1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Architecture-specific setup.
4  *
5  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  *	Stephane Eranian <eranian@hpl.hp.com>
8  * Copyright (C) 2000, 2004 Intel Corp
9  * 	Rohit Seth <rohit.seth@intel.com>
10  * 	Suresh Siddha <suresh.b.siddha@intel.com>
11  * 	Gordon Jin <gordon.jin@intel.com>
12  * Copyright (C) 1999 VA Linux Systems
13  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14  *
15  * 12/26/04 S.Siddha, G.Jin, R.Seth
16  *			Add multi-threading and multi-core detection
17  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
18  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
19  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
20  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
21  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
22  * 01/07/99 S.Eranian	added the support for command line argument
23  * 06/24/99 W.Drummond	added boot_cpu_data.
24  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
25  */
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/pgtable.h>
29 
30 #include <linux/acpi.h>
31 #include <linux/console.h>
32 #include <linux/delay.h>
33 #include <linux/cpu.h>
34 #include <linux/kdev_t.h>
35 #include <linux/kernel.h>
36 #include <linux/memblock.h>
37 #include <linux/reboot.h>
38 #include <linux/sched/mm.h>
39 #include <linux/sched/clock.h>
40 #include <linux/sched/task_stack.h>
41 #include <linux/seq_file.h>
42 #include <linux/string.h>
43 #include <linux/threads.h>
44 #include <linux/screen_info.h>
45 #include <linux/dmi.h>
46 #include <linux/root_dev.h>
47 #include <linux/serial.h>
48 #include <linux/serial_core.h>
49 #include <linux/efi.h>
50 #include <linux/initrd.h>
51 #include <linux/pm.h>
52 #include <linux/cpufreq.h>
53 #include <linux/kexec.h>
54 #include <linux/crash_dump.h>
55 
56 #include <asm/mca.h>
57 #include <asm/meminit.h>
58 #include <asm/page.h>
59 #include <asm/patch.h>
60 #include <asm/processor.h>
61 #include <asm/sal.h>
62 #include <asm/sections.h>
63 #include <asm/setup.h>
64 #include <asm/smp.h>
65 #include <asm/tlbflush.h>
66 #include <asm/unistd.h>
67 #include <asm/uv/uv.h>
68 #include <asm/xtp.h>
69 
70 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
71 # error "struct cpuinfo_ia64 too big!"
72 #endif
73 
74 char ia64_platform_name[64];
75 
76 #ifdef CONFIG_SMP
77 unsigned long __per_cpu_offset[NR_CPUS];
78 EXPORT_SYMBOL(__per_cpu_offset);
79 #endif
80 
81 DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
82 EXPORT_SYMBOL(ia64_cpu_info);
83 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
84 #ifdef CONFIG_SMP
85 EXPORT_SYMBOL(local_per_cpu_offset);
86 #endif
87 unsigned long ia64_cycles_per_usec;
88 struct ia64_boot_param *ia64_boot_param;
89 struct screen_info screen_info;
90 unsigned long vga_console_iobase;
91 unsigned long vga_console_membase;
92 
93 static struct resource data_resource = {
94 	.name	= "Kernel data",
95 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
96 };
97 
98 static struct resource code_resource = {
99 	.name	= "Kernel code",
100 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
101 };
102 
103 static struct resource bss_resource = {
104 	.name	= "Kernel bss",
105 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
106 };
107 
108 unsigned long ia64_max_cacheline_size;
109 
110 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
111 EXPORT_SYMBOL(ia64_iobase);
112 struct io_space io_space[MAX_IO_SPACES];
113 EXPORT_SYMBOL(io_space);
114 unsigned int num_io_spaces;
115 
116 /*
117  * "flush_icache_range()" needs to know what processor dependent stride size to use
118  * when it makes i-cache(s) coherent with d-caches.
119  */
120 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
121 unsigned long ia64_i_cache_stride_shift = ~0;
122 /*
123  * "clflush_cache_range()" needs to know what processor dependent stride size to
124  * use when it flushes cache lines including both d-cache and i-cache.
125  */
126 /* Safest way to go: 32 bytes by 32 bytes */
127 #define	CACHE_STRIDE_SHIFT	5
128 unsigned long ia64_cache_stride_shift = ~0;
129 
130 /*
131  * We use a special marker for the end of memory and it uses the extra (+1) slot
132  */
133 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
134 int num_rsvd_regions __initdata;
135 
136 
137 /*
138  * Filter incoming memory segments based on the primitive map created from the boot
139  * parameters. Segments contained in the map are removed from the memory ranges. A
140  * caller-specified function is called with the memory ranges that remain after filtering.
141  * This routine does not assume the incoming segments are sorted.
142  */
143 int __init
filter_rsvd_memory(u64 start,u64 end,void * arg)144 filter_rsvd_memory (u64 start, u64 end, void *arg)
145 {
146 	u64 range_start, range_end, prev_start;
147 	void (*func)(unsigned long, unsigned long, int);
148 	int i;
149 
150 #if IGNORE_PFN0
151 	if (start == PAGE_OFFSET) {
152 		printk(KERN_WARNING "warning: skipping physical page 0\n");
153 		start += PAGE_SIZE;
154 		if (start >= end) return 0;
155 	}
156 #endif
157 	/*
158 	 * lowest possible address(walker uses virtual)
159 	 */
160 	prev_start = PAGE_OFFSET;
161 	func = arg;
162 
163 	for (i = 0; i < num_rsvd_regions; ++i) {
164 		range_start = max(start, prev_start);
165 		range_end   = min(end, rsvd_region[i].start);
166 
167 		if (range_start < range_end)
168 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
169 
170 		/* nothing more available in this segment */
171 		if (range_end == end) return 0;
172 
173 		prev_start = rsvd_region[i].end;
174 	}
175 	/* end of memory marker allows full processing inside loop body */
176 	return 0;
177 }
178 
179 /*
180  * Similar to "filter_rsvd_memory()", but the reserved memory ranges
181  * are not filtered out.
182  */
183 int __init
filter_memory(u64 start,u64 end,void * arg)184 filter_memory(u64 start, u64 end, void *arg)
185 {
186 	void (*func)(unsigned long, unsigned long, int);
187 
188 #if IGNORE_PFN0
189 	if (start == PAGE_OFFSET) {
190 		printk(KERN_WARNING "warning: skipping physical page 0\n");
191 		start += PAGE_SIZE;
192 		if (start >= end)
193 			return 0;
194 	}
195 #endif
196 	func = arg;
197 	if (start < end)
198 		call_pernode_memory(__pa(start), end - start, func);
199 	return 0;
200 }
201 
202 static void __init
sort_regions(struct rsvd_region * rsvd_region,int max)203 sort_regions (struct rsvd_region *rsvd_region, int max)
204 {
205 	int j;
206 
207 	/* simple bubble sorting */
208 	while (max--) {
209 		for (j = 0; j < max; ++j) {
210 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
211 				struct rsvd_region tmp;
212 				tmp = rsvd_region[j];
213 				rsvd_region[j] = rsvd_region[j + 1];
214 				rsvd_region[j + 1] = tmp;
215 			}
216 		}
217 	}
218 }
219 
220 /* merge overlaps */
221 static int __init
merge_regions(struct rsvd_region * rsvd_region,int max)222 merge_regions (struct rsvd_region *rsvd_region, int max)
223 {
224 	int i;
225 	for (i = 1; i < max; ++i) {
226 		if (rsvd_region[i].start >= rsvd_region[i-1].end)
227 			continue;
228 		if (rsvd_region[i].end > rsvd_region[i-1].end)
229 			rsvd_region[i-1].end = rsvd_region[i].end;
230 		--max;
231 		memmove(&rsvd_region[i], &rsvd_region[i+1],
232 			(max - i) * sizeof(struct rsvd_region));
233 	}
234 	return max;
235 }
236 
237 /*
238  * Request address space for all standard resources
239  */
register_memory(void)240 static int __init register_memory(void)
241 {
242 	code_resource.start = ia64_tpa(_text);
243 	code_resource.end   = ia64_tpa(_etext) - 1;
244 	data_resource.start = ia64_tpa(_etext);
245 	data_resource.end   = ia64_tpa(_edata) - 1;
246 	bss_resource.start  = ia64_tpa(__bss_start);
247 	bss_resource.end    = ia64_tpa(_end) - 1;
248 	efi_initialize_iomem_resources(&code_resource, &data_resource,
249 			&bss_resource);
250 
251 	return 0;
252 }
253 
254 __initcall(register_memory);
255 
256 
257 #ifdef CONFIG_KEXEC
258 
259 /*
260  * This function checks if the reserved crashkernel is allowed on the specific
261  * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
262  * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
263  * kernel/dma/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
264  * in kdump case. See the comment in sba_init() in sba_iommu.c.
265  *
266  * So, the only machvec that really supports loading the kdump kernel
267  * over 4 GB is "uv".
268  */
check_crashkernel_memory(unsigned long pbase,size_t size)269 static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
270 {
271 	if (is_uv_system())
272 		return 1;
273 	else
274 		return pbase < (1UL << 32);
275 }
276 
setup_crashkernel(unsigned long total,int * n)277 static void __init setup_crashkernel(unsigned long total, int *n)
278 {
279 	unsigned long long base = 0, size = 0;
280 	int ret;
281 
282 	ret = parse_crashkernel(boot_command_line, total,
283 			&size, &base);
284 	if (ret == 0 && size > 0) {
285 		if (!base) {
286 			sort_regions(rsvd_region, *n);
287 			*n = merge_regions(rsvd_region, *n);
288 			base = kdump_find_rsvd_region(size,
289 					rsvd_region, *n);
290 		}
291 
292 		if (!check_crashkernel_memory(base, size)) {
293 			pr_warn("crashkernel: There would be kdump memory "
294 				"at %ld GB but this is unusable because it "
295 				"must\nbe below 4 GB. Change the memory "
296 				"configuration of the machine.\n",
297 				(unsigned long)(base >> 30));
298 			return;
299 		}
300 
301 		if (base != ~0UL) {
302 			printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
303 					"for crashkernel (System RAM: %ldMB)\n",
304 					(unsigned long)(size >> 20),
305 					(unsigned long)(base >> 20),
306 					(unsigned long)(total >> 20));
307 			rsvd_region[*n].start =
308 				(unsigned long)__va(base);
309 			rsvd_region[*n].end =
310 				(unsigned long)__va(base + size);
311 			(*n)++;
312 			crashk_res.start = base;
313 			crashk_res.end = base + size - 1;
314 		}
315 	}
316 	efi_memmap_res.start = ia64_boot_param->efi_memmap;
317 	efi_memmap_res.end = efi_memmap_res.start +
318 		ia64_boot_param->efi_memmap_size;
319 	boot_param_res.start = __pa(ia64_boot_param);
320 	boot_param_res.end = boot_param_res.start +
321 		sizeof(*ia64_boot_param);
322 }
323 #else
setup_crashkernel(unsigned long total,int * n)324 static inline void __init setup_crashkernel(unsigned long total, int *n)
325 {}
326 #endif
327 
328 /**
329  * reserve_memory - setup reserved memory areas
330  *
331  * Setup the reserved memory areas set aside for the boot parameters,
332  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
333  * see arch/ia64/include/asm/meminit.h if you need to define more.
334  */
335 void __init
reserve_memory(void)336 reserve_memory (void)
337 {
338 	int n = 0;
339 	unsigned long total_memory;
340 
341 	/*
342 	 * none of the entries in this table overlap
343 	 */
344 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
345 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
346 	n++;
347 
348 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
349 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
350 	n++;
351 
352 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
353 	rsvd_region[n].end   = (rsvd_region[n].start
354 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
355 	n++;
356 
357 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
358 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
359 	n++;
360 
361 #ifdef CONFIG_BLK_DEV_INITRD
362 	if (ia64_boot_param->initrd_start) {
363 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
364 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
365 		n++;
366 	}
367 #endif
368 
369 #ifdef CONFIG_CRASH_DUMP
370 	if (reserve_elfcorehdr(&rsvd_region[n].start,
371 			       &rsvd_region[n].end) == 0)
372 		n++;
373 #endif
374 
375 	total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
376 	n++;
377 
378 	setup_crashkernel(total_memory, &n);
379 
380 	/* end of memory marker */
381 	rsvd_region[n].start = ~0UL;
382 	rsvd_region[n].end   = ~0UL;
383 	n++;
384 
385 	num_rsvd_regions = n;
386 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
387 
388 	sort_regions(rsvd_region, num_rsvd_regions);
389 	num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions);
390 
391 	/* reserve all regions except the end of memory marker with memblock */
392 	for (n = 0; n < num_rsvd_regions - 1; n++) {
393 		struct rsvd_region *region = &rsvd_region[n];
394 		phys_addr_t addr = __pa(region->start);
395 		phys_addr_t size = region->end - region->start;
396 
397 		memblock_reserve(addr, size);
398 	}
399 }
400 
401 /**
402  * find_initrd - get initrd parameters from the boot parameter structure
403  *
404  * Grab the initrd start and end from the boot parameter struct given us by
405  * the boot loader.
406  */
407 void __init
find_initrd(void)408 find_initrd (void)
409 {
410 #ifdef CONFIG_BLK_DEV_INITRD
411 	if (ia64_boot_param->initrd_start) {
412 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
413 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
414 
415 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
416 		       initrd_start, ia64_boot_param->initrd_size);
417 	}
418 #endif
419 }
420 
421 static void __init
io_port_init(void)422 io_port_init (void)
423 {
424 	unsigned long phys_iobase;
425 
426 	/*
427 	 * Set `iobase' based on the EFI memory map or, failing that, the
428 	 * value firmware left in ar.k0.
429 	 *
430 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
431 	 * the port's virtual address, so ia32_load_state() loads it with a
432 	 * user virtual address.  But in ia64 mode, glibc uses the
433 	 * *physical* address in ar.k0 to mmap the appropriate area from
434 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
435 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
436 	 *
437 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
438 	 * any of the I/O port spaces and are done via MMIO using the
439 	 * virtual mmio_base from the appropriate io_space[].
440 	 */
441 	phys_iobase = efi_get_iobase();
442 	if (!phys_iobase) {
443 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
444 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
445 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
446 	}
447 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
448 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
449 
450 	/* setup legacy IO port space */
451 	io_space[0].mmio_base = ia64_iobase;
452 	io_space[0].sparse = 1;
453 	num_io_spaces = 1;
454 }
455 
456 /**
457  * early_console_setup - setup debugging console
458  *
459  * Consoles started here require little enough setup that we can start using
460  * them very early in the boot process, either right after the machine
461  * vector initialization, or even before if the drivers can detect their hw.
462  *
463  * Returns non-zero if a console couldn't be setup.
464  */
465 static inline int __init
early_console_setup(char * cmdline)466 early_console_setup (char *cmdline)
467 {
468 #ifdef CONFIG_EFI_PCDP
469 	if (!efi_setup_pcdp_console(cmdline))
470 		return 0;
471 #endif
472 	return -1;
473 }
474 
475 static void __init
screen_info_setup(void)476 screen_info_setup(void)
477 {
478 	unsigned int orig_x, orig_y, num_cols, num_rows, font_height;
479 
480 	memset(&screen_info, 0, sizeof(screen_info));
481 
482 	if (!ia64_boot_param->console_info.num_rows ||
483 	    !ia64_boot_param->console_info.num_cols) {
484 		printk(KERN_WARNING "invalid screen-info, guessing 80x25\n");
485 		orig_x = 0;
486 		orig_y = 0;
487 		num_cols = 80;
488 		num_rows = 25;
489 		font_height = 16;
490 	} else {
491 		orig_x = ia64_boot_param->console_info.orig_x;
492 		orig_y = ia64_boot_param->console_info.orig_y;
493 		num_cols = ia64_boot_param->console_info.num_cols;
494 		num_rows = ia64_boot_param->console_info.num_rows;
495 		font_height = 400 / num_rows;
496 	}
497 
498 	screen_info.orig_x = orig_x;
499 	screen_info.orig_y = orig_y;
500 	screen_info.orig_video_cols  = num_cols;
501 	screen_info.orig_video_lines = num_rows;
502 	screen_info.orig_video_points = font_height;
503 	screen_info.orig_video_mode = 3;	/* XXX fake */
504 	screen_info.orig_video_isVGA = 1;	/* XXX fake */
505 	screen_info.orig_video_ega_bx = 3;	/* XXX fake */
506 }
507 
508 static inline void
mark_bsp_online(void)509 mark_bsp_online (void)
510 {
511 #ifdef CONFIG_SMP
512 	/* If we register an early console, allow CPU 0 to printk */
513 	set_cpu_online(smp_processor_id(), true);
514 #endif
515 }
516 
517 static __initdata int nomca;
setup_nomca(char * s)518 static __init int setup_nomca(char *s)
519 {
520 	nomca = 1;
521 	return 0;
522 }
523 early_param("nomca", setup_nomca);
524 
525 #ifdef CONFIG_CRASH_DUMP
reserve_elfcorehdr(u64 * start,u64 * end)526 int __init reserve_elfcorehdr(u64 *start, u64 *end)
527 {
528 	u64 length;
529 
530 	/* We get the address using the kernel command line,
531 	 * but the size is extracted from the EFI tables.
532 	 * Both address and size are required for reservation
533 	 * to work properly.
534 	 */
535 
536 	if (!is_vmcore_usable())
537 		return -EINVAL;
538 
539 	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
540 		vmcore_unusable();
541 		return -EINVAL;
542 	}
543 
544 	*start = (unsigned long)__va(elfcorehdr_addr);
545 	*end = *start + length;
546 	return 0;
547 }
548 
549 #endif /* CONFIG_PROC_VMCORE */
550 
551 void __init
setup_arch(char ** cmdline_p)552 setup_arch (char **cmdline_p)
553 {
554 	unw_init();
555 
556 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
557 
558 	*cmdline_p = __va(ia64_boot_param->command_line);
559 	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
560 
561 	efi_init();
562 	io_port_init();
563 
564 	uv_probe_system_type();
565 	parse_early_param();
566 
567 	if (early_console_setup(*cmdline_p) == 0)
568 		mark_bsp_online();
569 
570 	/* Initialize the ACPI boot-time table parser */
571 	acpi_table_init();
572 	early_acpi_boot_init();
573 #ifdef CONFIG_ACPI_NUMA
574 	acpi_numa_init();
575 	acpi_numa_fixup();
576 #ifdef CONFIG_ACPI_HOTPLUG_CPU
577 	prefill_possible_map();
578 #endif
579 	per_cpu_scan_finalize((cpumask_weight(&early_cpu_possible_map) == 0 ?
580 		32 : cpumask_weight(&early_cpu_possible_map)),
581 		additional_cpus > 0 ? additional_cpus : 0);
582 #endif /* CONFIG_ACPI_NUMA */
583 
584 #ifdef CONFIG_SMP
585 	smp_build_cpu_map();
586 #endif
587 	find_memory();
588 
589 	/* process SAL system table: */
590 	ia64_sal_init(__va(sal_systab_phys));
591 
592 #ifdef CONFIG_ITANIUM
593 	ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
594 #else
595 	{
596 		unsigned long num_phys_stacked;
597 
598 		if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
599 			ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
600 	}
601 #endif
602 
603 #ifdef CONFIG_SMP
604 	cpu_physical_id(0) = hard_smp_processor_id();
605 #endif
606 
607 	cpu_init();	/* initialize the bootstrap CPU */
608 	mmu_context_init();	/* initialize context_id bitmap */
609 
610 #ifdef CONFIG_VT
611 	if (!conswitchp) {
612 # if defined(CONFIG_VGA_CONSOLE)
613 		/*
614 		 * Non-legacy systems may route legacy VGA MMIO range to system
615 		 * memory.  vga_con probes the MMIO hole, so memory looks like
616 		 * a VGA device to it.  The EFI memory map can tell us if it's
617 		 * memory so we can avoid this problem.
618 		 */
619 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
620 			conswitchp = &vga_con;
621 # endif
622 	}
623 #endif
624 
625 	/* enable IA-64 Machine Check Abort Handling unless disabled */
626 	if (!nomca)
627 		ia64_mca_init();
628 
629 	/*
630 	 * Default to /dev/sda2.  This assumes that the EFI partition
631 	 * is physical disk 1 partition 1 and the Linux root disk is
632 	 * physical disk 1 partition 2.
633 	 */
634 	ROOT_DEV = Root_SDA2;		/* default to second partition on first drive */
635 
636 	if (is_uv_system())
637 		uv_setup(cmdline_p);
638 #ifdef CONFIG_SMP
639 	else
640 		init_smp_config();
641 #endif
642 
643 	screen_info_setup();
644 	paging_init();
645 
646 	clear_sched_clock_stable();
647 }
648 
649 /*
650  * Display cpu info for all CPUs.
651  */
652 static int
show_cpuinfo(struct seq_file * m,void * v)653 show_cpuinfo (struct seq_file *m, void *v)
654 {
655 #ifdef CONFIG_SMP
656 #	define lpj	c->loops_per_jiffy
657 #	define cpunum	c->cpu
658 #else
659 #	define lpj	loops_per_jiffy
660 #	define cpunum	0
661 #endif
662 	static struct {
663 		unsigned long mask;
664 		const char *feature_name;
665 	} feature_bits[] = {
666 		{ 1UL << 0, "branchlong" },
667 		{ 1UL << 1, "spontaneous deferral"},
668 		{ 1UL << 2, "16-byte atomic ops" }
669 	};
670 	char features[128], *cp, *sep;
671 	struct cpuinfo_ia64 *c = v;
672 	unsigned long mask;
673 	unsigned long proc_freq;
674 	int i, size;
675 
676 	mask = c->features;
677 
678 	/* build the feature string: */
679 	memcpy(features, "standard", 9);
680 	cp = features;
681 	size = sizeof(features);
682 	sep = "";
683 	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
684 		if (mask & feature_bits[i].mask) {
685 			cp += snprintf(cp, size, "%s%s", sep,
686 				       feature_bits[i].feature_name),
687 			sep = ", ";
688 			mask &= ~feature_bits[i].mask;
689 			size = sizeof(features) - (cp - features);
690 		}
691 	}
692 	if (mask && size > 1) {
693 		/* print unknown features as a hex value */
694 		snprintf(cp, size, "%s0x%lx", sep, mask);
695 	}
696 
697 	proc_freq = cpufreq_quick_get(cpunum);
698 	if (!proc_freq)
699 		proc_freq = c->proc_freq / 1000;
700 
701 	seq_printf(m,
702 		   "processor  : %d\n"
703 		   "vendor     : %s\n"
704 		   "arch       : IA-64\n"
705 		   "family     : %u\n"
706 		   "model      : %u\n"
707 		   "model name : %s\n"
708 		   "revision   : %u\n"
709 		   "archrev    : %u\n"
710 		   "features   : %s\n"
711 		   "cpu number : %lu\n"
712 		   "cpu regs   : %u\n"
713 		   "cpu MHz    : %lu.%03lu\n"
714 		   "itc MHz    : %lu.%06lu\n"
715 		   "BogoMIPS   : %lu.%02lu\n",
716 		   cpunum, c->vendor, c->family, c->model,
717 		   c->model_name, c->revision, c->archrev,
718 		   features, c->ppn, c->number,
719 		   proc_freq / 1000, proc_freq % 1000,
720 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
721 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
722 #ifdef CONFIG_SMP
723 	seq_printf(m, "siblings   : %u\n",
724 		   cpumask_weight(&cpu_core_map[cpunum]));
725 	if (c->socket_id != -1)
726 		seq_printf(m, "physical id: %u\n", c->socket_id);
727 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
728 		seq_printf(m,
729 			   "core id    : %u\n"
730 			   "thread id  : %u\n",
731 			   c->core_id, c->thread_id);
732 #endif
733 	seq_printf(m,"\n");
734 
735 	return 0;
736 }
737 
738 static void *
c_start(struct seq_file * m,loff_t * pos)739 c_start (struct seq_file *m, loff_t *pos)
740 {
741 #ifdef CONFIG_SMP
742 	while (*pos < nr_cpu_ids && !cpu_online(*pos))
743 		++*pos;
744 #endif
745 	return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
746 }
747 
748 static void *
c_next(struct seq_file * m,void * v,loff_t * pos)749 c_next (struct seq_file *m, void *v, loff_t *pos)
750 {
751 	++*pos;
752 	return c_start(m, pos);
753 }
754 
755 static void
c_stop(struct seq_file * m,void * v)756 c_stop (struct seq_file *m, void *v)
757 {
758 }
759 
760 const struct seq_operations cpuinfo_op = {
761 	.start =	c_start,
762 	.next =		c_next,
763 	.stop =		c_stop,
764 	.show =		show_cpuinfo
765 };
766 
767 #define MAX_BRANDS	8
768 static char brandname[MAX_BRANDS][128];
769 
770 static char *
get_model_name(__u8 family,__u8 model)771 get_model_name(__u8 family, __u8 model)
772 {
773 	static int overflow;
774 	char brand[128];
775 	int i;
776 
777 	memcpy(brand, "Unknown", 8);
778 	if (ia64_pal_get_brand_info(brand)) {
779 		if (family == 0x7)
780 			memcpy(brand, "Merced", 7);
781 		else if (family == 0x1f) switch (model) {
782 			case 0: memcpy(brand, "McKinley", 9); break;
783 			case 1: memcpy(brand, "Madison", 8); break;
784 			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
785 		}
786 	}
787 	for (i = 0; i < MAX_BRANDS; i++)
788 		if (strcmp(brandname[i], brand) == 0)
789 			return brandname[i];
790 	for (i = 0; i < MAX_BRANDS; i++)
791 		if (brandname[i][0] == '\0')
792 			return strcpy(brandname[i], brand);
793 	if (overflow++ == 0)
794 		printk(KERN_ERR
795 		       "%s: Table overflow. Some processor model information will be missing\n",
796 		       __func__);
797 	return "Unknown";
798 }
799 
800 static void
identify_cpu(struct cpuinfo_ia64 * c)801 identify_cpu (struct cpuinfo_ia64 *c)
802 {
803 	union {
804 		unsigned long bits[5];
805 		struct {
806 			/* id 0 & 1: */
807 			char vendor[16];
808 
809 			/* id 2 */
810 			u64 ppn;		/* processor serial number */
811 
812 			/* id 3: */
813 			unsigned number		:  8;
814 			unsigned revision	:  8;
815 			unsigned model		:  8;
816 			unsigned family		:  8;
817 			unsigned archrev	:  8;
818 			unsigned reserved	: 24;
819 
820 			/* id 4: */
821 			u64 features;
822 		} field;
823 	} cpuid;
824 	pal_vm_info_1_u_t vm1;
825 	pal_vm_info_2_u_t vm2;
826 	pal_status_t status;
827 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
828 	int i;
829 	for (i = 0; i < 5; ++i)
830 		cpuid.bits[i] = ia64_get_cpuid(i);
831 
832 	memcpy(c->vendor, cpuid.field.vendor, 16);
833 #ifdef CONFIG_SMP
834 	c->cpu = smp_processor_id();
835 
836 	/* below default values will be overwritten  by identify_siblings()
837 	 * for Multi-Threading/Multi-Core capable CPUs
838 	 */
839 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
840 	c->socket_id = -1;
841 
842 	identify_siblings(c);
843 
844 	if (c->threads_per_core > smp_num_siblings)
845 		smp_num_siblings = c->threads_per_core;
846 #endif
847 	c->ppn = cpuid.field.ppn;
848 	c->number = cpuid.field.number;
849 	c->revision = cpuid.field.revision;
850 	c->model = cpuid.field.model;
851 	c->family = cpuid.field.family;
852 	c->archrev = cpuid.field.archrev;
853 	c->features = cpuid.field.features;
854 	c->model_name = get_model_name(c->family, c->model);
855 
856 	status = ia64_pal_vm_summary(&vm1, &vm2);
857 	if (status == PAL_STATUS_SUCCESS) {
858 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
859 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
860 	}
861 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
862 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
863 }
864 
865 /*
866  * Do the following calculations:
867  *
868  * 1. the max. cache line size.
869  * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
870  * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
871  */
872 static void
get_cache_info(void)873 get_cache_info(void)
874 {
875 	unsigned long line_size, max = 1;
876 	unsigned long l, levels, unique_caches;
877 	pal_cache_config_info_t cci;
878 	long status;
879 
880         status = ia64_pal_cache_summary(&levels, &unique_caches);
881         if (status != 0) {
882                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
883                        __func__, status);
884                 max = SMP_CACHE_BYTES;
885 		/* Safest setup for "flush_icache_range()" */
886 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
887 		/* Safest setup for "clflush_cache_range()" */
888 		ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
889 		goto out;
890         }
891 
892 	for (l = 0; l < levels; ++l) {
893 		/* cache_type (data_or_unified)=2 */
894 		status = ia64_pal_cache_config_info(l, 2, &cci);
895 		if (status != 0) {
896 			printk(KERN_ERR "%s: ia64_pal_cache_config_info"
897 				"(l=%lu, 2) failed (status=%ld)\n",
898 				__func__, l, status);
899 			max = SMP_CACHE_BYTES;
900 			/* The safest setup for "flush_icache_range()" */
901 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
902 			/* The safest setup for "clflush_cache_range()" */
903 			ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
904 			cci.pcci_unified = 1;
905 		} else {
906 			if (cci.pcci_stride < ia64_cache_stride_shift)
907 				ia64_cache_stride_shift = cci.pcci_stride;
908 
909 			line_size = 1 << cci.pcci_line_size;
910 			if (line_size > max)
911 				max = line_size;
912 		}
913 
914 		if (!cci.pcci_unified) {
915 			/* cache_type (instruction)=1*/
916 			status = ia64_pal_cache_config_info(l, 1, &cci);
917 			if (status != 0) {
918 				printk(KERN_ERR "%s: ia64_pal_cache_config_info"
919 					"(l=%lu, 1) failed (status=%ld)\n",
920 					__func__, l, status);
921 				/* The safest setup for flush_icache_range() */
922 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
923 			}
924 		}
925 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
926 			ia64_i_cache_stride_shift = cci.pcci_stride;
927 	}
928   out:
929 	if (max > ia64_max_cacheline_size)
930 		ia64_max_cacheline_size = max;
931 }
932 
933 /*
934  * cpu_init() initializes state that is per-CPU.  This function acts
935  * as a 'CPU state barrier', nothing should get across.
936  */
937 void
cpu_init(void)938 cpu_init (void)
939 {
940 	extern void ia64_mmu_init(void *);
941 	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
942 	unsigned long num_phys_stacked;
943 	pal_vm_info_2_u_t vmi;
944 	unsigned int max_ctx;
945 	struct cpuinfo_ia64 *cpu_info;
946 	void *cpu_data;
947 
948 	cpu_data = per_cpu_init();
949 #ifdef CONFIG_SMP
950 	/*
951 	 * insert boot cpu into sibling and core mapes
952 	 * (must be done after per_cpu area is setup)
953 	 */
954 	if (smp_processor_id() == 0) {
955 		cpumask_set_cpu(0, &per_cpu(cpu_sibling_map, 0));
956 		cpumask_set_cpu(0, &cpu_core_map[0]);
957 	} else {
958 		/*
959 		 * Set ar.k3 so that assembly code in MCA handler can compute
960 		 * physical addresses of per cpu variables with a simple:
961 		 *   phys = ar.k3 + &per_cpu_var
962 		 * and the alt-dtlb-miss handler can set per-cpu mapping into
963 		 * the TLB when needed. head.S already did this for cpu0.
964 		 */
965 		ia64_set_kr(IA64_KR_PER_CPU_DATA,
966 			    ia64_tpa(cpu_data) - (long) __per_cpu_start);
967 	}
968 #endif
969 
970 	get_cache_info();
971 
972 	/*
973 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
974 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
975 	 * depends on the data returned by identify_cpu().  We break the dependency by
976 	 * accessing cpu_data() through the canonical per-CPU address.
977 	 */
978 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
979 	identify_cpu(cpu_info);
980 
981 #ifdef CONFIG_MCKINLEY
982 	{
983 #		define FEATURE_SET 16
984 		struct ia64_pal_retval iprv;
985 
986 		if (cpu_info->family == 0x1f) {
987 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
988 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
989 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
990 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
991 		}
992 	}
993 #endif
994 
995 	/* Clear the stack memory reserved for pt_regs: */
996 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
997 
998 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
999 
1000 	/*
1001 	 * Initialize the page-table base register to a global
1002 	 * directory with all zeroes.  This ensure that we can handle
1003 	 * TLB-misses to user address-space even before we created the
1004 	 * first user address-space.  This may happen, e.g., due to
1005 	 * aggressive use of lfetch.fault.
1006 	 */
1007 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
1008 
1009 	/*
1010 	 * Initialize default control register to defer speculative faults except
1011 	 * for those arising from TLB misses, which are not deferred.  The
1012 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
1013 	 * the kernel must have recovery code for all speculative accesses).  Turn on
1014 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
1015 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
1016 	 * be fine).
1017 	 */
1018 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
1019 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
1020 	mmgrab(&init_mm);
1021 	current->active_mm = &init_mm;
1022 	BUG_ON(current->mm);
1023 
1024 	ia64_mmu_init(ia64_imva(cpu_data));
1025 	ia64_mca_cpu_init(ia64_imva(cpu_data));
1026 
1027 	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
1028 	ia64_set_itc(0);
1029 
1030 	/* disable all local interrupt sources: */
1031 	ia64_set_itv(1 << 16);
1032 	ia64_set_lrr0(1 << 16);
1033 	ia64_set_lrr1(1 << 16);
1034 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1035 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1036 
1037 	/* clear TPR & XTP to enable all interrupt classes: */
1038 	ia64_setreg(_IA64_REG_CR_TPR, 0);
1039 
1040 	/* Clear any pending interrupts left by SAL/EFI */
1041 	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1042 		ia64_eoi();
1043 
1044 #ifdef CONFIG_SMP
1045 	normal_xtp();
1046 #endif
1047 
1048 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1049 	if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1050 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1051 		setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1052 	} else {
1053 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1054 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
1055 	}
1056 	while (max_ctx < ia64_ctx.max_ctx) {
1057 		unsigned int old = ia64_ctx.max_ctx;
1058 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1059 			break;
1060 	}
1061 
1062 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1063 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1064 		       "stacked regs\n");
1065 		num_phys_stacked = 96;
1066 	}
1067 	/* size of physical stacked register partition plus 8 bytes: */
1068 	if (num_phys_stacked > max_num_phys_stacked) {
1069 		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1070 		max_num_phys_stacked = num_phys_stacked;
1071 	}
1072 }
1073 
1074 void __init
check_bugs(void)1075 check_bugs (void)
1076 {
1077 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1078 			       (unsigned long) __end___mckinley_e9_bundles);
1079 }
1080 
run_dmi_scan(void)1081 static int __init run_dmi_scan(void)
1082 {
1083 	dmi_setup();
1084 	return 0;
1085 }
1086 core_initcall(run_dmi_scan);
1087