1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright IBM Corp. 2002, 2006
6  *
7  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8  */
9 
10 #include <linux/moduleloader.h>
11 #include <linux/kprobes.h>
12 #include <linux/ptrace.h>
13 #include <linux/preempt.h>
14 #include <linux/stop_machine.h>
15 #include <linux/kdebug.h>
16 #include <linux/uaccess.h>
17 #include <linux/extable.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/hardirq.h>
21 #include <linux/ftrace.h>
22 #include <asm/set_memory.h>
23 #include <asm/sections.h>
24 #include <asm/dis.h>
25 #include "entry.h"
26 
27 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
28 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
29 
30 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
31 
32 DEFINE_INSN_CACHE_OPS(s390_insn);
33 
34 static int insn_page_in_use;
35 
alloc_insn_page(void)36 void *alloc_insn_page(void)
37 {
38 	void *page;
39 
40 	page = module_alloc(PAGE_SIZE);
41 	if (!page)
42 		return NULL;
43 	__set_memory((unsigned long) page, 1, SET_MEMORY_RO | SET_MEMORY_X);
44 	return page;
45 }
46 
free_insn_page(void * page)47 void free_insn_page(void *page)
48 {
49 	module_memfree(page);
50 }
51 
alloc_s390_insn_page(void)52 static void *alloc_s390_insn_page(void)
53 {
54 	if (xchg(&insn_page_in_use, 1) == 1)
55 		return NULL;
56 	return &kprobes_insn_page;
57 }
58 
free_s390_insn_page(void * page)59 static void free_s390_insn_page(void *page)
60 {
61 	xchg(&insn_page_in_use, 0);
62 }
63 
64 struct kprobe_insn_cache kprobe_s390_insn_slots = {
65 	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
66 	.alloc = alloc_s390_insn_page,
67 	.free = free_s390_insn_page,
68 	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
69 	.insn_size = MAX_INSN_SIZE,
70 };
71 
copy_instruction(struct kprobe * p)72 static void copy_instruction(struct kprobe *p)
73 {
74 	kprobe_opcode_t insn[MAX_INSN_SIZE];
75 	s64 disp, new_disp;
76 	u64 addr, new_addr;
77 	unsigned int len;
78 
79 	len = insn_length(*p->addr >> 8);
80 	memcpy(&insn, p->addr, len);
81 	p->opcode = insn[0];
82 	if (probe_is_insn_relative_long(&insn[0])) {
83 		/*
84 		 * For pc-relative instructions in RIL-b or RIL-c format patch
85 		 * the RI2 displacement field. We have already made sure that
86 		 * the insn slot for the patched instruction is within the same
87 		 * 2GB area as the original instruction (either kernel image or
88 		 * module area). Therefore the new displacement will always fit.
89 		 */
90 		disp = *(s32 *)&insn[1];
91 		addr = (u64)(unsigned long)p->addr;
92 		new_addr = (u64)(unsigned long)p->ainsn.insn;
93 		new_disp = ((addr + (disp * 2)) - new_addr) / 2;
94 		*(s32 *)&insn[1] = new_disp;
95 	}
96 	s390_kernel_write(p->ainsn.insn, &insn, len);
97 }
98 NOKPROBE_SYMBOL(copy_instruction);
99 
is_kernel_addr(void * addr)100 static inline int is_kernel_addr(void *addr)
101 {
102 	return addr < (void *)_end;
103 }
104 
s390_get_insn_slot(struct kprobe * p)105 static int s390_get_insn_slot(struct kprobe *p)
106 {
107 	/*
108 	 * Get an insn slot that is within the same 2GB area like the original
109 	 * instruction. That way instructions with a 32bit signed displacement
110 	 * field can be patched and executed within the insn slot.
111 	 */
112 	p->ainsn.insn = NULL;
113 	if (is_kernel_addr(p->addr))
114 		p->ainsn.insn = get_s390_insn_slot();
115 	else if (is_module_addr(p->addr))
116 		p->ainsn.insn = get_insn_slot();
117 	return p->ainsn.insn ? 0 : -ENOMEM;
118 }
119 NOKPROBE_SYMBOL(s390_get_insn_slot);
120 
s390_free_insn_slot(struct kprobe * p)121 static void s390_free_insn_slot(struct kprobe *p)
122 {
123 	if (!p->ainsn.insn)
124 		return;
125 	if (is_kernel_addr(p->addr))
126 		free_s390_insn_slot(p->ainsn.insn, 0);
127 	else
128 		free_insn_slot(p->ainsn.insn, 0);
129 	p->ainsn.insn = NULL;
130 }
131 NOKPROBE_SYMBOL(s390_free_insn_slot);
132 
arch_prepare_kprobe(struct kprobe * p)133 int arch_prepare_kprobe(struct kprobe *p)
134 {
135 	if ((unsigned long) p->addr & 0x01)
136 		return -EINVAL;
137 	/* Make sure the probe isn't going on a difficult instruction */
138 	if (probe_is_prohibited_opcode(p->addr))
139 		return -EINVAL;
140 	if (s390_get_insn_slot(p))
141 		return -ENOMEM;
142 	copy_instruction(p);
143 	return 0;
144 }
145 NOKPROBE_SYMBOL(arch_prepare_kprobe);
146 
147 struct swap_insn_args {
148 	struct kprobe *p;
149 	unsigned int arm_kprobe : 1;
150 };
151 
swap_instruction(void * data)152 static int swap_instruction(void *data)
153 {
154 	struct swap_insn_args *args = data;
155 	struct kprobe *p = args->p;
156 	u16 opc;
157 
158 	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
159 	s390_kernel_write(p->addr, &opc, sizeof(opc));
160 	return 0;
161 }
162 NOKPROBE_SYMBOL(swap_instruction);
163 
arch_arm_kprobe(struct kprobe * p)164 void arch_arm_kprobe(struct kprobe *p)
165 {
166 	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
167 
168 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
169 }
170 NOKPROBE_SYMBOL(arch_arm_kprobe);
171 
arch_disarm_kprobe(struct kprobe * p)172 void arch_disarm_kprobe(struct kprobe *p)
173 {
174 	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
175 
176 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
177 }
178 NOKPROBE_SYMBOL(arch_disarm_kprobe);
179 
arch_remove_kprobe(struct kprobe * p)180 void arch_remove_kprobe(struct kprobe *p)
181 {
182 	s390_free_insn_slot(p);
183 }
184 NOKPROBE_SYMBOL(arch_remove_kprobe);
185 
enable_singlestep(struct kprobe_ctlblk * kcb,struct pt_regs * regs,unsigned long ip)186 static void enable_singlestep(struct kprobe_ctlblk *kcb,
187 			      struct pt_regs *regs,
188 			      unsigned long ip)
189 {
190 	struct per_regs per_kprobe;
191 
192 	/* Set up the PER control registers %cr9-%cr11 */
193 	per_kprobe.control = PER_EVENT_IFETCH;
194 	per_kprobe.start = ip;
195 	per_kprobe.end = ip;
196 
197 	/* Save control regs and psw mask */
198 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
199 	kcb->kprobe_saved_imask = regs->psw.mask &
200 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
201 
202 	/* Set PER control regs, turns on single step for the given address */
203 	__ctl_load(per_kprobe, 9, 11);
204 	regs->psw.mask |= PSW_MASK_PER;
205 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
206 	regs->psw.addr = ip;
207 }
208 NOKPROBE_SYMBOL(enable_singlestep);
209 
disable_singlestep(struct kprobe_ctlblk * kcb,struct pt_regs * regs,unsigned long ip)210 static void disable_singlestep(struct kprobe_ctlblk *kcb,
211 			       struct pt_regs *regs,
212 			       unsigned long ip)
213 {
214 	/* Restore control regs and psw mask, set new psw address */
215 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
216 	regs->psw.mask &= ~PSW_MASK_PER;
217 	regs->psw.mask |= kcb->kprobe_saved_imask;
218 	regs->psw.addr = ip;
219 }
220 NOKPROBE_SYMBOL(disable_singlestep);
221 
222 /*
223  * Activate a kprobe by storing its pointer to current_kprobe. The
224  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
225  * two kprobes can be active, see KPROBE_REENTER.
226  */
push_kprobe(struct kprobe_ctlblk * kcb,struct kprobe * p)227 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
228 {
229 	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
230 	kcb->prev_kprobe.status = kcb->kprobe_status;
231 	__this_cpu_write(current_kprobe, p);
232 }
233 NOKPROBE_SYMBOL(push_kprobe);
234 
235 /*
236  * Deactivate a kprobe by backing up to the previous state. If the
237  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
238  * for any other state prev_kprobe.kp will be NULL.
239  */
pop_kprobe(struct kprobe_ctlblk * kcb)240 static void pop_kprobe(struct kprobe_ctlblk *kcb)
241 {
242 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
243 	kcb->kprobe_status = kcb->prev_kprobe.status;
244 }
245 NOKPROBE_SYMBOL(pop_kprobe);
246 
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)247 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
248 {
249 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
250 	ri->fp = NULL;
251 
252 	/* Replace the return addr with trampoline addr */
253 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
254 }
255 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
256 
kprobe_reenter_check(struct kprobe_ctlblk * kcb,struct kprobe * p)257 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
258 {
259 	switch (kcb->kprobe_status) {
260 	case KPROBE_HIT_SSDONE:
261 	case KPROBE_HIT_ACTIVE:
262 		kprobes_inc_nmissed_count(p);
263 		break;
264 	case KPROBE_HIT_SS:
265 	case KPROBE_REENTER:
266 	default:
267 		/*
268 		 * A kprobe on the code path to single step an instruction
269 		 * is a BUG. The code path resides in the .kprobes.text
270 		 * section and is executed with interrupts disabled.
271 		 */
272 		pr_err("Invalid kprobe detected.\n");
273 		dump_kprobe(p);
274 		BUG();
275 	}
276 }
277 NOKPROBE_SYMBOL(kprobe_reenter_check);
278 
kprobe_handler(struct pt_regs * regs)279 static int kprobe_handler(struct pt_regs *regs)
280 {
281 	struct kprobe_ctlblk *kcb;
282 	struct kprobe *p;
283 
284 	/*
285 	 * We want to disable preemption for the entire duration of kprobe
286 	 * processing. That includes the calls to the pre/post handlers
287 	 * and single stepping the kprobe instruction.
288 	 */
289 	preempt_disable();
290 	kcb = get_kprobe_ctlblk();
291 	p = get_kprobe((void *)(regs->psw.addr - 2));
292 
293 	if (p) {
294 		if (kprobe_running()) {
295 			/*
296 			 * We have hit a kprobe while another is still
297 			 * active. This can happen in the pre and post
298 			 * handler. Single step the instruction of the
299 			 * new probe but do not call any handler function
300 			 * of this secondary kprobe.
301 			 * push_kprobe and pop_kprobe saves and restores
302 			 * the currently active kprobe.
303 			 */
304 			kprobe_reenter_check(kcb, p);
305 			push_kprobe(kcb, p);
306 			kcb->kprobe_status = KPROBE_REENTER;
307 		} else {
308 			/*
309 			 * If we have no pre-handler or it returned 0, we
310 			 * continue with single stepping. If we have a
311 			 * pre-handler and it returned non-zero, it prepped
312 			 * for changing execution path, so get out doing
313 			 * nothing more here.
314 			 */
315 			push_kprobe(kcb, p);
316 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
317 			if (p->pre_handler && p->pre_handler(p, regs)) {
318 				pop_kprobe(kcb);
319 				preempt_enable_no_resched();
320 				return 1;
321 			}
322 			kcb->kprobe_status = KPROBE_HIT_SS;
323 		}
324 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
325 		return 1;
326 	} /* else:
327 	   * No kprobe at this address and no active kprobe. The trap has
328 	   * not been caused by a kprobe breakpoint. The race of breakpoint
329 	   * vs. kprobe remove does not exist because on s390 as we use
330 	   * stop_machine to arm/disarm the breakpoints.
331 	   */
332 	preempt_enable_no_resched();
333 	return 0;
334 }
335 NOKPROBE_SYMBOL(kprobe_handler);
336 
337 /*
338  * Function return probe trampoline:
339  *	- init_kprobes() establishes a probepoint here
340  *	- When the probed function returns, this probe
341  *		causes the handlers to fire
342  */
kretprobe_trampoline_holder(void)343 static void __used kretprobe_trampoline_holder(void)
344 {
345 	asm volatile(".global kretprobe_trampoline\n"
346 		     "kretprobe_trampoline: bcr 0,0\n");
347 }
348 
349 /*
350  * Called when the probe at kretprobe trampoline is hit
351  */
trampoline_probe_handler(struct kprobe * p,struct pt_regs * regs)352 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
353 {
354 	regs->psw.addr = __kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL);
355 	/*
356 	 * By returning a non-zero value, we are telling
357 	 * kprobe_handler() that we don't want the post_handler
358 	 * to run (and have re-enabled preemption)
359 	 */
360 	return 1;
361 }
362 NOKPROBE_SYMBOL(trampoline_probe_handler);
363 
364 /*
365  * Called after single-stepping.  p->addr is the address of the
366  * instruction whose first byte has been replaced by the "breakpoint"
367  * instruction.  To avoid the SMP problems that can occur when we
368  * temporarily put back the original opcode to single-step, we
369  * single-stepped a copy of the instruction.  The address of this
370  * copy is p->ainsn.insn.
371  */
resume_execution(struct kprobe * p,struct pt_regs * regs)372 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
373 {
374 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
375 	unsigned long ip = regs->psw.addr;
376 	int fixup = probe_get_fixup_type(p->ainsn.insn);
377 
378 	if (fixup & FIXUP_PSW_NORMAL)
379 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
380 
381 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
382 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
383 		if (ip - (unsigned long) p->ainsn.insn == ilen)
384 			ip = (unsigned long) p->addr + ilen;
385 	}
386 
387 	if (fixup & FIXUP_RETURN_REGISTER) {
388 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
389 		regs->gprs[reg] += (unsigned long) p->addr -
390 				   (unsigned long) p->ainsn.insn;
391 	}
392 
393 	disable_singlestep(kcb, regs, ip);
394 }
395 NOKPROBE_SYMBOL(resume_execution);
396 
post_kprobe_handler(struct pt_regs * regs)397 static int post_kprobe_handler(struct pt_regs *regs)
398 {
399 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
400 	struct kprobe *p = kprobe_running();
401 
402 	if (!p)
403 		return 0;
404 
405 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
406 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
407 		p->post_handler(p, regs, 0);
408 	}
409 
410 	resume_execution(p, regs);
411 	pop_kprobe(kcb);
412 	preempt_enable_no_resched();
413 
414 	/*
415 	 * if somebody else is singlestepping across a probe point, psw mask
416 	 * will have PER set, in which case, continue the remaining processing
417 	 * of do_single_step, as if this is not a probe hit.
418 	 */
419 	if (regs->psw.mask & PSW_MASK_PER)
420 		return 0;
421 
422 	return 1;
423 }
424 NOKPROBE_SYMBOL(post_kprobe_handler);
425 
kprobe_trap_handler(struct pt_regs * regs,int trapnr)426 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
427 {
428 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
429 	struct kprobe *p = kprobe_running();
430 	const struct exception_table_entry *entry;
431 
432 	switch(kcb->kprobe_status) {
433 	case KPROBE_HIT_SS:
434 	case KPROBE_REENTER:
435 		/*
436 		 * We are here because the instruction being single
437 		 * stepped caused a page fault. We reset the current
438 		 * kprobe and the nip points back to the probe address
439 		 * and allow the page fault handler to continue as a
440 		 * normal page fault.
441 		 */
442 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
443 		pop_kprobe(kcb);
444 		preempt_enable_no_resched();
445 		break;
446 	case KPROBE_HIT_ACTIVE:
447 	case KPROBE_HIT_SSDONE:
448 		/*
449 		 * We increment the nmissed count for accounting,
450 		 * we can also use npre/npostfault count for accounting
451 		 * these specific fault cases.
452 		 */
453 		kprobes_inc_nmissed_count(p);
454 
455 		/*
456 		 * We come here because instructions in the pre/post
457 		 * handler caused the page_fault, this could happen
458 		 * if handler tries to access user space by
459 		 * copy_from_user(), get_user() etc. Let the
460 		 * user-specified handler try to fix it first.
461 		 */
462 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
463 			return 1;
464 
465 		/*
466 		 * In case the user-specified fault handler returned
467 		 * zero, try to fix up.
468 		 */
469 		entry = s390_search_extables(regs->psw.addr);
470 		if (entry && ex_handle(entry, regs))
471 			return 1;
472 
473 		/*
474 		 * fixup_exception() could not handle it,
475 		 * Let do_page_fault() fix it.
476 		 */
477 		break;
478 	default:
479 		break;
480 	}
481 	return 0;
482 }
483 NOKPROBE_SYMBOL(kprobe_trap_handler);
484 
kprobe_fault_handler(struct pt_regs * regs,int trapnr)485 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
486 {
487 	int ret;
488 
489 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
490 		local_irq_disable();
491 	ret = kprobe_trap_handler(regs, trapnr);
492 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
493 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
494 	return ret;
495 }
496 NOKPROBE_SYMBOL(kprobe_fault_handler);
497 
498 /*
499  * Wrapper routine to for handling exceptions.
500  */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)501 int kprobe_exceptions_notify(struct notifier_block *self,
502 			     unsigned long val, void *data)
503 {
504 	struct die_args *args = (struct die_args *) data;
505 	struct pt_regs *regs = args->regs;
506 	int ret = NOTIFY_DONE;
507 
508 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
509 		local_irq_disable();
510 
511 	switch (val) {
512 	case DIE_BPT:
513 		if (kprobe_handler(regs))
514 			ret = NOTIFY_STOP;
515 		break;
516 	case DIE_SSTEP:
517 		if (post_kprobe_handler(regs))
518 			ret = NOTIFY_STOP;
519 		break;
520 	case DIE_TRAP:
521 		if (!preemptible() && kprobe_running() &&
522 		    kprobe_trap_handler(regs, args->trapnr))
523 			ret = NOTIFY_STOP;
524 		break;
525 	default:
526 		break;
527 	}
528 
529 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
530 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
531 
532 	return ret;
533 }
534 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
535 
536 static struct kprobe trampoline = {
537 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
538 	.pre_handler = trampoline_probe_handler
539 };
540 
arch_init_kprobes(void)541 int __init arch_init_kprobes(void)
542 {
543 	return register_kprobe(&trampoline);
544 }
545 
arch_trampoline_kprobe(struct kprobe * p)546 int arch_trampoline_kprobe(struct kprobe *p)
547 {
548 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
549 }
550 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
551