1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <linux/minmax.h>
15 #include <linux/mm.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/preempt.h>
18 #include <linux/msi.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 #include <linux/rcupdate.h>
22 #include <linux/ratelimit.h>
23 #include <linux/err.h>
24 #include <linux/irqflags.h>
25 #include <linux/context_tracking.h>
26 #include <linux/irqbypass.h>
27 #include <linux/rcuwait.h>
28 #include <linux/refcount.h>
29 #include <linux/nospec.h>
30 #include <asm/signal.h>
31 
32 #include <linux/kvm.h>
33 #include <linux/kvm_para.h>
34 
35 #include <linux/kvm_types.h>
36 
37 #include <asm/kvm_host.h>
38 #include <linux/kvm_dirty_ring.h>
39 
40 #ifndef KVM_MAX_VCPU_ID
41 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
42 #endif
43 
44 /*
45  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
46  * in kvm, other bits are visible for userspace which are defined in
47  * include/linux/kvm_h.
48  */
49 #define KVM_MEMSLOT_INVALID	(1UL << 16)
50 
51 /*
52  * Bit 63 of the memslot generation number is an "update in-progress flag",
53  * e.g. is temporarily set for the duration of install_new_memslots().
54  * This flag effectively creates a unique generation number that is used to
55  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
56  * i.e. may (or may not) have come from the previous memslots generation.
57  *
58  * This is necessary because the actual memslots update is not atomic with
59  * respect to the generation number update.  Updating the generation number
60  * first would allow a vCPU to cache a spte from the old memslots using the
61  * new generation number, and updating the generation number after switching
62  * to the new memslots would allow cache hits using the old generation number
63  * to reference the defunct memslots.
64  *
65  * This mechanism is used to prevent getting hits in KVM's caches while a
66  * memslot update is in-progress, and to prevent cache hits *after* updating
67  * the actual generation number against accesses that were inserted into the
68  * cache *before* the memslots were updated.
69  */
70 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
71 
72 /* Two fragments for cross MMIO pages. */
73 #define KVM_MAX_MMIO_FRAGMENTS	2
74 
75 #ifndef KVM_ADDRESS_SPACE_NUM
76 #define KVM_ADDRESS_SPACE_NUM	1
77 #endif
78 
79 /*
80  * For the normal pfn, the highest 12 bits should be zero,
81  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
82  * mask bit 63 to indicate the noslot pfn.
83  */
84 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
85 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
86 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
87 
88 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
89 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
90 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
91 
92 /*
93  * error pfns indicate that the gfn is in slot but faild to
94  * translate it to pfn on host.
95  */
is_error_pfn(kvm_pfn_t pfn)96 static inline bool is_error_pfn(kvm_pfn_t pfn)
97 {
98 	return !!(pfn & KVM_PFN_ERR_MASK);
99 }
100 
101 /*
102  * error_noslot pfns indicate that the gfn can not be
103  * translated to pfn - it is not in slot or failed to
104  * translate it to pfn.
105  */
is_error_noslot_pfn(kvm_pfn_t pfn)106 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
107 {
108 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
109 }
110 
111 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)112 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
113 {
114 	return pfn == KVM_PFN_NOSLOT;
115 }
116 
117 /*
118  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
119  * provide own defines and kvm_is_error_hva
120  */
121 #ifndef KVM_HVA_ERR_BAD
122 
123 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
124 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
125 
kvm_is_error_hva(unsigned long addr)126 static inline bool kvm_is_error_hva(unsigned long addr)
127 {
128 	return addr >= PAGE_OFFSET;
129 }
130 
131 #endif
132 
133 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
134 
is_error_page(struct page * page)135 static inline bool is_error_page(struct page *page)
136 {
137 	return IS_ERR(page);
138 }
139 
140 #define KVM_REQUEST_MASK           GENMASK(7,0)
141 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
142 #define KVM_REQUEST_WAIT           BIT(9)
143 /*
144  * Architecture-independent vcpu->requests bit members
145  * Bits 4-7 are reserved for more arch-independent bits.
146  */
147 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
148 #define KVM_REQ_MMU_RELOAD        (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
149 #define KVM_REQ_PENDING_TIMER     2
150 #define KVM_REQ_UNHALT            3
151 #define KVM_REQUEST_ARCH_BASE     8
152 
153 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
154 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
155 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
156 })
157 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
158 
159 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
160 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
161 
162 extern struct mutex kvm_lock;
163 extern struct list_head vm_list;
164 
165 struct kvm_io_range {
166 	gpa_t addr;
167 	int len;
168 	struct kvm_io_device *dev;
169 };
170 
171 #define NR_IOBUS_DEVS 1000
172 
173 struct kvm_io_bus {
174 	int dev_count;
175 	int ioeventfd_count;
176 	struct kvm_io_range range[];
177 };
178 
179 enum kvm_bus {
180 	KVM_MMIO_BUS,
181 	KVM_PIO_BUS,
182 	KVM_VIRTIO_CCW_NOTIFY_BUS,
183 	KVM_FAST_MMIO_BUS,
184 	KVM_NR_BUSES
185 };
186 
187 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
188 		     int len, const void *val);
189 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
190 			    gpa_t addr, int len, const void *val, long cookie);
191 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
192 		    int len, void *val);
193 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
194 			    int len, struct kvm_io_device *dev);
195 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 			      struct kvm_io_device *dev);
197 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
198 					 gpa_t addr);
199 
200 #ifdef CONFIG_KVM_ASYNC_PF
201 struct kvm_async_pf {
202 	struct work_struct work;
203 	struct list_head link;
204 	struct list_head queue;
205 	struct kvm_vcpu *vcpu;
206 	struct mm_struct *mm;
207 	gpa_t cr2_or_gpa;
208 	unsigned long addr;
209 	struct kvm_arch_async_pf arch;
210 	bool   wakeup_all;
211 	bool notpresent_injected;
212 };
213 
214 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
215 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
216 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
217 			unsigned long hva, struct kvm_arch_async_pf *arch);
218 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
219 #endif
220 
221 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
222 struct kvm_gfn_range {
223 	struct kvm_memory_slot *slot;
224 	gfn_t start;
225 	gfn_t end;
226 	pte_t pte;
227 	bool may_block;
228 };
229 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
230 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
231 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
232 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
233 #endif
234 
235 enum {
236 	OUTSIDE_GUEST_MODE,
237 	IN_GUEST_MODE,
238 	EXITING_GUEST_MODE,
239 	READING_SHADOW_PAGE_TABLES,
240 };
241 
242 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
243 
244 struct kvm_host_map {
245 	/*
246 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
247 	 * a 'struct page' for it. When using mem= kernel parameter some memory
248 	 * can be used as guest memory but they are not managed by host
249 	 * kernel).
250 	 * If 'pfn' is not managed by the host kernel, this field is
251 	 * initialized to KVM_UNMAPPED_PAGE.
252 	 */
253 	struct page *page;
254 	void *hva;
255 	kvm_pfn_t pfn;
256 	kvm_pfn_t gfn;
257 };
258 
259 /*
260  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
261  * directly to check for that.
262  */
kvm_vcpu_mapped(struct kvm_host_map * map)263 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
264 {
265 	return !!map->hva;
266 }
267 
268 /*
269  * Sometimes a large or cross-page mmio needs to be broken up into separate
270  * exits for userspace servicing.
271  */
272 struct kvm_mmio_fragment {
273 	gpa_t gpa;
274 	void *data;
275 	unsigned len;
276 };
277 
278 struct kvm_vcpu {
279 	struct kvm *kvm;
280 #ifdef CONFIG_PREEMPT_NOTIFIERS
281 	struct preempt_notifier preempt_notifier;
282 #endif
283 	int cpu;
284 	int vcpu_id; /* id given by userspace at creation */
285 	int vcpu_idx; /* index in kvm->vcpus array */
286 	int srcu_idx;
287 	int mode;
288 	u64 requests;
289 	unsigned long guest_debug;
290 
291 	int pre_pcpu;
292 	struct list_head blocked_vcpu_list;
293 
294 	struct mutex mutex;
295 	struct kvm_run *run;
296 
297 	struct rcuwait wait;
298 	struct pid __rcu *pid;
299 	int sigset_active;
300 	sigset_t sigset;
301 	struct kvm_vcpu_stat stat;
302 	unsigned int halt_poll_ns;
303 	bool valid_wakeup;
304 
305 #ifdef CONFIG_HAS_IOMEM
306 	int mmio_needed;
307 	int mmio_read_completed;
308 	int mmio_is_write;
309 	int mmio_cur_fragment;
310 	int mmio_nr_fragments;
311 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
312 #endif
313 
314 #ifdef CONFIG_KVM_ASYNC_PF
315 	struct {
316 		u32 queued;
317 		struct list_head queue;
318 		struct list_head done;
319 		spinlock_t lock;
320 	} async_pf;
321 #endif
322 
323 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
324 	/*
325 	 * Cpu relax intercept or pause loop exit optimization
326 	 * in_spin_loop: set when a vcpu does a pause loop exit
327 	 *  or cpu relax intercepted.
328 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
329 	 */
330 	struct {
331 		bool in_spin_loop;
332 		bool dy_eligible;
333 	} spin_loop;
334 #endif
335 	bool preempted;
336 	bool ready;
337 	struct kvm_vcpu_arch arch;
338 	struct kvm_dirty_ring dirty_ring;
339 };
340 
341 /* must be called with irqs disabled */
guest_enter_irqoff(void)342 static __always_inline void guest_enter_irqoff(void)
343 {
344 	/*
345 	 * This is running in ioctl context so its safe to assume that it's the
346 	 * stime pending cputime to flush.
347 	 */
348 	instrumentation_begin();
349 	vtime_account_guest_enter();
350 	instrumentation_end();
351 
352 	/*
353 	 * KVM does not hold any references to rcu protected data when it
354 	 * switches CPU into a guest mode. In fact switching to a guest mode
355 	 * is very similar to exiting to userspace from rcu point of view. In
356 	 * addition CPU may stay in a guest mode for quite a long time (up to
357 	 * one time slice). Lets treat guest mode as quiescent state, just like
358 	 * we do with user-mode execution.
359 	 */
360 	if (!context_tracking_guest_enter()) {
361 		instrumentation_begin();
362 		rcu_virt_note_context_switch(smp_processor_id());
363 		instrumentation_end();
364 	}
365 }
366 
guest_exit_irqoff(void)367 static __always_inline void guest_exit_irqoff(void)
368 {
369 	context_tracking_guest_exit();
370 
371 	instrumentation_begin();
372 	/* Flush the guest cputime we spent on the guest */
373 	vtime_account_guest_exit();
374 	instrumentation_end();
375 }
376 
guest_exit(void)377 static inline void guest_exit(void)
378 {
379 	unsigned long flags;
380 
381 	local_irq_save(flags);
382 	guest_exit_irqoff();
383 	local_irq_restore(flags);
384 }
385 
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)386 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
387 {
388 	/*
389 	 * The memory barrier ensures a previous write to vcpu->requests cannot
390 	 * be reordered with the read of vcpu->mode.  It pairs with the general
391 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
392 	 */
393 	smp_mb__before_atomic();
394 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
395 }
396 
397 /*
398  * Some of the bitops functions do not support too long bitmaps.
399  * This number must be determined not to exceed such limits.
400  */
401 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
402 
403 struct kvm_memory_slot {
404 	gfn_t base_gfn;
405 	unsigned long npages;
406 	unsigned long *dirty_bitmap;
407 	struct kvm_arch_memory_slot arch;
408 	unsigned long userspace_addr;
409 	u32 flags;
410 	short id;
411 	u16 as_id;
412 };
413 
kvm_slot_dirty_track_enabled(struct kvm_memory_slot * slot)414 static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot)
415 {
416 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
417 }
418 
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)419 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
420 {
421 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
422 }
423 
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)424 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
425 {
426 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
427 
428 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
429 }
430 
431 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
432 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
433 #endif
434 
435 struct kvm_s390_adapter_int {
436 	u64 ind_addr;
437 	u64 summary_addr;
438 	u64 ind_offset;
439 	u32 summary_offset;
440 	u32 adapter_id;
441 };
442 
443 struct kvm_hv_sint {
444 	u32 vcpu;
445 	u32 sint;
446 };
447 
448 struct kvm_kernel_irq_routing_entry {
449 	u32 gsi;
450 	u32 type;
451 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
452 		   struct kvm *kvm, int irq_source_id, int level,
453 		   bool line_status);
454 	union {
455 		struct {
456 			unsigned irqchip;
457 			unsigned pin;
458 		} irqchip;
459 		struct {
460 			u32 address_lo;
461 			u32 address_hi;
462 			u32 data;
463 			u32 flags;
464 			u32 devid;
465 		} msi;
466 		struct kvm_s390_adapter_int adapter;
467 		struct kvm_hv_sint hv_sint;
468 	};
469 	struct hlist_node link;
470 };
471 
472 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
473 struct kvm_irq_routing_table {
474 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
475 	u32 nr_rt_entries;
476 	/*
477 	 * Array indexed by gsi. Each entry contains list of irq chips
478 	 * the gsi is connected to.
479 	 */
480 	struct hlist_head map[];
481 };
482 #endif
483 
484 #ifndef KVM_PRIVATE_MEM_SLOTS
485 #define KVM_PRIVATE_MEM_SLOTS 0
486 #endif
487 
488 #define KVM_MEM_SLOTS_NUM SHRT_MAX
489 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
490 
491 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)492 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
493 {
494 	return 0;
495 }
496 #endif
497 
498 /*
499  * Note:
500  * memslots are not sorted by id anymore, please use id_to_memslot()
501  * to get the memslot by its id.
502  */
503 struct kvm_memslots {
504 	u64 generation;
505 	/* The mapping table from slot id to the index in memslots[]. */
506 	short id_to_index[KVM_MEM_SLOTS_NUM];
507 	atomic_t lru_slot;
508 	int used_slots;
509 	struct kvm_memory_slot memslots[];
510 };
511 
512 struct kvm {
513 #ifdef KVM_HAVE_MMU_RWLOCK
514 	rwlock_t mmu_lock;
515 #else
516 	spinlock_t mmu_lock;
517 #endif /* KVM_HAVE_MMU_RWLOCK */
518 
519 	struct mutex slots_lock;
520 	struct mm_struct *mm; /* userspace tied to this vm */
521 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
522 	struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
523 
524 	/*
525 	 * created_vcpus is protected by kvm->lock, and is incremented
526 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
527 	 * incremented after storing the kvm_vcpu pointer in vcpus,
528 	 * and is accessed atomically.
529 	 */
530 	atomic_t online_vcpus;
531 	int created_vcpus;
532 	int last_boosted_vcpu;
533 	struct list_head vm_list;
534 	struct mutex lock;
535 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
536 #ifdef CONFIG_HAVE_KVM_EVENTFD
537 	struct {
538 		spinlock_t        lock;
539 		struct list_head  items;
540 		struct list_head  resampler_list;
541 		struct mutex      resampler_lock;
542 	} irqfds;
543 	struct list_head ioeventfds;
544 #endif
545 	struct kvm_vm_stat stat;
546 	struct kvm_arch arch;
547 	refcount_t users_count;
548 #ifdef CONFIG_KVM_MMIO
549 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
550 	spinlock_t ring_lock;
551 	struct list_head coalesced_zones;
552 #endif
553 
554 	struct mutex irq_lock;
555 #ifdef CONFIG_HAVE_KVM_IRQCHIP
556 	/*
557 	 * Update side is protected by irq_lock.
558 	 */
559 	struct kvm_irq_routing_table __rcu *irq_routing;
560 #endif
561 #ifdef CONFIG_HAVE_KVM_IRQFD
562 	struct hlist_head irq_ack_notifier_list;
563 #endif
564 
565 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
566 	struct mmu_notifier mmu_notifier;
567 	unsigned long mmu_notifier_seq;
568 	long mmu_notifier_count;
569 	unsigned long mmu_notifier_range_start;
570 	unsigned long mmu_notifier_range_end;
571 #endif
572 	long tlbs_dirty;
573 	struct list_head devices;
574 	u64 manual_dirty_log_protect;
575 	struct dentry *debugfs_dentry;
576 	struct kvm_stat_data **debugfs_stat_data;
577 	struct srcu_struct srcu;
578 	struct srcu_struct irq_srcu;
579 	pid_t userspace_pid;
580 	unsigned int max_halt_poll_ns;
581 	u32 dirty_ring_size;
582 };
583 
584 #define kvm_err(fmt, ...) \
585 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
586 #define kvm_info(fmt, ...) \
587 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
588 #define kvm_debug(fmt, ...) \
589 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
590 #define kvm_debug_ratelimited(fmt, ...) \
591 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
592 			     ## __VA_ARGS__)
593 #define kvm_pr_unimpl(fmt, ...) \
594 	pr_err_ratelimited("kvm [%i]: " fmt, \
595 			   task_tgid_nr(current), ## __VA_ARGS__)
596 
597 /* The guest did something we don't support. */
598 #define vcpu_unimpl(vcpu, fmt, ...)					\
599 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
600 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
601 
602 #define vcpu_debug(vcpu, fmt, ...)					\
603 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
604 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
605 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
606 			      ## __VA_ARGS__)
607 #define vcpu_err(vcpu, fmt, ...)					\
608 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
609 
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)610 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
611 {
612 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
613 }
614 
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)615 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
616 {
617 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
618 				      lockdep_is_held(&kvm->slots_lock) ||
619 				      !refcount_read(&kvm->users_count));
620 }
621 
kvm_get_vcpu(struct kvm * kvm,int i)622 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
623 {
624 	int num_vcpus = atomic_read(&kvm->online_vcpus);
625 	i = array_index_nospec(i, num_vcpus);
626 
627 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
628 	smp_rmb();
629 	return kvm->vcpus[i];
630 }
631 
632 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
633 	for (idx = 0; \
634 	     idx < atomic_read(&kvm->online_vcpus) && \
635 	     (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
636 	     idx++)
637 
kvm_get_vcpu_by_id(struct kvm * kvm,int id)638 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
639 {
640 	struct kvm_vcpu *vcpu = NULL;
641 	int i;
642 
643 	if (id < 0)
644 		return NULL;
645 	if (id < KVM_MAX_VCPUS)
646 		vcpu = kvm_get_vcpu(kvm, id);
647 	if (vcpu && vcpu->vcpu_id == id)
648 		return vcpu;
649 	kvm_for_each_vcpu(i, vcpu, kvm)
650 		if (vcpu->vcpu_id == id)
651 			return vcpu;
652 	return NULL;
653 }
654 
kvm_vcpu_get_idx(struct kvm_vcpu * vcpu)655 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
656 {
657 	return vcpu->vcpu_idx;
658 }
659 
660 #define kvm_for_each_memslot(memslot, slots)				\
661 	for (memslot = &slots->memslots[0];				\
662 	     memslot < slots->memslots + slots->used_slots; memslot++)	\
663 		if (WARN_ON_ONCE(!memslot->npages)) {			\
664 		} else
665 
666 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
667 
668 void vcpu_load(struct kvm_vcpu *vcpu);
669 void vcpu_put(struct kvm_vcpu *vcpu);
670 
671 #ifdef __KVM_HAVE_IOAPIC
672 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
673 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
674 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)675 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
676 {
677 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)678 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
679 {
680 }
681 #endif
682 
683 #ifdef CONFIG_HAVE_KVM_IRQFD
684 int kvm_irqfd_init(void);
685 void kvm_irqfd_exit(void);
686 #else
kvm_irqfd_init(void)687 static inline int kvm_irqfd_init(void)
688 {
689 	return 0;
690 }
691 
kvm_irqfd_exit(void)692 static inline void kvm_irqfd_exit(void)
693 {
694 }
695 #endif
696 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
697 		  struct module *module);
698 void kvm_exit(void);
699 
700 void kvm_get_kvm(struct kvm *kvm);
701 void kvm_put_kvm(struct kvm *kvm);
702 bool file_is_kvm(struct file *file);
703 void kvm_put_kvm_no_destroy(struct kvm *kvm);
704 
__kvm_memslots(struct kvm * kvm,int as_id)705 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
706 {
707 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
708 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
709 			lockdep_is_held(&kvm->slots_lock) ||
710 			!refcount_read(&kvm->users_count));
711 }
712 
kvm_memslots(struct kvm * kvm)713 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
714 {
715 	return __kvm_memslots(kvm, 0);
716 }
717 
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)718 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
719 {
720 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
721 
722 	return __kvm_memslots(vcpu->kvm, as_id);
723 }
724 
725 static inline
id_to_memslot(struct kvm_memslots * slots,int id)726 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
727 {
728 	int index = slots->id_to_index[id];
729 	struct kvm_memory_slot *slot;
730 
731 	if (index < 0)
732 		return NULL;
733 
734 	slot = &slots->memslots[index];
735 
736 	WARN_ON(slot->id != id);
737 	return slot;
738 }
739 
740 /*
741  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
742  * - create a new memory slot
743  * - delete an existing memory slot
744  * - modify an existing memory slot
745  *   -- move it in the guest physical memory space
746  *   -- just change its flags
747  *
748  * Since flags can be changed by some of these operations, the following
749  * differentiation is the best we can do for __kvm_set_memory_region():
750  */
751 enum kvm_mr_change {
752 	KVM_MR_CREATE,
753 	KVM_MR_DELETE,
754 	KVM_MR_MOVE,
755 	KVM_MR_FLAGS_ONLY,
756 };
757 
758 int kvm_set_memory_region(struct kvm *kvm,
759 			  const struct kvm_userspace_memory_region *mem);
760 int __kvm_set_memory_region(struct kvm *kvm,
761 			    const struct kvm_userspace_memory_region *mem);
762 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
763 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
764 int kvm_arch_prepare_memory_region(struct kvm *kvm,
765 				struct kvm_memory_slot *memslot,
766 				const struct kvm_userspace_memory_region *mem,
767 				enum kvm_mr_change change);
768 void kvm_arch_commit_memory_region(struct kvm *kvm,
769 				const struct kvm_userspace_memory_region *mem,
770 				struct kvm_memory_slot *old,
771 				const struct kvm_memory_slot *new,
772 				enum kvm_mr_change change);
773 /* flush all memory translations */
774 void kvm_arch_flush_shadow_all(struct kvm *kvm);
775 /* flush memory translations pointing to 'slot' */
776 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
777 				   struct kvm_memory_slot *slot);
778 
779 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
780 			    struct page **pages, int nr_pages);
781 
782 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
783 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
784 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
785 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
786 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
787 				      bool *writable);
788 void kvm_release_page_clean(struct page *page);
789 void kvm_release_page_dirty(struct page *page);
790 void kvm_set_page_accessed(struct page *page);
791 
792 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
793 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
794 		      bool *writable);
795 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
796 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
797 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
798 			       bool atomic, bool *async, bool write_fault,
799 			       bool *writable, hva_t *hva);
800 
801 void kvm_release_pfn_clean(kvm_pfn_t pfn);
802 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
803 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
804 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
805 void kvm_get_pfn(kvm_pfn_t pfn);
806 
807 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
808 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
809 			int len);
810 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
811 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
812 			   void *data, unsigned long len);
813 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
814 				 void *data, unsigned int offset,
815 				 unsigned long len);
816 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
817 			 int offset, int len);
818 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
819 		    unsigned long len);
820 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
821 			   void *data, unsigned long len);
822 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
823 				  void *data, unsigned int offset,
824 				  unsigned long len);
825 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
826 			      gpa_t gpa, unsigned long len);
827 
828 #define __kvm_get_guest(kvm, gfn, offset, v)				\
829 ({									\
830 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
831 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
832 	int __ret = -EFAULT;						\
833 									\
834 	if (!kvm_is_error_hva(__addr))					\
835 		__ret = get_user(v, __uaddr);				\
836 	__ret;								\
837 })
838 
839 #define kvm_get_guest(kvm, gpa, v)					\
840 ({									\
841 	gpa_t __gpa = gpa;						\
842 	struct kvm *__kvm = kvm;					\
843 									\
844 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
845 			offset_in_page(__gpa), v);			\
846 })
847 
848 #define __kvm_put_guest(kvm, gfn, offset, v)				\
849 ({									\
850 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
851 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
852 	int __ret = -EFAULT;						\
853 									\
854 	if (!kvm_is_error_hva(__addr))					\
855 		__ret = put_user(v, __uaddr);				\
856 	if (!__ret)							\
857 		mark_page_dirty(kvm, gfn);				\
858 	__ret;								\
859 })
860 
861 #define kvm_put_guest(kvm, gpa, v)					\
862 ({									\
863 	gpa_t __gpa = gpa;						\
864 	struct kvm *__kvm = kvm;					\
865 									\
866 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
867 			offset_in_page(__gpa), v);			\
868 })
869 
870 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
871 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
872 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
873 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
874 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
875 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn);
876 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
877 
878 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
879 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
880 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
881 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
882 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
883 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
884 		struct gfn_to_pfn_cache *cache, bool atomic);
885 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
886 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
887 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
888 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
889 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
890 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
891 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
892 			     int len);
893 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
894 			       unsigned long len);
895 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
896 			unsigned long len);
897 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
898 			      int offset, int len);
899 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
900 			 unsigned long len);
901 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
902 
903 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
904 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
905 
906 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
907 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
908 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
909 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
910 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
911 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
912 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
913 
914 void kvm_flush_remote_tlbs(struct kvm *kvm);
915 void kvm_reload_remote_mmus(struct kvm *kvm);
916 
917 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
918 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
919 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
920 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
921 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
922 #endif
923 
924 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
925 				 struct kvm_vcpu *except,
926 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
927 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
928 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
929 				      struct kvm_vcpu *except);
930 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
931 				unsigned long *vcpu_bitmap);
932 
933 long kvm_arch_dev_ioctl(struct file *filp,
934 			unsigned int ioctl, unsigned long arg);
935 long kvm_arch_vcpu_ioctl(struct file *filp,
936 			 unsigned int ioctl, unsigned long arg);
937 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
938 
939 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
940 
941 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
942 					struct kvm_memory_slot *slot,
943 					gfn_t gfn_offset,
944 					unsigned long mask);
945 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
946 
947 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
948 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
949 					const struct kvm_memory_slot *memslot);
950 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
951 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
952 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
953 		      int *is_dirty, struct kvm_memory_slot **memslot);
954 #endif
955 
956 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
957 			bool line_status);
958 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
959 			    struct kvm_enable_cap *cap);
960 long kvm_arch_vm_ioctl(struct file *filp,
961 		       unsigned int ioctl, unsigned long arg);
962 
963 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
964 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
965 
966 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
967 				    struct kvm_translation *tr);
968 
969 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
970 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
971 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
972 				  struct kvm_sregs *sregs);
973 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
974 				  struct kvm_sregs *sregs);
975 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
976 				    struct kvm_mp_state *mp_state);
977 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
978 				    struct kvm_mp_state *mp_state);
979 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
980 					struct kvm_guest_debug *dbg);
981 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
982 
983 int kvm_arch_init(void *opaque);
984 void kvm_arch_exit(void);
985 
986 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
987 
988 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
989 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
990 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
991 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
992 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
993 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
994 
995 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
996 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
997 #endif
998 
999 int kvm_arch_hardware_enable(void);
1000 void kvm_arch_hardware_disable(void);
1001 int kvm_arch_hardware_setup(void *opaque);
1002 void kvm_arch_hardware_unsetup(void);
1003 int kvm_arch_check_processor_compat(void *opaque);
1004 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1005 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1006 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1007 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1008 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1009 int kvm_arch_post_init_vm(struct kvm *kvm);
1010 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1011 
1012 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1013 /*
1014  * All architectures that want to use vzalloc currently also
1015  * need their own kvm_arch_alloc_vm implementation.
1016  */
kvm_arch_alloc_vm(void)1017 static inline struct kvm *kvm_arch_alloc_vm(void)
1018 {
1019 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1020 }
1021 
kvm_arch_free_vm(struct kvm * kvm)1022 static inline void kvm_arch_free_vm(struct kvm *kvm)
1023 {
1024 	kfree(kvm);
1025 }
1026 #endif
1027 
1028 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)1029 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1030 {
1031 	return -ENOTSUPP;
1032 }
1033 #endif
1034 
1035 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1036 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1037 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1038 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1039 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1040 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1041 {
1042 }
1043 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1044 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1045 {
1046 }
1047 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1048 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1049 {
1050 	return false;
1051 }
1052 #endif
1053 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1054 void kvm_arch_start_assignment(struct kvm *kvm);
1055 void kvm_arch_end_assignment(struct kvm *kvm);
1056 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1057 #else
kvm_arch_start_assignment(struct kvm * kvm)1058 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1059 {
1060 }
1061 
kvm_arch_end_assignment(struct kvm * kvm)1062 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1063 {
1064 }
1065 
kvm_arch_has_assigned_device(struct kvm * kvm)1066 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1067 {
1068 	return false;
1069 }
1070 #endif
1071 
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1072 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1073 {
1074 #ifdef __KVM_HAVE_ARCH_WQP
1075 	return vcpu->arch.waitp;
1076 #else
1077 	return &vcpu->wait;
1078 #endif
1079 }
1080 
1081 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1082 /*
1083  * returns true if the virtual interrupt controller is initialized and
1084  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1085  * controller is dynamically instantiated and this is not always true.
1086  */
1087 bool kvm_arch_intc_initialized(struct kvm *kvm);
1088 #else
kvm_arch_intc_initialized(struct kvm * kvm)1089 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1090 {
1091 	return true;
1092 }
1093 #endif
1094 
1095 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1096 void kvm_arch_destroy_vm(struct kvm *kvm);
1097 void kvm_arch_sync_events(struct kvm *kvm);
1098 
1099 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1100 
1101 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1102 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1103 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1104 
1105 struct kvm_irq_ack_notifier {
1106 	struct hlist_node link;
1107 	unsigned gsi;
1108 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1109 };
1110 
1111 int kvm_irq_map_gsi(struct kvm *kvm,
1112 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1113 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1114 
1115 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1116 		bool line_status);
1117 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1118 		int irq_source_id, int level, bool line_status);
1119 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1120 			       struct kvm *kvm, int irq_source_id,
1121 			       int level, bool line_status);
1122 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1123 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1124 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1125 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1126 				   struct kvm_irq_ack_notifier *kian);
1127 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1128 				   struct kvm_irq_ack_notifier *kian);
1129 int kvm_request_irq_source_id(struct kvm *kvm);
1130 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1131 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1132 
1133 /*
1134  * search_memslots() and __gfn_to_memslot() are here because they are
1135  * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1136  * gfn_to_memslot() itself isn't here as an inline because that would
1137  * bloat other code too much.
1138  *
1139  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1140  */
1141 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn)1142 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1143 {
1144 	int start = 0, end = slots->used_slots;
1145 	int slot = atomic_read(&slots->lru_slot);
1146 	struct kvm_memory_slot *memslots = slots->memslots;
1147 
1148 	if (unlikely(!slots->used_slots))
1149 		return NULL;
1150 
1151 	if (gfn >= memslots[slot].base_gfn &&
1152 	    gfn < memslots[slot].base_gfn + memslots[slot].npages)
1153 		return &memslots[slot];
1154 
1155 	while (start < end) {
1156 		slot = start + (end - start) / 2;
1157 
1158 		if (gfn >= memslots[slot].base_gfn)
1159 			end = slot;
1160 		else
1161 			start = slot + 1;
1162 	}
1163 
1164 	if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1165 	    gfn < memslots[start].base_gfn + memslots[start].npages) {
1166 		atomic_set(&slots->lru_slot, start);
1167 		return &memslots[start];
1168 	}
1169 
1170 	return NULL;
1171 }
1172 
1173 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1174 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1175 {
1176 	return search_memslots(slots, gfn);
1177 }
1178 
1179 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1180 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1181 {
1182 	return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1183 }
1184 
memslot_id(struct kvm * kvm,gfn_t gfn)1185 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1186 {
1187 	return gfn_to_memslot(kvm, gfn)->id;
1188 }
1189 
1190 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1191 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1192 {
1193 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1194 
1195 	return slot->base_gfn + gfn_offset;
1196 }
1197 
gfn_to_gpa(gfn_t gfn)1198 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1199 {
1200 	return (gpa_t)gfn << PAGE_SHIFT;
1201 }
1202 
gpa_to_gfn(gpa_t gpa)1203 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1204 {
1205 	return (gfn_t)(gpa >> PAGE_SHIFT);
1206 }
1207 
pfn_to_hpa(kvm_pfn_t pfn)1208 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1209 {
1210 	return (hpa_t)pfn << PAGE_SHIFT;
1211 }
1212 
kvm_vcpu_gpa_to_page(struct kvm_vcpu * vcpu,gpa_t gpa)1213 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1214 						gpa_t gpa)
1215 {
1216 	return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1217 }
1218 
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)1219 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1220 {
1221 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1222 
1223 	return kvm_is_error_hva(hva);
1224 }
1225 
1226 enum kvm_stat_kind {
1227 	KVM_STAT_VM,
1228 	KVM_STAT_VCPU,
1229 };
1230 
1231 struct kvm_stat_data {
1232 	struct kvm *kvm;
1233 	struct kvm_stats_debugfs_item *dbgfs_item;
1234 };
1235 
1236 struct kvm_stats_debugfs_item {
1237 	const char *name;
1238 	int offset;
1239 	enum kvm_stat_kind kind;
1240 	int mode;
1241 };
1242 
1243 #define KVM_DBGFS_GET_MODE(dbgfs_item)                                         \
1244 	((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1245 
1246 #define VM_STAT(n, x, ...) 							\
1247 	{ n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1248 #define VCPU_STAT(n, x, ...)							\
1249 	{ n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1250 
1251 extern struct kvm_stats_debugfs_item debugfs_entries[];
1252 extern struct dentry *kvm_debugfs_dir;
1253 
1254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_retry(struct kvm * kvm,unsigned long mmu_seq)1255 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1256 {
1257 	if (unlikely(kvm->mmu_notifier_count))
1258 		return 1;
1259 	/*
1260 	 * Ensure the read of mmu_notifier_count happens before the read
1261 	 * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1262 	 * mmu_notifier_invalidate_range_end to make sure that the caller
1263 	 * either sees the old (non-zero) value of mmu_notifier_count or
1264 	 * the new (incremented) value of mmu_notifier_seq.
1265 	 * PowerPC Book3s HV KVM calls this under a per-page lock
1266 	 * rather than under kvm->mmu_lock, for scalability, so
1267 	 * can't rely on kvm->mmu_lock to keep things ordered.
1268 	 */
1269 	smp_rmb();
1270 	if (kvm->mmu_notifier_seq != mmu_seq)
1271 		return 1;
1272 	return 0;
1273 }
1274 
mmu_notifier_retry_hva(struct kvm * kvm,unsigned long mmu_seq,unsigned long hva)1275 static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1276 					 unsigned long mmu_seq,
1277 					 unsigned long hva)
1278 {
1279 	lockdep_assert_held(&kvm->mmu_lock);
1280 	/*
1281 	 * If mmu_notifier_count is non-zero, then the range maintained by
1282 	 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1283 	 * might be being invalidated. Note that it may include some false
1284 	 * positives, due to shortcuts when handing concurrent invalidations.
1285 	 */
1286 	if (unlikely(kvm->mmu_notifier_count) &&
1287 	    hva >= kvm->mmu_notifier_range_start &&
1288 	    hva < kvm->mmu_notifier_range_end)
1289 		return 1;
1290 	if (kvm->mmu_notifier_seq != mmu_seq)
1291 		return 1;
1292 	return 0;
1293 }
1294 #endif
1295 
1296 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1297 
1298 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1299 
1300 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1301 int kvm_set_irq_routing(struct kvm *kvm,
1302 			const struct kvm_irq_routing_entry *entries,
1303 			unsigned nr,
1304 			unsigned flags);
1305 int kvm_set_routing_entry(struct kvm *kvm,
1306 			  struct kvm_kernel_irq_routing_entry *e,
1307 			  const struct kvm_irq_routing_entry *ue);
1308 void kvm_free_irq_routing(struct kvm *kvm);
1309 
1310 #else
1311 
kvm_free_irq_routing(struct kvm * kvm)1312 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1313 
1314 #endif
1315 
1316 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1317 
1318 #ifdef CONFIG_HAVE_KVM_EVENTFD
1319 
1320 void kvm_eventfd_init(struct kvm *kvm);
1321 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1322 
1323 #ifdef CONFIG_HAVE_KVM_IRQFD
1324 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1325 void kvm_irqfd_release(struct kvm *kvm);
1326 void kvm_irq_routing_update(struct kvm *);
1327 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1328 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1329 {
1330 	return -EINVAL;
1331 }
1332 
kvm_irqfd_release(struct kvm * kvm)1333 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1334 #endif
1335 
1336 #else
1337 
kvm_eventfd_init(struct kvm * kvm)1338 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1339 
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1340 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1341 {
1342 	return -EINVAL;
1343 }
1344 
kvm_irqfd_release(struct kvm * kvm)1345 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1346 
1347 #ifdef CONFIG_HAVE_KVM_IRQCHIP
kvm_irq_routing_update(struct kvm * kvm)1348 static inline void kvm_irq_routing_update(struct kvm *kvm)
1349 {
1350 }
1351 #endif
1352 
kvm_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)1353 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1354 {
1355 	return -ENOSYS;
1356 }
1357 
1358 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1359 
1360 void kvm_arch_irq_routing_update(struct kvm *kvm);
1361 
kvm_make_request(int req,struct kvm_vcpu * vcpu)1362 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1363 {
1364 	/*
1365 	 * Ensure the rest of the request is published to kvm_check_request's
1366 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
1367 	 */
1368 	smp_wmb();
1369 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1370 }
1371 
kvm_request_pending(struct kvm_vcpu * vcpu)1372 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1373 {
1374 	return READ_ONCE(vcpu->requests);
1375 }
1376 
kvm_test_request(int req,struct kvm_vcpu * vcpu)1377 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1378 {
1379 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1380 }
1381 
kvm_clear_request(int req,struct kvm_vcpu * vcpu)1382 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1383 {
1384 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1385 }
1386 
kvm_check_request(int req,struct kvm_vcpu * vcpu)1387 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1388 {
1389 	if (kvm_test_request(req, vcpu)) {
1390 		kvm_clear_request(req, vcpu);
1391 
1392 		/*
1393 		 * Ensure the rest of the request is visible to kvm_check_request's
1394 		 * caller.  Paired with the smp_wmb in kvm_make_request.
1395 		 */
1396 		smp_mb__after_atomic();
1397 		return true;
1398 	} else {
1399 		return false;
1400 	}
1401 }
1402 
1403 extern bool kvm_rebooting;
1404 
1405 extern unsigned int halt_poll_ns;
1406 extern unsigned int halt_poll_ns_grow;
1407 extern unsigned int halt_poll_ns_grow_start;
1408 extern unsigned int halt_poll_ns_shrink;
1409 
1410 struct kvm_device {
1411 	const struct kvm_device_ops *ops;
1412 	struct kvm *kvm;
1413 	void *private;
1414 	struct list_head vm_node;
1415 };
1416 
1417 /* create, destroy, and name are mandatory */
1418 struct kvm_device_ops {
1419 	const char *name;
1420 
1421 	/*
1422 	 * create is called holding kvm->lock and any operations not suitable
1423 	 * to do while holding the lock should be deferred to init (see
1424 	 * below).
1425 	 */
1426 	int (*create)(struct kvm_device *dev, u32 type);
1427 
1428 	/*
1429 	 * init is called after create if create is successful and is called
1430 	 * outside of holding kvm->lock.
1431 	 */
1432 	void (*init)(struct kvm_device *dev);
1433 
1434 	/*
1435 	 * Destroy is responsible for freeing dev.
1436 	 *
1437 	 * Destroy may be called before or after destructors are called
1438 	 * on emulated I/O regions, depending on whether a reference is
1439 	 * held by a vcpu or other kvm component that gets destroyed
1440 	 * after the emulated I/O.
1441 	 */
1442 	void (*destroy)(struct kvm_device *dev);
1443 
1444 	/*
1445 	 * Release is an alternative method to free the device. It is
1446 	 * called when the device file descriptor is closed. Once
1447 	 * release is called, the destroy method will not be called
1448 	 * anymore as the device is removed from the device list of
1449 	 * the VM. kvm->lock is held.
1450 	 */
1451 	void (*release)(struct kvm_device *dev);
1452 
1453 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1454 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1455 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1456 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1457 		      unsigned long arg);
1458 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1459 };
1460 
1461 void kvm_device_get(struct kvm_device *dev);
1462 void kvm_device_put(struct kvm_device *dev);
1463 struct kvm_device *kvm_device_from_filp(struct file *filp);
1464 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1465 void kvm_unregister_device_ops(u32 type);
1466 
1467 extern struct kvm_device_ops kvm_mpic_ops;
1468 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1469 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1470 
1471 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1472 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1473 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1474 {
1475 	vcpu->spin_loop.in_spin_loop = val;
1476 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1477 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1478 {
1479 	vcpu->spin_loop.dy_eligible = val;
1480 }
1481 
1482 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1483 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1484 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1485 {
1486 }
1487 
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1488 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1489 {
1490 }
1491 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1492 
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)1493 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1494 {
1495 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1496 		!(memslot->flags & KVM_MEMSLOT_INVALID));
1497 }
1498 
1499 struct kvm_vcpu *kvm_get_running_vcpu(void);
1500 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1501 
1502 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1503 bool kvm_arch_has_irq_bypass(void);
1504 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1505 			   struct irq_bypass_producer *);
1506 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1507 			   struct irq_bypass_producer *);
1508 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1509 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1510 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1511 				  uint32_t guest_irq, bool set);
1512 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1513 
1514 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1515 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1516 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1517 {
1518 	return vcpu->valid_wakeup;
1519 }
1520 
1521 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1522 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1523 {
1524 	return true;
1525 }
1526 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1527 
1528 #ifdef CONFIG_HAVE_KVM_NO_POLL
1529 /* Callback that tells if we must not poll */
1530 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1531 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)1532 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1533 {
1534 	return false;
1535 }
1536 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1537 
1538 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1539 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1540 			       unsigned int ioctl, unsigned long arg);
1541 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1542 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1543 					     unsigned int ioctl,
1544 					     unsigned long arg)
1545 {
1546 	return -ENOIOCTLCMD;
1547 }
1548 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1549 
1550 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1551 					    unsigned long start, unsigned long end);
1552 
1553 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1554 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1555 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)1556 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1557 {
1558 	return 0;
1559 }
1560 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1561 
1562 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1563 
1564 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1565 				uintptr_t data, const char *name,
1566 				struct task_struct **thread_ptr);
1567 
1568 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)1569 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1570 {
1571 	vcpu->run->exit_reason = KVM_EXIT_INTR;
1572 	vcpu->stat.signal_exits++;
1573 }
1574 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1575 
1576 /*
1577  * This defines how many reserved entries we want to keep before we
1578  * kick the vcpu to the userspace to avoid dirty ring full.  This
1579  * value can be tuned to higher if e.g. PML is enabled on the host.
1580  */
1581 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
1582 
1583 /* Max number of entries allowed for each kvm dirty ring */
1584 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
1585 
1586 #endif
1587