1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 *
5 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6 * Copyright (C) 2010 ST-Ericsson SA
7 */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/slot-gpio.h>
27 #include <linux/amba/bus.h>
28 #include <linux/clk.h>
29 #include <linux/scatterlist.h>
30 #include <linux/of.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/reset.h>
39 #include <linux/gpio/consumer.h>
40
41 #include <asm/div64.h>
42 #include <asm/io.h>
43
44 #include "mmci.h"
45
46 #define DRIVER_NAME "mmci-pl18x"
47
48 static void mmci_variant_init(struct mmci_host *host);
49 static void ux500_variant_init(struct mmci_host *host);
50 static void ux500v2_variant_init(struct mmci_host *host);
51
52 static unsigned int fmax = 515633;
53
54 static struct variant_data variant_arm = {
55 .fifosize = 16 * 4,
56 .fifohalfsize = 8 * 4,
57 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
58 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
59 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
60 .cmdreg_srsp = MCI_CPSM_RESPONSE,
61 .datalength_bits = 16,
62 .datactrl_blocksz = 11,
63 .pwrreg_powerup = MCI_PWR_UP,
64 .f_max = 100000000,
65 .reversed_irq_handling = true,
66 .mmcimask1 = true,
67 .irq_pio_mask = MCI_IRQ_PIO_MASK,
68 .start_err = MCI_STARTBITERR,
69 .opendrain = MCI_ROD,
70 .init = mmci_variant_init,
71 };
72
73 static struct variant_data variant_arm_extended_fifo = {
74 .fifosize = 128 * 4,
75 .fifohalfsize = 64 * 4,
76 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
77 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
78 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
79 .cmdreg_srsp = MCI_CPSM_RESPONSE,
80 .datalength_bits = 16,
81 .datactrl_blocksz = 11,
82 .pwrreg_powerup = MCI_PWR_UP,
83 .f_max = 100000000,
84 .mmcimask1 = true,
85 .irq_pio_mask = MCI_IRQ_PIO_MASK,
86 .start_err = MCI_STARTBITERR,
87 .opendrain = MCI_ROD,
88 .init = mmci_variant_init,
89 };
90
91 static struct variant_data variant_arm_extended_fifo_hwfc = {
92 .fifosize = 128 * 4,
93 .fifohalfsize = 64 * 4,
94 .clkreg_enable = MCI_ARM_HWFCEN,
95 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
96 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
97 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
98 .cmdreg_srsp = MCI_CPSM_RESPONSE,
99 .datalength_bits = 16,
100 .datactrl_blocksz = 11,
101 .pwrreg_powerup = MCI_PWR_UP,
102 .f_max = 100000000,
103 .mmcimask1 = true,
104 .irq_pio_mask = MCI_IRQ_PIO_MASK,
105 .start_err = MCI_STARTBITERR,
106 .opendrain = MCI_ROD,
107 .init = mmci_variant_init,
108 };
109
110 static struct variant_data variant_u300 = {
111 .fifosize = 16 * 4,
112 .fifohalfsize = 8 * 4,
113 .clkreg_enable = MCI_ST_U300_HWFCEN,
114 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
115 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
116 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
117 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
118 .cmdreg_srsp = MCI_CPSM_RESPONSE,
119 .datalength_bits = 16,
120 .datactrl_blocksz = 11,
121 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
122 .st_sdio = true,
123 .pwrreg_powerup = MCI_PWR_ON,
124 .f_max = 100000000,
125 .signal_direction = true,
126 .pwrreg_clkgate = true,
127 .pwrreg_nopower = true,
128 .mmcimask1 = true,
129 .irq_pio_mask = MCI_IRQ_PIO_MASK,
130 .start_err = MCI_STARTBITERR,
131 .opendrain = MCI_OD,
132 .init = mmci_variant_init,
133 };
134
135 static struct variant_data variant_nomadik = {
136 .fifosize = 16 * 4,
137 .fifohalfsize = 8 * 4,
138 .clkreg = MCI_CLK_ENABLE,
139 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
140 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
141 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
142 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
143 .cmdreg_srsp = MCI_CPSM_RESPONSE,
144 .datalength_bits = 24,
145 .datactrl_blocksz = 11,
146 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
147 .st_sdio = true,
148 .st_clkdiv = true,
149 .pwrreg_powerup = MCI_PWR_ON,
150 .f_max = 100000000,
151 .signal_direction = true,
152 .pwrreg_clkgate = true,
153 .pwrreg_nopower = true,
154 .mmcimask1 = true,
155 .irq_pio_mask = MCI_IRQ_PIO_MASK,
156 .start_err = MCI_STARTBITERR,
157 .opendrain = MCI_OD,
158 .init = mmci_variant_init,
159 };
160
161 static struct variant_data variant_ux500 = {
162 .fifosize = 30 * 4,
163 .fifohalfsize = 8 * 4,
164 .clkreg = MCI_CLK_ENABLE,
165 .clkreg_enable = MCI_ST_UX500_HWFCEN,
166 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
167 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
168 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
169 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
170 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
171 .cmdreg_srsp = MCI_CPSM_RESPONSE,
172 .datalength_bits = 24,
173 .datactrl_blocksz = 11,
174 .datactrl_any_blocksz = true,
175 .dma_power_of_2 = true,
176 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
177 .st_sdio = true,
178 .st_clkdiv = true,
179 .pwrreg_powerup = MCI_PWR_ON,
180 .f_max = 100000000,
181 .signal_direction = true,
182 .pwrreg_clkgate = true,
183 .busy_detect = true,
184 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
185 .busy_detect_flag = MCI_ST_CARDBUSY,
186 .busy_detect_mask = MCI_ST_BUSYENDMASK,
187 .pwrreg_nopower = true,
188 .mmcimask1 = true,
189 .irq_pio_mask = MCI_IRQ_PIO_MASK,
190 .start_err = MCI_STARTBITERR,
191 .opendrain = MCI_OD,
192 .init = ux500_variant_init,
193 };
194
195 static struct variant_data variant_ux500v2 = {
196 .fifosize = 30 * 4,
197 .fifohalfsize = 8 * 4,
198 .clkreg = MCI_CLK_ENABLE,
199 .clkreg_enable = MCI_ST_UX500_HWFCEN,
200 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
201 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
202 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
203 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
204 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
205 .cmdreg_srsp = MCI_CPSM_RESPONSE,
206 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
207 .datalength_bits = 24,
208 .datactrl_blocksz = 11,
209 .datactrl_any_blocksz = true,
210 .dma_power_of_2 = true,
211 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
212 .st_sdio = true,
213 .st_clkdiv = true,
214 .pwrreg_powerup = MCI_PWR_ON,
215 .f_max = 100000000,
216 .signal_direction = true,
217 .pwrreg_clkgate = true,
218 .busy_detect = true,
219 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
220 .busy_detect_flag = MCI_ST_CARDBUSY,
221 .busy_detect_mask = MCI_ST_BUSYENDMASK,
222 .pwrreg_nopower = true,
223 .mmcimask1 = true,
224 .irq_pio_mask = MCI_IRQ_PIO_MASK,
225 .start_err = MCI_STARTBITERR,
226 .opendrain = MCI_OD,
227 .init = ux500v2_variant_init,
228 };
229
230 static struct variant_data variant_stm32 = {
231 .fifosize = 32 * 4,
232 .fifohalfsize = 8 * 4,
233 .clkreg = MCI_CLK_ENABLE,
234 .clkreg_enable = MCI_ST_UX500_HWFCEN,
235 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
236 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
237 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
238 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
239 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
240 .cmdreg_srsp = MCI_CPSM_RESPONSE,
241 .irq_pio_mask = MCI_IRQ_PIO_MASK,
242 .datalength_bits = 24,
243 .datactrl_blocksz = 11,
244 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
245 .st_sdio = true,
246 .st_clkdiv = true,
247 .pwrreg_powerup = MCI_PWR_ON,
248 .f_max = 48000000,
249 .pwrreg_clkgate = true,
250 .pwrreg_nopower = true,
251 .init = mmci_variant_init,
252 };
253
254 static struct variant_data variant_stm32_sdmmc = {
255 .fifosize = 16 * 4,
256 .fifohalfsize = 8 * 4,
257 .f_max = 208000000,
258 .stm32_clkdiv = true,
259 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
260 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
261 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
262 .cmdreg_srsp = MCI_CPSM_STM32_SRSP,
263 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
264 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
265 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
266 .datactrl_first = true,
267 .datacnt_useless = true,
268 .datalength_bits = 25,
269 .datactrl_blocksz = 14,
270 .datactrl_any_blocksz = true,
271 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
272 .stm32_idmabsize_mask = GENMASK(12, 5),
273 .busy_timeout = true,
274 .busy_detect = true,
275 .busy_detect_flag = MCI_STM32_BUSYD0,
276 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK,
277 .init = sdmmc_variant_init,
278 };
279
280 static struct variant_data variant_stm32_sdmmcv2 = {
281 .fifosize = 16 * 4,
282 .fifohalfsize = 8 * 4,
283 .f_max = 208000000,
284 .stm32_clkdiv = true,
285 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
286 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
287 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
288 .cmdreg_srsp = MCI_CPSM_STM32_SRSP,
289 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
290 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
291 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
292 .datactrl_first = true,
293 .datacnt_useless = true,
294 .datalength_bits = 25,
295 .datactrl_blocksz = 14,
296 .datactrl_any_blocksz = true,
297 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
298 .stm32_idmabsize_mask = GENMASK(16, 5),
299 .dma_lli = true,
300 .busy_timeout = true,
301 .busy_detect = true,
302 .busy_detect_flag = MCI_STM32_BUSYD0,
303 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK,
304 .init = sdmmc_variant_init,
305 };
306
307 static struct variant_data variant_qcom = {
308 .fifosize = 16 * 4,
309 .fifohalfsize = 8 * 4,
310 .clkreg = MCI_CLK_ENABLE,
311 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
312 MCI_QCOM_CLK_SELECT_IN_FBCLK,
313 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
314 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
315 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
316 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
317 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
318 .cmdreg_srsp = MCI_CPSM_RESPONSE,
319 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
320 .datalength_bits = 24,
321 .datactrl_blocksz = 11,
322 .datactrl_any_blocksz = true,
323 .pwrreg_powerup = MCI_PWR_UP,
324 .f_max = 208000000,
325 .explicit_mclk_control = true,
326 .qcom_fifo = true,
327 .qcom_dml = true,
328 .mmcimask1 = true,
329 .irq_pio_mask = MCI_IRQ_PIO_MASK,
330 .start_err = MCI_STARTBITERR,
331 .opendrain = MCI_ROD,
332 .init = qcom_variant_init,
333 };
334
335 /* Busy detection for the ST Micro variant */
mmci_card_busy(struct mmc_host * mmc)336 static int mmci_card_busy(struct mmc_host *mmc)
337 {
338 struct mmci_host *host = mmc_priv(mmc);
339 unsigned long flags;
340 int busy = 0;
341
342 spin_lock_irqsave(&host->lock, flags);
343 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
344 busy = 1;
345 spin_unlock_irqrestore(&host->lock, flags);
346
347 return busy;
348 }
349
mmci_reg_delay(struct mmci_host * host)350 static void mmci_reg_delay(struct mmci_host *host)
351 {
352 /*
353 * According to the spec, at least three feedback clock cycles
354 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
355 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
356 * Worst delay time during card init is at 100 kHz => 30 us.
357 * Worst delay time when up and running is at 25 MHz => 120 ns.
358 */
359 if (host->cclk < 25000000)
360 udelay(30);
361 else
362 ndelay(120);
363 }
364
365 /*
366 * This must be called with host->lock held
367 */
mmci_write_clkreg(struct mmci_host * host,u32 clk)368 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
369 {
370 if (host->clk_reg != clk) {
371 host->clk_reg = clk;
372 writel(clk, host->base + MMCICLOCK);
373 }
374 }
375
376 /*
377 * This must be called with host->lock held
378 */
mmci_write_pwrreg(struct mmci_host * host,u32 pwr)379 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
380 {
381 if (host->pwr_reg != pwr) {
382 host->pwr_reg = pwr;
383 writel(pwr, host->base + MMCIPOWER);
384 }
385 }
386
387 /*
388 * This must be called with host->lock held
389 */
mmci_write_datactrlreg(struct mmci_host * host,u32 datactrl)390 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
391 {
392 /* Keep busy mode in DPSM if enabled */
393 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
394
395 if (host->datactrl_reg != datactrl) {
396 host->datactrl_reg = datactrl;
397 writel(datactrl, host->base + MMCIDATACTRL);
398 }
399 }
400
401 /*
402 * This must be called with host->lock held
403 */
mmci_set_clkreg(struct mmci_host * host,unsigned int desired)404 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
405 {
406 struct variant_data *variant = host->variant;
407 u32 clk = variant->clkreg;
408
409 /* Make sure cclk reflects the current calculated clock */
410 host->cclk = 0;
411
412 if (desired) {
413 if (variant->explicit_mclk_control) {
414 host->cclk = host->mclk;
415 } else if (desired >= host->mclk) {
416 clk = MCI_CLK_BYPASS;
417 if (variant->st_clkdiv)
418 clk |= MCI_ST_UX500_NEG_EDGE;
419 host->cclk = host->mclk;
420 } else if (variant->st_clkdiv) {
421 /*
422 * DB8500 TRM says f = mclk / (clkdiv + 2)
423 * => clkdiv = (mclk / f) - 2
424 * Round the divider up so we don't exceed the max
425 * frequency
426 */
427 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
428 if (clk >= 256)
429 clk = 255;
430 host->cclk = host->mclk / (clk + 2);
431 } else {
432 /*
433 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
434 * => clkdiv = mclk / (2 * f) - 1
435 */
436 clk = host->mclk / (2 * desired) - 1;
437 if (clk >= 256)
438 clk = 255;
439 host->cclk = host->mclk / (2 * (clk + 1));
440 }
441
442 clk |= variant->clkreg_enable;
443 clk |= MCI_CLK_ENABLE;
444 /* This hasn't proven to be worthwhile */
445 /* clk |= MCI_CLK_PWRSAVE; */
446 }
447
448 /* Set actual clock for debug */
449 host->mmc->actual_clock = host->cclk;
450
451 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
452 clk |= MCI_4BIT_BUS;
453 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
454 clk |= variant->clkreg_8bit_bus_enable;
455
456 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
457 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
458 clk |= variant->clkreg_neg_edge_enable;
459
460 mmci_write_clkreg(host, clk);
461 }
462
mmci_dma_release(struct mmci_host * host)463 static void mmci_dma_release(struct mmci_host *host)
464 {
465 if (host->ops && host->ops->dma_release)
466 host->ops->dma_release(host);
467
468 host->use_dma = false;
469 }
470
mmci_dma_setup(struct mmci_host * host)471 static void mmci_dma_setup(struct mmci_host *host)
472 {
473 if (!host->ops || !host->ops->dma_setup)
474 return;
475
476 if (host->ops->dma_setup(host))
477 return;
478
479 /* initialize pre request cookie */
480 host->next_cookie = 1;
481
482 host->use_dma = true;
483 }
484
485 /*
486 * Validate mmc prerequisites
487 */
mmci_validate_data(struct mmci_host * host,struct mmc_data * data)488 static int mmci_validate_data(struct mmci_host *host,
489 struct mmc_data *data)
490 {
491 struct variant_data *variant = host->variant;
492
493 if (!data)
494 return 0;
495 if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
496 dev_err(mmc_dev(host->mmc),
497 "unsupported block size (%d bytes)\n", data->blksz);
498 return -EINVAL;
499 }
500
501 if (host->ops && host->ops->validate_data)
502 return host->ops->validate_data(host, data);
503
504 return 0;
505 }
506
mmci_prep_data(struct mmci_host * host,struct mmc_data * data,bool next)507 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
508 {
509 int err;
510
511 if (!host->ops || !host->ops->prep_data)
512 return 0;
513
514 err = host->ops->prep_data(host, data, next);
515
516 if (next && !err)
517 data->host_cookie = ++host->next_cookie < 0 ?
518 1 : host->next_cookie;
519
520 return err;
521 }
522
mmci_unprep_data(struct mmci_host * host,struct mmc_data * data,int err)523 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
524 int err)
525 {
526 if (host->ops && host->ops->unprep_data)
527 host->ops->unprep_data(host, data, err);
528
529 data->host_cookie = 0;
530 }
531
mmci_get_next_data(struct mmci_host * host,struct mmc_data * data)532 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
533 {
534 WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
535
536 if (host->ops && host->ops->get_next_data)
537 host->ops->get_next_data(host, data);
538 }
539
mmci_dma_start(struct mmci_host * host,unsigned int datactrl)540 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
541 {
542 struct mmc_data *data = host->data;
543 int ret;
544
545 if (!host->use_dma)
546 return -EINVAL;
547
548 ret = mmci_prep_data(host, data, false);
549 if (ret)
550 return ret;
551
552 if (!host->ops || !host->ops->dma_start)
553 return -EINVAL;
554
555 /* Okay, go for it. */
556 dev_vdbg(mmc_dev(host->mmc),
557 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
558 data->sg_len, data->blksz, data->blocks, data->flags);
559
560 ret = host->ops->dma_start(host, &datactrl);
561 if (ret)
562 return ret;
563
564 /* Trigger the DMA transfer */
565 mmci_write_datactrlreg(host, datactrl);
566
567 /*
568 * Let the MMCI say when the data is ended and it's time
569 * to fire next DMA request. When that happens, MMCI will
570 * call mmci_data_end()
571 */
572 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
573 host->base + MMCIMASK0);
574 return 0;
575 }
576
mmci_dma_finalize(struct mmci_host * host,struct mmc_data * data)577 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
578 {
579 if (!host->use_dma)
580 return;
581
582 if (host->ops && host->ops->dma_finalize)
583 host->ops->dma_finalize(host, data);
584 }
585
mmci_dma_error(struct mmci_host * host)586 static void mmci_dma_error(struct mmci_host *host)
587 {
588 if (!host->use_dma)
589 return;
590
591 if (host->ops && host->ops->dma_error)
592 host->ops->dma_error(host);
593 }
594
595 static void
mmci_request_end(struct mmci_host * host,struct mmc_request * mrq)596 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
597 {
598 writel(0, host->base + MMCICOMMAND);
599
600 BUG_ON(host->data);
601
602 host->mrq = NULL;
603 host->cmd = NULL;
604
605 mmc_request_done(host->mmc, mrq);
606 }
607
mmci_set_mask1(struct mmci_host * host,unsigned int mask)608 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
609 {
610 void __iomem *base = host->base;
611 struct variant_data *variant = host->variant;
612
613 if (host->singleirq) {
614 unsigned int mask0 = readl(base + MMCIMASK0);
615
616 mask0 &= ~variant->irq_pio_mask;
617 mask0 |= mask;
618
619 writel(mask0, base + MMCIMASK0);
620 }
621
622 if (variant->mmcimask1)
623 writel(mask, base + MMCIMASK1);
624
625 host->mask1_reg = mask;
626 }
627
mmci_stop_data(struct mmci_host * host)628 static void mmci_stop_data(struct mmci_host *host)
629 {
630 mmci_write_datactrlreg(host, 0);
631 mmci_set_mask1(host, 0);
632 host->data = NULL;
633 }
634
mmci_init_sg(struct mmci_host * host,struct mmc_data * data)635 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
636 {
637 unsigned int flags = SG_MITER_ATOMIC;
638
639 if (data->flags & MMC_DATA_READ)
640 flags |= SG_MITER_TO_SG;
641 else
642 flags |= SG_MITER_FROM_SG;
643
644 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
645 }
646
mmci_get_dctrl_cfg(struct mmci_host * host)647 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
648 {
649 return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
650 }
651
ux500v2_get_dctrl_cfg(struct mmci_host * host)652 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
653 {
654 return MCI_DPSM_ENABLE | (host->data->blksz << 16);
655 }
656
ux500_busy_complete(struct mmci_host * host,u32 status,u32 err_msk)657 static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
658 {
659 void __iomem *base = host->base;
660
661 /*
662 * Before unmasking for the busy end IRQ, confirm that the
663 * command was sent successfully. To keep track of having a
664 * command in-progress, waiting for busy signaling to end,
665 * store the status in host->busy_status.
666 *
667 * Note that, the card may need a couple of clock cycles before
668 * it starts signaling busy on DAT0, hence re-read the
669 * MMCISTATUS register here, to allow the busy bit to be set.
670 * Potentially we may even need to poll the register for a
671 * while, to allow it to be set, but tests indicates that it
672 * isn't needed.
673 */
674 if (!host->busy_status && !(status & err_msk) &&
675 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
676 writel(readl(base + MMCIMASK0) |
677 host->variant->busy_detect_mask,
678 base + MMCIMASK0);
679
680 host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
681 return false;
682 }
683
684 /*
685 * If there is a command in-progress that has been successfully
686 * sent, then bail out if busy status is set and wait for the
687 * busy end IRQ.
688 *
689 * Note that, the HW triggers an IRQ on both edges while
690 * monitoring DAT0 for busy completion, but there is only one
691 * status bit in MMCISTATUS for the busy state. Therefore
692 * both the start and the end interrupts needs to be cleared,
693 * one after the other. So, clear the busy start IRQ here.
694 */
695 if (host->busy_status &&
696 (status & host->variant->busy_detect_flag)) {
697 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
698 return false;
699 }
700
701 /*
702 * If there is a command in-progress that has been successfully
703 * sent and the busy bit isn't set, it means we have received
704 * the busy end IRQ. Clear and mask the IRQ, then continue to
705 * process the command.
706 */
707 if (host->busy_status) {
708 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
709
710 writel(readl(base + MMCIMASK0) &
711 ~host->variant->busy_detect_mask, base + MMCIMASK0);
712 host->busy_status = 0;
713 }
714
715 return true;
716 }
717
718 /*
719 * All the DMA operation mode stuff goes inside this ifdef.
720 * This assumes that you have a generic DMA device interface,
721 * no custom DMA interfaces are supported.
722 */
723 #ifdef CONFIG_DMA_ENGINE
724 struct mmci_dmae_next {
725 struct dma_async_tx_descriptor *desc;
726 struct dma_chan *chan;
727 };
728
729 struct mmci_dmae_priv {
730 struct dma_chan *cur;
731 struct dma_chan *rx_channel;
732 struct dma_chan *tx_channel;
733 struct dma_async_tx_descriptor *desc_current;
734 struct mmci_dmae_next next_data;
735 };
736
mmci_dmae_setup(struct mmci_host * host)737 int mmci_dmae_setup(struct mmci_host *host)
738 {
739 const char *rxname, *txname;
740 struct mmci_dmae_priv *dmae;
741
742 dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
743 if (!dmae)
744 return -ENOMEM;
745
746 host->dma_priv = dmae;
747
748 dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
749 if (IS_ERR(dmae->rx_channel)) {
750 int ret = PTR_ERR(dmae->rx_channel);
751 dmae->rx_channel = NULL;
752 return ret;
753 }
754
755 dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
756 if (IS_ERR(dmae->tx_channel)) {
757 if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
758 dev_warn(mmc_dev(host->mmc),
759 "Deferred probe for TX channel ignored\n");
760 dmae->tx_channel = NULL;
761 }
762
763 /*
764 * If only an RX channel is specified, the driver will
765 * attempt to use it bidirectionally, however if it is
766 * is specified but cannot be located, DMA will be disabled.
767 */
768 if (dmae->rx_channel && !dmae->tx_channel)
769 dmae->tx_channel = dmae->rx_channel;
770
771 if (dmae->rx_channel)
772 rxname = dma_chan_name(dmae->rx_channel);
773 else
774 rxname = "none";
775
776 if (dmae->tx_channel)
777 txname = dma_chan_name(dmae->tx_channel);
778 else
779 txname = "none";
780
781 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
782 rxname, txname);
783
784 /*
785 * Limit the maximum segment size in any SG entry according to
786 * the parameters of the DMA engine device.
787 */
788 if (dmae->tx_channel) {
789 struct device *dev = dmae->tx_channel->device->dev;
790 unsigned int max_seg_size = dma_get_max_seg_size(dev);
791
792 if (max_seg_size < host->mmc->max_seg_size)
793 host->mmc->max_seg_size = max_seg_size;
794 }
795 if (dmae->rx_channel) {
796 struct device *dev = dmae->rx_channel->device->dev;
797 unsigned int max_seg_size = dma_get_max_seg_size(dev);
798
799 if (max_seg_size < host->mmc->max_seg_size)
800 host->mmc->max_seg_size = max_seg_size;
801 }
802
803 if (!dmae->tx_channel || !dmae->rx_channel) {
804 mmci_dmae_release(host);
805 return -EINVAL;
806 }
807
808 return 0;
809 }
810
811 /*
812 * This is used in or so inline it
813 * so it can be discarded.
814 */
mmci_dmae_release(struct mmci_host * host)815 void mmci_dmae_release(struct mmci_host *host)
816 {
817 struct mmci_dmae_priv *dmae = host->dma_priv;
818
819 if (dmae->rx_channel)
820 dma_release_channel(dmae->rx_channel);
821 if (dmae->tx_channel)
822 dma_release_channel(dmae->tx_channel);
823 dmae->rx_channel = dmae->tx_channel = NULL;
824 }
825
mmci_dma_unmap(struct mmci_host * host,struct mmc_data * data)826 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
827 {
828 struct mmci_dmae_priv *dmae = host->dma_priv;
829 struct dma_chan *chan;
830
831 if (data->flags & MMC_DATA_READ)
832 chan = dmae->rx_channel;
833 else
834 chan = dmae->tx_channel;
835
836 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
837 mmc_get_dma_dir(data));
838 }
839
mmci_dmae_error(struct mmci_host * host)840 void mmci_dmae_error(struct mmci_host *host)
841 {
842 struct mmci_dmae_priv *dmae = host->dma_priv;
843
844 if (!dma_inprogress(host))
845 return;
846
847 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
848 dmaengine_terminate_all(dmae->cur);
849 host->dma_in_progress = false;
850 dmae->cur = NULL;
851 dmae->desc_current = NULL;
852 host->data->host_cookie = 0;
853
854 mmci_dma_unmap(host, host->data);
855 }
856
mmci_dmae_finalize(struct mmci_host * host,struct mmc_data * data)857 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
858 {
859 struct mmci_dmae_priv *dmae = host->dma_priv;
860 u32 status;
861 int i;
862
863 if (!dma_inprogress(host))
864 return;
865
866 /* Wait up to 1ms for the DMA to complete */
867 for (i = 0; ; i++) {
868 status = readl(host->base + MMCISTATUS);
869 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
870 break;
871 udelay(10);
872 }
873
874 /*
875 * Check to see whether we still have some data left in the FIFO -
876 * this catches DMA controllers which are unable to monitor the
877 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
878 * contiguous buffers. On TX, we'll get a FIFO underrun error.
879 */
880 if (status & MCI_RXDATAAVLBLMASK) {
881 mmci_dma_error(host);
882 if (!data->error)
883 data->error = -EIO;
884 } else if (!data->host_cookie) {
885 mmci_dma_unmap(host, data);
886 }
887
888 /*
889 * Use of DMA with scatter-gather is impossible.
890 * Give up with DMA and switch back to PIO mode.
891 */
892 if (status & MCI_RXDATAAVLBLMASK) {
893 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
894 mmci_dma_release(host);
895 }
896
897 host->dma_in_progress = false;
898 dmae->cur = NULL;
899 dmae->desc_current = NULL;
900 }
901
902 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
_mmci_dmae_prep_data(struct mmci_host * host,struct mmc_data * data,struct dma_chan ** dma_chan,struct dma_async_tx_descriptor ** dma_desc)903 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
904 struct dma_chan **dma_chan,
905 struct dma_async_tx_descriptor **dma_desc)
906 {
907 struct mmci_dmae_priv *dmae = host->dma_priv;
908 struct variant_data *variant = host->variant;
909 struct dma_slave_config conf = {
910 .src_addr = host->phybase + MMCIFIFO,
911 .dst_addr = host->phybase + MMCIFIFO,
912 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
913 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
914 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
915 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
916 .device_fc = false,
917 };
918 struct dma_chan *chan;
919 struct dma_device *device;
920 struct dma_async_tx_descriptor *desc;
921 int nr_sg;
922 unsigned long flags = DMA_CTRL_ACK;
923
924 if (data->flags & MMC_DATA_READ) {
925 conf.direction = DMA_DEV_TO_MEM;
926 chan = dmae->rx_channel;
927 } else {
928 conf.direction = DMA_MEM_TO_DEV;
929 chan = dmae->tx_channel;
930 }
931
932 /* If there's no DMA channel, fall back to PIO */
933 if (!chan)
934 return -EINVAL;
935
936 /* If less than or equal to the fifo size, don't bother with DMA */
937 if (data->blksz * data->blocks <= variant->fifosize)
938 return -EINVAL;
939
940 /*
941 * This is necessary to get SDIO working on the Ux500. We do not yet
942 * know if this is a bug in:
943 * - The Ux500 DMA controller (DMA40)
944 * - The MMCI DMA interface on the Ux500
945 * some power of two blocks (such as 64 bytes) are sent regularly
946 * during SDIO traffic and those work fine so for these we enable DMA
947 * transfers.
948 */
949 if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
950 return -EINVAL;
951
952 device = chan->device;
953 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
954 mmc_get_dma_dir(data));
955 if (nr_sg == 0)
956 return -EINVAL;
957
958 if (host->variant->qcom_dml)
959 flags |= DMA_PREP_INTERRUPT;
960
961 dmaengine_slave_config(chan, &conf);
962 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
963 conf.direction, flags);
964 if (!desc)
965 goto unmap_exit;
966
967 *dma_chan = chan;
968 *dma_desc = desc;
969
970 return 0;
971
972 unmap_exit:
973 dma_unmap_sg(device->dev, data->sg, data->sg_len,
974 mmc_get_dma_dir(data));
975 return -ENOMEM;
976 }
977
mmci_dmae_prep_data(struct mmci_host * host,struct mmc_data * data,bool next)978 int mmci_dmae_prep_data(struct mmci_host *host,
979 struct mmc_data *data,
980 bool next)
981 {
982 struct mmci_dmae_priv *dmae = host->dma_priv;
983 struct mmci_dmae_next *nd = &dmae->next_data;
984
985 if (!host->use_dma)
986 return -EINVAL;
987
988 if (next)
989 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
990 /* Check if next job is already prepared. */
991 if (dmae->cur && dmae->desc_current)
992 return 0;
993
994 /* No job were prepared thus do it now. */
995 return _mmci_dmae_prep_data(host, data, &dmae->cur,
996 &dmae->desc_current);
997 }
998
mmci_dmae_start(struct mmci_host * host,unsigned int * datactrl)999 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
1000 {
1001 struct mmci_dmae_priv *dmae = host->dma_priv;
1002 int ret;
1003
1004 host->dma_in_progress = true;
1005 ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1006 if (ret < 0) {
1007 host->dma_in_progress = false;
1008 return ret;
1009 }
1010 dma_async_issue_pending(dmae->cur);
1011
1012 *datactrl |= MCI_DPSM_DMAENABLE;
1013
1014 return 0;
1015 }
1016
mmci_dmae_get_next_data(struct mmci_host * host,struct mmc_data * data)1017 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1018 {
1019 struct mmci_dmae_priv *dmae = host->dma_priv;
1020 struct mmci_dmae_next *next = &dmae->next_data;
1021
1022 if (!host->use_dma)
1023 return;
1024
1025 WARN_ON(!data->host_cookie && (next->desc || next->chan));
1026
1027 dmae->desc_current = next->desc;
1028 dmae->cur = next->chan;
1029 next->desc = NULL;
1030 next->chan = NULL;
1031 }
1032
mmci_dmae_unprep_data(struct mmci_host * host,struct mmc_data * data,int err)1033 void mmci_dmae_unprep_data(struct mmci_host *host,
1034 struct mmc_data *data, int err)
1035
1036 {
1037 struct mmci_dmae_priv *dmae = host->dma_priv;
1038
1039 if (!host->use_dma)
1040 return;
1041
1042 mmci_dma_unmap(host, data);
1043
1044 if (err) {
1045 struct mmci_dmae_next *next = &dmae->next_data;
1046 struct dma_chan *chan;
1047 if (data->flags & MMC_DATA_READ)
1048 chan = dmae->rx_channel;
1049 else
1050 chan = dmae->tx_channel;
1051 dmaengine_terminate_all(chan);
1052
1053 if (dmae->desc_current == next->desc)
1054 dmae->desc_current = NULL;
1055
1056 if (dmae->cur == next->chan) {
1057 host->dma_in_progress = false;
1058 dmae->cur = NULL;
1059 }
1060
1061 next->desc = NULL;
1062 next->chan = NULL;
1063 }
1064 }
1065
1066 static struct mmci_host_ops mmci_variant_ops = {
1067 .prep_data = mmci_dmae_prep_data,
1068 .unprep_data = mmci_dmae_unprep_data,
1069 .get_datactrl_cfg = mmci_get_dctrl_cfg,
1070 .get_next_data = mmci_dmae_get_next_data,
1071 .dma_setup = mmci_dmae_setup,
1072 .dma_release = mmci_dmae_release,
1073 .dma_start = mmci_dmae_start,
1074 .dma_finalize = mmci_dmae_finalize,
1075 .dma_error = mmci_dmae_error,
1076 };
1077 #else
1078 static struct mmci_host_ops mmci_variant_ops = {
1079 .get_datactrl_cfg = mmci_get_dctrl_cfg,
1080 };
1081 #endif
1082
mmci_variant_init(struct mmci_host * host)1083 static void mmci_variant_init(struct mmci_host *host)
1084 {
1085 host->ops = &mmci_variant_ops;
1086 }
1087
ux500_variant_init(struct mmci_host * host)1088 static void ux500_variant_init(struct mmci_host *host)
1089 {
1090 host->ops = &mmci_variant_ops;
1091 host->ops->busy_complete = ux500_busy_complete;
1092 }
1093
ux500v2_variant_init(struct mmci_host * host)1094 static void ux500v2_variant_init(struct mmci_host *host)
1095 {
1096 host->ops = &mmci_variant_ops;
1097 host->ops->busy_complete = ux500_busy_complete;
1098 host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1099 }
1100
mmci_pre_request(struct mmc_host * mmc,struct mmc_request * mrq)1101 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1102 {
1103 struct mmci_host *host = mmc_priv(mmc);
1104 struct mmc_data *data = mrq->data;
1105
1106 if (!data)
1107 return;
1108
1109 WARN_ON(data->host_cookie);
1110
1111 if (mmci_validate_data(host, data))
1112 return;
1113
1114 mmci_prep_data(host, data, true);
1115 }
1116
mmci_post_request(struct mmc_host * mmc,struct mmc_request * mrq,int err)1117 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1118 int err)
1119 {
1120 struct mmci_host *host = mmc_priv(mmc);
1121 struct mmc_data *data = mrq->data;
1122
1123 if (!data || !data->host_cookie)
1124 return;
1125
1126 mmci_unprep_data(host, data, err);
1127 }
1128
mmci_start_data(struct mmci_host * host,struct mmc_data * data)1129 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1130 {
1131 struct variant_data *variant = host->variant;
1132 unsigned int datactrl, timeout, irqmask;
1133 unsigned long long clks;
1134 void __iomem *base;
1135
1136 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1137 data->blksz, data->blocks, data->flags);
1138
1139 host->data = data;
1140 host->size = data->blksz * data->blocks;
1141 data->bytes_xfered = 0;
1142
1143 clks = (unsigned long long)data->timeout_ns * host->cclk;
1144 do_div(clks, NSEC_PER_SEC);
1145
1146 timeout = data->timeout_clks + (unsigned int)clks;
1147
1148 base = host->base;
1149 writel(timeout, base + MMCIDATATIMER);
1150 writel(host->size, base + MMCIDATALENGTH);
1151
1152 datactrl = host->ops->get_datactrl_cfg(host);
1153 datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1154
1155 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1156 u32 clk;
1157
1158 datactrl |= variant->datactrl_mask_sdio;
1159
1160 /*
1161 * The ST Micro variant for SDIO small write transfers
1162 * needs to have clock H/W flow control disabled,
1163 * otherwise the transfer will not start. The threshold
1164 * depends on the rate of MCLK.
1165 */
1166 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1167 (host->size < 8 ||
1168 (host->size <= 8 && host->mclk > 50000000)))
1169 clk = host->clk_reg & ~variant->clkreg_enable;
1170 else
1171 clk = host->clk_reg | variant->clkreg_enable;
1172
1173 mmci_write_clkreg(host, clk);
1174 }
1175
1176 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1177 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1178 datactrl |= variant->datactrl_mask_ddrmode;
1179
1180 /*
1181 * Attempt to use DMA operation mode, if this
1182 * should fail, fall back to PIO mode
1183 */
1184 if (!mmci_dma_start(host, datactrl))
1185 return;
1186
1187 /* IRQ mode, map the SG list for CPU reading/writing */
1188 mmci_init_sg(host, data);
1189
1190 if (data->flags & MMC_DATA_READ) {
1191 irqmask = MCI_RXFIFOHALFFULLMASK;
1192
1193 /*
1194 * If we have less than the fifo 'half-full' threshold to
1195 * transfer, trigger a PIO interrupt as soon as any data
1196 * is available.
1197 */
1198 if (host->size < variant->fifohalfsize)
1199 irqmask |= MCI_RXDATAAVLBLMASK;
1200 } else {
1201 /*
1202 * We don't actually need to include "FIFO empty" here
1203 * since its implicit in "FIFO half empty".
1204 */
1205 irqmask = MCI_TXFIFOHALFEMPTYMASK;
1206 }
1207
1208 mmci_write_datactrlreg(host, datactrl);
1209 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1210 mmci_set_mask1(host, irqmask);
1211 }
1212
1213 static void
mmci_start_command(struct mmci_host * host,struct mmc_command * cmd,u32 c)1214 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1215 {
1216 void __iomem *base = host->base;
1217 unsigned long long clks;
1218
1219 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1220 cmd->opcode, cmd->arg, cmd->flags);
1221
1222 if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1223 writel(0, base + MMCICOMMAND);
1224 mmci_reg_delay(host);
1225 }
1226
1227 if (host->variant->cmdreg_stop &&
1228 cmd->opcode == MMC_STOP_TRANSMISSION)
1229 c |= host->variant->cmdreg_stop;
1230
1231 c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1232 if (cmd->flags & MMC_RSP_PRESENT) {
1233 if (cmd->flags & MMC_RSP_136)
1234 c |= host->variant->cmdreg_lrsp_crc;
1235 else if (cmd->flags & MMC_RSP_CRC)
1236 c |= host->variant->cmdreg_srsp_crc;
1237 else
1238 c |= host->variant->cmdreg_srsp;
1239 }
1240
1241 if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1242 if (!cmd->busy_timeout)
1243 cmd->busy_timeout = 10 * MSEC_PER_SEC;
1244
1245 if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1246 clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1247 else
1248 clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1249
1250 do_div(clks, MSEC_PER_SEC);
1251 writel_relaxed(clks, host->base + MMCIDATATIMER);
1252 }
1253
1254 if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1255 host->ops->pre_sig_volt_switch(host);
1256
1257 if (/*interrupt*/0)
1258 c |= MCI_CPSM_INTERRUPT;
1259
1260 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1261 c |= host->variant->data_cmd_enable;
1262
1263 host->cmd = cmd;
1264
1265 writel(cmd->arg, base + MMCIARGUMENT);
1266 writel(c, base + MMCICOMMAND);
1267 }
1268
mmci_stop_command(struct mmci_host * host)1269 static void mmci_stop_command(struct mmci_host *host)
1270 {
1271 host->stop_abort.error = 0;
1272 mmci_start_command(host, &host->stop_abort, 0);
1273 }
1274
1275 static void
mmci_data_irq(struct mmci_host * host,struct mmc_data * data,unsigned int status)1276 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1277 unsigned int status)
1278 {
1279 unsigned int status_err;
1280
1281 /* Make sure we have data to handle */
1282 if (!data)
1283 return;
1284
1285 /* First check for errors */
1286 status_err = status & (host->variant->start_err |
1287 MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1288 MCI_TXUNDERRUN | MCI_RXOVERRUN);
1289
1290 if (status_err) {
1291 u32 remain, success;
1292
1293 /* Terminate the DMA transfer */
1294 mmci_dma_error(host);
1295
1296 /*
1297 * Calculate how far we are into the transfer. Note that
1298 * the data counter gives the number of bytes transferred
1299 * on the MMC bus, not on the host side. On reads, this
1300 * can be as much as a FIFO-worth of data ahead. This
1301 * matters for FIFO overruns only.
1302 */
1303 if (!host->variant->datacnt_useless) {
1304 remain = readl(host->base + MMCIDATACNT);
1305 success = data->blksz * data->blocks - remain;
1306 } else {
1307 success = 0;
1308 }
1309
1310 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1311 status_err, success);
1312 if (status_err & MCI_DATACRCFAIL) {
1313 /* Last block was not successful */
1314 success -= 1;
1315 data->error = -EILSEQ;
1316 } else if (status_err & MCI_DATATIMEOUT) {
1317 data->error = -ETIMEDOUT;
1318 } else if (status_err & MCI_STARTBITERR) {
1319 data->error = -ECOMM;
1320 } else if (status_err & MCI_TXUNDERRUN) {
1321 data->error = -EIO;
1322 } else if (status_err & MCI_RXOVERRUN) {
1323 if (success > host->variant->fifosize)
1324 success -= host->variant->fifosize;
1325 else
1326 success = 0;
1327 data->error = -EIO;
1328 }
1329 data->bytes_xfered = round_down(success, data->blksz);
1330 }
1331
1332 if (status & MCI_DATABLOCKEND)
1333 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1334
1335 if (status & MCI_DATAEND || data->error) {
1336 mmci_dma_finalize(host, data);
1337
1338 mmci_stop_data(host);
1339
1340 if (!data->error)
1341 /* The error clause is handled above, success! */
1342 data->bytes_xfered = data->blksz * data->blocks;
1343
1344 if (!data->stop) {
1345 if (host->variant->cmdreg_stop && data->error)
1346 mmci_stop_command(host);
1347 else
1348 mmci_request_end(host, data->mrq);
1349 } else if (host->mrq->sbc && !data->error) {
1350 mmci_request_end(host, data->mrq);
1351 } else {
1352 mmci_start_command(host, data->stop, 0);
1353 }
1354 }
1355 }
1356
1357 static void
mmci_cmd_irq(struct mmci_host * host,struct mmc_command * cmd,unsigned int status)1358 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1359 unsigned int status)
1360 {
1361 u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1362 void __iomem *base = host->base;
1363 bool sbc, busy_resp;
1364
1365 if (!cmd)
1366 return;
1367
1368 sbc = (cmd == host->mrq->sbc);
1369 busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1370
1371 /*
1372 * We need to be one of these interrupts to be considered worth
1373 * handling. Note that we tag on any latent IRQs postponed
1374 * due to waiting for busy status.
1375 */
1376 if (host->variant->busy_timeout && busy_resp)
1377 err_msk |= MCI_DATATIMEOUT;
1378
1379 if (!((status | host->busy_status) &
1380 (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1381 return;
1382
1383 /* Handle busy detection on DAT0 if the variant supports it. */
1384 if (busy_resp && host->variant->busy_detect)
1385 if (!host->ops->busy_complete(host, status, err_msk))
1386 return;
1387
1388 host->cmd = NULL;
1389
1390 if (status & MCI_CMDTIMEOUT) {
1391 cmd->error = -ETIMEDOUT;
1392 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1393 cmd->error = -EILSEQ;
1394 } else if (host->variant->busy_timeout && busy_resp &&
1395 status & MCI_DATATIMEOUT) {
1396 cmd->error = -ETIMEDOUT;
1397 host->irq_action = IRQ_WAKE_THREAD;
1398 } else {
1399 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1400 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1401 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1402 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1403 }
1404
1405 if ((!sbc && !cmd->data) || cmd->error) {
1406 if (host->data) {
1407 /* Terminate the DMA transfer */
1408 mmci_dma_error(host);
1409
1410 mmci_stop_data(host);
1411 if (host->variant->cmdreg_stop && cmd->error) {
1412 mmci_stop_command(host);
1413 return;
1414 }
1415 }
1416
1417 if (host->irq_action != IRQ_WAKE_THREAD)
1418 mmci_request_end(host, host->mrq);
1419
1420 } else if (sbc) {
1421 mmci_start_command(host, host->mrq->cmd, 0);
1422 } else if (!host->variant->datactrl_first &&
1423 !(cmd->data->flags & MMC_DATA_READ)) {
1424 mmci_start_data(host, cmd->data);
1425 }
1426 }
1427
mmci_get_rx_fifocnt(struct mmci_host * host,u32 status,int remain)1428 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1429 {
1430 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1431 }
1432
mmci_qcom_get_rx_fifocnt(struct mmci_host * host,u32 status,int r)1433 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1434 {
1435 /*
1436 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1437 * from the fifo range should be used
1438 */
1439 if (status & MCI_RXFIFOHALFFULL)
1440 return host->variant->fifohalfsize;
1441 else if (status & MCI_RXDATAAVLBL)
1442 return 4;
1443
1444 return 0;
1445 }
1446
mmci_pio_read(struct mmci_host * host,char * buffer,unsigned int remain)1447 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1448 {
1449 void __iomem *base = host->base;
1450 char *ptr = buffer;
1451 u32 status = readl(host->base + MMCISTATUS);
1452 int host_remain = host->size;
1453
1454 do {
1455 int count = host->get_rx_fifocnt(host, status, host_remain);
1456
1457 if (count > remain)
1458 count = remain;
1459
1460 if (count <= 0)
1461 break;
1462
1463 /*
1464 * SDIO especially may want to send something that is
1465 * not divisible by 4 (as opposed to card sectors
1466 * etc). Therefore make sure to always read the last bytes
1467 * while only doing full 32-bit reads towards the FIFO.
1468 */
1469 if (unlikely(count & 0x3)) {
1470 if (count < 4) {
1471 unsigned char buf[4];
1472 ioread32_rep(base + MMCIFIFO, buf, 1);
1473 memcpy(ptr, buf, count);
1474 } else {
1475 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1476 count &= ~0x3;
1477 }
1478 } else {
1479 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1480 }
1481
1482 ptr += count;
1483 remain -= count;
1484 host_remain -= count;
1485
1486 if (remain == 0)
1487 break;
1488
1489 status = readl(base + MMCISTATUS);
1490 } while (status & MCI_RXDATAAVLBL);
1491
1492 return ptr - buffer;
1493 }
1494
mmci_pio_write(struct mmci_host * host,char * buffer,unsigned int remain,u32 status)1495 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1496 {
1497 struct variant_data *variant = host->variant;
1498 void __iomem *base = host->base;
1499 char *ptr = buffer;
1500
1501 do {
1502 unsigned int count, maxcnt;
1503
1504 maxcnt = status & MCI_TXFIFOEMPTY ?
1505 variant->fifosize : variant->fifohalfsize;
1506 count = min(remain, maxcnt);
1507
1508 /*
1509 * SDIO especially may want to send something that is
1510 * not divisible by 4 (as opposed to card sectors
1511 * etc), and the FIFO only accept full 32-bit writes.
1512 * So compensate by adding +3 on the count, a single
1513 * byte become a 32bit write, 7 bytes will be two
1514 * 32bit writes etc.
1515 */
1516 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1517
1518 ptr += count;
1519 remain -= count;
1520
1521 if (remain == 0)
1522 break;
1523
1524 status = readl(base + MMCISTATUS);
1525 } while (status & MCI_TXFIFOHALFEMPTY);
1526
1527 return ptr - buffer;
1528 }
1529
1530 /*
1531 * PIO data transfer IRQ handler.
1532 */
mmci_pio_irq(int irq,void * dev_id)1533 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1534 {
1535 struct mmci_host *host = dev_id;
1536 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1537 struct variant_data *variant = host->variant;
1538 void __iomem *base = host->base;
1539 u32 status;
1540
1541 status = readl(base + MMCISTATUS);
1542
1543 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1544
1545 do {
1546 unsigned int remain, len;
1547 char *buffer;
1548
1549 /*
1550 * For write, we only need to test the half-empty flag
1551 * here - if the FIFO is completely empty, then by
1552 * definition it is more than half empty.
1553 *
1554 * For read, check for data available.
1555 */
1556 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1557 break;
1558
1559 if (!sg_miter_next(sg_miter))
1560 break;
1561
1562 buffer = sg_miter->addr;
1563 remain = sg_miter->length;
1564
1565 len = 0;
1566 if (status & MCI_RXACTIVE)
1567 len = mmci_pio_read(host, buffer, remain);
1568 if (status & MCI_TXACTIVE)
1569 len = mmci_pio_write(host, buffer, remain, status);
1570
1571 sg_miter->consumed = len;
1572
1573 host->size -= len;
1574 remain -= len;
1575
1576 if (remain)
1577 break;
1578
1579 status = readl(base + MMCISTATUS);
1580 } while (1);
1581
1582 sg_miter_stop(sg_miter);
1583
1584 /*
1585 * If we have less than the fifo 'half-full' threshold to transfer,
1586 * trigger a PIO interrupt as soon as any data is available.
1587 */
1588 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1589 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1590
1591 /*
1592 * If we run out of data, disable the data IRQs; this
1593 * prevents a race where the FIFO becomes empty before
1594 * the chip itself has disabled the data path, and
1595 * stops us racing with our data end IRQ.
1596 */
1597 if (host->size == 0) {
1598 mmci_set_mask1(host, 0);
1599 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1600 }
1601
1602 return IRQ_HANDLED;
1603 }
1604
1605 /*
1606 * Handle completion of command and data transfers.
1607 */
mmci_irq(int irq,void * dev_id)1608 static irqreturn_t mmci_irq(int irq, void *dev_id)
1609 {
1610 struct mmci_host *host = dev_id;
1611 u32 status;
1612
1613 spin_lock(&host->lock);
1614 host->irq_action = IRQ_HANDLED;
1615
1616 do {
1617 status = readl(host->base + MMCISTATUS);
1618
1619 if (host->singleirq) {
1620 if (status & host->mask1_reg)
1621 mmci_pio_irq(irq, dev_id);
1622
1623 status &= ~host->variant->irq_pio_mask;
1624 }
1625
1626 /*
1627 * Busy detection is managed by mmci_cmd_irq(), including to
1628 * clear the corresponding IRQ.
1629 */
1630 status &= readl(host->base + MMCIMASK0);
1631 if (host->variant->busy_detect)
1632 writel(status & ~host->variant->busy_detect_mask,
1633 host->base + MMCICLEAR);
1634 else
1635 writel(status, host->base + MMCICLEAR);
1636
1637 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1638
1639 if (host->variant->reversed_irq_handling) {
1640 mmci_data_irq(host, host->data, status);
1641 mmci_cmd_irq(host, host->cmd, status);
1642 } else {
1643 mmci_cmd_irq(host, host->cmd, status);
1644 mmci_data_irq(host, host->data, status);
1645 }
1646
1647 /*
1648 * Busy detection has been handled by mmci_cmd_irq() above.
1649 * Clear the status bit to prevent polling in IRQ context.
1650 */
1651 if (host->variant->busy_detect_flag)
1652 status &= ~host->variant->busy_detect_flag;
1653
1654 } while (status);
1655
1656 spin_unlock(&host->lock);
1657
1658 return host->irq_action;
1659 }
1660
1661 /*
1662 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1663 *
1664 * A reset is needed for some variants, where a datatimeout for a R1B request
1665 * causes the DPSM to stay busy (non-functional).
1666 */
mmci_irq_thread(int irq,void * dev_id)1667 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1668 {
1669 struct mmci_host *host = dev_id;
1670 unsigned long flags;
1671
1672 if (host->rst) {
1673 reset_control_assert(host->rst);
1674 udelay(2);
1675 reset_control_deassert(host->rst);
1676 }
1677
1678 spin_lock_irqsave(&host->lock, flags);
1679 writel(host->clk_reg, host->base + MMCICLOCK);
1680 writel(host->pwr_reg, host->base + MMCIPOWER);
1681 writel(MCI_IRQENABLE | host->variant->start_err,
1682 host->base + MMCIMASK0);
1683
1684 host->irq_action = IRQ_HANDLED;
1685 mmci_request_end(host, host->mrq);
1686 spin_unlock_irqrestore(&host->lock, flags);
1687
1688 return host->irq_action;
1689 }
1690
mmci_request(struct mmc_host * mmc,struct mmc_request * mrq)1691 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1692 {
1693 struct mmci_host *host = mmc_priv(mmc);
1694 unsigned long flags;
1695
1696 WARN_ON(host->mrq != NULL);
1697
1698 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1699 if (mrq->cmd->error) {
1700 mmc_request_done(mmc, mrq);
1701 return;
1702 }
1703
1704 spin_lock_irqsave(&host->lock, flags);
1705
1706 host->mrq = mrq;
1707
1708 if (mrq->data)
1709 mmci_get_next_data(host, mrq->data);
1710
1711 if (mrq->data &&
1712 (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1713 mmci_start_data(host, mrq->data);
1714
1715 if (mrq->sbc)
1716 mmci_start_command(host, mrq->sbc, 0);
1717 else
1718 mmci_start_command(host, mrq->cmd, 0);
1719
1720 spin_unlock_irqrestore(&host->lock, flags);
1721 }
1722
mmci_set_max_busy_timeout(struct mmc_host * mmc)1723 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1724 {
1725 struct mmci_host *host = mmc_priv(mmc);
1726 u32 max_busy_timeout = 0;
1727
1728 if (!host->variant->busy_detect)
1729 return;
1730
1731 if (host->variant->busy_timeout && mmc->actual_clock)
1732 max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1733
1734 mmc->max_busy_timeout = max_busy_timeout;
1735 }
1736
mmci_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1737 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1738 {
1739 struct mmci_host *host = mmc_priv(mmc);
1740 struct variant_data *variant = host->variant;
1741 u32 pwr = 0;
1742 unsigned long flags;
1743 int ret;
1744
1745 if (host->plat->ios_handler &&
1746 host->plat->ios_handler(mmc_dev(mmc), ios))
1747 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1748
1749 switch (ios->power_mode) {
1750 case MMC_POWER_OFF:
1751 if (!IS_ERR(mmc->supply.vmmc))
1752 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1753
1754 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1755 regulator_disable(mmc->supply.vqmmc);
1756 host->vqmmc_enabled = false;
1757 }
1758
1759 break;
1760 case MMC_POWER_UP:
1761 if (!IS_ERR(mmc->supply.vmmc))
1762 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1763
1764 /*
1765 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1766 * and instead uses MCI_PWR_ON so apply whatever value is
1767 * configured in the variant data.
1768 */
1769 pwr |= variant->pwrreg_powerup;
1770
1771 break;
1772 case MMC_POWER_ON:
1773 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1774 ret = regulator_enable(mmc->supply.vqmmc);
1775 if (ret < 0)
1776 dev_err(mmc_dev(mmc),
1777 "failed to enable vqmmc regulator\n");
1778 else
1779 host->vqmmc_enabled = true;
1780 }
1781
1782 pwr |= MCI_PWR_ON;
1783 break;
1784 }
1785
1786 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1787 /*
1788 * The ST Micro variant has some additional bits
1789 * indicating signal direction for the signals in
1790 * the SD/MMC bus and feedback-clock usage.
1791 */
1792 pwr |= host->pwr_reg_add;
1793
1794 if (ios->bus_width == MMC_BUS_WIDTH_4)
1795 pwr &= ~MCI_ST_DATA74DIREN;
1796 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1797 pwr &= (~MCI_ST_DATA74DIREN &
1798 ~MCI_ST_DATA31DIREN &
1799 ~MCI_ST_DATA2DIREN);
1800 }
1801
1802 if (variant->opendrain) {
1803 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1804 pwr |= variant->opendrain;
1805 } else {
1806 /*
1807 * If the variant cannot configure the pads by its own, then we
1808 * expect the pinctrl to be able to do that for us
1809 */
1810 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1811 pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1812 else
1813 pinctrl_select_default_state(mmc_dev(mmc));
1814 }
1815
1816 /*
1817 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1818 * gating the clock, the MCI_PWR_ON bit is cleared.
1819 */
1820 if (!ios->clock && variant->pwrreg_clkgate)
1821 pwr &= ~MCI_PWR_ON;
1822
1823 if (host->variant->explicit_mclk_control &&
1824 ios->clock != host->clock_cache) {
1825 ret = clk_set_rate(host->clk, ios->clock);
1826 if (ret < 0)
1827 dev_err(mmc_dev(host->mmc),
1828 "Error setting clock rate (%d)\n", ret);
1829 else
1830 host->mclk = clk_get_rate(host->clk);
1831 }
1832 host->clock_cache = ios->clock;
1833
1834 spin_lock_irqsave(&host->lock, flags);
1835
1836 if (host->ops && host->ops->set_clkreg)
1837 host->ops->set_clkreg(host, ios->clock);
1838 else
1839 mmci_set_clkreg(host, ios->clock);
1840
1841 mmci_set_max_busy_timeout(mmc);
1842
1843 if (host->ops && host->ops->set_pwrreg)
1844 host->ops->set_pwrreg(host, pwr);
1845 else
1846 mmci_write_pwrreg(host, pwr);
1847
1848 mmci_reg_delay(host);
1849
1850 spin_unlock_irqrestore(&host->lock, flags);
1851 }
1852
mmci_get_cd(struct mmc_host * mmc)1853 static int mmci_get_cd(struct mmc_host *mmc)
1854 {
1855 struct mmci_host *host = mmc_priv(mmc);
1856 struct mmci_platform_data *plat = host->plat;
1857 unsigned int status = mmc_gpio_get_cd(mmc);
1858
1859 if (status == -ENOSYS) {
1860 if (!plat->status)
1861 return 1; /* Assume always present */
1862
1863 status = plat->status(mmc_dev(host->mmc));
1864 }
1865 return status;
1866 }
1867
mmci_sig_volt_switch(struct mmc_host * mmc,struct mmc_ios * ios)1868 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1869 {
1870 struct mmci_host *host = mmc_priv(mmc);
1871 int ret;
1872
1873 ret = mmc_regulator_set_vqmmc(mmc, ios);
1874
1875 if (!ret && host->ops && host->ops->post_sig_volt_switch)
1876 ret = host->ops->post_sig_volt_switch(host, ios);
1877 else if (ret)
1878 ret = 0;
1879
1880 if (ret < 0)
1881 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1882
1883 return ret;
1884 }
1885
1886 static struct mmc_host_ops mmci_ops = {
1887 .request = mmci_request,
1888 .pre_req = mmci_pre_request,
1889 .post_req = mmci_post_request,
1890 .set_ios = mmci_set_ios,
1891 .get_ro = mmc_gpio_get_ro,
1892 .get_cd = mmci_get_cd,
1893 .start_signal_voltage_switch = mmci_sig_volt_switch,
1894 };
1895
mmci_probe_level_translator(struct mmc_host * mmc)1896 static void mmci_probe_level_translator(struct mmc_host *mmc)
1897 {
1898 struct device *dev = mmc_dev(mmc);
1899 struct mmci_host *host = mmc_priv(mmc);
1900 struct gpio_desc *cmd_gpio;
1901 struct gpio_desc *ck_gpio;
1902 struct gpio_desc *ckin_gpio;
1903 int clk_hi, clk_lo;
1904
1905 /*
1906 * Assume the level translator is present if st,use-ckin is set.
1907 * This is to cater for DTs which do not implement this test.
1908 */
1909 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1910
1911 cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
1912 if (IS_ERR(cmd_gpio))
1913 goto exit_cmd;
1914
1915 ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
1916 if (IS_ERR(ck_gpio))
1917 goto exit_ck;
1918
1919 ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
1920 if (IS_ERR(ckin_gpio))
1921 goto exit_ckin;
1922
1923 /* All GPIOs are valid, test whether level translator works */
1924
1925 /* Sample CKIN */
1926 clk_hi = !!gpiod_get_value(ckin_gpio);
1927
1928 /* Set CK low */
1929 gpiod_set_value(ck_gpio, 0);
1930
1931 /* Sample CKIN */
1932 clk_lo = !!gpiod_get_value(ckin_gpio);
1933
1934 /* Tristate all */
1935 gpiod_direction_input(cmd_gpio);
1936 gpiod_direction_input(ck_gpio);
1937
1938 /* Level translator is present if CK signal is propagated to CKIN */
1939 if (!clk_hi || clk_lo) {
1940 host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
1941 dev_warn(dev,
1942 "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
1943 }
1944
1945 gpiod_put(ckin_gpio);
1946
1947 exit_ckin:
1948 gpiod_put(ck_gpio);
1949 exit_ck:
1950 gpiod_put(cmd_gpio);
1951 exit_cmd:
1952 pinctrl_select_default_state(dev);
1953 }
1954
mmci_of_parse(struct device_node * np,struct mmc_host * mmc)1955 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1956 {
1957 struct mmci_host *host = mmc_priv(mmc);
1958 int ret = mmc_of_parse(mmc);
1959
1960 if (ret)
1961 return ret;
1962
1963 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1964 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1965 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1966 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1967 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1968 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1969 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1970 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1971 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1972 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1973 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1974 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1975 if (of_get_property(np, "st,sig-dir", NULL))
1976 host->pwr_reg_add |= MCI_STM32_DIRPOL;
1977 if (of_get_property(np, "st,neg-edge", NULL))
1978 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1979 if (of_get_property(np, "st,use-ckin", NULL))
1980 mmci_probe_level_translator(mmc);
1981
1982 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1983 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1984 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1985 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1986
1987 return 0;
1988 }
1989
mmci_probe(struct amba_device * dev,const struct amba_id * id)1990 static int mmci_probe(struct amba_device *dev,
1991 const struct amba_id *id)
1992 {
1993 struct mmci_platform_data *plat = dev->dev.platform_data;
1994 struct device_node *np = dev->dev.of_node;
1995 struct variant_data *variant = id->data;
1996 struct mmci_host *host;
1997 struct mmc_host *mmc;
1998 int ret;
1999
2000 /* Must have platform data or Device Tree. */
2001 if (!plat && !np) {
2002 dev_err(&dev->dev, "No plat data or DT found\n");
2003 return -EINVAL;
2004 }
2005
2006 if (!plat) {
2007 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
2008 if (!plat)
2009 return -ENOMEM;
2010 }
2011
2012 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
2013 if (!mmc)
2014 return -ENOMEM;
2015
2016 host = mmc_priv(mmc);
2017 host->mmc = mmc;
2018 host->mmc_ops = &mmci_ops;
2019 mmc->ops = &mmci_ops;
2020
2021 ret = mmci_of_parse(np, mmc);
2022 if (ret)
2023 goto host_free;
2024
2025 /*
2026 * Some variant (STM32) doesn't have opendrain bit, nevertheless
2027 * pins can be set accordingly using pinctrl
2028 */
2029 if (!variant->opendrain) {
2030 host->pinctrl = devm_pinctrl_get(&dev->dev);
2031 if (IS_ERR(host->pinctrl)) {
2032 dev_err(&dev->dev, "failed to get pinctrl");
2033 ret = PTR_ERR(host->pinctrl);
2034 goto host_free;
2035 }
2036
2037 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
2038 MMCI_PINCTRL_STATE_OPENDRAIN);
2039 if (IS_ERR(host->pins_opendrain)) {
2040 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
2041 ret = PTR_ERR(host->pins_opendrain);
2042 goto host_free;
2043 }
2044 }
2045
2046 host->hw_designer = amba_manf(dev);
2047 host->hw_revision = amba_rev(dev);
2048 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
2049 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
2050
2051 host->clk = devm_clk_get(&dev->dev, NULL);
2052 if (IS_ERR(host->clk)) {
2053 ret = PTR_ERR(host->clk);
2054 goto host_free;
2055 }
2056
2057 ret = clk_prepare_enable(host->clk);
2058 if (ret)
2059 goto host_free;
2060
2061 if (variant->qcom_fifo)
2062 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2063 else
2064 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2065
2066 host->plat = plat;
2067 host->variant = variant;
2068 host->mclk = clk_get_rate(host->clk);
2069 /*
2070 * According to the spec, mclk is max 100 MHz,
2071 * so we try to adjust the clock down to this,
2072 * (if possible).
2073 */
2074 if (host->mclk > variant->f_max) {
2075 ret = clk_set_rate(host->clk, variant->f_max);
2076 if (ret < 0)
2077 goto clk_disable;
2078 host->mclk = clk_get_rate(host->clk);
2079 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2080 host->mclk);
2081 }
2082
2083 host->phybase = dev->res.start;
2084 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2085 if (IS_ERR(host->base)) {
2086 ret = PTR_ERR(host->base);
2087 goto clk_disable;
2088 }
2089
2090 if (variant->init)
2091 variant->init(host);
2092
2093 /*
2094 * The ARM and ST versions of the block have slightly different
2095 * clock divider equations which means that the minimum divider
2096 * differs too.
2097 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2098 */
2099 if (variant->st_clkdiv)
2100 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2101 else if (variant->stm32_clkdiv)
2102 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2103 else if (variant->explicit_mclk_control)
2104 mmc->f_min = clk_round_rate(host->clk, 100000);
2105 else
2106 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2107 /*
2108 * If no maximum operating frequency is supplied, fall back to use
2109 * the module parameter, which has a (low) default value in case it
2110 * is not specified. Either value must not exceed the clock rate into
2111 * the block, of course.
2112 */
2113 if (mmc->f_max)
2114 mmc->f_max = variant->explicit_mclk_control ?
2115 min(variant->f_max, mmc->f_max) :
2116 min(host->mclk, mmc->f_max);
2117 else
2118 mmc->f_max = variant->explicit_mclk_control ?
2119 fmax : min(host->mclk, fmax);
2120
2121
2122 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2123
2124 host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2125 if (IS_ERR(host->rst)) {
2126 ret = PTR_ERR(host->rst);
2127 goto clk_disable;
2128 }
2129
2130 /* Get regulators and the supported OCR mask */
2131 ret = mmc_regulator_get_supply(mmc);
2132 if (ret)
2133 goto clk_disable;
2134
2135 if (!mmc->ocr_avail)
2136 mmc->ocr_avail = plat->ocr_mask;
2137 else if (plat->ocr_mask)
2138 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2139
2140 /* We support these capabilities. */
2141 mmc->caps |= MMC_CAP_CMD23;
2142
2143 /*
2144 * Enable busy detection.
2145 */
2146 if (variant->busy_detect) {
2147 mmci_ops.card_busy = mmci_card_busy;
2148 /*
2149 * Not all variants have a flag to enable busy detection
2150 * in the DPSM, but if they do, set it here.
2151 */
2152 if (variant->busy_dpsm_flag)
2153 mmci_write_datactrlreg(host,
2154 host->variant->busy_dpsm_flag);
2155 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2156 }
2157
2158 /* Variants with mandatory busy timeout in HW needs R1B responses. */
2159 if (variant->busy_timeout)
2160 mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2161
2162 /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2163 host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2164 host->stop_abort.arg = 0;
2165 host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2166
2167 /* We support these PM capabilities. */
2168 mmc->pm_caps |= MMC_PM_KEEP_POWER;
2169
2170 /*
2171 * We can do SGIO
2172 */
2173 mmc->max_segs = NR_SG;
2174
2175 /*
2176 * Since only a certain number of bits are valid in the data length
2177 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2178 * single request.
2179 */
2180 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2181
2182 /*
2183 * Set the maximum segment size. Since we aren't doing DMA
2184 * (yet) we are only limited by the data length register.
2185 */
2186 mmc->max_seg_size = mmc->max_req_size;
2187
2188 /*
2189 * Block size can be up to 2048 bytes, but must be a power of two.
2190 */
2191 mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2192
2193 /*
2194 * Limit the number of blocks transferred so that we don't overflow
2195 * the maximum request size.
2196 */
2197 mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2198
2199 spin_lock_init(&host->lock);
2200
2201 writel(0, host->base + MMCIMASK0);
2202
2203 if (variant->mmcimask1)
2204 writel(0, host->base + MMCIMASK1);
2205
2206 writel(0xfff, host->base + MMCICLEAR);
2207
2208 /*
2209 * If:
2210 * - not using DT but using a descriptor table, or
2211 * - using a table of descriptors ALONGSIDE DT, or
2212 * look up these descriptors named "cd" and "wp" right here, fail
2213 * silently of these do not exist
2214 */
2215 if (!np) {
2216 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2217 if (ret == -EPROBE_DEFER)
2218 goto clk_disable;
2219
2220 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2221 if (ret == -EPROBE_DEFER)
2222 goto clk_disable;
2223 }
2224
2225 ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2226 mmci_irq_thread, IRQF_SHARED,
2227 DRIVER_NAME " (cmd)", host);
2228 if (ret)
2229 goto clk_disable;
2230
2231 if (!dev->irq[1])
2232 host->singleirq = true;
2233 else {
2234 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2235 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2236 if (ret)
2237 goto clk_disable;
2238 }
2239
2240 writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2241
2242 amba_set_drvdata(dev, mmc);
2243
2244 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2245 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2246 amba_rev(dev), (unsigned long long)dev->res.start,
2247 dev->irq[0], dev->irq[1]);
2248
2249 mmci_dma_setup(host);
2250
2251 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2252 pm_runtime_use_autosuspend(&dev->dev);
2253
2254 mmc_add_host(mmc);
2255
2256 pm_runtime_put(&dev->dev);
2257 return 0;
2258
2259 clk_disable:
2260 clk_disable_unprepare(host->clk);
2261 host_free:
2262 mmc_free_host(mmc);
2263 return ret;
2264 }
2265
mmci_remove(struct amba_device * dev)2266 static void mmci_remove(struct amba_device *dev)
2267 {
2268 struct mmc_host *mmc = amba_get_drvdata(dev);
2269
2270 if (mmc) {
2271 struct mmci_host *host = mmc_priv(mmc);
2272 struct variant_data *variant = host->variant;
2273
2274 /*
2275 * Undo pm_runtime_put() in probe. We use the _sync
2276 * version here so that we can access the primecell.
2277 */
2278 pm_runtime_get_sync(&dev->dev);
2279
2280 mmc_remove_host(mmc);
2281
2282 writel(0, host->base + MMCIMASK0);
2283
2284 if (variant->mmcimask1)
2285 writel(0, host->base + MMCIMASK1);
2286
2287 writel(0, host->base + MMCICOMMAND);
2288 writel(0, host->base + MMCIDATACTRL);
2289
2290 mmci_dma_release(host);
2291 clk_disable_unprepare(host->clk);
2292 mmc_free_host(mmc);
2293 }
2294 }
2295
2296 #ifdef CONFIG_PM
mmci_save(struct mmci_host * host)2297 static void mmci_save(struct mmci_host *host)
2298 {
2299 unsigned long flags;
2300
2301 spin_lock_irqsave(&host->lock, flags);
2302
2303 writel(0, host->base + MMCIMASK0);
2304 if (host->variant->pwrreg_nopower) {
2305 writel(0, host->base + MMCIDATACTRL);
2306 writel(0, host->base + MMCIPOWER);
2307 writel(0, host->base + MMCICLOCK);
2308 }
2309 mmci_reg_delay(host);
2310
2311 spin_unlock_irqrestore(&host->lock, flags);
2312 }
2313
mmci_restore(struct mmci_host * host)2314 static void mmci_restore(struct mmci_host *host)
2315 {
2316 unsigned long flags;
2317
2318 spin_lock_irqsave(&host->lock, flags);
2319
2320 if (host->variant->pwrreg_nopower) {
2321 writel(host->clk_reg, host->base + MMCICLOCK);
2322 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2323 writel(host->pwr_reg, host->base + MMCIPOWER);
2324 }
2325 writel(MCI_IRQENABLE | host->variant->start_err,
2326 host->base + MMCIMASK0);
2327 mmci_reg_delay(host);
2328
2329 spin_unlock_irqrestore(&host->lock, flags);
2330 }
2331
mmci_runtime_suspend(struct device * dev)2332 static int mmci_runtime_suspend(struct device *dev)
2333 {
2334 struct amba_device *adev = to_amba_device(dev);
2335 struct mmc_host *mmc = amba_get_drvdata(adev);
2336
2337 if (mmc) {
2338 struct mmci_host *host = mmc_priv(mmc);
2339 pinctrl_pm_select_sleep_state(dev);
2340 mmci_save(host);
2341 clk_disable_unprepare(host->clk);
2342 }
2343
2344 return 0;
2345 }
2346
mmci_runtime_resume(struct device * dev)2347 static int mmci_runtime_resume(struct device *dev)
2348 {
2349 struct amba_device *adev = to_amba_device(dev);
2350 struct mmc_host *mmc = amba_get_drvdata(adev);
2351
2352 if (mmc) {
2353 struct mmci_host *host = mmc_priv(mmc);
2354 clk_prepare_enable(host->clk);
2355 mmci_restore(host);
2356 pinctrl_select_default_state(dev);
2357 }
2358
2359 return 0;
2360 }
2361 #endif
2362
2363 static const struct dev_pm_ops mmci_dev_pm_ops = {
2364 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2365 pm_runtime_force_resume)
2366 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2367 };
2368
2369 static const struct amba_id mmci_ids[] = {
2370 {
2371 .id = 0x00041180,
2372 .mask = 0xff0fffff,
2373 .data = &variant_arm,
2374 },
2375 {
2376 .id = 0x01041180,
2377 .mask = 0xff0fffff,
2378 .data = &variant_arm_extended_fifo,
2379 },
2380 {
2381 .id = 0x02041180,
2382 .mask = 0xff0fffff,
2383 .data = &variant_arm_extended_fifo_hwfc,
2384 },
2385 {
2386 .id = 0x00041181,
2387 .mask = 0x000fffff,
2388 .data = &variant_arm,
2389 },
2390 /* ST Micro variants */
2391 {
2392 .id = 0x00180180,
2393 .mask = 0x00ffffff,
2394 .data = &variant_u300,
2395 },
2396 {
2397 .id = 0x10180180,
2398 .mask = 0xf0ffffff,
2399 .data = &variant_nomadik,
2400 },
2401 {
2402 .id = 0x00280180,
2403 .mask = 0x00ffffff,
2404 .data = &variant_nomadik,
2405 },
2406 {
2407 .id = 0x00480180,
2408 .mask = 0xf0ffffff,
2409 .data = &variant_ux500,
2410 },
2411 {
2412 .id = 0x10480180,
2413 .mask = 0xf0ffffff,
2414 .data = &variant_ux500v2,
2415 },
2416 {
2417 .id = 0x00880180,
2418 .mask = 0x00ffffff,
2419 .data = &variant_stm32,
2420 },
2421 {
2422 .id = 0x10153180,
2423 .mask = 0xf0ffffff,
2424 .data = &variant_stm32_sdmmc,
2425 },
2426 {
2427 .id = 0x00253180,
2428 .mask = 0xf0ffffff,
2429 .data = &variant_stm32_sdmmcv2,
2430 },
2431 /* Qualcomm variants */
2432 {
2433 .id = 0x00051180,
2434 .mask = 0x000fffff,
2435 .data = &variant_qcom,
2436 },
2437 { 0, 0 },
2438 };
2439
2440 MODULE_DEVICE_TABLE(amba, mmci_ids);
2441
2442 static struct amba_driver mmci_driver = {
2443 .drv = {
2444 .name = DRIVER_NAME,
2445 .pm = &mmci_dev_pm_ops,
2446 },
2447 .probe = mmci_probe,
2448 .remove = mmci_remove,
2449 .id_table = mmci_ids,
2450 };
2451
2452 module_amba_driver(mmci_driver);
2453
2454 module_param(fmax, uint, 0444);
2455
2456 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2457 MODULE_LICENSE("GPL");
2458