1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions for working with the Flattened Device Tree data format
4  *
5  * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6  * benh@kernel.crashing.org
7  */
8 
9 #define pr_fmt(fmt)	"OF: fdt: " fmt
10 
11 #include <linux/crc32.h>
12 #include <linux/kernel.h>
13 #include <linux/initrd.h>
14 #include <linux/memblock.h>
15 #include <linux/mutex.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_reserved_mem.h>
19 #include <linux/sizes.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/libfdt.h>
24 #include <linux/debugfs.h>
25 #include <linux/serial_core.h>
26 #include <linux/sysfs.h>
27 #include <linux/random.h>
28 
29 #include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
30 #include <asm/page.h>
31 
32 #include "of_private.h"
33 
34 /*
35  * of_fdt_limit_memory - limit the number of regions in the /memory node
36  * @limit: maximum entries
37  *
38  * Adjust the flattened device tree to have at most 'limit' number of
39  * memory entries in the /memory node. This function may be called
40  * any time after initial_boot_param is set.
41  */
of_fdt_limit_memory(int limit)42 void __init of_fdt_limit_memory(int limit)
43 {
44 	int memory;
45 	int len;
46 	const void *val;
47 	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
48 	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
49 	const __be32 *addr_prop;
50 	const __be32 *size_prop;
51 	int root_offset;
52 	int cell_size;
53 
54 	root_offset = fdt_path_offset(initial_boot_params, "/");
55 	if (root_offset < 0)
56 		return;
57 
58 	addr_prop = fdt_getprop(initial_boot_params, root_offset,
59 				"#address-cells", NULL);
60 	if (addr_prop)
61 		nr_address_cells = fdt32_to_cpu(*addr_prop);
62 
63 	size_prop = fdt_getprop(initial_boot_params, root_offset,
64 				"#size-cells", NULL);
65 	if (size_prop)
66 		nr_size_cells = fdt32_to_cpu(*size_prop);
67 
68 	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
69 
70 	memory = fdt_path_offset(initial_boot_params, "/memory");
71 	if (memory > 0) {
72 		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
73 		if (len > limit*cell_size) {
74 			len = limit*cell_size;
75 			pr_debug("Limiting number of entries to %d\n", limit);
76 			fdt_setprop(initial_boot_params, memory, "reg", val,
77 					len);
78 		}
79 	}
80 }
81 
of_fdt_device_is_available(const void * blob,unsigned long node)82 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
83 {
84 	const char *status = fdt_getprop(blob, node, "status", NULL);
85 
86 	if (!status)
87 		return true;
88 
89 	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
90 		return true;
91 
92 	return false;
93 }
94 
unflatten_dt_alloc(void ** mem,unsigned long size,unsigned long align)95 static void *unflatten_dt_alloc(void **mem, unsigned long size,
96 				       unsigned long align)
97 {
98 	void *res;
99 
100 	*mem = PTR_ALIGN(*mem, align);
101 	res = *mem;
102 	*mem += size;
103 
104 	return res;
105 }
106 
populate_properties(const void * blob,int offset,void ** mem,struct device_node * np,const char * nodename,bool dryrun)107 static void populate_properties(const void *blob,
108 				int offset,
109 				void **mem,
110 				struct device_node *np,
111 				const char *nodename,
112 				bool dryrun)
113 {
114 	struct property *pp, **pprev = NULL;
115 	int cur;
116 	bool has_name = false;
117 
118 	pprev = &np->properties;
119 	for (cur = fdt_first_property_offset(blob, offset);
120 	     cur >= 0;
121 	     cur = fdt_next_property_offset(blob, cur)) {
122 		const __be32 *val;
123 		const char *pname;
124 		u32 sz;
125 
126 		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
127 		if (!val) {
128 			pr_warn("Cannot locate property at 0x%x\n", cur);
129 			continue;
130 		}
131 
132 		if (!pname) {
133 			pr_warn("Cannot find property name at 0x%x\n", cur);
134 			continue;
135 		}
136 
137 		if (!strcmp(pname, "name"))
138 			has_name = true;
139 
140 		pp = unflatten_dt_alloc(mem, sizeof(struct property),
141 					__alignof__(struct property));
142 		if (dryrun)
143 			continue;
144 
145 		/* We accept flattened tree phandles either in
146 		 * ePAPR-style "phandle" properties, or the
147 		 * legacy "linux,phandle" properties.  If both
148 		 * appear and have different values, things
149 		 * will get weird. Don't do that.
150 		 */
151 		if (!strcmp(pname, "phandle") ||
152 		    !strcmp(pname, "linux,phandle")) {
153 			if (!np->phandle)
154 				np->phandle = be32_to_cpup(val);
155 		}
156 
157 		/* And we process the "ibm,phandle" property
158 		 * used in pSeries dynamic device tree
159 		 * stuff
160 		 */
161 		if (!strcmp(pname, "ibm,phandle"))
162 			np->phandle = be32_to_cpup(val);
163 
164 		pp->name   = (char *)pname;
165 		pp->length = sz;
166 		pp->value  = (__be32 *)val;
167 		*pprev     = pp;
168 		pprev      = &pp->next;
169 	}
170 
171 	/* With version 0x10 we may not have the name property,
172 	 * recreate it here from the unit name if absent
173 	 */
174 	if (!has_name) {
175 		const char *p = nodename, *ps = p, *pa = NULL;
176 		int len;
177 
178 		while (*p) {
179 			if ((*p) == '@')
180 				pa = p;
181 			else if ((*p) == '/')
182 				ps = p + 1;
183 			p++;
184 		}
185 
186 		if (pa < ps)
187 			pa = p;
188 		len = (pa - ps) + 1;
189 		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
190 					__alignof__(struct property));
191 		if (!dryrun) {
192 			pp->name   = "name";
193 			pp->length = len;
194 			pp->value  = pp + 1;
195 			*pprev     = pp;
196 			pprev      = &pp->next;
197 			memcpy(pp->value, ps, len - 1);
198 			((char *)pp->value)[len - 1] = 0;
199 			pr_debug("fixed up name for %s -> %s\n",
200 				 nodename, (char *)pp->value);
201 		}
202 	}
203 
204 	if (!dryrun)
205 		*pprev = NULL;
206 }
207 
populate_node(const void * blob,int offset,void ** mem,struct device_node * dad,struct device_node ** pnp,bool dryrun)208 static int populate_node(const void *blob,
209 			  int offset,
210 			  void **mem,
211 			  struct device_node *dad,
212 			  struct device_node **pnp,
213 			  bool dryrun)
214 {
215 	struct device_node *np;
216 	const char *pathp;
217 	int len;
218 
219 	pathp = fdt_get_name(blob, offset, &len);
220 	if (!pathp) {
221 		*pnp = NULL;
222 		return len;
223 	}
224 
225 	len++;
226 
227 	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
228 				__alignof__(struct device_node));
229 	if (!dryrun) {
230 		char *fn;
231 		of_node_init(np);
232 		np->full_name = fn = ((char *)np) + sizeof(*np);
233 
234 		memcpy(fn, pathp, len);
235 
236 		if (dad != NULL) {
237 			np->parent = dad;
238 			np->sibling = dad->child;
239 			dad->child = np;
240 		}
241 	}
242 
243 	populate_properties(blob, offset, mem, np, pathp, dryrun);
244 	if (!dryrun) {
245 		np->name = of_get_property(np, "name", NULL);
246 		if (!np->name)
247 			np->name = "<NULL>";
248 	}
249 
250 	*pnp = np;
251 	return true;
252 }
253 
reverse_nodes(struct device_node * parent)254 static void reverse_nodes(struct device_node *parent)
255 {
256 	struct device_node *child, *next;
257 
258 	/* In-depth first */
259 	child = parent->child;
260 	while (child) {
261 		reverse_nodes(child);
262 
263 		child = child->sibling;
264 	}
265 
266 	/* Reverse the nodes in the child list */
267 	child = parent->child;
268 	parent->child = NULL;
269 	while (child) {
270 		next = child->sibling;
271 
272 		child->sibling = parent->child;
273 		parent->child = child;
274 		child = next;
275 	}
276 }
277 
278 /**
279  * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
280  * @blob: The parent device tree blob
281  * @mem: Memory chunk to use for allocating device nodes and properties
282  * @dad: Parent struct device_node
283  * @nodepp: The device_node tree created by the call
284  *
285  * Return: The size of unflattened device tree or error code
286  */
unflatten_dt_nodes(const void * blob,void * mem,struct device_node * dad,struct device_node ** nodepp)287 static int unflatten_dt_nodes(const void *blob,
288 			      void *mem,
289 			      struct device_node *dad,
290 			      struct device_node **nodepp)
291 {
292 	struct device_node *root;
293 	int offset = 0, depth = 0, initial_depth = 0;
294 #define FDT_MAX_DEPTH	64
295 	struct device_node *nps[FDT_MAX_DEPTH];
296 	void *base = mem;
297 	bool dryrun = !base;
298 	int ret;
299 
300 	if (nodepp)
301 		*nodepp = NULL;
302 
303 	/*
304 	 * We're unflattening device sub-tree if @dad is valid. There are
305 	 * possibly multiple nodes in the first level of depth. We need
306 	 * set @depth to 1 to make fdt_next_node() happy as it bails
307 	 * immediately when negative @depth is found. Otherwise, the device
308 	 * nodes except the first one won't be unflattened successfully.
309 	 */
310 	if (dad)
311 		depth = initial_depth = 1;
312 
313 	root = dad;
314 	nps[depth] = dad;
315 
316 	for (offset = 0;
317 	     offset >= 0 && depth >= initial_depth;
318 	     offset = fdt_next_node(blob, offset, &depth)) {
319 		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
320 			continue;
321 
322 		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
323 		    !of_fdt_device_is_available(blob, offset))
324 			continue;
325 
326 		ret = populate_node(blob, offset, &mem, nps[depth],
327 				   &nps[depth+1], dryrun);
328 		if (ret < 0)
329 			return ret;
330 
331 		if (!dryrun && nodepp && !*nodepp)
332 			*nodepp = nps[depth+1];
333 		if (!dryrun && !root)
334 			root = nps[depth+1];
335 	}
336 
337 	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
338 		pr_err("Error %d processing FDT\n", offset);
339 		return -EINVAL;
340 	}
341 
342 	/*
343 	 * Reverse the child list. Some drivers assumes node order matches .dts
344 	 * node order
345 	 */
346 	if (!dryrun)
347 		reverse_nodes(root);
348 
349 	return mem - base;
350 }
351 
352 /**
353  * __unflatten_device_tree - create tree of device_nodes from flat blob
354  * @blob: The blob to expand
355  * @dad: Parent device node
356  * @mynodes: The device_node tree created by the call
357  * @dt_alloc: An allocator that provides a virtual address to memory
358  * for the resulting tree
359  * @detached: if true set OF_DETACHED on @mynodes
360  *
361  * unflattens a device-tree, creating the tree of struct device_node. It also
362  * fills the "name" and "type" pointers of the nodes so the normal device-tree
363  * walking functions can be used.
364  *
365  * Return: NULL on failure or the memory chunk containing the unflattened
366  * device tree on success.
367  */
__unflatten_device_tree(const void * blob,struct device_node * dad,struct device_node ** mynodes,void * (* dt_alloc)(u64 size,u64 align),bool detached)368 void *__unflatten_device_tree(const void *blob,
369 			      struct device_node *dad,
370 			      struct device_node **mynodes,
371 			      void *(*dt_alloc)(u64 size, u64 align),
372 			      bool detached)
373 {
374 	int size;
375 	void *mem;
376 	int ret;
377 
378 	if (mynodes)
379 		*mynodes = NULL;
380 
381 	pr_debug(" -> unflatten_device_tree()\n");
382 
383 	if (!blob) {
384 		pr_debug("No device tree pointer\n");
385 		return NULL;
386 	}
387 
388 	pr_debug("Unflattening device tree:\n");
389 	pr_debug("magic: %08x\n", fdt_magic(blob));
390 	pr_debug("size: %08x\n", fdt_totalsize(blob));
391 	pr_debug("version: %08x\n", fdt_version(blob));
392 
393 	if (fdt_check_header(blob)) {
394 		pr_err("Invalid device tree blob header\n");
395 		return NULL;
396 	}
397 
398 	/* First pass, scan for size */
399 	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
400 	if (size <= 0)
401 		return NULL;
402 
403 	size = ALIGN(size, 4);
404 	pr_debug("  size is %d, allocating...\n", size);
405 
406 	/* Allocate memory for the expanded device tree */
407 	mem = dt_alloc(size + 4, __alignof__(struct device_node));
408 	if (!mem)
409 		return NULL;
410 
411 	memset(mem, 0, size);
412 
413 	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
414 
415 	pr_debug("  unflattening %p...\n", mem);
416 
417 	/* Second pass, do actual unflattening */
418 	ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
419 
420 	if (be32_to_cpup(mem + size) != 0xdeadbeef)
421 		pr_warn("End of tree marker overwritten: %08x\n",
422 			be32_to_cpup(mem + size));
423 
424 	if (ret <= 0)
425 		return NULL;
426 
427 	if (detached && mynodes && *mynodes) {
428 		of_node_set_flag(*mynodes, OF_DETACHED);
429 		pr_debug("unflattened tree is detached\n");
430 	}
431 
432 	pr_debug(" <- unflatten_device_tree()\n");
433 	return mem;
434 }
435 
kernel_tree_alloc(u64 size,u64 align)436 static void *kernel_tree_alloc(u64 size, u64 align)
437 {
438 	return kzalloc(size, GFP_KERNEL);
439 }
440 
441 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
442 
443 /**
444  * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
445  * @blob: Flat device tree blob
446  * @dad: Parent device node
447  * @mynodes: The device tree created by the call
448  *
449  * unflattens the device-tree passed by the firmware, creating the
450  * tree of struct device_node. It also fills the "name" and "type"
451  * pointers of the nodes so the normal device-tree walking functions
452  * can be used.
453  *
454  * Return: NULL on failure or the memory chunk containing the unflattened
455  * device tree on success.
456  */
of_fdt_unflatten_tree(const unsigned long * blob,struct device_node * dad,struct device_node ** mynodes)457 void *of_fdt_unflatten_tree(const unsigned long *blob,
458 			    struct device_node *dad,
459 			    struct device_node **mynodes)
460 {
461 	void *mem;
462 
463 	mutex_lock(&of_fdt_unflatten_mutex);
464 	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
465 				      true);
466 	mutex_unlock(&of_fdt_unflatten_mutex);
467 
468 	return mem;
469 }
470 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
471 
472 /* Everything below here references initial_boot_params directly. */
473 int __initdata dt_root_addr_cells;
474 int __initdata dt_root_size_cells;
475 
476 void *initial_boot_params __ro_after_init;
477 
478 #ifdef CONFIG_OF_EARLY_FLATTREE
479 
480 static u32 of_fdt_crc32;
481 
482 /*
483  * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
484  */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)485 static int __init __reserved_mem_reserve_reg(unsigned long node,
486 					     const char *uname)
487 {
488 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
489 	phys_addr_t base, size;
490 	int len;
491 	const __be32 *prop;
492 	int first = 1;
493 	bool nomap;
494 
495 	prop = of_get_flat_dt_prop(node, "reg", &len);
496 	if (!prop)
497 		return -ENOENT;
498 
499 	if (len && len % t_len != 0) {
500 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
501 		       uname);
502 		return -EINVAL;
503 	}
504 
505 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
506 
507 	while (len >= t_len) {
508 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
509 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
510 
511 		if (size &&
512 		    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
513 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
514 				uname, &base, (unsigned long)size / SZ_1M);
515 		else
516 			pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
517 				uname, &base, (unsigned long)size / SZ_1M);
518 
519 		len -= t_len;
520 		if (first) {
521 			fdt_reserved_mem_save_node(node, uname, base, size);
522 			first = 0;
523 		}
524 	}
525 	return 0;
526 }
527 
528 /*
529  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
530  * in /reserved-memory matches the values supported by the current implementation,
531  * also check if ranges property has been provided
532  */
__reserved_mem_check_root(unsigned long node)533 static int __init __reserved_mem_check_root(unsigned long node)
534 {
535 	const __be32 *prop;
536 
537 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
538 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
539 		return -EINVAL;
540 
541 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
542 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
543 		return -EINVAL;
544 
545 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
546 	if (!prop)
547 		return -EINVAL;
548 	return 0;
549 }
550 
551 /*
552  * __fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
553  */
__fdt_scan_reserved_mem(unsigned long node,const char * uname,int depth,void * data)554 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
555 					  int depth, void *data)
556 {
557 	static int found;
558 	int err;
559 
560 	if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
561 		if (__reserved_mem_check_root(node) != 0) {
562 			pr_err("Reserved memory: unsupported node format, ignoring\n");
563 			/* break scan */
564 			return 1;
565 		}
566 		found = 1;
567 		/* scan next node */
568 		return 0;
569 	} else if (!found) {
570 		/* scan next node */
571 		return 0;
572 	} else if (found && depth < 2) {
573 		/* scanning of /reserved-memory has been finished */
574 		return 1;
575 	}
576 
577 	if (!of_fdt_device_is_available(initial_boot_params, node))
578 		return 0;
579 
580 	err = __reserved_mem_reserve_reg(node, uname);
581 	if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
582 		fdt_reserved_mem_save_node(node, uname, 0, 0);
583 
584 	/* scan next node */
585 	return 0;
586 }
587 
588 /**
589  * early_init_fdt_scan_reserved_mem() - create reserved memory regions
590  *
591  * This function grabs memory from early allocator for device exclusive use
592  * defined in device tree structures. It should be called by arch specific code
593  * once the early allocator (i.e. memblock) has been fully activated.
594  */
early_init_fdt_scan_reserved_mem(void)595 void __init early_init_fdt_scan_reserved_mem(void)
596 {
597 	int n;
598 	u64 base, size;
599 
600 	if (!initial_boot_params)
601 		return;
602 
603 	/* Process header /memreserve/ fields */
604 	for (n = 0; ; n++) {
605 		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
606 		if (!size)
607 			break;
608 		early_init_dt_reserve_memory_arch(base, size, false);
609 	}
610 
611 	of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
612 	fdt_init_reserved_mem();
613 }
614 
615 /**
616  * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
617  */
early_init_fdt_reserve_self(void)618 void __init early_init_fdt_reserve_self(void)
619 {
620 	if (!initial_boot_params)
621 		return;
622 
623 	/* Reserve the dtb region */
624 	early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
625 					  fdt_totalsize(initial_boot_params),
626 					  false);
627 }
628 
629 /**
630  * of_scan_flat_dt - scan flattened tree blob and call callback on each.
631  * @it: callback function
632  * @data: context data pointer
633  *
634  * This function is used to scan the flattened device-tree, it is
635  * used to extract the memory information at boot before we can
636  * unflatten the tree
637  */
of_scan_flat_dt(int (* it)(unsigned long node,const char * uname,int depth,void * data),void * data)638 int __init of_scan_flat_dt(int (*it)(unsigned long node,
639 				     const char *uname, int depth,
640 				     void *data),
641 			   void *data)
642 {
643 	const void *blob = initial_boot_params;
644 	const char *pathp;
645 	int offset, rc = 0, depth = -1;
646 
647 	if (!blob)
648 		return 0;
649 
650 	for (offset = fdt_next_node(blob, -1, &depth);
651 	     offset >= 0 && depth >= 0 && !rc;
652 	     offset = fdt_next_node(blob, offset, &depth)) {
653 
654 		pathp = fdt_get_name(blob, offset, NULL);
655 		rc = it(offset, pathp, depth, data);
656 	}
657 	return rc;
658 }
659 
660 /**
661  * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
662  * @parent: parent node
663  * @it: callback function
664  * @data: context data pointer
665  *
666  * This function is used to scan sub-nodes of a node.
667  */
of_scan_flat_dt_subnodes(unsigned long parent,int (* it)(unsigned long node,const char * uname,void * data),void * data)668 int __init of_scan_flat_dt_subnodes(unsigned long parent,
669 				    int (*it)(unsigned long node,
670 					      const char *uname,
671 					      void *data),
672 				    void *data)
673 {
674 	const void *blob = initial_boot_params;
675 	int node;
676 
677 	fdt_for_each_subnode(node, blob, parent) {
678 		const char *pathp;
679 		int rc;
680 
681 		pathp = fdt_get_name(blob, node, NULL);
682 		rc = it(node, pathp, data);
683 		if (rc)
684 			return rc;
685 	}
686 	return 0;
687 }
688 
689 /**
690  * of_get_flat_dt_subnode_by_name - get the subnode by given name
691  *
692  * @node: the parent node
693  * @uname: the name of subnode
694  * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
695  */
696 
of_get_flat_dt_subnode_by_name(unsigned long node,const char * uname)697 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
698 {
699 	return fdt_subnode_offset(initial_boot_params, node, uname);
700 }
701 
702 /*
703  * of_get_flat_dt_root - find the root node in the flat blob
704  */
of_get_flat_dt_root(void)705 unsigned long __init of_get_flat_dt_root(void)
706 {
707 	return 0;
708 }
709 
710 /*
711  * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
712  *
713  * This function can be used within scan_flattened_dt callback to get
714  * access to properties
715  */
of_get_flat_dt_prop(unsigned long node,const char * name,int * size)716 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
717 				       int *size)
718 {
719 	return fdt_getprop(initial_boot_params, node, name, size);
720 }
721 
722 /**
723  * of_fdt_is_compatible - Return true if given node from the given blob has
724  * compat in its compatible list
725  * @blob: A device tree blob
726  * @node: node to test
727  * @compat: compatible string to compare with compatible list.
728  *
729  * Return: a non-zero value on match with smaller values returned for more
730  * specific compatible values.
731  */
of_fdt_is_compatible(const void * blob,unsigned long node,const char * compat)732 static int of_fdt_is_compatible(const void *blob,
733 		      unsigned long node, const char *compat)
734 {
735 	const char *cp;
736 	int cplen;
737 	unsigned long l, score = 0;
738 
739 	cp = fdt_getprop(blob, node, "compatible", &cplen);
740 	if (cp == NULL)
741 		return 0;
742 	while (cplen > 0) {
743 		score++;
744 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
745 			return score;
746 		l = strlen(cp) + 1;
747 		cp += l;
748 		cplen -= l;
749 	}
750 
751 	return 0;
752 }
753 
754 /**
755  * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
756  * @node: node to test
757  * @compat: compatible string to compare with compatible list.
758  */
of_flat_dt_is_compatible(unsigned long node,const char * compat)759 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
760 {
761 	return of_fdt_is_compatible(initial_boot_params, node, compat);
762 }
763 
764 /*
765  * of_flat_dt_match - Return true if node matches a list of compatible values
766  */
of_flat_dt_match(unsigned long node,const char * const * compat)767 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
768 {
769 	unsigned int tmp, score = 0;
770 
771 	if (!compat)
772 		return 0;
773 
774 	while (*compat) {
775 		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
776 		if (tmp && (score == 0 || (tmp < score)))
777 			score = tmp;
778 		compat++;
779 	}
780 
781 	return score;
782 }
783 
784 /*
785  * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
786  */
of_get_flat_dt_phandle(unsigned long node)787 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
788 {
789 	return fdt_get_phandle(initial_boot_params, node);
790 }
791 
792 struct fdt_scan_status {
793 	const char *name;
794 	int namelen;
795 	int depth;
796 	int found;
797 	int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
798 	void *data;
799 };
800 
of_flat_dt_get_machine_name(void)801 const char * __init of_flat_dt_get_machine_name(void)
802 {
803 	const char *name;
804 	unsigned long dt_root = of_get_flat_dt_root();
805 
806 	name = of_get_flat_dt_prop(dt_root, "model", NULL);
807 	if (!name)
808 		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
809 	return name;
810 }
811 
812 /**
813  * of_flat_dt_match_machine - Iterate match tables to find matching machine.
814  *
815  * @default_match: A machine specific ptr to return in case of no match.
816  * @get_next_compat: callback function to return next compatible match table.
817  *
818  * Iterate through machine match tables to find the best match for the machine
819  * compatible string in the FDT.
820  */
of_flat_dt_match_machine(const void * default_match,const void * (* get_next_compat)(const char * const **))821 const void * __init of_flat_dt_match_machine(const void *default_match,
822 		const void * (*get_next_compat)(const char * const**))
823 {
824 	const void *data = NULL;
825 	const void *best_data = default_match;
826 	const char *const *compat;
827 	unsigned long dt_root;
828 	unsigned int best_score = ~1, score = 0;
829 
830 	dt_root = of_get_flat_dt_root();
831 	while ((data = get_next_compat(&compat))) {
832 		score = of_flat_dt_match(dt_root, compat);
833 		if (score > 0 && score < best_score) {
834 			best_data = data;
835 			best_score = score;
836 		}
837 	}
838 	if (!best_data) {
839 		const char *prop;
840 		int size;
841 
842 		pr_err("\n unrecognized device tree list:\n[ ");
843 
844 		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
845 		if (prop) {
846 			while (size > 0) {
847 				printk("'%s' ", prop);
848 				size -= strlen(prop) + 1;
849 				prop += strlen(prop) + 1;
850 			}
851 		}
852 		printk("]\n\n");
853 		return NULL;
854 	}
855 
856 	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
857 
858 	return best_data;
859 }
860 
861 #ifdef CONFIG_BLK_DEV_INITRD
__early_init_dt_declare_initrd(unsigned long start,unsigned long end)862 static void __early_init_dt_declare_initrd(unsigned long start,
863 					   unsigned long end)
864 {
865 	/* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is
866 	 * enabled since __va() is called too early. ARM64 does make use
867 	 * of phys_initrd_start/phys_initrd_size so we can skip this
868 	 * conversion.
869 	 */
870 	if (!IS_ENABLED(CONFIG_ARM64)) {
871 		initrd_start = (unsigned long)__va(start);
872 		initrd_end = (unsigned long)__va(end);
873 		initrd_below_start_ok = 1;
874 	}
875 }
876 
877 /**
878  * early_init_dt_check_for_initrd - Decode initrd location from flat tree
879  * @node: reference to node containing initrd location ('chosen')
880  */
early_init_dt_check_for_initrd(unsigned long node)881 static void __init early_init_dt_check_for_initrd(unsigned long node)
882 {
883 	u64 start, end;
884 	int len;
885 	const __be32 *prop;
886 
887 	pr_debug("Looking for initrd properties... ");
888 
889 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
890 	if (!prop)
891 		return;
892 	start = of_read_number(prop, len/4);
893 
894 	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
895 	if (!prop)
896 		return;
897 	end = of_read_number(prop, len/4);
898 
899 	__early_init_dt_declare_initrd(start, end);
900 	phys_initrd_start = start;
901 	phys_initrd_size = end - start;
902 
903 	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n",
904 		 (unsigned long long)start, (unsigned long long)end);
905 }
906 #else
early_init_dt_check_for_initrd(unsigned long node)907 static inline void early_init_dt_check_for_initrd(unsigned long node)
908 {
909 }
910 #endif /* CONFIG_BLK_DEV_INITRD */
911 
912 #ifdef CONFIG_SERIAL_EARLYCON
913 
early_init_dt_scan_chosen_stdout(void)914 int __init early_init_dt_scan_chosen_stdout(void)
915 {
916 	int offset;
917 	const char *p, *q, *options = NULL;
918 	int l;
919 	const struct earlycon_id *match;
920 	const void *fdt = initial_boot_params;
921 
922 	offset = fdt_path_offset(fdt, "/chosen");
923 	if (offset < 0)
924 		offset = fdt_path_offset(fdt, "/chosen@0");
925 	if (offset < 0)
926 		return -ENOENT;
927 
928 	p = fdt_getprop(fdt, offset, "stdout-path", &l);
929 	if (!p)
930 		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
931 	if (!p || !l)
932 		return -ENOENT;
933 
934 	q = strchrnul(p, ':');
935 	if (*q != '\0')
936 		options = q + 1;
937 	l = q - p;
938 
939 	/* Get the node specified by stdout-path */
940 	offset = fdt_path_offset_namelen(fdt, p, l);
941 	if (offset < 0) {
942 		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
943 		return 0;
944 	}
945 
946 	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
947 		if (!match->compatible[0])
948 			continue;
949 
950 		if (fdt_node_check_compatible(fdt, offset, match->compatible))
951 			continue;
952 
953 		if (of_setup_earlycon(match, offset, options) == 0)
954 			return 0;
955 	}
956 	return -ENODEV;
957 }
958 #endif
959 
960 /*
961  * early_init_dt_scan_root - fetch the top level address and size cells
962  */
early_init_dt_scan_root(unsigned long node,const char * uname,int depth,void * data)963 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
964 				   int depth, void *data)
965 {
966 	const __be32 *prop;
967 
968 	if (depth != 0)
969 		return 0;
970 
971 	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
972 	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
973 
974 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
975 	if (prop)
976 		dt_root_size_cells = be32_to_cpup(prop);
977 	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
978 
979 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
980 	if (prop)
981 		dt_root_addr_cells = be32_to_cpup(prop);
982 	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
983 
984 	/* break now */
985 	return 1;
986 }
987 
dt_mem_next_cell(int s,const __be32 ** cellp)988 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
989 {
990 	const __be32 *p = *cellp;
991 
992 	*cellp = p + s;
993 	return of_read_number(p, s);
994 }
995 
996 /*
997  * early_init_dt_scan_memory - Look for and parse memory nodes
998  */
early_init_dt_scan_memory(unsigned long node,const char * uname,int depth,void * data)999 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1000 				     int depth, void *data)
1001 {
1002 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1003 	const __be32 *reg, *endp;
1004 	int l;
1005 	bool hotpluggable;
1006 
1007 	/* We are scanning "memory" nodes only */
1008 	if (type == NULL || strcmp(type, "memory") != 0)
1009 		return 0;
1010 
1011 	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1012 	if (reg == NULL)
1013 		reg = of_get_flat_dt_prop(node, "reg", &l);
1014 	if (reg == NULL)
1015 		return 0;
1016 
1017 	endp = reg + (l / sizeof(__be32));
1018 	hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1019 
1020 	pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1021 
1022 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1023 		u64 base, size;
1024 
1025 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1026 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1027 
1028 		if (size == 0)
1029 			continue;
1030 		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
1031 		    (unsigned long long)size);
1032 
1033 		early_init_dt_add_memory_arch(base, size);
1034 
1035 		if (!hotpluggable)
1036 			continue;
1037 
1038 		if (early_init_dt_mark_hotplug_memory_arch(base, size))
1039 			pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1040 				base, base + size);
1041 	}
1042 
1043 	return 0;
1044 }
1045 
early_init_dt_scan_chosen(unsigned long node,const char * uname,int depth,void * data)1046 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1047 				     int depth, void *data)
1048 {
1049 	int l;
1050 	const char *p;
1051 	const void *rng_seed;
1052 
1053 	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1054 
1055 	if (depth != 1 || !data ||
1056 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1057 		return 0;
1058 
1059 	early_init_dt_check_for_initrd(node);
1060 
1061 	/* Retrieve command line */
1062 	p = of_get_flat_dt_prop(node, "bootargs", &l);
1063 	if (p != NULL && l > 0)
1064 		strlcpy(data, p, min(l, COMMAND_LINE_SIZE));
1065 
1066 	/*
1067 	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1068 	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1069 	 * is set in which case we override whatever was found earlier.
1070 	 */
1071 #ifdef CONFIG_CMDLINE
1072 #if defined(CONFIG_CMDLINE_EXTEND)
1073 	strlcat(data, " ", COMMAND_LINE_SIZE);
1074 	strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1075 #elif defined(CONFIG_CMDLINE_FORCE)
1076 	strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1077 #else
1078 	/* No arguments from boot loader, use kernel's  cmdl*/
1079 	if (!((char *)data)[0])
1080 		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1081 #endif
1082 #endif /* CONFIG_CMDLINE */
1083 
1084 	pr_debug("Command line is: %s\n", (char *)data);
1085 
1086 	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1087 	if (rng_seed && l > 0) {
1088 		add_bootloader_randomness(rng_seed, l);
1089 
1090 		/* try to clear seed so it won't be found. */
1091 		fdt_nop_property(initial_boot_params, node, "rng-seed");
1092 
1093 		/* update CRC check value */
1094 		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1095 				fdt_totalsize(initial_boot_params));
1096 	}
1097 
1098 	/* break now */
1099 	return 1;
1100 }
1101 
1102 #ifndef MIN_MEMBLOCK_ADDR
1103 #define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1104 #endif
1105 #ifndef MAX_MEMBLOCK_ADDR
1106 #define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1107 #endif
1108 
early_init_dt_add_memory_arch(u64 base,u64 size)1109 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1110 {
1111 	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1112 
1113 	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1114 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1115 			base, base + size);
1116 		return;
1117 	}
1118 
1119 	if (!PAGE_ALIGNED(base)) {
1120 		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1121 		base = PAGE_ALIGN(base);
1122 	}
1123 	size &= PAGE_MASK;
1124 
1125 	if (base > MAX_MEMBLOCK_ADDR) {
1126 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1127 			base, base + size);
1128 		return;
1129 	}
1130 
1131 	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1132 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1133 			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1134 		size = MAX_MEMBLOCK_ADDR - base + 1;
1135 	}
1136 
1137 	if (base + size < phys_offset) {
1138 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1139 			base, base + size);
1140 		return;
1141 	}
1142 	if (base < phys_offset) {
1143 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1144 			base, phys_offset);
1145 		size -= phys_offset - base;
1146 		base = phys_offset;
1147 	}
1148 	memblock_add(base, size);
1149 }
1150 
early_init_dt_mark_hotplug_memory_arch(u64 base,u64 size)1151 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1152 {
1153 	return memblock_mark_hotplug(base, size);
1154 }
1155 
early_init_dt_reserve_memory_arch(phys_addr_t base,phys_addr_t size,bool nomap)1156 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1157 					phys_addr_t size, bool nomap)
1158 {
1159 	if (nomap) {
1160 		/*
1161 		 * If the memory is already reserved (by another region), we
1162 		 * should not allow it to be marked nomap.
1163 		 */
1164 		if (memblock_is_region_reserved(base, size))
1165 			return -EBUSY;
1166 
1167 		return memblock_mark_nomap(base, size);
1168 	}
1169 	return memblock_reserve(base, size);
1170 }
1171 
early_init_dt_alloc_memory_arch(u64 size,u64 align)1172 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1173 {
1174 	void *ptr = memblock_alloc(size, align);
1175 
1176 	if (!ptr)
1177 		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1178 		      __func__, size, align);
1179 
1180 	return ptr;
1181 }
1182 
early_init_dt_verify(void * params)1183 bool __init early_init_dt_verify(void *params)
1184 {
1185 	if (!params)
1186 		return false;
1187 
1188 	/* check device tree validity */
1189 	if (fdt_check_header(params))
1190 		return false;
1191 
1192 	/* Setup flat device-tree pointer */
1193 	initial_boot_params = params;
1194 	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1195 				fdt_totalsize(initial_boot_params));
1196 	return true;
1197 }
1198 
1199 
early_init_dt_scan_nodes(void)1200 void __init early_init_dt_scan_nodes(void)
1201 {
1202 	int rc = 0;
1203 
1204 	/* Retrieve various information from the /chosen node */
1205 	rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1206 	if (!rc)
1207 		pr_warn("No chosen node found, continuing without\n");
1208 
1209 	/* Initialize {size,address}-cells info */
1210 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1211 
1212 	/* Setup memory, calling early_init_dt_add_memory_arch */
1213 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1214 }
1215 
early_init_dt_scan(void * params)1216 bool __init early_init_dt_scan(void *params)
1217 {
1218 	bool status;
1219 
1220 	status = early_init_dt_verify(params);
1221 	if (!status)
1222 		return false;
1223 
1224 	early_init_dt_scan_nodes();
1225 	return true;
1226 }
1227 
1228 /**
1229  * unflatten_device_tree - create tree of device_nodes from flat blob
1230  *
1231  * unflattens the device-tree passed by the firmware, creating the
1232  * tree of struct device_node. It also fills the "name" and "type"
1233  * pointers of the nodes so the normal device-tree walking functions
1234  * can be used.
1235  */
unflatten_device_tree(void)1236 void __init unflatten_device_tree(void)
1237 {
1238 	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1239 				early_init_dt_alloc_memory_arch, false);
1240 
1241 	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1242 	of_alias_scan(early_init_dt_alloc_memory_arch);
1243 
1244 	unittest_unflatten_overlay_base();
1245 }
1246 
1247 /**
1248  * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1249  *
1250  * Copies and unflattens the device-tree passed by the firmware, creating the
1251  * tree of struct device_node. It also fills the "name" and "type"
1252  * pointers of the nodes so the normal device-tree walking functions
1253  * can be used. This should only be used when the FDT memory has not been
1254  * reserved such is the case when the FDT is built-in to the kernel init
1255  * section. If the FDT memory is reserved already then unflatten_device_tree
1256  * should be used instead.
1257  */
unflatten_and_copy_device_tree(void)1258 void __init unflatten_and_copy_device_tree(void)
1259 {
1260 	int size;
1261 	void *dt;
1262 
1263 	if (!initial_boot_params) {
1264 		pr_warn("No valid device tree found, continuing without\n");
1265 		return;
1266 	}
1267 
1268 	size = fdt_totalsize(initial_boot_params);
1269 	dt = early_init_dt_alloc_memory_arch(size,
1270 					     roundup_pow_of_two(FDT_V17_SIZE));
1271 
1272 	if (dt) {
1273 		memcpy(dt, initial_boot_params, size);
1274 		initial_boot_params = dt;
1275 	}
1276 	unflatten_device_tree();
1277 }
1278 
1279 #ifdef CONFIG_SYSFS
of_fdt_raw_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)1280 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1281 			       struct bin_attribute *bin_attr,
1282 			       char *buf, loff_t off, size_t count)
1283 {
1284 	memcpy(buf, initial_boot_params + off, count);
1285 	return count;
1286 }
1287 
of_fdt_raw_init(void)1288 static int __init of_fdt_raw_init(void)
1289 {
1290 	static struct bin_attribute of_fdt_raw_attr =
1291 		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1292 
1293 	if (!initial_boot_params)
1294 		return 0;
1295 
1296 	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1297 				     fdt_totalsize(initial_boot_params))) {
1298 		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1299 		return 0;
1300 	}
1301 	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1302 	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1303 }
1304 late_initcall(of_fdt_raw_init);
1305 #endif
1306 
1307 #endif /* CONFIG_OF_EARLY_FLATTREE */
1308