1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/smp.c
4  *
5  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
6  */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 #include <linux/kernel_stat.h>
30 
31 #include <linux/atomic.h>
32 #include <asm/bugs.h>
33 #include <asm/smp.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpu.h>
36 #include <asm/cputype.h>
37 #include <asm/exception.h>
38 #include <asm/idmap.h>
39 #include <asm/topology.h>
40 #include <asm/mmu_context.h>
41 #include <asm/procinfo.h>
42 #include <asm/processor.h>
43 #include <asm/sections.h>
44 #include <asm/tlbflush.h>
45 #include <asm/ptrace.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 #include <asm/mach/arch.h>
49 #include <asm/mpu.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/ipi.h>
53 
54 /*
55  * as from 2.5, kernels no longer have an init_tasks structure
56  * so we need some other way of telling a new secondary core
57  * where to place its SVC stack
58  */
59 struct secondary_data secondary_data;
60 
61 enum ipi_msg_type {
62 	IPI_WAKEUP,
63 	IPI_TIMER,
64 	IPI_RESCHEDULE,
65 	IPI_CALL_FUNC,
66 	IPI_CPU_STOP,
67 	IPI_IRQ_WORK,
68 	IPI_COMPLETION,
69 	NR_IPI,
70 	/*
71 	 * CPU_BACKTRACE is special and not included in NR_IPI
72 	 * or tracable with trace_ipi_*
73 	 */
74 	IPI_CPU_BACKTRACE = NR_IPI,
75 	/*
76 	 * SGI8-15 can be reserved by secure firmware, and thus may
77 	 * not be usable by the kernel. Please keep the above limited
78 	 * to at most 8 entries.
79 	 */
80 	MAX_IPI
81 };
82 
83 static int ipi_irq_base __read_mostly;
84 static int nr_ipi __read_mostly = NR_IPI;
85 static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly;
86 
87 static void ipi_setup(int cpu);
88 
89 static DECLARE_COMPLETION(cpu_running);
90 
91 static struct smp_operations smp_ops __ro_after_init;
92 
smp_set_ops(const struct smp_operations * ops)93 void __init smp_set_ops(const struct smp_operations *ops)
94 {
95 	if (ops)
96 		smp_ops = *ops;
97 };
98 
get_arch_pgd(pgd_t * pgd)99 static unsigned long get_arch_pgd(pgd_t *pgd)
100 {
101 #ifdef CONFIG_ARM_LPAE
102 	return __phys_to_pfn(virt_to_phys(pgd));
103 #else
104 	return virt_to_phys(pgd);
105 #endif
106 }
107 
108 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
secondary_biglittle_prepare(unsigned int cpu)109 static int secondary_biglittle_prepare(unsigned int cpu)
110 {
111 	if (!cpu_vtable[cpu])
112 		cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
113 
114 	return cpu_vtable[cpu] ? 0 : -ENOMEM;
115 }
116 
secondary_biglittle_init(void)117 static void secondary_biglittle_init(void)
118 {
119 	init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
120 }
121 #else
secondary_biglittle_prepare(unsigned int cpu)122 static int secondary_biglittle_prepare(unsigned int cpu)
123 {
124 	return 0;
125 }
126 
secondary_biglittle_init(void)127 static void secondary_biglittle_init(void)
128 {
129 }
130 #endif
131 
__cpu_up(unsigned int cpu,struct task_struct * idle)132 int __cpu_up(unsigned int cpu, struct task_struct *idle)
133 {
134 	int ret;
135 
136 	if (!smp_ops.smp_boot_secondary)
137 		return -ENOSYS;
138 
139 	ret = secondary_biglittle_prepare(cpu);
140 	if (ret)
141 		return ret;
142 
143 	/*
144 	 * We need to tell the secondary core where to find
145 	 * its stack and the page tables.
146 	 */
147 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
148 #ifdef CONFIG_ARM_MPU
149 	secondary_data.mpu_rgn_info = &mpu_rgn_info;
150 #endif
151 
152 #ifdef CONFIG_MMU
153 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
154 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
155 #endif
156 	sync_cache_w(&secondary_data);
157 
158 	/*
159 	 * Now bring the CPU into our world.
160 	 */
161 	ret = smp_ops.smp_boot_secondary(cpu, idle);
162 	if (ret == 0) {
163 		/*
164 		 * CPU was successfully started, wait for it
165 		 * to come online or time out.
166 		 */
167 		wait_for_completion_timeout(&cpu_running,
168 						 msecs_to_jiffies(1000));
169 
170 		if (!cpu_online(cpu)) {
171 			pr_crit("CPU%u: failed to come online\n", cpu);
172 			ret = -EIO;
173 		}
174 	} else {
175 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
176 	}
177 
178 
179 	memset(&secondary_data, 0, sizeof(secondary_data));
180 	return ret;
181 }
182 
183 /* platform specific SMP operations */
smp_init_cpus(void)184 void __init smp_init_cpus(void)
185 {
186 	if (smp_ops.smp_init_cpus)
187 		smp_ops.smp_init_cpus();
188 }
189 
platform_can_secondary_boot(void)190 int platform_can_secondary_boot(void)
191 {
192 	return !!smp_ops.smp_boot_secondary;
193 }
194 
platform_can_cpu_hotplug(void)195 int platform_can_cpu_hotplug(void)
196 {
197 #ifdef CONFIG_HOTPLUG_CPU
198 	if (smp_ops.cpu_kill)
199 		return 1;
200 #endif
201 
202 	return 0;
203 }
204 
205 #ifdef CONFIG_HOTPLUG_CPU
platform_cpu_kill(unsigned int cpu)206 static int platform_cpu_kill(unsigned int cpu)
207 {
208 	if (smp_ops.cpu_kill)
209 		return smp_ops.cpu_kill(cpu);
210 	return 1;
211 }
212 
platform_cpu_disable(unsigned int cpu)213 static int platform_cpu_disable(unsigned int cpu)
214 {
215 	if (smp_ops.cpu_disable)
216 		return smp_ops.cpu_disable(cpu);
217 
218 	return 0;
219 }
220 
platform_can_hotplug_cpu(unsigned int cpu)221 int platform_can_hotplug_cpu(unsigned int cpu)
222 {
223 	/* cpu_die must be specified to support hotplug */
224 	if (!smp_ops.cpu_die)
225 		return 0;
226 
227 	if (smp_ops.cpu_can_disable)
228 		return smp_ops.cpu_can_disable(cpu);
229 
230 	/*
231 	 * By default, allow disabling all CPUs except the first one,
232 	 * since this is special on a lot of platforms, e.g. because
233 	 * of clock tick interrupts.
234 	 */
235 	return cpu != 0;
236 }
237 
ipi_teardown(int cpu)238 static void ipi_teardown(int cpu)
239 {
240 	int i;
241 
242 	if (WARN_ON_ONCE(!ipi_irq_base))
243 		return;
244 
245 	for (i = 0; i < nr_ipi; i++)
246 		disable_percpu_irq(ipi_irq_base + i);
247 }
248 
249 /*
250  * __cpu_disable runs on the processor to be shutdown.
251  */
__cpu_disable(void)252 int __cpu_disable(void)
253 {
254 	unsigned int cpu = smp_processor_id();
255 	int ret;
256 
257 	ret = platform_cpu_disable(cpu);
258 	if (ret)
259 		return ret;
260 
261 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
262 	remove_cpu_topology(cpu);
263 #endif
264 
265 	/*
266 	 * Take this CPU offline.  Once we clear this, we can't return,
267 	 * and we must not schedule until we're ready to give up the cpu.
268 	 */
269 	set_cpu_online(cpu, false);
270 	ipi_teardown(cpu);
271 
272 	/*
273 	 * OK - migrate IRQs away from this CPU
274 	 */
275 	irq_migrate_all_off_this_cpu();
276 
277 	/*
278 	 * Flush user cache and TLB mappings, and then remove this CPU
279 	 * from the vm mask set of all processes.
280 	 *
281 	 * Caches are flushed to the Level of Unification Inner Shareable
282 	 * to write-back dirty lines to unified caches shared by all CPUs.
283 	 */
284 	flush_cache_louis();
285 	local_flush_tlb_all();
286 
287 	return 0;
288 }
289 
290 /*
291  * called on the thread which is asking for a CPU to be shutdown -
292  * waits until shutdown has completed, or it is timed out.
293  */
__cpu_die(unsigned int cpu)294 void __cpu_die(unsigned int cpu)
295 {
296 	if (!cpu_wait_death(cpu, 5)) {
297 		pr_err("CPU%u: cpu didn't die\n", cpu);
298 		return;
299 	}
300 	pr_debug("CPU%u: shutdown\n", cpu);
301 
302 	clear_tasks_mm_cpumask(cpu);
303 	/*
304 	 * platform_cpu_kill() is generally expected to do the powering off
305 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
306 	 * be done by the CPU which is dying in preference to supporting
307 	 * this call, but that means there is _no_ synchronisation between
308 	 * the requesting CPU and the dying CPU actually losing power.
309 	 */
310 	if (!platform_cpu_kill(cpu))
311 		pr_err("CPU%u: unable to kill\n", cpu);
312 }
313 
314 /*
315  * Called from the idle thread for the CPU which has been shutdown.
316  *
317  * Note that we disable IRQs here, but do not re-enable them
318  * before returning to the caller. This is also the behaviour
319  * of the other hotplug-cpu capable cores, so presumably coming
320  * out of idle fixes this.
321  */
arch_cpu_idle_dead(void)322 void arch_cpu_idle_dead(void)
323 {
324 	unsigned int cpu = smp_processor_id();
325 
326 	idle_task_exit();
327 
328 	local_irq_disable();
329 
330 	/*
331 	 * Flush the data out of the L1 cache for this CPU.  This must be
332 	 * before the completion to ensure that data is safely written out
333 	 * before platform_cpu_kill() gets called - which may disable
334 	 * *this* CPU and power down its cache.
335 	 */
336 	flush_cache_louis();
337 
338 	/*
339 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
340 	 * this returns, power and/or clocks can be removed at any point
341 	 * from this CPU and its cache by platform_cpu_kill().
342 	 */
343 	(void)cpu_report_death();
344 
345 	/*
346 	 * Ensure that the cache lines associated with that completion are
347 	 * written out.  This covers the case where _this_ CPU is doing the
348 	 * powering down, to ensure that the completion is visible to the
349 	 * CPU waiting for this one.
350 	 */
351 	flush_cache_louis();
352 
353 	/*
354 	 * The actual CPU shutdown procedure is at least platform (if not
355 	 * CPU) specific.  This may remove power, or it may simply spin.
356 	 *
357 	 * Platforms are generally expected *NOT* to return from this call,
358 	 * although there are some which do because they have no way to
359 	 * power down the CPU.  These platforms are the _only_ reason we
360 	 * have a return path which uses the fragment of assembly below.
361 	 *
362 	 * The return path should not be used for platforms which can
363 	 * power off the CPU.
364 	 */
365 	if (smp_ops.cpu_die)
366 		smp_ops.cpu_die(cpu);
367 
368 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
369 		cpu);
370 
371 	/*
372 	 * Do not return to the idle loop - jump back to the secondary
373 	 * cpu initialisation.  There's some initialisation which needs
374 	 * to be repeated to undo the effects of taking the CPU offline.
375 	 */
376 	__asm__("mov	sp, %0\n"
377 	"	mov	fp, #0\n"
378 	"	b	secondary_start_kernel"
379 		:
380 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
381 }
382 #endif /* CONFIG_HOTPLUG_CPU */
383 
384 /*
385  * Called by both boot and secondaries to move global data into
386  * per-processor storage.
387  */
smp_store_cpu_info(unsigned int cpuid)388 static void smp_store_cpu_info(unsigned int cpuid)
389 {
390 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
391 
392 	cpu_info->loops_per_jiffy = loops_per_jiffy;
393 	cpu_info->cpuid = read_cpuid_id();
394 
395 	store_cpu_topology(cpuid);
396 	check_cpu_icache_size(cpuid);
397 }
398 
399 /*
400  * This is the secondary CPU boot entry.  We're using this CPUs
401  * idle thread stack, but a set of temporary page tables.
402  */
secondary_start_kernel(void)403 asmlinkage void secondary_start_kernel(void)
404 {
405 	struct mm_struct *mm = &init_mm;
406 	unsigned int cpu;
407 
408 	secondary_biglittle_init();
409 
410 	/*
411 	 * The identity mapping is uncached (strongly ordered), so
412 	 * switch away from it before attempting any exclusive accesses.
413 	 */
414 	cpu_switch_mm(mm->pgd, mm);
415 	local_flush_bp_all();
416 	enter_lazy_tlb(mm, current);
417 	local_flush_tlb_all();
418 
419 	/*
420 	 * All kernel threads share the same mm context; grab a
421 	 * reference and switch to it.
422 	 */
423 	cpu = smp_processor_id();
424 	mmgrab(mm);
425 	current->active_mm = mm;
426 	cpumask_set_cpu(cpu, mm_cpumask(mm));
427 
428 	cpu_init();
429 
430 #ifndef CONFIG_MMU
431 	setup_vectors_base();
432 #endif
433 	pr_debug("CPU%u: Booted secondary processor\n", cpu);
434 
435 	preempt_disable();
436 	trace_hardirqs_off();
437 
438 	/*
439 	 * Give the platform a chance to do its own initialisation.
440 	 */
441 	if (smp_ops.smp_secondary_init)
442 		smp_ops.smp_secondary_init(cpu);
443 
444 	notify_cpu_starting(cpu);
445 
446 	ipi_setup(cpu);
447 
448 	calibrate_delay();
449 
450 	smp_store_cpu_info(cpu);
451 
452 	/*
453 	 * OK, now it's safe to let the boot CPU continue.  Wait for
454 	 * the CPU migration code to notice that the CPU is online
455 	 * before we continue - which happens after __cpu_up returns.
456 	 */
457 	set_cpu_online(cpu, true);
458 
459 	check_other_bugs();
460 
461 	complete(&cpu_running);
462 
463 	local_irq_enable();
464 	local_fiq_enable();
465 	local_abt_enable();
466 
467 	/*
468 	 * OK, it's off to the idle thread for us
469 	 */
470 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
471 }
472 
smp_cpus_done(unsigned int max_cpus)473 void __init smp_cpus_done(unsigned int max_cpus)
474 {
475 	int cpu;
476 	unsigned long bogosum = 0;
477 
478 	for_each_online_cpu(cpu)
479 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
480 
481 	printk(KERN_INFO "SMP: Total of %d processors activated "
482 	       "(%lu.%02lu BogoMIPS).\n",
483 	       num_online_cpus(),
484 	       bogosum / (500000/HZ),
485 	       (bogosum / (5000/HZ)) % 100);
486 
487 	hyp_mode_check();
488 }
489 
smp_prepare_boot_cpu(void)490 void __init smp_prepare_boot_cpu(void)
491 {
492 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
493 }
494 
smp_prepare_cpus(unsigned int max_cpus)495 void __init smp_prepare_cpus(unsigned int max_cpus)
496 {
497 	unsigned int ncores = num_possible_cpus();
498 
499 	init_cpu_topology();
500 
501 	smp_store_cpu_info(smp_processor_id());
502 
503 	/*
504 	 * are we trying to boot more cores than exist?
505 	 */
506 	if (max_cpus > ncores)
507 		max_cpus = ncores;
508 	if (ncores > 1 && max_cpus) {
509 		/*
510 		 * Initialise the present map, which describes the set of CPUs
511 		 * actually populated at the present time. A platform should
512 		 * re-initialize the map in the platforms smp_prepare_cpus()
513 		 * if present != possible (e.g. physical hotplug).
514 		 */
515 		init_cpu_present(cpu_possible_mask);
516 
517 		/*
518 		 * Initialise the SCU if there are more than one CPU
519 		 * and let them know where to start.
520 		 */
521 		if (smp_ops.smp_prepare_cpus)
522 			smp_ops.smp_prepare_cpus(max_cpus);
523 	}
524 }
525 
526 static const char *ipi_types[NR_IPI] __tracepoint_string = {
527 	[IPI_WAKEUP]		= "CPU wakeup interrupts",
528 	[IPI_TIMER]		= "Timer broadcast interrupts",
529 	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
530 	[IPI_CALL_FUNC]		= "Function call interrupts",
531 	[IPI_CPU_STOP]		= "CPU stop interrupts",
532 	[IPI_IRQ_WORK]		= "IRQ work interrupts",
533 	[IPI_COMPLETION]	= "completion interrupts",
534 };
535 
536 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
537 
show_ipi_list(struct seq_file * p,int prec)538 void show_ipi_list(struct seq_file *p, int prec)
539 {
540 	unsigned int cpu, i;
541 
542 	for (i = 0; i < NR_IPI; i++) {
543 		if (!ipi_desc[i])
544 			continue;
545 
546 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
547 
548 		for_each_online_cpu(cpu)
549 			seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
550 
551 		seq_printf(p, " %s\n", ipi_types[i]);
552 	}
553 }
554 
arch_send_call_function_ipi_mask(const struct cpumask * mask)555 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
556 {
557 	smp_cross_call(mask, IPI_CALL_FUNC);
558 }
559 
arch_send_wakeup_ipi_mask(const struct cpumask * mask)560 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
561 {
562 	smp_cross_call(mask, IPI_WAKEUP);
563 }
564 
arch_send_call_function_single_ipi(int cpu)565 void arch_send_call_function_single_ipi(int cpu)
566 {
567 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
568 }
569 
570 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)571 void arch_irq_work_raise(void)
572 {
573 	if (arch_irq_work_has_interrupt())
574 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
575 }
576 #endif
577 
578 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)579 void tick_broadcast(const struct cpumask *mask)
580 {
581 	smp_cross_call(mask, IPI_TIMER);
582 }
583 #endif
584 
585 static DEFINE_RAW_SPINLOCK(stop_lock);
586 
587 /*
588  * ipi_cpu_stop - handle IPI from smp_send_stop()
589  */
ipi_cpu_stop(unsigned int cpu)590 static void ipi_cpu_stop(unsigned int cpu)
591 {
592 	if (system_state <= SYSTEM_RUNNING) {
593 		raw_spin_lock(&stop_lock);
594 		pr_crit("CPU%u: stopping\n", cpu);
595 		dump_stack();
596 		raw_spin_unlock(&stop_lock);
597 	}
598 
599 	set_cpu_online(cpu, false);
600 
601 	local_fiq_disable();
602 	local_irq_disable();
603 
604 	while (1) {
605 		cpu_relax();
606 		wfe();
607 	}
608 }
609 
610 static DEFINE_PER_CPU(struct completion *, cpu_completion);
611 
register_ipi_completion(struct completion * completion,int cpu)612 int register_ipi_completion(struct completion *completion, int cpu)
613 {
614 	per_cpu(cpu_completion, cpu) = completion;
615 	return IPI_COMPLETION;
616 }
617 
ipi_complete(unsigned int cpu)618 static void ipi_complete(unsigned int cpu)
619 {
620 	complete(per_cpu(cpu_completion, cpu));
621 }
622 
623 /*
624  * Main handler for inter-processor interrupts
625  */
do_IPI(int ipinr,struct pt_regs * regs)626 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
627 {
628 	handle_IPI(ipinr, regs);
629 }
630 
do_handle_IPI(int ipinr)631 static void do_handle_IPI(int ipinr)
632 {
633 	unsigned int cpu = smp_processor_id();
634 
635 	if ((unsigned)ipinr < NR_IPI)
636 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
637 
638 	switch (ipinr) {
639 	case IPI_WAKEUP:
640 		break;
641 
642 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
643 	case IPI_TIMER:
644 		tick_receive_broadcast();
645 		break;
646 #endif
647 
648 	case IPI_RESCHEDULE:
649 		scheduler_ipi();
650 		break;
651 
652 	case IPI_CALL_FUNC:
653 		generic_smp_call_function_interrupt();
654 		break;
655 
656 	case IPI_CPU_STOP:
657 		ipi_cpu_stop(cpu);
658 		break;
659 
660 #ifdef CONFIG_IRQ_WORK
661 	case IPI_IRQ_WORK:
662 		irq_work_run();
663 		break;
664 #endif
665 
666 	case IPI_COMPLETION:
667 		ipi_complete(cpu);
668 		break;
669 
670 	case IPI_CPU_BACKTRACE:
671 		printk_nmi_enter();
672 		nmi_cpu_backtrace(get_irq_regs());
673 		printk_nmi_exit();
674 		break;
675 
676 	default:
677 		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
678 		        cpu, ipinr);
679 		break;
680 	}
681 
682 	if ((unsigned)ipinr < NR_IPI)
683 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
684 }
685 
686 /* Legacy version, should go away once all irqchips have been converted */
handle_IPI(int ipinr,struct pt_regs * regs)687 void handle_IPI(int ipinr, struct pt_regs *regs)
688 {
689 	struct pt_regs *old_regs = set_irq_regs(regs);
690 
691 	irq_enter();
692 	do_handle_IPI(ipinr);
693 	irq_exit();
694 
695 	set_irq_regs(old_regs);
696 }
697 
ipi_handler(int irq,void * data)698 static irqreturn_t ipi_handler(int irq, void *data)
699 {
700 	do_handle_IPI(irq - ipi_irq_base);
701 	return IRQ_HANDLED;
702 }
703 
smp_cross_call(const struct cpumask * target,unsigned int ipinr)704 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
705 {
706 	trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
707 	__ipi_send_mask(ipi_desc[ipinr], target);
708 }
709 
ipi_setup(int cpu)710 static void ipi_setup(int cpu)
711 {
712 	int i;
713 
714 	if (WARN_ON_ONCE(!ipi_irq_base))
715 		return;
716 
717 	for (i = 0; i < nr_ipi; i++)
718 		enable_percpu_irq(ipi_irq_base + i, 0);
719 }
720 
set_smp_ipi_range(int ipi_base,int n)721 void __init set_smp_ipi_range(int ipi_base, int n)
722 {
723 	int i;
724 
725 	WARN_ON(n < MAX_IPI);
726 	nr_ipi = min(n, MAX_IPI);
727 
728 	for (i = 0; i < nr_ipi; i++) {
729 		int err;
730 
731 		err = request_percpu_irq(ipi_base + i, ipi_handler,
732 					 "IPI", &irq_stat);
733 		WARN_ON(err);
734 
735 		ipi_desc[i] = irq_to_desc(ipi_base + i);
736 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
737 	}
738 
739 	ipi_irq_base = ipi_base;
740 
741 	/* Setup the boot CPU immediately */
742 	ipi_setup(smp_processor_id());
743 }
744 
smp_send_reschedule(int cpu)745 void smp_send_reschedule(int cpu)
746 {
747 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
748 }
749 
smp_send_stop(void)750 void smp_send_stop(void)
751 {
752 	unsigned long timeout;
753 	struct cpumask mask;
754 
755 	cpumask_copy(&mask, cpu_online_mask);
756 	cpumask_clear_cpu(smp_processor_id(), &mask);
757 	if (!cpumask_empty(&mask))
758 		smp_cross_call(&mask, IPI_CPU_STOP);
759 
760 	/* Wait up to one second for other CPUs to stop */
761 	timeout = USEC_PER_SEC;
762 	while (num_online_cpus() > 1 && timeout--)
763 		udelay(1);
764 
765 	if (num_online_cpus() > 1)
766 		pr_warn("SMP: failed to stop secondary CPUs\n");
767 }
768 
769 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
770  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
771  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
772  * kdump fails. So split out the panic_smp_self_stop() and add
773  * set_cpu_online(smp_processor_id(), false).
774  */
panic_smp_self_stop(void)775 void panic_smp_self_stop(void)
776 {
777 	pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
778 	         smp_processor_id());
779 	set_cpu_online(smp_processor_id(), false);
780 	while (1)
781 		cpu_relax();
782 }
783 
784 /*
785  * not supported here
786  */
setup_profiling_timer(unsigned int multiplier)787 int setup_profiling_timer(unsigned int multiplier)
788 {
789 	return -EINVAL;
790 }
791 
792 #ifdef CONFIG_CPU_FREQ
793 
794 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
795 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
796 static unsigned long global_l_p_j_ref;
797 static unsigned long global_l_p_j_ref_freq;
798 
cpufreq_callback(struct notifier_block * nb,unsigned long val,void * data)799 static int cpufreq_callback(struct notifier_block *nb,
800 					unsigned long val, void *data)
801 {
802 	struct cpufreq_freqs *freq = data;
803 	struct cpumask *cpus = freq->policy->cpus;
804 	int cpu, first = cpumask_first(cpus);
805 	unsigned int lpj;
806 
807 	if (freq->flags & CPUFREQ_CONST_LOOPS)
808 		return NOTIFY_OK;
809 
810 	if (!per_cpu(l_p_j_ref, first)) {
811 		for_each_cpu(cpu, cpus) {
812 			per_cpu(l_p_j_ref, cpu) =
813 				per_cpu(cpu_data, cpu).loops_per_jiffy;
814 			per_cpu(l_p_j_ref_freq, cpu) = freq->old;
815 		}
816 
817 		if (!global_l_p_j_ref) {
818 			global_l_p_j_ref = loops_per_jiffy;
819 			global_l_p_j_ref_freq = freq->old;
820 		}
821 	}
822 
823 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
824 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
825 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
826 						global_l_p_j_ref_freq,
827 						freq->new);
828 
829 		lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
830 				    per_cpu(l_p_j_ref_freq, first), freq->new);
831 		for_each_cpu(cpu, cpus)
832 			per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
833 	}
834 	return NOTIFY_OK;
835 }
836 
837 static struct notifier_block cpufreq_notifier = {
838 	.notifier_call  = cpufreq_callback,
839 };
840 
register_cpufreq_notifier(void)841 static int __init register_cpufreq_notifier(void)
842 {
843 	return cpufreq_register_notifier(&cpufreq_notifier,
844 						CPUFREQ_TRANSITION_NOTIFIER);
845 }
846 core_initcall(register_cpufreq_notifier);
847 
848 #endif
849 
raise_nmi(cpumask_t * mask)850 static void raise_nmi(cpumask_t *mask)
851 {
852 	__ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
853 }
854 
arch_trigger_cpumask_backtrace(const cpumask_t * mask,bool exclude_self)855 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
856 {
857 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
858 }
859