 		break;
1482 
1483 	case CPU_BMIPS5000:
1484 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1485 		/* Cache aliases are handled in hardware; allow HIGHMEM */
1486 		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1487 		break;
1488 
1489 	case CPU_LOONGSON2EF:
1490 		/*
1491 		 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1492 		 * one op will act on all 4 ways
1493 		 */
1494 		c->icache.ways = 1;
1495 	}
1496 
1497 	pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1498 		icache_size >> 10,
1499 		c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1500 		way_string[c->icache.ways], c->icache.linesz);
1501 
1502 	pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1503 		dcache_size >> 10, way_string[c->dcache.ways],
1504 		(c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1505 		(c->dcache.flags & MIPS_CACHE_ALIASES) ?
1506 			"cache aliases" : "no aliases",
1507 		c->dcache.linesz);
1508 }
1509 
probe_vcache(void)1510 static void probe_vcache(void)
1511 {
1512 	struct cpuinfo_mips *c = &current_cpu_data;
1513 	unsigned int config2, lsize;
1514 
1515 	if (current_cpu_type() != CPU_LOONGSON64)
1516 		return;
1517 
1518 	config2 = read_c0_config2();
1519 	if ((lsize = ((config2 >> 20) & 15)))
1520 		c->vcache.linesz = 2 << lsize;
1521 	else
1522 		c->vcache.linesz = lsize;
1523 
1524 	c->vcache.sets = 64 << ((config2 >> 24) & 15);
1525 	c->vcache.ways = 1 + ((config2 >> 16) & 15);
1526 
1527 	vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1528 
1529 	c->vcache.waybit = 0;
1530 	c->vcache.waysize = vcache_size / c->vcache.ways;
1531 
1532 	pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1533 		vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1534 }
1535 
1536 /*
1537  * If you even _breathe_ on this function, look at the gcc output and make sure
1538  * it does not pop things on and off the stack for the cache sizing loop that
1539  * executes in KSEG1 space or else you will crash and burn badly.  You have
1540  * been warned.
1541  */
probe_scache(void)1542 static int probe_scache(void)
1543 {
1544 	unsigned long flags, addr, begin, end, pow2;
1545 	unsigned int config = read_c0_config();
1546 	struct cpuinfo_mips *c = &current_cpu_data;
1547 
1548 	if (config & CONF_SC)
1549 		return 0;
1550 
1551 	begin = (unsigned long) &_stext;
1552 	begin &= ~((4 * 1024 * 1024) - 1);
1553 	end = begin + (4 * 1024 * 1024);
1554 
1555 	/*
1556 	 * This is such a bitch, you'd think they would make it easy to do
1557 	 * this.  Away you daemons of stupidity!
1558 	 */
1559 	local_irq_save(flags);
1560 
1561 	/* Fill each size-multiple cache line with a valid tag. */
1562 	pow2 = (64 * 1024);
1563 	for (addr = begin; addr < end; addr = (begin + pow2)) {
1564 		unsigned long *p = (unsigned long *) addr;
1565 		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1566 		pow2 <<= 1;
1567 	}
1568 
1569 	/* Load first line with zero (therefore invalid) tag. */
1570 	write_c0_taglo(0);
1571 	write_c0_taghi(0);
1572 	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1573 	cache_op(Index_Store_Tag_I, begin);
1574 	cache_op(Index_Store_Tag_D, begin);
1575 	cache_op(Index_Store_Tag_SD, begin);
1576 
1577 	/* Now search for the wrap around point. */
1578 	pow2 = (128 * 1024);
1579 	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1580 		cache_op(Index_Load_Tag_SD, addr);
1581 		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1582 		if (!read_c0_taglo())
1583 			break;
1584 		pow2 <<= 1;
1585 	}
1586 	local_irq_restore(flags);
1587 	addr -= begin;
1588 
1589 	scache_size = addr;
1590 	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1591 	c->scache.ways = 1;
1592 	c->scache.waybit = 0;		/* does not matter */
1593 
1594 	return 1;
1595 }
1596 
loongson2_sc_init(void)1597 static void loongson2_sc_init(void)
1598 {
1599 	struct cpuinfo_mips *c = &current_cpu_data;
1600 
1601 	scache_size = 512*1024;
1602 	c->scache.linesz = 32;
1603 	c->scache.ways = 4;
1604 	c->scache.waybit = 0;
1605 	c->scache.waysize = scache_size / (c->scache.ways);
1606 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1607 	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1608 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1609 
1610 	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1611 }
1612 
loongson3_sc_init(void)1613 static void loongson3_sc_init(void)
1614 {
1615 	struct cpuinfo_mips *c = &current_cpu_data;
1616 	unsigned int config2, lsize;
1617 
1618 	config2 = read_c0_config2();
1619 	lsize = (config2 >> 4) & 15;
1620 	if (lsize)
1621 		c->scache.linesz = 2 << lsize;
1622 	else
1623 		c->scache.linesz = 0;
1624 	c->scache.sets = 64 << ((config2 >> 8) & 15);
1625 	c->scache.ways = 1 + (config2 & 15);
1626 
1627 	/* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */
1628 	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1629 		c->scache.sets *= 2;
1630 	else
1631 		c->scache.sets *= 4;
1632 
1633 	scache_size = c->scache.sets * c->scache.ways * c->scache.linesz;
1634 
1635 	c->scache.waybit = 0;
1636 	c->scache.waysize = scache_size / c->scache.ways;
1637 	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1638 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1639 	if (scache_size)
1640 		c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1641 	return;
1642 }
1643 
1644 extern int r5k_sc_init(void);
1645 extern int rm7k_sc_init(void);
1646 extern int mips_sc_init(void);
1647 
setup_scache(void)1648 static void setup_scache(void)
1649 {
1650 	struct cpuinfo_mips *c = &current_cpu_data;
1651 	unsigned int config = read_c0_config();
1652 	int sc_present = 0;
1653 
1654 	/*
1655 	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1656 	 * processors don't have a S-cache that would be relevant to the
1657 	 * Linux memory management.
1658 	 */
1659 	switch (current_cpu_type()) {
1660 	case CPU_R4000SC:
1661 	case CPU_R4000MC:
1662 	case CPU_R4400SC:
1663 	case CPU_R4400MC:
1664 		sc_present = run_uncached(probe_scache);
1665 		if (sc_present)
1666 			c->options |= MIPS_CPU_CACHE_CDEX_S;
1667 		break;
1668 
1669 	case CPU_R10000:
1670 	case CPU_R12000:
1671 	case CPU_R14000:
1672 	case CPU_R16000:
1673 		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1674 		c->scache.linesz = 64 << ((config >> 13) & 1);
1675 		c->scache.ways = 2;
1676 		c->scache.waybit= 0;
1677 		sc_present = 1;
1678 		break;
1679 
1680 	case CPU_R5000:
1681 	case CPU_NEVADA:
1682 #ifdef CONFIG_R5000_CPU_SCACHE
1683 		r5k_sc_init();
1684 #endif
1685 		return;
1686 
1687 	case CPU_RM7000:
1688 #ifdef CONFIG_RM7000_CPU_SCACHE
1689 		rm7k_sc_init();
1690 #endif
1691 		return;
1692 
1693 	case CPU_LOONGSON2EF:
1694 		loongson2_sc_init();
1695 		return;
1696 
1697 	case CPU_LOONGSON64:
1698 		loongson3_sc_init();
1699 		return;
1700 
1701 	case CPU_CAVIUM_OCTEON3:
1702 	case CPU_XLP:
1703 		/* don't need to worry about L2, fully coherent */
1704 		return;
1705 
1706 	default:
1707 		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
1708 				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
1709 				    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
1710 				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
1711 #ifdef CONFIG_MIPS_CPU_SCACHE
1712 			if (mips_sc_init ()) {
1713 				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1714 				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1715 				       scache_size >> 10,
1716 				       way_string[c->scache.ways], c->scache.linesz);
1717 
1718 				if (current_cpu_type() == CPU_BMIPS5000)
1719 					c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1720 			}
1721 
1722 #else
1723 			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1724 				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1725 #endif
1726 			return;
1727 		}
1728 		sc_present = 0;
1729 	}
1730 
1731 	if (!sc_present)
1732 		return;
1733 
1734 	/* compute a couple of other cache variables */
1735 	c->scache.waysize = scache_size / c->scache.ways;
1736 
1737 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1738 
1739 	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1740 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1741 
1742 	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1743 }
1744 
au1x00_fixup_config_od(void)1745 void au1x00_fixup_config_od(void)
1746 {
1747 	/*
1748 	 * c0_config.od (bit 19) was write only (and read as 0)
1749 	 * on the early revisions of Alchemy SOCs.  It disables the bus
1750 	 * transaction overlapping and needs to be set to fix various errata.
1751 	 */
1752 	switch (read_c0_prid()) {
1753 	case 0x00030100: /* Au1000 DA */
1754 	case 0x00030201: /* Au1000 HA */
1755 	case 0x00030202: /* Au1000 HB */
1756 	case 0x01030200: /* Au1500 AB */
1757 	/*
1758 	 * Au1100 errata actually keeps silence about this bit, so we set it
1759 	 * just in case for those revisions that require it to be set according
1760 	 * to the (now gone) cpu table.
1761 	 */
1762 	case 0x02030200: /* Au1100 AB */
1763 	case 0x02030201: /* Au1100 BA */
1764 	case 0x02030202: /* Au1100 BC */
1765 		set_c0_config(1 << 19);
1766 		break;
1767 	}
1768 }
1769 
1770 /* CP0 hazard avoidance. */
1771 #define NXP_BARRIER()							\
1772 	 __asm__ __volatile__(						\
1773 	".set noreorder\n\t"						\
1774 	"nop; nop; nop; nop; nop; nop;\n\t"				\
1775 	".set reorder\n\t")
1776 
nxp_pr4450_fixup_config(void)1777 static void nxp_pr4450_fixup_config(void)
1778 {
1779 	unsigned long config0;
1780 
1781 	config0 = read_c0_config();
1782 
1783 	/* clear all three cache coherency fields */
1784 	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1785 	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1786 		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1787 		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1788 	write_c0_config(config0);
1789 	NXP_BARRIER();
1790 }
1791 
1792 static int cca = -1;
1793 
cca_setup(char * str)1794 static int __init cca_setup(char *str)
1795 {
1796 	get_option(&str, &cca);
1797 
1798 	return 0;
1799 }
1800 
1801 early_param("cca", cca_setup);
1802 
coherency_setup(void)1803 static void coherency_setup(void)
1804 {
1805 	if (cca < 0 || cca > 7)
1806 		cca = read_c0_config() & CONF_CM_CMASK;
1807 	_page_cachable_default = cca << _CACHE_SHIFT;
1808 
1809 	pr_debug("Using cache attribute %d\n", cca);
1810 	change_c0_config(CONF_CM_CMASK, cca);
1811 
1812 	/*
1813 	 * c0_status.cu=0 specifies that updates by the sc instruction use
1814 	 * the coherency mode specified by the TLB; 1 means cachable
1815 	 * coherent update on write will be used.  Not all processors have
1816 	 * this bit and; some wire it to zero, others like Toshiba had the
1817 	 * silly idea of putting something else there ...
1818 	 */
1819 	switch (current_cpu_type()) {
1820 	case CPU_R4000PC:
1821 	case CPU_R4000SC:
1822 	case CPU_R4000MC:
1823 	case CPU_R4400PC:
1824 	case CPU_R4400SC:
1825 	case CPU_R4400MC:
1826 		clear_c0_config(CONF_CU);
1827 		break;
1828 	/*
1829 	 * We need to catch the early Alchemy SOCs with
1830 	 * the write-only co_config.od bit and set it back to one on:
1831 	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1832 	 */
1833 	case CPU_ALCHEMY:
1834 		au1x00_fixup_config_od();
1835 		break;
1836 
1837 	case PRID_IMP_PR4450:
1838 		nxp_pr4450_fixup_config();
1839 		break;
1840 	}
1841 }
1842 
r4k_cache_error_setup(void)1843 static void r4k_cache_error_setup(void)
1844 {
1845 	extern char __weak except_vec2_generic;
1846 	extern char __weak except_vec2_sb1;
1847 
1848 	switch (current_cpu_type()) {
1849 	case CPU_SB1:
1850 	case CPU_SB1A:
1851 		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1852 		break;
1853 
1854 	default:
1855 		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1856 		break;
1857 	}
1858 }
1859 
r4k_cache_init(void)1860 void r4k_cache_init(void)
1861 {
1862 	extern void build_clear_page(void);
1863 	extern void build_copy_page(void);
1864 	struct cpuinfo_mips *c = &current_cpu_data;
1865 
1866 	probe_pcache();
1867 	probe_vcache();
1868 	setup_scache();
1869 
1870 	r4k_blast_dcache_page_setup();
1871 	r4k_blast_dcache_page_indexed_setup();
1872 	r4k_blast_dcache_setup();
1873 	r4k_blast_icache_page_setup();
1874 	r4k_blast_icache_page_indexed_setup();
1875 	r4k_blast_icache_setup();
1876 	r4k_blast_scache_page_setup();
1877 	r4k_blast_scache_page_indexed_setup();
1878 	r4k_blast_scache_setup();
1879 	r4k_blast_scache_node_setup();
1880 #ifdef CONFIG_EVA
1881 	r4k_blast_dcache_user_page_setup();
1882 	r4k_blast_icache_user_page_setup();
1883 #endif
1884 
1885 	/*
1886 	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1887 	 * This code supports virtually indexed processors and will be
1888 	 * unnecessarily inefficient on physically indexed processors.
1889 	 */
1890 	if (c->dcache.linesz && cpu_has_dc_aliases)
1891 		shm_align_mask = max_t( unsigned long,
1892 					c->dcache.sets * c->dcache.linesz - 1,
1893 					PAGE_SIZE - 1);
1894 	else
1895 		shm_align_mask = PAGE_SIZE-1;
1896 
1897 	__flush_cache_vmap	= r4k__flush_cache_vmap;
1898 	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1899 
1900 	flush_cache_all		= cache_noop;
1901 	__flush_cache_all	= r4k___flush_cache_all;
1902 	flush_cache_mm		= r4k_flush_cache_mm;
1903 	flush_cache_page	= r4k_flush_cache_page;
1904 	flush_cache_range	= r4k_flush_cache_range;
1905 
1906 	__flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1907 
1908 	flush_icache_all	= r4k_flush_icache_all;
1909 	local_flush_data_cache_page	= local_r4k_flush_data_cache_page;
1910 	flush_data_cache_page	= r4k_flush_data_cache_page;
1911 	flush_icache_range	= r4k_flush_icache_range;
1912 	local_flush_icache_range	= local_r4k_flush_icache_range;
1913 	__flush_icache_user_range	= r4k_flush_icache_user_range;
1914 	__local_flush_icache_user_range	= local_r4k_flush_icache_user_range;
1915 
1916 #ifdef CONFIG_DMA_NONCOHERENT
1917 	if (dma_default_coherent) {
1918 		_dma_cache_wback_inv	= (void *)cache_noop;
1919 		_dma_cache_wback	= (void *)cache_noop;
1920 		_dma_cache_inv		= (void *)cache_noop;
1921 	} else {
1922 		_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1923 		_dma_cache_wback	= r4k_dma_cache_wback_inv;
1924 		_dma_cache_inv		= r4k_dma_cache_inv;
1925 	}
1926 #endif /* CONFIG_DMA_NONCOHERENT */
1927 
1928 	build_clear_page();
1929 	build_copy_page();
1930 
1931 	/*
1932 	 * We want to run CMP kernels on core with and without coherent
1933 	 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1934 	 * or not to flush caches.
1935 	 */
1936 	local_r4k___flush_cache_all(NULL);
1937 
1938 	coherency_setup();
1939 	board_cache_error_setup = r4k_cache_error_setup;
1940 
1941 	/*
1942 	 * Per-CPU overrides
1943 	 */
1944 	switch (current_cpu_type()) {
1945 	case CPU_BMIPS4350:
1946 	case CPU_BMIPS4380:
1947 		/* No IPI is needed because all CPUs share the same D$ */
1948 		flush_data_cache_page = r4k_blast_dcache_page;
1949 		break;
1950 	case CPU_BMIPS5000:
1951 		/* We lose our superpowers if L2 is disabled */
1952 		if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1953 			break;
1954 
1955 		/* I$ fills from D$ just by emptying the write buffers */
1956 		flush_cache_page = (void *)b5k_instruction_hazard;
1957 		flush_cache_range = (void *)b5k_instruction_hazard;
1958 		local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1959 		flush_data_cache_page = (void *)b5k_instruction_hazard;
1960 		flush_icache_range = (void *)b5k_instruction_hazard;
1961 		local_flush_icache_range = (void *)b5k_instruction_hazard;
1962 
1963 
1964 		/* Optimization: an L2 flush implicitly flushes the L1 */
1965 		current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1966 		break;
1967 	case CPU_LOONGSON64:
1968 		/* Loongson-3 maintains cache coherency by hardware */
1969 		__flush_cache_all	= cache_noop;
1970 		__flush_cache_vmap	= cache_noop;
1971 		__flush_cache_vunmap	= cache_noop;
1972 		__flush_kernel_vmap_range = (void *)cache_noop;
1973 		flush_cache_mm		= (void *)cache_noop;
1974 		flush_cache_page	= (void *)cache_noop;
1975 		flush_cache_range	= (void *)cache_noop;
1976 		flush_icache_all	= (void *)cache_noop;
1977 		flush_data_cache_page	= (void *)cache_noop;
1978 		local_flush_data_cache_page	= (void *)cache_noop;
1979 		break;
1980 	}
1981 }
1982 
r4k_cache_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1983 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1984 			       void *v)
1985 {
1986 	switch (cmd) {
1987 	case CPU_PM_ENTER_FAILED:
1988 	case CPU_PM_EXIT:
1989 		coherency_setup();
1990 		break;
1991 	}
1992 
1993 	return NOTIFY_OK;
1994 }
1995 
1996 static struct notifier_block r4k_cache_pm_notifier_block = {
1997 	.notifier_call = r4k_cache_pm_notifier,
1998 };
1999 
r4k_cache_init_pm(void)2000 int __init r4k_cache_init_pm(void)
2001 {
2002 	return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
2003 }
2004 arch_initcall(r4k_cache_init_pm);
2005