1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2014 Facebook.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/stacktrace.h>
8 #include "ctree.h"
9 #include "disk-io.h"
10 #include "locking.h"
11 #include "delayed-ref.h"
12 #include "ref-verify.h"
13 
14 /*
15  * Used to keep track the roots and number of refs each root has for a given
16  * bytenr.  This just tracks the number of direct references, no shared
17  * references.
18  */
19 struct root_entry {
20 	u64 root_objectid;
21 	u64 num_refs;
22 	struct rb_node node;
23 };
24 
25 /*
26  * These are meant to represent what should exist in the extent tree, these can
27  * be used to verify the extent tree is consistent as these should all match
28  * what the extent tree says.
29  */
30 struct ref_entry {
31 	u64 root_objectid;
32 	u64 parent;
33 	u64 owner;
34 	u64 offset;
35 	u64 num_refs;
36 	struct rb_node node;
37 };
38 
39 #define MAX_TRACE	16
40 
41 /*
42  * Whenever we add/remove a reference we record the action.  The action maps
43  * back to the delayed ref action.  We hold the ref we are changing in the
44  * action so we can account for the history properly, and we record the root we
45  * were called with since it could be different from ref_root.  We also store
46  * stack traces because that's how I roll.
47  */
48 struct ref_action {
49 	int action;
50 	u64 root;
51 	struct ref_entry ref;
52 	struct list_head list;
53 	unsigned long trace[MAX_TRACE];
54 	unsigned int trace_len;
55 };
56 
57 /*
58  * One of these for every block we reference, it holds the roots and references
59  * to it as well as all of the ref actions that have occurred to it.  We never
60  * free it until we unmount the file system in order to make sure re-allocations
61  * are happening properly.
62  */
63 struct block_entry {
64 	u64 bytenr;
65 	u64 len;
66 	u64 num_refs;
67 	int metadata;
68 	int from_disk;
69 	struct rb_root roots;
70 	struct rb_root refs;
71 	struct rb_node node;
72 	struct list_head actions;
73 };
74 
insert_block_entry(struct rb_root * root,struct block_entry * be)75 static struct block_entry *insert_block_entry(struct rb_root *root,
76 					      struct block_entry *be)
77 {
78 	struct rb_node **p = &root->rb_node;
79 	struct rb_node *parent_node = NULL;
80 	struct block_entry *entry;
81 
82 	while (*p) {
83 		parent_node = *p;
84 		entry = rb_entry(parent_node, struct block_entry, node);
85 		if (entry->bytenr > be->bytenr)
86 			p = &(*p)->rb_left;
87 		else if (entry->bytenr < be->bytenr)
88 			p = &(*p)->rb_right;
89 		else
90 			return entry;
91 	}
92 
93 	rb_link_node(&be->node, parent_node, p);
94 	rb_insert_color(&be->node, root);
95 	return NULL;
96 }
97 
lookup_block_entry(struct rb_root * root,u64 bytenr)98 static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
99 {
100 	struct rb_node *n;
101 	struct block_entry *entry = NULL;
102 
103 	n = root->rb_node;
104 	while (n) {
105 		entry = rb_entry(n, struct block_entry, node);
106 		if (entry->bytenr < bytenr)
107 			n = n->rb_right;
108 		else if (entry->bytenr > bytenr)
109 			n = n->rb_left;
110 		else
111 			return entry;
112 	}
113 	return NULL;
114 }
115 
insert_root_entry(struct rb_root * root,struct root_entry * re)116 static struct root_entry *insert_root_entry(struct rb_root *root,
117 					    struct root_entry *re)
118 {
119 	struct rb_node **p = &root->rb_node;
120 	struct rb_node *parent_node = NULL;
121 	struct root_entry *entry;
122 
123 	while (*p) {
124 		parent_node = *p;
125 		entry = rb_entry(parent_node, struct root_entry, node);
126 		if (entry->root_objectid > re->root_objectid)
127 			p = &(*p)->rb_left;
128 		else if (entry->root_objectid < re->root_objectid)
129 			p = &(*p)->rb_right;
130 		else
131 			return entry;
132 	}
133 
134 	rb_link_node(&re->node, parent_node, p);
135 	rb_insert_color(&re->node, root);
136 	return NULL;
137 
138 }
139 
comp_refs(struct ref_entry * ref1,struct ref_entry * ref2)140 static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
141 {
142 	if (ref1->root_objectid < ref2->root_objectid)
143 		return -1;
144 	if (ref1->root_objectid > ref2->root_objectid)
145 		return 1;
146 	if (ref1->parent < ref2->parent)
147 		return -1;
148 	if (ref1->parent > ref2->parent)
149 		return 1;
150 	if (ref1->owner < ref2->owner)
151 		return -1;
152 	if (ref1->owner > ref2->owner)
153 		return 1;
154 	if (ref1->offset < ref2->offset)
155 		return -1;
156 	if (ref1->offset > ref2->offset)
157 		return 1;
158 	return 0;
159 }
160 
insert_ref_entry(struct rb_root * root,struct ref_entry * ref)161 static struct ref_entry *insert_ref_entry(struct rb_root *root,
162 					  struct ref_entry *ref)
163 {
164 	struct rb_node **p = &root->rb_node;
165 	struct rb_node *parent_node = NULL;
166 	struct ref_entry *entry;
167 	int cmp;
168 
169 	while (*p) {
170 		parent_node = *p;
171 		entry = rb_entry(parent_node, struct ref_entry, node);
172 		cmp = comp_refs(entry, ref);
173 		if (cmp > 0)
174 			p = &(*p)->rb_left;
175 		else if (cmp < 0)
176 			p = &(*p)->rb_right;
177 		else
178 			return entry;
179 	}
180 
181 	rb_link_node(&ref->node, parent_node, p);
182 	rb_insert_color(&ref->node, root);
183 	return NULL;
184 
185 }
186 
lookup_root_entry(struct rb_root * root,u64 objectid)187 static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
188 {
189 	struct rb_node *n;
190 	struct root_entry *entry = NULL;
191 
192 	n = root->rb_node;
193 	while (n) {
194 		entry = rb_entry(n, struct root_entry, node);
195 		if (entry->root_objectid < objectid)
196 			n = n->rb_right;
197 		else if (entry->root_objectid > objectid)
198 			n = n->rb_left;
199 		else
200 			return entry;
201 	}
202 	return NULL;
203 }
204 
205 #ifdef CONFIG_STACKTRACE
__save_stack_trace(struct ref_action * ra)206 static void __save_stack_trace(struct ref_action *ra)
207 {
208 	ra->trace_len = stack_trace_save(ra->trace, MAX_TRACE, 2);
209 }
210 
__print_stack_trace(struct btrfs_fs_info * fs_info,struct ref_action * ra)211 static void __print_stack_trace(struct btrfs_fs_info *fs_info,
212 				struct ref_action *ra)
213 {
214 	if (ra->trace_len == 0) {
215 		btrfs_err(fs_info, "  ref-verify: no stacktrace");
216 		return;
217 	}
218 	stack_trace_print(ra->trace, ra->trace_len, 2);
219 }
220 #else
__save_stack_trace(struct ref_action * ra)221 static inline void __save_stack_trace(struct ref_action *ra)
222 {
223 }
224 
__print_stack_trace(struct btrfs_fs_info * fs_info,struct ref_action * ra)225 static inline void __print_stack_trace(struct btrfs_fs_info *fs_info,
226 				       struct ref_action *ra)
227 {
228 	btrfs_err(fs_info, "  ref-verify: no stacktrace support");
229 }
230 #endif
231 
free_block_entry(struct block_entry * be)232 static void free_block_entry(struct block_entry *be)
233 {
234 	struct root_entry *re;
235 	struct ref_entry *ref;
236 	struct ref_action *ra;
237 	struct rb_node *n;
238 
239 	while ((n = rb_first(&be->roots))) {
240 		re = rb_entry(n, struct root_entry, node);
241 		rb_erase(&re->node, &be->roots);
242 		kfree(re);
243 	}
244 
245 	while((n = rb_first(&be->refs))) {
246 		ref = rb_entry(n, struct ref_entry, node);
247 		rb_erase(&ref->node, &be->refs);
248 		kfree(ref);
249 	}
250 
251 	while (!list_empty(&be->actions)) {
252 		ra = list_first_entry(&be->actions, struct ref_action,
253 				      list);
254 		list_del(&ra->list);
255 		kfree(ra);
256 	}
257 	kfree(be);
258 }
259 
add_block_entry(struct btrfs_fs_info * fs_info,u64 bytenr,u64 len,u64 root_objectid)260 static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
261 					   u64 bytenr, u64 len,
262 					   u64 root_objectid)
263 {
264 	struct block_entry *be = NULL, *exist;
265 	struct root_entry *re = NULL;
266 
267 	re = kzalloc(sizeof(struct root_entry), GFP_KERNEL);
268 	be = kzalloc(sizeof(struct block_entry), GFP_KERNEL);
269 	if (!be || !re) {
270 		kfree(re);
271 		kfree(be);
272 		return ERR_PTR(-ENOMEM);
273 	}
274 	be->bytenr = bytenr;
275 	be->len = len;
276 
277 	re->root_objectid = root_objectid;
278 	re->num_refs = 0;
279 
280 	spin_lock(&fs_info->ref_verify_lock);
281 	exist = insert_block_entry(&fs_info->block_tree, be);
282 	if (exist) {
283 		if (root_objectid) {
284 			struct root_entry *exist_re;
285 
286 			exist_re = insert_root_entry(&exist->roots, re);
287 			if (exist_re)
288 				kfree(re);
289 		} else {
290 			kfree(re);
291 		}
292 		kfree(be);
293 		return exist;
294 	}
295 
296 	be->num_refs = 0;
297 	be->metadata = 0;
298 	be->from_disk = 0;
299 	be->roots = RB_ROOT;
300 	be->refs = RB_ROOT;
301 	INIT_LIST_HEAD(&be->actions);
302 	if (root_objectid)
303 		insert_root_entry(&be->roots, re);
304 	else
305 		kfree(re);
306 	return be;
307 }
308 
add_tree_block(struct btrfs_fs_info * fs_info,u64 ref_root,u64 parent,u64 bytenr,int level)309 static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
310 			  u64 parent, u64 bytenr, int level)
311 {
312 	struct block_entry *be;
313 	struct root_entry *re;
314 	struct ref_entry *ref = NULL, *exist;
315 
316 	ref = kmalloc(sizeof(struct ref_entry), GFP_KERNEL);
317 	if (!ref)
318 		return -ENOMEM;
319 
320 	if (parent)
321 		ref->root_objectid = 0;
322 	else
323 		ref->root_objectid = ref_root;
324 	ref->parent = parent;
325 	ref->owner = level;
326 	ref->offset = 0;
327 	ref->num_refs = 1;
328 
329 	be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
330 	if (IS_ERR(be)) {
331 		kfree(ref);
332 		return PTR_ERR(be);
333 	}
334 	be->num_refs++;
335 	be->from_disk = 1;
336 	be->metadata = 1;
337 
338 	if (!parent) {
339 		ASSERT(ref_root);
340 		re = lookup_root_entry(&be->roots, ref_root);
341 		ASSERT(re);
342 		re->num_refs++;
343 	}
344 	exist = insert_ref_entry(&be->refs, ref);
345 	if (exist) {
346 		exist->num_refs++;
347 		kfree(ref);
348 	}
349 	spin_unlock(&fs_info->ref_verify_lock);
350 
351 	return 0;
352 }
353 
add_shared_data_ref(struct btrfs_fs_info * fs_info,u64 parent,u32 num_refs,u64 bytenr,u64 num_bytes)354 static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
355 			       u64 parent, u32 num_refs, u64 bytenr,
356 			       u64 num_bytes)
357 {
358 	struct block_entry *be;
359 	struct ref_entry *ref;
360 
361 	ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
362 	if (!ref)
363 		return -ENOMEM;
364 	be = add_block_entry(fs_info, bytenr, num_bytes, 0);
365 	if (IS_ERR(be)) {
366 		kfree(ref);
367 		return PTR_ERR(be);
368 	}
369 	be->num_refs += num_refs;
370 
371 	ref->parent = parent;
372 	ref->num_refs = num_refs;
373 	if (insert_ref_entry(&be->refs, ref)) {
374 		spin_unlock(&fs_info->ref_verify_lock);
375 		btrfs_err(fs_info, "existing shared ref when reading from disk?");
376 		kfree(ref);
377 		return -EINVAL;
378 	}
379 	spin_unlock(&fs_info->ref_verify_lock);
380 	return 0;
381 }
382 
add_extent_data_ref(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,struct btrfs_extent_data_ref * dref,u64 bytenr,u64 num_bytes)383 static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
384 			       struct extent_buffer *leaf,
385 			       struct btrfs_extent_data_ref *dref,
386 			       u64 bytenr, u64 num_bytes)
387 {
388 	struct block_entry *be;
389 	struct ref_entry *ref;
390 	struct root_entry *re;
391 	u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
392 	u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
393 	u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
394 	u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);
395 
396 	ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
397 	if (!ref)
398 		return -ENOMEM;
399 	be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
400 	if (IS_ERR(be)) {
401 		kfree(ref);
402 		return PTR_ERR(be);
403 	}
404 	be->num_refs += num_refs;
405 
406 	ref->parent = 0;
407 	ref->owner = owner;
408 	ref->root_objectid = ref_root;
409 	ref->offset = offset;
410 	ref->num_refs = num_refs;
411 	if (insert_ref_entry(&be->refs, ref)) {
412 		spin_unlock(&fs_info->ref_verify_lock);
413 		btrfs_err(fs_info, "existing ref when reading from disk?");
414 		kfree(ref);
415 		return -EINVAL;
416 	}
417 
418 	re = lookup_root_entry(&be->roots, ref_root);
419 	if (!re) {
420 		spin_unlock(&fs_info->ref_verify_lock);
421 		btrfs_err(fs_info, "missing root in new block entry?");
422 		return -EINVAL;
423 	}
424 	re->num_refs += num_refs;
425 	spin_unlock(&fs_info->ref_verify_lock);
426 	return 0;
427 }
428 
process_extent_item(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key,int slot,int * tree_block_level)429 static int process_extent_item(struct btrfs_fs_info *fs_info,
430 			       struct btrfs_path *path, struct btrfs_key *key,
431 			       int slot, int *tree_block_level)
432 {
433 	struct btrfs_extent_item *ei;
434 	struct btrfs_extent_inline_ref *iref;
435 	struct btrfs_extent_data_ref *dref;
436 	struct btrfs_shared_data_ref *sref;
437 	struct extent_buffer *leaf = path->nodes[0];
438 	u32 item_size = btrfs_item_size_nr(leaf, slot);
439 	unsigned long end, ptr;
440 	u64 offset, flags, count;
441 	int type, ret;
442 
443 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
444 	flags = btrfs_extent_flags(leaf, ei);
445 
446 	if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
447 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
448 		struct btrfs_tree_block_info *info;
449 
450 		info = (struct btrfs_tree_block_info *)(ei + 1);
451 		*tree_block_level = btrfs_tree_block_level(leaf, info);
452 		iref = (struct btrfs_extent_inline_ref *)(info + 1);
453 	} else {
454 		if (key->type == BTRFS_METADATA_ITEM_KEY)
455 			*tree_block_level = key->offset;
456 		iref = (struct btrfs_extent_inline_ref *)(ei + 1);
457 	}
458 
459 	ptr = (unsigned long)iref;
460 	end = (unsigned long)ei + item_size;
461 	while (ptr < end) {
462 		iref = (struct btrfs_extent_inline_ref *)ptr;
463 		type = btrfs_extent_inline_ref_type(leaf, iref);
464 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
465 		switch (type) {
466 		case BTRFS_TREE_BLOCK_REF_KEY:
467 			ret = add_tree_block(fs_info, offset, 0, key->objectid,
468 					     *tree_block_level);
469 			break;
470 		case BTRFS_SHARED_BLOCK_REF_KEY:
471 			ret = add_tree_block(fs_info, 0, offset, key->objectid,
472 					     *tree_block_level);
473 			break;
474 		case BTRFS_EXTENT_DATA_REF_KEY:
475 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
476 			ret = add_extent_data_ref(fs_info, leaf, dref,
477 						  key->objectid, key->offset);
478 			break;
479 		case BTRFS_SHARED_DATA_REF_KEY:
480 			sref = (struct btrfs_shared_data_ref *)(iref + 1);
481 			count = btrfs_shared_data_ref_count(leaf, sref);
482 			ret = add_shared_data_ref(fs_info, offset, count,
483 						  key->objectid, key->offset);
484 			break;
485 		default:
486 			btrfs_err(fs_info, "invalid key type in iref");
487 			ret = -EINVAL;
488 			break;
489 		}
490 		if (ret)
491 			break;
492 		ptr += btrfs_extent_inline_ref_size(type);
493 	}
494 	return ret;
495 }
496 
process_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 * bytenr,u64 * num_bytes,int * tree_block_level)497 static int process_leaf(struct btrfs_root *root,
498 			struct btrfs_path *path, u64 *bytenr, u64 *num_bytes,
499 			int *tree_block_level)
500 {
501 	struct btrfs_fs_info *fs_info = root->fs_info;
502 	struct extent_buffer *leaf = path->nodes[0];
503 	struct btrfs_extent_data_ref *dref;
504 	struct btrfs_shared_data_ref *sref;
505 	u32 count;
506 	int i = 0, ret = 0;
507 	struct btrfs_key key;
508 	int nritems = btrfs_header_nritems(leaf);
509 
510 	for (i = 0; i < nritems; i++) {
511 		btrfs_item_key_to_cpu(leaf, &key, i);
512 		switch (key.type) {
513 		case BTRFS_EXTENT_ITEM_KEY:
514 			*num_bytes = key.offset;
515 			fallthrough;
516 		case BTRFS_METADATA_ITEM_KEY:
517 			*bytenr = key.objectid;
518 			ret = process_extent_item(fs_info, path, &key, i,
519 						  tree_block_level);
520 			break;
521 		case BTRFS_TREE_BLOCK_REF_KEY:
522 			ret = add_tree_block(fs_info, key.offset, 0,
523 					     key.objectid, *tree_block_level);
524 			break;
525 		case BTRFS_SHARED_BLOCK_REF_KEY:
526 			ret = add_tree_block(fs_info, 0, key.offset,
527 					     key.objectid, *tree_block_level);
528 			break;
529 		case BTRFS_EXTENT_DATA_REF_KEY:
530 			dref = btrfs_item_ptr(leaf, i,
531 					      struct btrfs_extent_data_ref);
532 			ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
533 						  *num_bytes);
534 			break;
535 		case BTRFS_SHARED_DATA_REF_KEY:
536 			sref = btrfs_item_ptr(leaf, i,
537 					      struct btrfs_shared_data_ref);
538 			count = btrfs_shared_data_ref_count(leaf, sref);
539 			ret = add_shared_data_ref(fs_info, key.offset, count,
540 						  *bytenr, *num_bytes);
541 			break;
542 		default:
543 			break;
544 		}
545 		if (ret)
546 			break;
547 	}
548 	return ret;
549 }
550 
551 /* Walk down to the leaf from the given level */
walk_down_tree(struct btrfs_root * root,struct btrfs_path * path,int level,u64 * bytenr,u64 * num_bytes,int * tree_block_level)552 static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
553 			  int level, u64 *bytenr, u64 *num_bytes,
554 			  int *tree_block_level)
555 {
556 	struct extent_buffer *eb;
557 	int ret = 0;
558 
559 	while (level >= 0) {
560 		if (level) {
561 			eb = btrfs_read_node_slot(path->nodes[level],
562 						  path->slots[level]);
563 			if (IS_ERR(eb))
564 				return PTR_ERR(eb);
565 			btrfs_tree_read_lock(eb);
566 			path->nodes[level-1] = eb;
567 			path->slots[level-1] = 0;
568 			path->locks[level-1] = BTRFS_READ_LOCK;
569 		} else {
570 			ret = process_leaf(root, path, bytenr, num_bytes,
571 					   tree_block_level);
572 			if (ret)
573 				break;
574 		}
575 		level--;
576 	}
577 	return ret;
578 }
579 
580 /* Walk up to the next node that needs to be processed */
walk_up_tree(struct btrfs_path * path,int * level)581 static int walk_up_tree(struct btrfs_path *path, int *level)
582 {
583 	int l;
584 
585 	for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
586 		if (!path->nodes[l])
587 			continue;
588 		if (l) {
589 			path->slots[l]++;
590 			if (path->slots[l] <
591 			    btrfs_header_nritems(path->nodes[l])) {
592 				*level = l;
593 				return 0;
594 			}
595 		}
596 		btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
597 		free_extent_buffer(path->nodes[l]);
598 		path->nodes[l] = NULL;
599 		path->slots[l] = 0;
600 		path->locks[l] = 0;
601 	}
602 
603 	return 1;
604 }
605 
dump_ref_action(struct btrfs_fs_info * fs_info,struct ref_action * ra)606 static void dump_ref_action(struct btrfs_fs_info *fs_info,
607 			    struct ref_action *ra)
608 {
609 	btrfs_err(fs_info,
610 "  Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
611 		  ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
612 		  ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
613 	__print_stack_trace(fs_info, ra);
614 }
615 
616 /*
617  * Dumps all the information from the block entry to printk, it's going to be
618  * awesome.
619  */
dump_block_entry(struct btrfs_fs_info * fs_info,struct block_entry * be)620 static void dump_block_entry(struct btrfs_fs_info *fs_info,
621 			     struct block_entry *be)
622 {
623 	struct ref_entry *ref;
624 	struct root_entry *re;
625 	struct ref_action *ra;
626 	struct rb_node *n;
627 
628 	btrfs_err(fs_info,
629 "dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
630 		  be->bytenr, be->len, be->num_refs, be->metadata,
631 		  be->from_disk);
632 
633 	for (n = rb_first(&be->refs); n; n = rb_next(n)) {
634 		ref = rb_entry(n, struct ref_entry, node);
635 		btrfs_err(fs_info,
636 "  ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
637 			  ref->root_objectid, ref->parent, ref->owner,
638 			  ref->offset, ref->num_refs);
639 	}
640 
641 	for (n = rb_first(&be->roots); n; n = rb_next(n)) {
642 		re = rb_entry(n, struct root_entry, node);
643 		btrfs_err(fs_info, "  root entry %llu, num_refs %llu",
644 			  re->root_objectid, re->num_refs);
645 	}
646 
647 	list_for_each_entry(ra, &be->actions, list)
648 		dump_ref_action(fs_info, ra);
649 }
650 
651 /*
652  * btrfs_ref_tree_mod: called when we modify a ref for a bytenr
653  *
654  * This will add an action item to the given bytenr and do sanity checks to make
655  * sure we haven't messed something up.  If we are making a new allocation and
656  * this block entry has history we will delete all previous actions as long as
657  * our sanity checks pass as they are no longer needed.
658  */
btrfs_ref_tree_mod(struct btrfs_fs_info * fs_info,struct btrfs_ref * generic_ref)659 int btrfs_ref_tree_mod(struct btrfs_fs_info *fs_info,
660 		       struct btrfs_ref *generic_ref)
661 {
662 	struct ref_entry *ref = NULL, *exist;
663 	struct ref_action *ra = NULL;
664 	struct block_entry *be = NULL;
665 	struct root_entry *re = NULL;
666 	int action = generic_ref->action;
667 	int ret = 0;
668 	bool metadata;
669 	u64 bytenr = generic_ref->bytenr;
670 	u64 num_bytes = generic_ref->len;
671 	u64 parent = generic_ref->parent;
672 	u64 ref_root = 0;
673 	u64 owner = 0;
674 	u64 offset = 0;
675 
676 	if (!btrfs_test_opt(fs_info, REF_VERIFY))
677 		return 0;
678 
679 	if (generic_ref->type == BTRFS_REF_METADATA) {
680 		if (!parent)
681 			ref_root = generic_ref->tree_ref.root;
682 		owner = generic_ref->tree_ref.level;
683 	} else if (!parent) {
684 		ref_root = generic_ref->data_ref.ref_root;
685 		owner = generic_ref->data_ref.ino;
686 		offset = generic_ref->data_ref.offset;
687 	}
688 	metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
689 
690 	ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
691 	ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
692 	if (!ra || !ref) {
693 		kfree(ref);
694 		kfree(ra);
695 		ret = -ENOMEM;
696 		goto out;
697 	}
698 
699 	ref->parent = parent;
700 	ref->owner = owner;
701 	ref->root_objectid = ref_root;
702 	ref->offset = offset;
703 	ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;
704 
705 	memcpy(&ra->ref, ref, sizeof(struct ref_entry));
706 	/*
707 	 * Save the extra info from the delayed ref in the ref action to make it
708 	 * easier to figure out what is happening.  The real ref's we add to the
709 	 * ref tree need to reflect what we save on disk so it matches any
710 	 * on-disk refs we pre-loaded.
711 	 */
712 	ra->ref.owner = owner;
713 	ra->ref.offset = offset;
714 	ra->ref.root_objectid = ref_root;
715 	__save_stack_trace(ra);
716 
717 	INIT_LIST_HEAD(&ra->list);
718 	ra->action = action;
719 	ra->root = generic_ref->real_root;
720 
721 	/*
722 	 * This is an allocation, preallocate the block_entry in case we haven't
723 	 * used it before.
724 	 */
725 	ret = -EINVAL;
726 	if (action == BTRFS_ADD_DELAYED_EXTENT) {
727 		/*
728 		 * For subvol_create we'll just pass in whatever the parent root
729 		 * is and the new root objectid, so let's not treat the passed
730 		 * in root as if it really has a ref for this bytenr.
731 		 */
732 		be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
733 		if (IS_ERR(be)) {
734 			kfree(ref);
735 			kfree(ra);
736 			ret = PTR_ERR(be);
737 			goto out;
738 		}
739 		be->num_refs++;
740 		if (metadata)
741 			be->metadata = 1;
742 
743 		if (be->num_refs != 1) {
744 			btrfs_err(fs_info,
745 			"re-allocated a block that still has references to it!");
746 			dump_block_entry(fs_info, be);
747 			dump_ref_action(fs_info, ra);
748 			kfree(ref);
749 			kfree(ra);
750 			goto out_unlock;
751 		}
752 
753 		while (!list_empty(&be->actions)) {
754 			struct ref_action *tmp;
755 
756 			tmp = list_first_entry(&be->actions, struct ref_action,
757 					       list);
758 			list_del(&tmp->list);
759 			kfree(tmp);
760 		}
761 	} else {
762 		struct root_entry *tmp;
763 
764 		if (!parent) {
765 			re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
766 			if (!re) {
767 				kfree(ref);
768 				kfree(ra);
769 				ret = -ENOMEM;
770 				goto out;
771 			}
772 			/*
773 			 * This is the root that is modifying us, so it's the
774 			 * one we want to lookup below when we modify the
775 			 * re->num_refs.
776 			 */
777 			ref_root = generic_ref->real_root;
778 			re->root_objectid = generic_ref->real_root;
779 			re->num_refs = 0;
780 		}
781 
782 		spin_lock(&fs_info->ref_verify_lock);
783 		be = lookup_block_entry(&fs_info->block_tree, bytenr);
784 		if (!be) {
785 			btrfs_err(fs_info,
786 "trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
787 				  action, bytenr, num_bytes);
788 			dump_ref_action(fs_info, ra);
789 			kfree(ref);
790 			kfree(ra);
791 			goto out_unlock;
792 		} else if (be->num_refs == 0) {
793 			btrfs_err(fs_info,
794 		"trying to do action %d for a bytenr that has 0 total references",
795 				action);
796 			dump_block_entry(fs_info, be);
797 			dump_ref_action(fs_info, ra);
798 			kfree(ref);
799 			kfree(ra);
800 			goto out_unlock;
801 		}
802 
803 		if (!parent) {
804 			tmp = insert_root_entry(&be->roots, re);
805 			if (tmp) {
806 				kfree(re);
807 				re = tmp;
808 			}
809 		}
810 	}
811 
812 	exist = insert_ref_entry(&be->refs, ref);
813 	if (exist) {
814 		if (action == BTRFS_DROP_DELAYED_REF) {
815 			if (exist->num_refs == 0) {
816 				btrfs_err(fs_info,
817 "dropping a ref for a existing root that doesn't have a ref on the block");
818 				dump_block_entry(fs_info, be);
819 				dump_ref_action(fs_info, ra);
820 				kfree(ref);
821 				kfree(ra);
822 				goto out_unlock;
823 			}
824 			exist->num_refs--;
825 			if (exist->num_refs == 0) {
826 				rb_erase(&exist->node, &be->refs);
827 				kfree(exist);
828 			}
829 		} else if (!be->metadata) {
830 			exist->num_refs++;
831 		} else {
832 			btrfs_err(fs_info,
833 "attempting to add another ref for an existing ref on a tree block");
834 			dump_block_entry(fs_info, be);
835 			dump_ref_action(fs_info, ra);
836 			kfree(ref);
837 			kfree(ra);
838 			goto out_unlock;
839 		}
840 		kfree(ref);
841 	} else {
842 		if (action == BTRFS_DROP_DELAYED_REF) {
843 			btrfs_err(fs_info,
844 "dropping a ref for a root that doesn't have a ref on the block");
845 			dump_block_entry(fs_info, be);
846 			dump_ref_action(fs_info, ra);
847 			kfree(ref);
848 			kfree(ra);
849 			goto out_unlock;
850 		}
851 	}
852 
853 	if (!parent && !re) {
854 		re = lookup_root_entry(&be->roots, ref_root);
855 		if (!re) {
856 			/*
857 			 * This shouldn't happen because we will add our re
858 			 * above when we lookup the be with !parent, but just in
859 			 * case catch this case so we don't panic because I
860 			 * didn't think of some other corner case.
861 			 */
862 			btrfs_err(fs_info, "failed to find root %llu for %llu",
863 				  generic_ref->real_root, be->bytenr);
864 			dump_block_entry(fs_info, be);
865 			dump_ref_action(fs_info, ra);
866 			kfree(ra);
867 			goto out_unlock;
868 		}
869 	}
870 	if (action == BTRFS_DROP_DELAYED_REF) {
871 		if (re)
872 			re->num_refs--;
873 		be->num_refs--;
874 	} else if (action == BTRFS_ADD_DELAYED_REF) {
875 		be->num_refs++;
876 		if (re)
877 			re->num_refs++;
878 	}
879 	list_add_tail(&ra->list, &be->actions);
880 	ret = 0;
881 out_unlock:
882 	spin_unlock(&fs_info->ref_verify_lock);
883 out:
884 	if (ret)
885 		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
886 	return ret;
887 }
888 
889 /* Free up the ref cache */
btrfs_free_ref_cache(struct btrfs_fs_info * fs_info)890 void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
891 {
892 	struct block_entry *be;
893 	struct rb_node *n;
894 
895 	if (!btrfs_test_opt(fs_info, REF_VERIFY))
896 		return;
897 
898 	spin_lock(&fs_info->ref_verify_lock);
899 	while ((n = rb_first(&fs_info->block_tree))) {
900 		be = rb_entry(n, struct block_entry, node);
901 		rb_erase(&be->node, &fs_info->block_tree);
902 		free_block_entry(be);
903 		cond_resched_lock(&fs_info->ref_verify_lock);
904 	}
905 	spin_unlock(&fs_info->ref_verify_lock);
906 }
907 
btrfs_free_ref_tree_range(struct btrfs_fs_info * fs_info,u64 start,u64 len)908 void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
909 			       u64 len)
910 {
911 	struct block_entry *be = NULL, *entry;
912 	struct rb_node *n;
913 
914 	if (!btrfs_test_opt(fs_info, REF_VERIFY))
915 		return;
916 
917 	spin_lock(&fs_info->ref_verify_lock);
918 	n = fs_info->block_tree.rb_node;
919 	while (n) {
920 		entry = rb_entry(n, struct block_entry, node);
921 		if (entry->bytenr < start) {
922 			n = n->rb_right;
923 		} else if (entry->bytenr > start) {
924 			n = n->rb_left;
925 		} else {
926 			be = entry;
927 			break;
928 		}
929 		/* We want to get as close to start as possible */
930 		if (be == NULL ||
931 		    (entry->bytenr < start && be->bytenr > start) ||
932 		    (entry->bytenr < start && entry->bytenr > be->bytenr))
933 			be = entry;
934 	}
935 
936 	/*
937 	 * Could have an empty block group, maybe have something to check for
938 	 * this case to verify we were actually empty?
939 	 */
940 	if (!be) {
941 		spin_unlock(&fs_info->ref_verify_lock);
942 		return;
943 	}
944 
945 	n = &be->node;
946 	while (n) {
947 		be = rb_entry(n, struct block_entry, node);
948 		n = rb_next(n);
949 		if (be->bytenr < start && be->bytenr + be->len > start) {
950 			btrfs_err(fs_info,
951 				"block entry overlaps a block group [%llu,%llu]!",
952 				start, len);
953 			dump_block_entry(fs_info, be);
954 			continue;
955 		}
956 		if (be->bytenr < start)
957 			continue;
958 		if (be->bytenr >= start + len)
959 			break;
960 		if (be->bytenr + be->len > start + len) {
961 			btrfs_err(fs_info,
962 				"block entry overlaps a block group [%llu,%llu]!",
963 				start, len);
964 			dump_block_entry(fs_info, be);
965 		}
966 		rb_erase(&be->node, &fs_info->block_tree);
967 		free_block_entry(be);
968 	}
969 	spin_unlock(&fs_info->ref_verify_lock);
970 }
971 
972 /* Walk down all roots and build the ref tree, meant to be called at mount */
btrfs_build_ref_tree(struct btrfs_fs_info * fs_info)973 int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
974 {
975 	struct btrfs_path *path;
976 	struct extent_buffer *eb;
977 	int tree_block_level = 0;
978 	u64 bytenr = 0, num_bytes = 0;
979 	int ret, level;
980 
981 	if (!btrfs_test_opt(fs_info, REF_VERIFY))
982 		return 0;
983 
984 	path = btrfs_alloc_path();
985 	if (!path)
986 		return -ENOMEM;
987 
988 	eb = btrfs_read_lock_root_node(fs_info->extent_root);
989 	level = btrfs_header_level(eb);
990 	path->nodes[level] = eb;
991 	path->slots[level] = 0;
992 	path->locks[level] = BTRFS_READ_LOCK;
993 
994 	while (1) {
995 		/*
996 		 * We have to keep track of the bytenr/num_bytes we last hit
997 		 * because we could have run out of space for an inline ref, and
998 		 * would have had to added a ref key item which may appear on a
999 		 * different leaf from the original extent item.
1000 		 */
1001 		ret = walk_down_tree(fs_info->extent_root, path, level,
1002 				     &bytenr, &num_bytes, &tree_block_level);
1003 		if (ret)
1004 			break;
1005 		ret = walk_up_tree(path, &level);
1006 		if (ret < 0)
1007 			break;
1008 		if (ret > 0) {
1009 			ret = 0;
1010 			break;
1011 		}
1012 	}
1013 	if (ret) {
1014 		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
1015 		btrfs_free_ref_cache(fs_info);
1016 	}
1017 	btrfs_free_path(path);
1018 	return ret;
1019 }
1020