1 /* SPDX-License-Identifier: GPL-2.0-or-later
2  *
3  * Copyright (C) 2005 David Brownell
4  */
5 
6 #ifndef __LINUX_SPI_H
7 #define __LINUX_SPI_H
8 
9 #include <linux/bits.h>
10 #include <linux/device.h>
11 #include <linux/mod_devicetable.h>
12 #include <linux/slab.h>
13 #include <linux/kthread.h>
14 #include <linux/completion.h>
15 #include <linux/scatterlist.h>
16 #include <linux/gpio/consumer.h>
17 #include <linux/ptp_clock_kernel.h>
18 
19 #include <uapi/linux/spi/spi.h>
20 
21 struct dma_chan;
22 struct software_node;
23 struct spi_controller;
24 struct spi_transfer;
25 struct spi_controller_mem_ops;
26 
27 /*
28  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
29  * and SPI infrastructure.
30  */
31 extern struct bus_type spi_bus_type;
32 
33 /**
34  * struct spi_statistics - statistics for spi transfers
35  * @lock:          lock protecting this structure
36  *
37  * @messages:      number of spi-messages handled
38  * @transfers:     number of spi_transfers handled
39  * @errors:        number of errors during spi_transfer
40  * @timedout:      number of timeouts during spi_transfer
41  *
42  * @spi_sync:      number of times spi_sync is used
43  * @spi_sync_immediate:
44  *                 number of times spi_sync is executed immediately
45  *                 in calling context without queuing and scheduling
46  * @spi_async:     number of times spi_async is used
47  *
48  * @bytes:         number of bytes transferred to/from device
49  * @bytes_tx:      number of bytes sent to device
50  * @bytes_rx:      number of bytes received from device
51  *
52  * @transfer_bytes_histo:
53  *                 transfer bytes histogramm
54  *
55  * @transfers_split_maxsize:
56  *                 number of transfers that have been split because of
57  *                 maxsize limit
58  */
59 struct spi_statistics {
60 	spinlock_t		lock; /* lock for the whole structure */
61 
62 	unsigned long		messages;
63 	unsigned long		transfers;
64 	unsigned long		errors;
65 	unsigned long		timedout;
66 
67 	unsigned long		spi_sync;
68 	unsigned long		spi_sync_immediate;
69 	unsigned long		spi_async;
70 
71 	unsigned long long	bytes;
72 	unsigned long long	bytes_rx;
73 	unsigned long long	bytes_tx;
74 
75 #define SPI_STATISTICS_HISTO_SIZE 17
76 	unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
77 
78 	unsigned long transfers_split_maxsize;
79 };
80 
81 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
82 				       struct spi_transfer *xfer,
83 				       struct spi_controller *ctlr);
84 
85 #define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count)	\
86 	do {							\
87 		unsigned long flags;				\
88 		spin_lock_irqsave(&(stats)->lock, flags);	\
89 		(stats)->field += count;			\
90 		spin_unlock_irqrestore(&(stats)->lock, flags);	\
91 	} while (0)
92 
93 #define SPI_STATISTICS_INCREMENT_FIELD(stats, field)	\
94 	SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
95 
96 /**
97  * struct spi_delay - SPI delay information
98  * @value: Value for the delay
99  * @unit: Unit for the delay
100  */
101 struct spi_delay {
102 #define SPI_DELAY_UNIT_USECS	0
103 #define SPI_DELAY_UNIT_NSECS	1
104 #define SPI_DELAY_UNIT_SCK	2
105 	u16	value;
106 	u8	unit;
107 };
108 
109 extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer);
110 extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer);
111 
112 /**
113  * struct spi_device - Controller side proxy for an SPI slave device
114  * @dev: Driver model representation of the device.
115  * @controller: SPI controller used with the device.
116  * @master: Copy of controller, for backwards compatibility.
117  * @max_speed_hz: Maximum clock rate to be used with this chip
118  *	(on this board); may be changed by the device's driver.
119  *	The spi_transfer.speed_hz can override this for each transfer.
120  * @chip_select: Chipselect, distinguishing chips handled by @controller.
121  * @mode: The spi mode defines how data is clocked out and in.
122  *	This may be changed by the device's driver.
123  *	The "active low" default for chipselect mode can be overridden
124  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
125  *	each word in a transfer (by specifying SPI_LSB_FIRST).
126  * @bits_per_word: Data transfers involve one or more words; word sizes
127  *	like eight or 12 bits are common.  In-memory wordsizes are
128  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
129  *	This may be changed by the device's driver, or left at the
130  *	default (0) indicating protocol words are eight bit bytes.
131  *	The spi_transfer.bits_per_word can override this for each transfer.
132  * @rt: Make the pump thread real time priority.
133  * @irq: Negative, or the number passed to request_irq() to receive
134  *	interrupts from this device.
135  * @controller_state: Controller's runtime state
136  * @controller_data: Board-specific definitions for controller, such as
137  *	FIFO initialization parameters; from board_info.controller_data
138  * @modalias: Name of the driver to use with this device, or an alias
139  *	for that name.  This appears in the sysfs "modalias" attribute
140  *	for driver coldplugging, and in uevents used for hotplugging
141  * @driver_override: If the name of a driver is written to this attribute, then
142  *	the device will bind to the named driver and only the named driver.
143  * @cs_gpio: LEGACY: gpio number of the chipselect line (optional, -ENOENT when
144  *	not using a GPIO line) use cs_gpiod in new drivers by opting in on
145  *	the spi_master.
146  * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
147  *	not using a GPIO line)
148  * @word_delay: delay to be inserted between consecutive
149  *	words of a transfer
150  *
151  * @statistics: statistics for the spi_device
152  *
153  * A @spi_device is used to interchange data between an SPI slave
154  * (usually a discrete chip) and CPU memory.
155  *
156  * In @dev, the platform_data is used to hold information about this
157  * device that's meaningful to the device's protocol driver, but not
158  * to its controller.  One example might be an identifier for a chip
159  * variant with slightly different functionality; another might be
160  * information about how this particular board wires the chip's pins.
161  */
162 struct spi_device {
163 	struct device		dev;
164 	struct spi_controller	*controller;
165 	struct spi_controller	*master;	/* compatibility layer */
166 	u32			max_speed_hz;
167 	u8			chip_select;
168 	u8			bits_per_word;
169 	bool			rt;
170 #define SPI_NO_TX	BIT(31)		/* no transmit wire */
171 #define SPI_NO_RX	BIT(30)		/* no receive wire */
172 	/*
173 	 * All bits defined above should be covered by SPI_MODE_KERNEL_MASK.
174 	 * The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart,
175 	 * which is defined in 'include/uapi/linux/spi/spi.h'.
176 	 * The bits defined here are from bit 31 downwards, while in
177 	 * SPI_MODE_USER_MASK are from 0 upwards.
178 	 * These bits must not overlap. A static assert check should make sure of that.
179 	 * If adding extra bits, make sure to decrease the bit index below as well.
180 	 */
181 #define SPI_MODE_KERNEL_MASK	(~(BIT(30) - 1))
182 	u32			mode;
183 	int			irq;
184 	void			*controller_state;
185 	void			*controller_data;
186 	char			modalias[SPI_NAME_SIZE];
187 	const char		*driver_override;
188 	int			cs_gpio;	/* LEGACY: chip select gpio */
189 	struct gpio_desc	*cs_gpiod;	/* chip select gpio desc */
190 	struct spi_delay	word_delay; /* inter-word delay */
191 
192 	/* the statistics */
193 	struct spi_statistics	statistics;
194 
195 	/*
196 	 * likely need more hooks for more protocol options affecting how
197 	 * the controller talks to each chip, like:
198 	 *  - memory packing (12 bit samples into low bits, others zeroed)
199 	 *  - priority
200 	 *  - chipselect delays
201 	 *  - ...
202 	 */
203 };
204 
205 /* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */
206 static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0,
207 	      "SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap");
208 
to_spi_device(struct device * dev)209 static inline struct spi_device *to_spi_device(struct device *dev)
210 {
211 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
212 }
213 
214 /* most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)215 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
216 {
217 	return (spi && get_device(&spi->dev)) ? spi : NULL;
218 }
219 
spi_dev_put(struct spi_device * spi)220 static inline void spi_dev_put(struct spi_device *spi)
221 {
222 	if (spi)
223 		put_device(&spi->dev);
224 }
225 
226 /* ctldata is for the bus_controller driver's runtime state */
spi_get_ctldata(struct spi_device * spi)227 static inline void *spi_get_ctldata(struct spi_device *spi)
228 {
229 	return spi->controller_state;
230 }
231 
spi_set_ctldata(struct spi_device * spi,void * state)232 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
233 {
234 	spi->controller_state = state;
235 }
236 
237 /* device driver data */
238 
spi_set_drvdata(struct spi_device * spi,void * data)239 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
240 {
241 	dev_set_drvdata(&spi->dev, data);
242 }
243 
spi_get_drvdata(struct spi_device * spi)244 static inline void *spi_get_drvdata(struct spi_device *spi)
245 {
246 	return dev_get_drvdata(&spi->dev);
247 }
248 
249 struct spi_message;
250 
251 /**
252  * struct spi_driver - Host side "protocol" driver
253  * @id_table: List of SPI devices supported by this driver
254  * @probe: Binds this driver to the spi device.  Drivers can verify
255  *	that the device is actually present, and may need to configure
256  *	characteristics (such as bits_per_word) which weren't needed for
257  *	the initial configuration done during system setup.
258  * @remove: Unbinds this driver from the spi device
259  * @shutdown: Standard shutdown callback used during system state
260  *	transitions such as powerdown/halt and kexec
261  * @driver: SPI device drivers should initialize the name and owner
262  *	field of this structure.
263  *
264  * This represents the kind of device driver that uses SPI messages to
265  * interact with the hardware at the other end of a SPI link.  It's called
266  * a "protocol" driver because it works through messages rather than talking
267  * directly to SPI hardware (which is what the underlying SPI controller
268  * driver does to pass those messages).  These protocols are defined in the
269  * specification for the device(s) supported by the driver.
270  *
271  * As a rule, those device protocols represent the lowest level interface
272  * supported by a driver, and it will support upper level interfaces too.
273  * Examples of such upper levels include frameworks like MTD, networking,
274  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
275  */
276 struct spi_driver {
277 	const struct spi_device_id *id_table;
278 	int			(*probe)(struct spi_device *spi);
279 	int			(*remove)(struct spi_device *spi);
280 	void			(*shutdown)(struct spi_device *spi);
281 	struct device_driver	driver;
282 };
283 
to_spi_driver(struct device_driver * drv)284 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
285 {
286 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
287 }
288 
289 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
290 
291 /**
292  * spi_unregister_driver - reverse effect of spi_register_driver
293  * @sdrv: the driver to unregister
294  * Context: can sleep
295  */
spi_unregister_driver(struct spi_driver * sdrv)296 static inline void spi_unregister_driver(struct spi_driver *sdrv)
297 {
298 	if (sdrv)
299 		driver_unregister(&sdrv->driver);
300 }
301 
302 /* use a define to avoid include chaining to get THIS_MODULE */
303 #define spi_register_driver(driver) \
304 	__spi_register_driver(THIS_MODULE, driver)
305 
306 /**
307  * module_spi_driver() - Helper macro for registering a SPI driver
308  * @__spi_driver: spi_driver struct
309  *
310  * Helper macro for SPI drivers which do not do anything special in module
311  * init/exit. This eliminates a lot of boilerplate. Each module may only
312  * use this macro once, and calling it replaces module_init() and module_exit()
313  */
314 #define module_spi_driver(__spi_driver) \
315 	module_driver(__spi_driver, spi_register_driver, \
316 			spi_unregister_driver)
317 
318 /**
319  * struct spi_controller - interface to SPI master or slave controller
320  * @dev: device interface to this driver
321  * @list: link with the global spi_controller list
322  * @bus_num: board-specific (and often SOC-specific) identifier for a
323  *	given SPI controller.
324  * @num_chipselect: chipselects are used to distinguish individual
325  *	SPI slaves, and are numbered from zero to num_chipselects.
326  *	each slave has a chipselect signal, but it's common that not
327  *	every chipselect is connected to a slave.
328  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
329  * @mode_bits: flags understood by this controller driver
330  * @buswidth_override_bits: flags to override for this controller driver
331  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
332  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
333  *	supported. If set, the SPI core will reject any transfer with an
334  *	unsupported bits_per_word. If not set, this value is simply ignored,
335  *	and it's up to the individual driver to perform any validation.
336  * @min_speed_hz: Lowest supported transfer speed
337  * @max_speed_hz: Highest supported transfer speed
338  * @flags: other constraints relevant to this driver
339  * @slave: indicates that this is an SPI slave controller
340  * @max_transfer_size: function that returns the max transfer size for
341  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
342  * @max_message_size: function that returns the max message size for
343  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
344  * @io_mutex: mutex for physical bus access
345  * @bus_lock_spinlock: spinlock for SPI bus locking
346  * @bus_lock_mutex: mutex for exclusion of multiple callers
347  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
348  * @setup: updates the device mode and clocking records used by a
349  *	device's SPI controller; protocol code may call this.  This
350  *	must fail if an unrecognized or unsupported mode is requested.
351  *	It's always safe to call this unless transfers are pending on
352  *	the device whose settings are being modified.
353  * @set_cs_timing: optional hook for SPI devices to request SPI master
354  * controller for configuring specific CS setup time, hold time and inactive
355  * delay interms of clock counts
356  * @transfer: adds a message to the controller's transfer queue.
357  * @cleanup: frees controller-specific state
358  * @can_dma: determine whether this controller supports DMA
359  * @queued: whether this controller is providing an internal message queue
360  * @kworker: pointer to thread struct for message pump
361  * @pump_messages: work struct for scheduling work to the message pump
362  * @queue_lock: spinlock to syncronise access to message queue
363  * @queue: message queue
364  * @idling: the device is entering idle state
365  * @cur_msg: the currently in-flight message
366  * @cur_msg_prepared: spi_prepare_message was called for the currently
367  *                    in-flight message
368  * @cur_msg_mapped: message has been mapped for DMA
369  * @last_cs_enable: was enable true on the last call to set_cs.
370  * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
371  * @xfer_completion: used by core transfer_one_message()
372  * @busy: message pump is busy
373  * @running: message pump is running
374  * @rt: whether this queue is set to run as a realtime task
375  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
376  *                   while the hardware is prepared, using the parent
377  *                   device for the spidev
378  * @max_dma_len: Maximum length of a DMA transfer for the device.
379  * @prepare_transfer_hardware: a message will soon arrive from the queue
380  *	so the subsystem requests the driver to prepare the transfer hardware
381  *	by issuing this call
382  * @transfer_one_message: the subsystem calls the driver to transfer a single
383  *	message while queuing transfers that arrive in the meantime. When the
384  *	driver is finished with this message, it must call
385  *	spi_finalize_current_message() so the subsystem can issue the next
386  *	message
387  * @unprepare_transfer_hardware: there are currently no more messages on the
388  *	queue so the subsystem notifies the driver that it may relax the
389  *	hardware by issuing this call
390  *
391  * @set_cs: set the logic level of the chip select line.  May be called
392  *          from interrupt context.
393  * @prepare_message: set up the controller to transfer a single message,
394  *                   for example doing DMA mapping.  Called from threaded
395  *                   context.
396  * @transfer_one: transfer a single spi_transfer.
397  *
398  *                  - return 0 if the transfer is finished,
399  *                  - return 1 if the transfer is still in progress. When
400  *                    the driver is finished with this transfer it must
401  *                    call spi_finalize_current_transfer() so the subsystem
402  *                    can issue the next transfer. Note: transfer_one and
403  *                    transfer_one_message are mutually exclusive; when both
404  *                    are set, the generic subsystem does not call your
405  *                    transfer_one callback.
406  * @handle_err: the subsystem calls the driver to handle an error that occurs
407  *		in the generic implementation of transfer_one_message().
408  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
409  *	     This field is optional and should only be implemented if the
410  *	     controller has native support for memory like operations.
411  * @unprepare_message: undo any work done by prepare_message().
412  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
413  * @cs_setup: delay to be introduced by the controller after CS is asserted
414  * @cs_hold: delay to be introduced by the controller before CS is deasserted
415  * @cs_inactive: delay to be introduced by the controller after CS is
416  *	deasserted. If @cs_change_delay is used from @spi_transfer, then the
417  *	two delays will be added up.
418  * @cs_gpios: LEGACY: array of GPIO descs to use as chip select lines; one per
419  *	CS number. Any individual value may be -ENOENT for CS lines that
420  *	are not GPIOs (driven by the SPI controller itself). Use the cs_gpiods
421  *	in new drivers.
422  * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
423  *	number. Any individual value may be NULL for CS lines that
424  *	are not GPIOs (driven by the SPI controller itself).
425  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
426  *	GPIO descriptors rather than using global GPIO numbers grabbed by the
427  *	driver. This will fill in @cs_gpiods and @cs_gpios should not be used,
428  *	and SPI devices will have the cs_gpiod assigned rather than cs_gpio.
429  * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will
430  *	fill in this field with the first unused native CS, to be used by SPI
431  *	controller drivers that need to drive a native CS when using GPIO CS.
432  * @max_native_cs: When cs_gpiods is used, and this field is filled in,
433  *	spi_register_controller() will validate all native CS (including the
434  *	unused native CS) against this value.
435  * @statistics: statistics for the spi_controller
436  * @dma_tx: DMA transmit channel
437  * @dma_rx: DMA receive channel
438  * @dummy_rx: dummy receive buffer for full-duplex devices
439  * @dummy_tx: dummy transmit buffer for full-duplex devices
440  * @fw_translate_cs: If the boot firmware uses different numbering scheme
441  *	what Linux expects, this optional hook can be used to translate
442  *	between the two.
443  * @ptp_sts_supported: If the driver sets this to true, it must provide a
444  *	time snapshot in @spi_transfer->ptp_sts as close as possible to the
445  *	moment in time when @spi_transfer->ptp_sts_word_pre and
446  *	@spi_transfer->ptp_sts_word_post were transmitted.
447  *	If the driver does not set this, the SPI core takes the snapshot as
448  *	close to the driver hand-over as possible.
449  * @irq_flags: Interrupt enable state during PTP system timestamping
450  * @fallback: fallback to pio if dma transfer return failure with
451  *	SPI_TRANS_FAIL_NO_START.
452  *
453  * Each SPI controller can communicate with one or more @spi_device
454  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
455  * but not chip select signals.  Each device may be configured to use a
456  * different clock rate, since those shared signals are ignored unless
457  * the chip is selected.
458  *
459  * The driver for an SPI controller manages access to those devices through
460  * a queue of spi_message transactions, copying data between CPU memory and
461  * an SPI slave device.  For each such message it queues, it calls the
462  * message's completion function when the transaction completes.
463  */
464 struct spi_controller {
465 	struct device	dev;
466 
467 	struct list_head list;
468 
469 	/* other than negative (== assign one dynamically), bus_num is fully
470 	 * board-specific.  usually that simplifies to being SOC-specific.
471 	 * example:  one SOC has three SPI controllers, numbered 0..2,
472 	 * and one board's schematics might show it using SPI-2.  software
473 	 * would normally use bus_num=2 for that controller.
474 	 */
475 	s16			bus_num;
476 
477 	/* chipselects will be integral to many controllers; some others
478 	 * might use board-specific GPIOs.
479 	 */
480 	u16			num_chipselect;
481 
482 	/* some SPI controllers pose alignment requirements on DMAable
483 	 * buffers; let protocol drivers know about these requirements.
484 	 */
485 	u16			dma_alignment;
486 
487 	/* spi_device.mode flags understood by this controller driver */
488 	u32			mode_bits;
489 
490 	/* spi_device.mode flags override flags for this controller */
491 	u32			buswidth_override_bits;
492 
493 	/* bitmask of supported bits_per_word for transfers */
494 	u32			bits_per_word_mask;
495 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
496 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
497 
498 	/* limits on transfer speed */
499 	u32			min_speed_hz;
500 	u32			max_speed_hz;
501 
502 	/* other constraints relevant to this driver */
503 	u16			flags;
504 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* can't do full duplex */
505 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* can't do buffer read */
506 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* can't do buffer write */
507 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* requires rx */
508 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* requires tx */
509 
510 #define SPI_MASTER_GPIO_SS		BIT(5)	/* GPIO CS must select slave */
511 
512 	/* flag indicating this is a non-devres managed controller */
513 	bool			devm_allocated;
514 
515 	/* flag indicating this is an SPI slave controller */
516 	bool			slave;
517 
518 	/*
519 	 * on some hardware transfer / message size may be constrained
520 	 * the limit may depend on device transfer settings
521 	 */
522 	size_t (*max_transfer_size)(struct spi_device *spi);
523 	size_t (*max_message_size)(struct spi_device *spi);
524 
525 	/* I/O mutex */
526 	struct mutex		io_mutex;
527 
528 	/* lock and mutex for SPI bus locking */
529 	spinlock_t		bus_lock_spinlock;
530 	struct mutex		bus_lock_mutex;
531 
532 	/* flag indicating that the SPI bus is locked for exclusive use */
533 	bool			bus_lock_flag;
534 
535 	/* Setup mode and clock, etc (spi driver may call many times).
536 	 *
537 	 * IMPORTANT:  this may be called when transfers to another
538 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
539 	 * which could break those transfers.
540 	 */
541 	int			(*setup)(struct spi_device *spi);
542 
543 	/*
544 	 * set_cs_timing() method is for SPI controllers that supports
545 	 * configuring CS timing.
546 	 *
547 	 * This hook allows SPI client drivers to request SPI controllers
548 	 * to configure specific CS timing through spi_set_cs_timing() after
549 	 * spi_setup().
550 	 */
551 	int (*set_cs_timing)(struct spi_device *spi, struct spi_delay *setup,
552 			     struct spi_delay *hold, struct spi_delay *inactive);
553 
554 	/* bidirectional bulk transfers
555 	 *
556 	 * + The transfer() method may not sleep; its main role is
557 	 *   just to add the message to the queue.
558 	 * + For now there's no remove-from-queue operation, or
559 	 *   any other request management
560 	 * + To a given spi_device, message queueing is pure fifo
561 	 *
562 	 * + The controller's main job is to process its message queue,
563 	 *   selecting a chip (for masters), then transferring data
564 	 * + If there are multiple spi_device children, the i/o queue
565 	 *   arbitration algorithm is unspecified (round robin, fifo,
566 	 *   priority, reservations, preemption, etc)
567 	 *
568 	 * + Chipselect stays active during the entire message
569 	 *   (unless modified by spi_transfer.cs_change != 0).
570 	 * + The message transfers use clock and SPI mode parameters
571 	 *   previously established by setup() for this device
572 	 */
573 	int			(*transfer)(struct spi_device *spi,
574 						struct spi_message *mesg);
575 
576 	/* called on release() to free memory provided by spi_controller */
577 	void			(*cleanup)(struct spi_device *spi);
578 
579 	/*
580 	 * Used to enable core support for DMA handling, if can_dma()
581 	 * exists and returns true then the transfer will be mapped
582 	 * prior to transfer_one() being called.  The driver should
583 	 * not modify or store xfer and dma_tx and dma_rx must be set
584 	 * while the device is prepared.
585 	 */
586 	bool			(*can_dma)(struct spi_controller *ctlr,
587 					   struct spi_device *spi,
588 					   struct spi_transfer *xfer);
589 
590 	/*
591 	 * These hooks are for drivers that want to use the generic
592 	 * controller transfer queueing mechanism. If these are used, the
593 	 * transfer() function above must NOT be specified by the driver.
594 	 * Over time we expect SPI drivers to be phased over to this API.
595 	 */
596 	bool				queued;
597 	struct kthread_worker		*kworker;
598 	struct kthread_work		pump_messages;
599 	spinlock_t			queue_lock;
600 	struct list_head		queue;
601 	struct spi_message		*cur_msg;
602 	bool				idling;
603 	bool				busy;
604 	bool				running;
605 	bool				rt;
606 	bool				auto_runtime_pm;
607 	bool                            cur_msg_prepared;
608 	bool				cur_msg_mapped;
609 	bool				last_cs_enable;
610 	bool				last_cs_mode_high;
611 	bool                            fallback;
612 	struct completion               xfer_completion;
613 	size_t				max_dma_len;
614 
615 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
616 	int (*transfer_one_message)(struct spi_controller *ctlr,
617 				    struct spi_message *mesg);
618 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
619 	int (*prepare_message)(struct spi_controller *ctlr,
620 			       struct spi_message *message);
621 	int (*unprepare_message)(struct spi_controller *ctlr,
622 				 struct spi_message *message);
623 	int (*slave_abort)(struct spi_controller *ctlr);
624 
625 	/*
626 	 * These hooks are for drivers that use a generic implementation
627 	 * of transfer_one_message() provided by the core.
628 	 */
629 	void (*set_cs)(struct spi_device *spi, bool enable);
630 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
631 			    struct spi_transfer *transfer);
632 	void (*handle_err)(struct spi_controller *ctlr,
633 			   struct spi_message *message);
634 
635 	/* Optimized handlers for SPI memory-like operations. */
636 	const struct spi_controller_mem_ops *mem_ops;
637 
638 	/* CS delays */
639 	struct spi_delay	cs_setup;
640 	struct spi_delay	cs_hold;
641 	struct spi_delay	cs_inactive;
642 
643 	/* gpio chip select */
644 	int			*cs_gpios;
645 	struct gpio_desc	**cs_gpiods;
646 	bool			use_gpio_descriptors;
647 	u8			unused_native_cs;
648 	u8			max_native_cs;
649 
650 	/* statistics */
651 	struct spi_statistics	statistics;
652 
653 	/* DMA channels for use with core dmaengine helpers */
654 	struct dma_chan		*dma_tx;
655 	struct dma_chan		*dma_rx;
656 
657 	/* dummy data for full duplex devices */
658 	void			*dummy_rx;
659 	void			*dummy_tx;
660 
661 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
662 
663 	/*
664 	 * Driver sets this field to indicate it is able to snapshot SPI
665 	 * transfers (needed e.g. for reading the time of POSIX clocks)
666 	 */
667 	bool			ptp_sts_supported;
668 
669 	/* Interrupt enable state during PTP system timestamping */
670 	unsigned long		irq_flags;
671 };
672 
spi_controller_get_devdata(struct spi_controller * ctlr)673 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
674 {
675 	return dev_get_drvdata(&ctlr->dev);
676 }
677 
spi_controller_set_devdata(struct spi_controller * ctlr,void * data)678 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
679 					      void *data)
680 {
681 	dev_set_drvdata(&ctlr->dev, data);
682 }
683 
spi_controller_get(struct spi_controller * ctlr)684 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
685 {
686 	if (!ctlr || !get_device(&ctlr->dev))
687 		return NULL;
688 	return ctlr;
689 }
690 
spi_controller_put(struct spi_controller * ctlr)691 static inline void spi_controller_put(struct spi_controller *ctlr)
692 {
693 	if (ctlr)
694 		put_device(&ctlr->dev);
695 }
696 
spi_controller_is_slave(struct spi_controller * ctlr)697 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
698 {
699 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
700 }
701 
702 /* PM calls that need to be issued by the driver */
703 extern int spi_controller_suspend(struct spi_controller *ctlr);
704 extern int spi_controller_resume(struct spi_controller *ctlr);
705 
706 /* Calls the driver make to interact with the message queue */
707 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
708 extern void spi_finalize_current_message(struct spi_controller *ctlr);
709 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
710 
711 /* Helper calls for driver to timestamp transfer */
712 void spi_take_timestamp_pre(struct spi_controller *ctlr,
713 			    struct spi_transfer *xfer,
714 			    size_t progress, bool irqs_off);
715 void spi_take_timestamp_post(struct spi_controller *ctlr,
716 			     struct spi_transfer *xfer,
717 			     size_t progress, bool irqs_off);
718 
719 /* the spi driver core manages memory for the spi_controller classdev */
720 extern struct spi_controller *__spi_alloc_controller(struct device *host,
721 						unsigned int size, bool slave);
722 
spi_alloc_master(struct device * host,unsigned int size)723 static inline struct spi_controller *spi_alloc_master(struct device *host,
724 						      unsigned int size)
725 {
726 	return __spi_alloc_controller(host, size, false);
727 }
728 
spi_alloc_slave(struct device * host,unsigned int size)729 static inline struct spi_controller *spi_alloc_slave(struct device *host,
730 						     unsigned int size)
731 {
732 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
733 		return NULL;
734 
735 	return __spi_alloc_controller(host, size, true);
736 }
737 
738 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
739 						   unsigned int size,
740 						   bool slave);
741 
devm_spi_alloc_master(struct device * dev,unsigned int size)742 static inline struct spi_controller *devm_spi_alloc_master(struct device *dev,
743 							   unsigned int size)
744 {
745 	return __devm_spi_alloc_controller(dev, size, false);
746 }
747 
devm_spi_alloc_slave(struct device * dev,unsigned int size)748 static inline struct spi_controller *devm_spi_alloc_slave(struct device *dev,
749 							  unsigned int size)
750 {
751 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
752 		return NULL;
753 
754 	return __devm_spi_alloc_controller(dev, size, true);
755 }
756 
757 extern int spi_register_controller(struct spi_controller *ctlr);
758 extern int devm_spi_register_controller(struct device *dev,
759 					struct spi_controller *ctlr);
760 extern void spi_unregister_controller(struct spi_controller *ctlr);
761 
762 extern struct spi_controller *spi_busnum_to_master(u16 busnum);
763 
764 /*
765  * SPI resource management while processing a SPI message
766  */
767 
768 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
769 				  struct spi_message *msg,
770 				  void *res);
771 
772 /**
773  * struct spi_res - spi resource management structure
774  * @entry:   list entry
775  * @release: release code called prior to freeing this resource
776  * @data:    extra data allocated for the specific use-case
777  *
778  * this is based on ideas from devres, but focused on life-cycle
779  * management during spi_message processing
780  */
781 struct spi_res {
782 	struct list_head        entry;
783 	spi_res_release_t       release;
784 	unsigned long long      data[]; /* guarantee ull alignment */
785 };
786 
787 extern void *spi_res_alloc(struct spi_device *spi,
788 			   spi_res_release_t release,
789 			   size_t size, gfp_t gfp);
790 extern void spi_res_add(struct spi_message *message, void *res);
791 extern void spi_res_free(void *res);
792 
793 extern void spi_res_release(struct spi_controller *ctlr,
794 			    struct spi_message *message);
795 
796 /*---------------------------------------------------------------------------*/
797 
798 /*
799  * I/O INTERFACE between SPI controller and protocol drivers
800  *
801  * Protocol drivers use a queue of spi_messages, each transferring data
802  * between the controller and memory buffers.
803  *
804  * The spi_messages themselves consist of a series of read+write transfer
805  * segments.  Those segments always read the same number of bits as they
806  * write; but one or the other is easily ignored by passing a null buffer
807  * pointer.  (This is unlike most types of I/O API, because SPI hardware
808  * is full duplex.)
809  *
810  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
811  * up to the protocol driver, which guarantees the integrity of both (as
812  * well as the data buffers) for as long as the message is queued.
813  */
814 
815 /**
816  * struct spi_transfer - a read/write buffer pair
817  * @tx_buf: data to be written (dma-safe memory), or NULL
818  * @rx_buf: data to be read (dma-safe memory), or NULL
819  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
820  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
821  * @tx_nbits: number of bits used for writing. If 0 the default
822  *      (SPI_NBITS_SINGLE) is used.
823  * @rx_nbits: number of bits used for reading. If 0 the default
824  *      (SPI_NBITS_SINGLE) is used.
825  * @len: size of rx and tx buffers (in bytes)
826  * @speed_hz: Select a speed other than the device default for this
827  *      transfer. If 0 the default (from @spi_device) is used.
828  * @bits_per_word: select a bits_per_word other than the device default
829  *      for this transfer. If 0 the default (from @spi_device) is used.
830  * @dummy_data: indicates transfer is dummy bytes transfer.
831  * @cs_change: affects chipselect after this transfer completes
832  * @cs_change_delay: delay between cs deassert and assert when
833  *      @cs_change is set and @spi_transfer is not the last in @spi_message
834  * @delay: delay to be introduced after this transfer before
835  *	(optionally) changing the chipselect status, then starting
836  *	the next transfer or completing this @spi_message.
837  * @word_delay: inter word delay to be introduced after each word size
838  *	(set by bits_per_word) transmission.
839  * @effective_speed_hz: the effective SCK-speed that was used to
840  *      transfer this transfer. Set to 0 if the spi bus driver does
841  *      not support it.
842  * @transfer_list: transfers are sequenced through @spi_message.transfers
843  * @tx_sg: Scatterlist for transmit, currently not for client use
844  * @rx_sg: Scatterlist for receive, currently not for client use
845  * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset
846  *	within @tx_buf for which the SPI device is requesting that the time
847  *	snapshot for this transfer begins. Upon completing the SPI transfer,
848  *	this value may have changed compared to what was requested, depending
849  *	on the available snapshotting resolution (DMA transfer,
850  *	@ptp_sts_supported is false, etc).
851  * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning
852  *	that a single byte should be snapshotted).
853  *	If the core takes care of the timestamp (if @ptp_sts_supported is false
854  *	for this controller), it will set @ptp_sts_word_pre to 0, and
855  *	@ptp_sts_word_post to the length of the transfer. This is done
856  *	purposefully (instead of setting to spi_transfer->len - 1) to denote
857  *	that a transfer-level snapshot taken from within the driver may still
858  *	be of higher quality.
859  * @ptp_sts: Pointer to a memory location held by the SPI slave device where a
860  *	PTP system timestamp structure may lie. If drivers use PIO or their
861  *	hardware has some sort of assist for retrieving exact transfer timing,
862  *	they can (and should) assert @ptp_sts_supported and populate this
863  *	structure using the ptp_read_system_*ts helper functions.
864  *	The timestamp must represent the time at which the SPI slave device has
865  *	processed the word, i.e. the "pre" timestamp should be taken before
866  *	transmitting the "pre" word, and the "post" timestamp after receiving
867  *	transmit confirmation from the controller for the "post" word.
868  * @timestamped: true if the transfer has been timestamped
869  * @error: Error status logged by spi controller driver.
870  *
871  * SPI transfers always write the same number of bytes as they read.
872  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
873  * In some cases, they may also want to provide DMA addresses for
874  * the data being transferred; that may reduce overhead, when the
875  * underlying driver uses dma.
876  *
877  * If the transmit buffer is null, zeroes will be shifted out
878  * while filling @rx_buf.  If the receive buffer is null, the data
879  * shifted in will be discarded.  Only "len" bytes shift out (or in).
880  * It's an error to try to shift out a partial word.  (For example, by
881  * shifting out three bytes with word size of sixteen or twenty bits;
882  * the former uses two bytes per word, the latter uses four bytes.)
883  *
884  * In-memory data values are always in native CPU byte order, translated
885  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
886  * for example when bits_per_word is sixteen, buffers are 2N bytes long
887  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
888  *
889  * When the word size of the SPI transfer is not a power-of-two multiple
890  * of eight bits, those in-memory words include extra bits.  In-memory
891  * words are always seen by protocol drivers as right-justified, so the
892  * undefined (rx) or unused (tx) bits are always the most significant bits.
893  *
894  * All SPI transfers start with the relevant chipselect active.  Normally
895  * it stays selected until after the last transfer in a message.  Drivers
896  * can affect the chipselect signal using cs_change.
897  *
898  * (i) If the transfer isn't the last one in the message, this flag is
899  * used to make the chipselect briefly go inactive in the middle of the
900  * message.  Toggling chipselect in this way may be needed to terminate
901  * a chip command, letting a single spi_message perform all of group of
902  * chip transactions together.
903  *
904  * (ii) When the transfer is the last one in the message, the chip may
905  * stay selected until the next transfer.  On multi-device SPI busses
906  * with nothing blocking messages going to other devices, this is just
907  * a performance hint; starting a message to another device deselects
908  * this one.  But in other cases, this can be used to ensure correctness.
909  * Some devices need protocol transactions to be built from a series of
910  * spi_message submissions, where the content of one message is determined
911  * by the results of previous messages and where the whole transaction
912  * ends when the chipselect goes intactive.
913  *
914  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
915  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
916  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
917  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
918  *
919  * The code that submits an spi_message (and its spi_transfers)
920  * to the lower layers is responsible for managing its memory.
921  * Zero-initialize every field you don't set up explicitly, to
922  * insulate against future API updates.  After you submit a message
923  * and its transfers, ignore them until its completion callback.
924  */
925 struct spi_transfer {
926 	/* it's ok if tx_buf == rx_buf (right?)
927 	 * for MicroWire, one buffer must be null
928 	 * buffers must work with dma_*map_single() calls, unless
929 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
930 	 */
931 	const void	*tx_buf;
932 	void		*rx_buf;
933 	unsigned	len;
934 
935 	dma_addr_t	tx_dma;
936 	dma_addr_t	rx_dma;
937 	struct sg_table tx_sg;
938 	struct sg_table rx_sg;
939 
940 	unsigned	dummy_data:1;
941 	unsigned	cs_change:1;
942 	unsigned	tx_nbits:3;
943 	unsigned	rx_nbits:3;
944 #define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
945 #define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
946 #define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
947 	u8		bits_per_word;
948 	struct spi_delay	delay;
949 	struct spi_delay	cs_change_delay;
950 	struct spi_delay	word_delay;
951 	u32		speed_hz;
952 
953 	u32		effective_speed_hz;
954 
955 	unsigned int	ptp_sts_word_pre;
956 	unsigned int	ptp_sts_word_post;
957 
958 	struct ptp_system_timestamp *ptp_sts;
959 
960 	bool		timestamped;
961 
962 	struct list_head transfer_list;
963 
964 #define SPI_TRANS_FAIL_NO_START	BIT(0)
965 	u16		error;
966 };
967 
968 /**
969  * struct spi_message - one multi-segment SPI transaction
970  * @transfers: list of transfer segments in this transaction
971  * @spi: SPI device to which the transaction is queued
972  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
973  *	addresses for each transfer buffer
974  * @complete: called to report transaction completions
975  * @context: the argument to complete() when it's called
976  * @frame_length: the total number of bytes in the message
977  * @actual_length: the total number of bytes that were transferred in all
978  *	successful segments
979  * @status: zero for success, else negative errno
980  * @queue: for use by whichever driver currently owns the message
981  * @state: for use by whichever driver currently owns the message
982  * @resources: for resource management when the spi message is processed
983  *
984  * A @spi_message is used to execute an atomic sequence of data transfers,
985  * each represented by a struct spi_transfer.  The sequence is "atomic"
986  * in the sense that no other spi_message may use that SPI bus until that
987  * sequence completes.  On some systems, many such sequences can execute as
988  * a single programmed DMA transfer.  On all systems, these messages are
989  * queued, and might complete after transactions to other devices.  Messages
990  * sent to a given spi_device are always executed in FIFO order.
991  *
992  * The code that submits an spi_message (and its spi_transfers)
993  * to the lower layers is responsible for managing its memory.
994  * Zero-initialize every field you don't set up explicitly, to
995  * insulate against future API updates.  After you submit a message
996  * and its transfers, ignore them until its completion callback.
997  */
998 struct spi_message {
999 	struct list_head	transfers;
1000 
1001 	struct spi_device	*spi;
1002 
1003 	unsigned		is_dma_mapped:1;
1004 
1005 	/* REVISIT:  we might want a flag affecting the behavior of the
1006 	 * last transfer ... allowing things like "read 16 bit length L"
1007 	 * immediately followed by "read L bytes".  Basically imposing
1008 	 * a specific message scheduling algorithm.
1009 	 *
1010 	 * Some controller drivers (message-at-a-time queue processing)
1011 	 * could provide that as their default scheduling algorithm.  But
1012 	 * others (with multi-message pipelines) could need a flag to
1013 	 * tell them about such special cases.
1014 	 */
1015 
1016 	/* completion is reported through a callback */
1017 	void			(*complete)(void *context);
1018 	void			*context;
1019 	unsigned		frame_length;
1020 	unsigned		actual_length;
1021 	int			status;
1022 
1023 	/* for optional use by whatever driver currently owns the
1024 	 * spi_message ...  between calls to spi_async and then later
1025 	 * complete(), that's the spi_controller controller driver.
1026 	 */
1027 	struct list_head	queue;
1028 	void			*state;
1029 
1030 	/* list of spi_res reources when the spi message is processed */
1031 	struct list_head        resources;
1032 };
1033 
spi_message_init_no_memset(struct spi_message * m)1034 static inline void spi_message_init_no_memset(struct spi_message *m)
1035 {
1036 	INIT_LIST_HEAD(&m->transfers);
1037 	INIT_LIST_HEAD(&m->resources);
1038 }
1039 
spi_message_init(struct spi_message * m)1040 static inline void spi_message_init(struct spi_message *m)
1041 {
1042 	memset(m, 0, sizeof *m);
1043 	spi_message_init_no_memset(m);
1044 }
1045 
1046 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)1047 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
1048 {
1049 	list_add_tail(&t->transfer_list, &m->transfers);
1050 }
1051 
1052 static inline void
spi_transfer_del(struct spi_transfer * t)1053 spi_transfer_del(struct spi_transfer *t)
1054 {
1055 	list_del(&t->transfer_list);
1056 }
1057 
1058 static inline int
spi_transfer_delay_exec(struct spi_transfer * t)1059 spi_transfer_delay_exec(struct spi_transfer *t)
1060 {
1061 	return spi_delay_exec(&t->delay, t);
1062 }
1063 
1064 /**
1065  * spi_message_init_with_transfers - Initialize spi_message and append transfers
1066  * @m: spi_message to be initialized
1067  * @xfers: An array of spi transfers
1068  * @num_xfers: Number of items in the xfer array
1069  *
1070  * This function initializes the given spi_message and adds each spi_transfer in
1071  * the given array to the message.
1072  */
1073 static inline void
spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)1074 spi_message_init_with_transfers(struct spi_message *m,
1075 struct spi_transfer *xfers, unsigned int num_xfers)
1076 {
1077 	unsigned int i;
1078 
1079 	spi_message_init(m);
1080 	for (i = 0; i < num_xfers; ++i)
1081 		spi_message_add_tail(&xfers[i], m);
1082 }
1083 
1084 /* It's fine to embed message and transaction structures in other data
1085  * structures so long as you don't free them while they're in use.
1086  */
1087 
spi_message_alloc(unsigned ntrans,gfp_t flags)1088 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
1089 {
1090 	struct spi_message *m;
1091 
1092 	m = kzalloc(sizeof(struct spi_message)
1093 			+ ntrans * sizeof(struct spi_transfer),
1094 			flags);
1095 	if (m) {
1096 		unsigned i;
1097 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
1098 
1099 		spi_message_init_no_memset(m);
1100 		for (i = 0; i < ntrans; i++, t++)
1101 			spi_message_add_tail(t, m);
1102 	}
1103 	return m;
1104 }
1105 
spi_message_free(struct spi_message * m)1106 static inline void spi_message_free(struct spi_message *m)
1107 {
1108 	kfree(m);
1109 }
1110 
1111 extern int spi_set_cs_timing(struct spi_device *spi,
1112 			     struct spi_delay *setup,
1113 			     struct spi_delay *hold,
1114 			     struct spi_delay *inactive);
1115 
1116 extern int spi_setup(struct spi_device *spi);
1117 extern int spi_async(struct spi_device *spi, struct spi_message *message);
1118 extern int spi_async_locked(struct spi_device *spi,
1119 			    struct spi_message *message);
1120 extern int spi_slave_abort(struct spi_device *spi);
1121 
1122 static inline size_t
spi_max_message_size(struct spi_device * spi)1123 spi_max_message_size(struct spi_device *spi)
1124 {
1125 	struct spi_controller *ctlr = spi->controller;
1126 
1127 	if (!ctlr->max_message_size)
1128 		return SIZE_MAX;
1129 	return ctlr->max_message_size(spi);
1130 }
1131 
1132 static inline size_t
spi_max_transfer_size(struct spi_device * spi)1133 spi_max_transfer_size(struct spi_device *spi)
1134 {
1135 	struct spi_controller *ctlr = spi->controller;
1136 	size_t tr_max = SIZE_MAX;
1137 	size_t msg_max = spi_max_message_size(spi);
1138 
1139 	if (ctlr->max_transfer_size)
1140 		tr_max = ctlr->max_transfer_size(spi);
1141 
1142 	/* transfer size limit must not be greater than messsage size limit */
1143 	return min(tr_max, msg_max);
1144 }
1145 
1146 /**
1147  * spi_is_bpw_supported - Check if bits per word is supported
1148  * @spi: SPI device
1149  * @bpw: Bits per word
1150  *
1151  * This function checks to see if the SPI controller supports @bpw.
1152  *
1153  * Returns:
1154  * True if @bpw is supported, false otherwise.
1155  */
spi_is_bpw_supported(struct spi_device * spi,u32 bpw)1156 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1157 {
1158 	u32 bpw_mask = spi->master->bits_per_word_mask;
1159 
1160 	if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1161 		return true;
1162 
1163 	return false;
1164 }
1165 
1166 /*---------------------------------------------------------------------------*/
1167 
1168 /* SPI transfer replacement methods which make use of spi_res */
1169 
1170 struct spi_replaced_transfers;
1171 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1172 				       struct spi_message *msg,
1173 				       struct spi_replaced_transfers *res);
1174 /**
1175  * struct spi_replaced_transfers - structure describing the spi_transfer
1176  *                                 replacements that have occurred
1177  *                                 so that they can get reverted
1178  * @release:            some extra release code to get executed prior to
1179  *                      relasing this structure
1180  * @extradata:          pointer to some extra data if requested or NULL
1181  * @replaced_transfers: transfers that have been replaced and which need
1182  *                      to get restored
1183  * @replaced_after:     the transfer after which the @replaced_transfers
1184  *                      are to get re-inserted
1185  * @inserted:           number of transfers inserted
1186  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1187  *                      that have been replacing replaced_transfers
1188  *
1189  * note: that @extradata will point to @inserted_transfers[@inserted]
1190  * if some extra allocation is requested, so alignment will be the same
1191  * as for spi_transfers
1192  */
1193 struct spi_replaced_transfers {
1194 	spi_replaced_release_t release;
1195 	void *extradata;
1196 	struct list_head replaced_transfers;
1197 	struct list_head *replaced_after;
1198 	size_t inserted;
1199 	struct spi_transfer inserted_transfers[];
1200 };
1201 
1202 extern struct spi_replaced_transfers *spi_replace_transfers(
1203 	struct spi_message *msg,
1204 	struct spi_transfer *xfer_first,
1205 	size_t remove,
1206 	size_t insert,
1207 	spi_replaced_release_t release,
1208 	size_t extradatasize,
1209 	gfp_t gfp);
1210 
1211 /*---------------------------------------------------------------------------*/
1212 
1213 /* SPI transfer transformation methods */
1214 
1215 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1216 				       struct spi_message *msg,
1217 				       size_t maxsize,
1218 				       gfp_t gfp);
1219 
1220 /*---------------------------------------------------------------------------*/
1221 
1222 /* All these synchronous SPI transfer routines are utilities layered
1223  * over the core async transfer primitive.  Here, "synchronous" means
1224  * they will sleep uninterruptibly until the async transfer completes.
1225  */
1226 
1227 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1228 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1229 extern int spi_bus_lock(struct spi_controller *ctlr);
1230 extern int spi_bus_unlock(struct spi_controller *ctlr);
1231 
1232 /**
1233  * spi_sync_transfer - synchronous SPI data transfer
1234  * @spi: device with which data will be exchanged
1235  * @xfers: An array of spi_transfers
1236  * @num_xfers: Number of items in the xfer array
1237  * Context: can sleep
1238  *
1239  * Does a synchronous SPI data transfer of the given spi_transfer array.
1240  *
1241  * For more specific semantics see spi_sync().
1242  *
1243  * Return: zero on success, else a negative error code.
1244  */
1245 static inline int
spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)1246 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1247 	unsigned int num_xfers)
1248 {
1249 	struct spi_message msg;
1250 
1251 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1252 
1253 	return spi_sync(spi, &msg);
1254 }
1255 
1256 /**
1257  * spi_write - SPI synchronous write
1258  * @spi: device to which data will be written
1259  * @buf: data buffer
1260  * @len: data buffer size
1261  * Context: can sleep
1262  *
1263  * This function writes the buffer @buf.
1264  * Callable only from contexts that can sleep.
1265  *
1266  * Return: zero on success, else a negative error code.
1267  */
1268 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)1269 spi_write(struct spi_device *spi, const void *buf, size_t len)
1270 {
1271 	struct spi_transfer	t = {
1272 			.tx_buf		= buf,
1273 			.len		= len,
1274 		};
1275 
1276 	return spi_sync_transfer(spi, &t, 1);
1277 }
1278 
1279 /**
1280  * spi_read - SPI synchronous read
1281  * @spi: device from which data will be read
1282  * @buf: data buffer
1283  * @len: data buffer size
1284  * Context: can sleep
1285  *
1286  * This function reads the buffer @buf.
1287  * Callable only from contexts that can sleep.
1288  *
1289  * Return: zero on success, else a negative error code.
1290  */
1291 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)1292 spi_read(struct spi_device *spi, void *buf, size_t len)
1293 {
1294 	struct spi_transfer	t = {
1295 			.rx_buf		= buf,
1296 			.len		= len,
1297 		};
1298 
1299 	return spi_sync_transfer(spi, &t, 1);
1300 }
1301 
1302 /* this copies txbuf and rxbuf data; for small transfers only! */
1303 extern int spi_write_then_read(struct spi_device *spi,
1304 		const void *txbuf, unsigned n_tx,
1305 		void *rxbuf, unsigned n_rx);
1306 
1307 /**
1308  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1309  * @spi: device with which data will be exchanged
1310  * @cmd: command to be written before data is read back
1311  * Context: can sleep
1312  *
1313  * Callable only from contexts that can sleep.
1314  *
1315  * Return: the (unsigned) eight bit number returned by the
1316  * device, or else a negative error code.
1317  */
spi_w8r8(struct spi_device * spi,u8 cmd)1318 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1319 {
1320 	ssize_t			status;
1321 	u8			result;
1322 
1323 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1324 
1325 	/* return negative errno or unsigned value */
1326 	return (status < 0) ? status : result;
1327 }
1328 
1329 /**
1330  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1331  * @spi: device with which data will be exchanged
1332  * @cmd: command to be written before data is read back
1333  * Context: can sleep
1334  *
1335  * The number is returned in wire-order, which is at least sometimes
1336  * big-endian.
1337  *
1338  * Callable only from contexts that can sleep.
1339  *
1340  * Return: the (unsigned) sixteen bit number returned by the
1341  * device, or else a negative error code.
1342  */
spi_w8r16(struct spi_device * spi,u8 cmd)1343 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1344 {
1345 	ssize_t			status;
1346 	u16			result;
1347 
1348 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1349 
1350 	/* return negative errno or unsigned value */
1351 	return (status < 0) ? status : result;
1352 }
1353 
1354 /**
1355  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1356  * @spi: device with which data will be exchanged
1357  * @cmd: command to be written before data is read back
1358  * Context: can sleep
1359  *
1360  * This function is similar to spi_w8r16, with the exception that it will
1361  * convert the read 16 bit data word from big-endian to native endianness.
1362  *
1363  * Callable only from contexts that can sleep.
1364  *
1365  * Return: the (unsigned) sixteen bit number returned by the device in cpu
1366  * endianness, or else a negative error code.
1367  */
spi_w8r16be(struct spi_device * spi,u8 cmd)1368 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1369 
1370 {
1371 	ssize_t status;
1372 	__be16 result;
1373 
1374 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1375 	if (status < 0)
1376 		return status;
1377 
1378 	return be16_to_cpu(result);
1379 }
1380 
1381 /*---------------------------------------------------------------------------*/
1382 
1383 /*
1384  * INTERFACE between board init code and SPI infrastructure.
1385  *
1386  * No SPI driver ever sees these SPI device table segments, but
1387  * it's how the SPI core (or adapters that get hotplugged) grows
1388  * the driver model tree.
1389  *
1390  * As a rule, SPI devices can't be probed.  Instead, board init code
1391  * provides a table listing the devices which are present, with enough
1392  * information to bind and set up the device's driver.  There's basic
1393  * support for nonstatic configurations too; enough to handle adding
1394  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1395  */
1396 
1397 /**
1398  * struct spi_board_info - board-specific template for a SPI device
1399  * @modalias: Initializes spi_device.modalias; identifies the driver.
1400  * @platform_data: Initializes spi_device.platform_data; the particular
1401  *	data stored there is driver-specific.
1402  * @swnode: Software node for the device.
1403  * @controller_data: Initializes spi_device.controller_data; some
1404  *	controllers need hints about hardware setup, e.g. for DMA.
1405  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1406  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1407  *	from the chip datasheet and board-specific signal quality issues.
1408  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1409  *	by spi_new_device(), and otherwise depends on board wiring.
1410  * @chip_select: Initializes spi_device.chip_select; depends on how
1411  *	the board is wired.
1412  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1413  *	wiring (some devices support both 3WIRE and standard modes), and
1414  *	possibly presence of an inverter in the chipselect path.
1415  *
1416  * When adding new SPI devices to the device tree, these structures serve
1417  * as a partial device template.  They hold information which can't always
1418  * be determined by drivers.  Information that probe() can establish (such
1419  * as the default transfer wordsize) is not included here.
1420  *
1421  * These structures are used in two places.  Their primary role is to
1422  * be stored in tables of board-specific device descriptors, which are
1423  * declared early in board initialization and then used (much later) to
1424  * populate a controller's device tree after the that controller's driver
1425  * initializes.  A secondary (and atypical) role is as a parameter to
1426  * spi_new_device() call, which happens after those controller drivers
1427  * are active in some dynamic board configuration models.
1428  */
1429 struct spi_board_info {
1430 	/* the device name and module name are coupled, like platform_bus;
1431 	 * "modalias" is normally the driver name.
1432 	 *
1433 	 * platform_data goes to spi_device.dev.platform_data,
1434 	 * controller_data goes to spi_device.controller_data,
1435 	 * irq is copied too
1436 	 */
1437 	char		modalias[SPI_NAME_SIZE];
1438 	const void	*platform_data;
1439 	const struct software_node *swnode;
1440 	void		*controller_data;
1441 	int		irq;
1442 
1443 	/* slower signaling on noisy or low voltage boards */
1444 	u32		max_speed_hz;
1445 
1446 
1447 	/* bus_num is board specific and matches the bus_num of some
1448 	 * spi_controller that will probably be registered later.
1449 	 *
1450 	 * chip_select reflects how this chip is wired to that master;
1451 	 * it's less than num_chipselect.
1452 	 */
1453 	u16		bus_num;
1454 	u16		chip_select;
1455 
1456 	/* mode becomes spi_device.mode, and is essential for chips
1457 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1458 	 */
1459 	u32		mode;
1460 
1461 	/* ... may need additional spi_device chip config data here.
1462 	 * avoid stuff protocol drivers can set; but include stuff
1463 	 * needed to behave without being bound to a driver:
1464 	 *  - quirks like clock rate mattering when not selected
1465 	 */
1466 };
1467 
1468 #ifdef	CONFIG_SPI
1469 extern int
1470 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1471 #else
1472 /* board init code may ignore whether SPI is configured or not */
1473 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)1474 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1475 	{ return 0; }
1476 #endif
1477 
1478 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1479  * use spi_new_device() to describe each device.  You can also call
1480  * spi_unregister_device() to start making that device vanish, but
1481  * normally that would be handled by spi_unregister_controller().
1482  *
1483  * You can also use spi_alloc_device() and spi_add_device() to use a two
1484  * stage registration sequence for each spi_device.  This gives the caller
1485  * some more control over the spi_device structure before it is registered,
1486  * but requires that caller to initialize fields that would otherwise
1487  * be defined using the board info.
1488  */
1489 extern struct spi_device *
1490 spi_alloc_device(struct spi_controller *ctlr);
1491 
1492 extern int
1493 spi_add_device(struct spi_device *spi);
1494 
1495 extern struct spi_device *
1496 spi_new_device(struct spi_controller *, struct spi_board_info *);
1497 
1498 extern void spi_unregister_device(struct spi_device *spi);
1499 
1500 extern const struct spi_device_id *
1501 spi_get_device_id(const struct spi_device *sdev);
1502 
1503 static inline bool
spi_transfer_is_last(struct spi_controller * ctlr,struct spi_transfer * xfer)1504 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1505 {
1506 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1507 }
1508 
1509 /* OF support code */
1510 #if IS_ENABLED(CONFIG_OF)
1511 
1512 /* must call put_device() when done with returned spi_device device */
1513 extern struct spi_device *
1514 of_find_spi_device_by_node(struct device_node *node);
1515 
1516 #else
1517 
1518 static inline struct spi_device *
of_find_spi_device_by_node(struct device_node * node)1519 of_find_spi_device_by_node(struct device_node *node)
1520 {
1521 	return NULL;
1522 }
1523 
1524 #endif /* IS_ENABLED(CONFIG_OF) */
1525 
1526 /* Compatibility layer */
1527 #define spi_master			spi_controller
1528 
1529 #define SPI_MASTER_HALF_DUPLEX		SPI_CONTROLLER_HALF_DUPLEX
1530 #define SPI_MASTER_NO_RX		SPI_CONTROLLER_NO_RX
1531 #define SPI_MASTER_NO_TX		SPI_CONTROLLER_NO_TX
1532 #define SPI_MASTER_MUST_RX		SPI_CONTROLLER_MUST_RX
1533 #define SPI_MASTER_MUST_TX		SPI_CONTROLLER_MUST_TX
1534 
1535 #define spi_master_get_devdata(_ctlr)	spi_controller_get_devdata(_ctlr)
1536 #define spi_master_set_devdata(_ctlr, _data)	\
1537 	spi_controller_set_devdata(_ctlr, _data)
1538 #define spi_master_get(_ctlr)		spi_controller_get(_ctlr)
1539 #define spi_master_put(_ctlr)		spi_controller_put(_ctlr)
1540 #define spi_master_suspend(_ctlr)	spi_controller_suspend(_ctlr)
1541 #define spi_master_resume(_ctlr)	spi_controller_resume(_ctlr)
1542 
1543 #define spi_register_master(_ctlr)	spi_register_controller(_ctlr)
1544 #define devm_spi_register_master(_dev, _ctlr) \
1545 	devm_spi_register_controller(_dev, _ctlr)
1546 #define spi_unregister_master(_ctlr)	spi_unregister_controller(_ctlr)
1547 
1548 #endif /* __LINUX_SPI_H */
1549