1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright IBM Corporation 2001, 2005, 2006
4  * Copyright Dave Engebretsen & Todd Inglett 2001
5  * Copyright Linas Vepstas 2005, 2006
6  * Copyright 2001-2012 IBM Corporation.
7  *
8  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/sched.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/pci.h>
16 #include <linux/iommu.h>
17 #include <linux/proc_fs.h>
18 #include <linux/rbtree.h>
19 #include <linux/reboot.h>
20 #include <linux/seq_file.h>
21 #include <linux/spinlock.h>
22 #include <linux/export.h>
23 #include <linux/of.h>
24 
25 #include <linux/atomic.h>
26 #include <asm/debugfs.h>
27 #include <asm/eeh.h>
28 #include <asm/eeh_event.h>
29 #include <asm/io.h>
30 #include <asm/iommu.h>
31 #include <asm/machdep.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/rtas.h>
34 #include <asm/pte-walk.h>
35 
36 
37 /** Overview:
38  *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39  *  dealing with PCI bus errors that can't be dealt with within the
40  *  usual PCI framework, except by check-stopping the CPU.  Systems
41  *  that are designed for high-availability/reliability cannot afford
42  *  to crash due to a "mere" PCI error, thus the need for EEH.
43  *  An EEH-capable bridge operates by converting a detected error
44  *  into a "slot freeze", taking the PCI adapter off-line, making
45  *  the slot behave, from the OS'es point of view, as if the slot
46  *  were "empty": all reads return 0xff's and all writes are silently
47  *  ignored.  EEH slot isolation events can be triggered by parity
48  *  errors on the address or data busses (e.g. during posted writes),
49  *  which in turn might be caused by low voltage on the bus, dust,
50  *  vibration, humidity, radioactivity or plain-old failed hardware.
51  *
52  *  Note, however, that one of the leading causes of EEH slot
53  *  freeze events are buggy device drivers, buggy device microcode,
54  *  or buggy device hardware.  This is because any attempt by the
55  *  device to bus-master data to a memory address that is not
56  *  assigned to the device will trigger a slot freeze.   (The idea
57  *  is to prevent devices-gone-wild from corrupting system memory).
58  *  Buggy hardware/drivers will have a miserable time co-existing
59  *  with EEH.
60  *
61  *  Ideally, a PCI device driver, when suspecting that an isolation
62  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
63  *  whether this is the case, and then take appropriate steps to
64  *  reset the PCI slot, the PCI device, and then resume operations.
65  *  However, until that day,  the checking is done here, with the
66  *  eeh_check_failure() routine embedded in the MMIO macros.  If
67  *  the slot is found to be isolated, an "EEH Event" is synthesized
68  *  and sent out for processing.
69  */
70 
71 /* If a device driver keeps reading an MMIO register in an interrupt
72  * handler after a slot isolation event, it might be broken.
73  * This sets the threshold for how many read attempts we allow
74  * before printing an error message.
75  */
76 #define EEH_MAX_FAILS	2100000
77 
78 /* Time to wait for a PCI slot to report status, in milliseconds */
79 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
80 
81 /*
82  * EEH probe mode support, which is part of the flags,
83  * is to support multiple platforms for EEH. Some platforms
84  * like pSeries do PCI emunation based on device tree.
85  * However, other platforms like powernv probe PCI devices
86  * from hardware. The flag is used to distinguish that.
87  * In addition, struct eeh_ops::probe would be invoked for
88  * particular OF node or PCI device so that the corresponding
89  * PE would be created there.
90  */
91 int eeh_subsystem_flags;
92 EXPORT_SYMBOL(eeh_subsystem_flags);
93 
94 /*
95  * EEH allowed maximal frozen times. If one particular PE's
96  * frozen count in last hour exceeds this limit, the PE will
97  * be forced to be offline permanently.
98  */
99 u32 eeh_max_freezes = 5;
100 
101 /*
102  * Controls whether a recovery event should be scheduled when an
103  * isolated device is discovered. This is only really useful for
104  * debugging problems with the EEH core.
105  */
106 bool eeh_debugfs_no_recover;
107 
108 /* Platform dependent EEH operations */
109 struct eeh_ops *eeh_ops = NULL;
110 
111 /* Lock to avoid races due to multiple reports of an error */
112 DEFINE_RAW_SPINLOCK(confirm_error_lock);
113 EXPORT_SYMBOL_GPL(confirm_error_lock);
114 
115 /* Lock to protect passed flags */
116 static DEFINE_MUTEX(eeh_dev_mutex);
117 
118 /* Buffer for reporting pci register dumps. Its here in BSS, and
119  * not dynamically alloced, so that it ends up in RMO where RTAS
120  * can access it.
121  */
122 #define EEH_PCI_REGS_LOG_LEN 8192
123 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
124 
125 /*
126  * The struct is used to maintain the EEH global statistic
127  * information. Besides, the EEH global statistics will be
128  * exported to user space through procfs
129  */
130 struct eeh_stats {
131 	u64 no_device;		/* PCI device not found		*/
132 	u64 no_dn;		/* OF node not found		*/
133 	u64 no_cfg_addr;	/* Config address not found	*/
134 	u64 ignored_check;	/* EEH check skipped		*/
135 	u64 total_mmio_ffs;	/* Total EEH checks		*/
136 	u64 false_positives;	/* Unnecessary EEH checks	*/
137 	u64 slot_resets;	/* PE reset			*/
138 };
139 
140 static struct eeh_stats eeh_stats;
141 
eeh_setup(char * str)142 static int __init eeh_setup(char *str)
143 {
144 	if (!strcmp(str, "off"))
145 		eeh_add_flag(EEH_FORCE_DISABLED);
146 	else if (!strcmp(str, "early_log"))
147 		eeh_add_flag(EEH_EARLY_DUMP_LOG);
148 
149 	return 1;
150 }
151 __setup("eeh=", eeh_setup);
152 
eeh_show_enabled(void)153 void eeh_show_enabled(void)
154 {
155 	if (eeh_has_flag(EEH_FORCE_DISABLED))
156 		pr_info("EEH: Recovery disabled by kernel parameter.\n");
157 	else if (eeh_has_flag(EEH_ENABLED))
158 		pr_info("EEH: Capable adapter found: recovery enabled.\n");
159 	else
160 		pr_info("EEH: No capable adapters found: recovery disabled.\n");
161 }
162 
163 /*
164  * This routine captures assorted PCI configuration space data
165  * for the indicated PCI device, and puts them into a buffer
166  * for RTAS error logging.
167  */
eeh_dump_dev_log(struct eeh_dev * edev,char * buf,size_t len)168 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
169 {
170 	u32 cfg;
171 	int cap, i;
172 	int n = 0, l = 0;
173 	char buffer[128];
174 
175 	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
176 			edev->pe->phb->global_number, edev->bdfn >> 8,
177 			PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
178 	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
179 		edev->pe->phb->global_number, edev->bdfn >> 8,
180 		PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
181 
182 	eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
183 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
184 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
185 
186 	eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
187 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
188 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
189 
190 	/* Gather bridge-specific registers */
191 	if (edev->mode & EEH_DEV_BRIDGE) {
192 		eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
193 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
194 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
195 
196 		eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
197 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
198 		pr_warn("EEH: Bridge control: %04x\n", cfg);
199 	}
200 
201 	/* Dump out the PCI-X command and status regs */
202 	cap = edev->pcix_cap;
203 	if (cap) {
204 		eeh_ops->read_config(edev, cap, 4, &cfg);
205 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
206 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
207 
208 		eeh_ops->read_config(edev, cap+4, 4, &cfg);
209 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
210 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
211 	}
212 
213 	/* If PCI-E capable, dump PCI-E cap 10 */
214 	cap = edev->pcie_cap;
215 	if (cap) {
216 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
217 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
218 
219 		for (i=0; i<=8; i++) {
220 			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
221 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
222 
223 			if ((i % 4) == 0) {
224 				if (i != 0)
225 					pr_warn("%s\n", buffer);
226 
227 				l = scnprintf(buffer, sizeof(buffer),
228 					      "EEH: PCI-E %02x: %08x ",
229 					      4*i, cfg);
230 			} else {
231 				l += scnprintf(buffer+l, sizeof(buffer)-l,
232 					       "%08x ", cfg);
233 			}
234 
235 		}
236 
237 		pr_warn("%s\n", buffer);
238 	}
239 
240 	/* If AER capable, dump it */
241 	cap = edev->aer_cap;
242 	if (cap) {
243 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
244 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
245 
246 		for (i=0; i<=13; i++) {
247 			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
248 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
249 
250 			if ((i % 4) == 0) {
251 				if (i != 0)
252 					pr_warn("%s\n", buffer);
253 
254 				l = scnprintf(buffer, sizeof(buffer),
255 					      "EEH: PCI-E AER %02x: %08x ",
256 					      4*i, cfg);
257 			} else {
258 				l += scnprintf(buffer+l, sizeof(buffer)-l,
259 					       "%08x ", cfg);
260 			}
261 		}
262 
263 		pr_warn("%s\n", buffer);
264 	}
265 
266 	return n;
267 }
268 
eeh_dump_pe_log(struct eeh_pe * pe,void * flag)269 static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
270 {
271 	struct eeh_dev *edev, *tmp;
272 	size_t *plen = flag;
273 
274 	eeh_pe_for_each_dev(pe, edev, tmp)
275 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
276 					  EEH_PCI_REGS_LOG_LEN - *plen);
277 
278 	return NULL;
279 }
280 
281 /**
282  * eeh_slot_error_detail - Generate combined log including driver log and error log
283  * @pe: EEH PE
284  * @severity: temporary or permanent error log
285  *
286  * This routine should be called to generate the combined log, which
287  * is comprised of driver log and error log. The driver log is figured
288  * out from the config space of the corresponding PCI device, while
289  * the error log is fetched through platform dependent function call.
290  */
eeh_slot_error_detail(struct eeh_pe * pe,int severity)291 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
292 {
293 	size_t loglen = 0;
294 
295 	/*
296 	 * When the PHB is fenced or dead, it's pointless to collect
297 	 * the data from PCI config space because it should return
298 	 * 0xFF's. For ER, we still retrieve the data from the PCI
299 	 * config space.
300 	 *
301 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
302 	 * 0xFF's is always returned from PCI config space.
303 	 *
304 	 * When the @severity is EEH_LOG_PERM, the PE is going to be
305 	 * removed. Prior to that, the drivers for devices included in
306 	 * the PE will be closed. The drivers rely on working IO path
307 	 * to bring the devices to quiet state. Otherwise, PCI traffic
308 	 * from those devices after they are removed is like to cause
309 	 * another unexpected EEH error.
310 	 */
311 	if (!(pe->type & EEH_PE_PHB)) {
312 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
313 		    severity == EEH_LOG_PERM)
314 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
315 
316 		/*
317 		 * The config space of some PCI devices can't be accessed
318 		 * when their PEs are in frozen state. Otherwise, fenced
319 		 * PHB might be seen. Those PEs are identified with flag
320 		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
321 		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
322 		 *
323 		 * Restoring BARs possibly triggers PCI config access in
324 		 * (OPAL) firmware and then causes fenced PHB. If the
325 		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
326 		 * pointless to restore BARs and dump config space.
327 		 */
328 		eeh_ops->configure_bridge(pe);
329 		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
330 			eeh_pe_restore_bars(pe);
331 
332 			pci_regs_buf[0] = 0;
333 			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
334 		}
335 	}
336 
337 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
338 }
339 
340 /**
341  * eeh_token_to_phys - Convert EEH address token to phys address
342  * @token: I/O token, should be address in the form 0xA....
343  *
344  * This routine should be called to convert virtual I/O address
345  * to physical one.
346  */
eeh_token_to_phys(unsigned long token)347 static inline unsigned long eeh_token_to_phys(unsigned long token)
348 {
349 	pte_t *ptep;
350 	unsigned long pa;
351 	int hugepage_shift;
352 
353 	/*
354 	 * We won't find hugepages here(this is iomem). Hence we are not
355 	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
356 	 * page table free, because of init_mm.
357 	 */
358 	ptep = find_init_mm_pte(token, &hugepage_shift);
359 	if (!ptep)
360 		return token;
361 
362 	pa = pte_pfn(*ptep);
363 
364 	/* On radix we can do hugepage mappings for io, so handle that */
365 	if (!hugepage_shift)
366 		hugepage_shift = PAGE_SHIFT;
367 
368 	pa <<= PAGE_SHIFT;
369 	pa |= token & ((1ul << hugepage_shift) - 1);
370 	return pa;
371 }
372 
373 /*
374  * On PowerNV platform, we might already have fenced PHB there.
375  * For that case, it's meaningless to recover frozen PE. Intead,
376  * We have to handle fenced PHB firstly.
377  */
eeh_phb_check_failure(struct eeh_pe * pe)378 static int eeh_phb_check_failure(struct eeh_pe *pe)
379 {
380 	struct eeh_pe *phb_pe;
381 	unsigned long flags;
382 	int ret;
383 
384 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
385 		return -EPERM;
386 
387 	/* Find the PHB PE */
388 	phb_pe = eeh_phb_pe_get(pe->phb);
389 	if (!phb_pe) {
390 		pr_warn("%s Can't find PE for PHB#%x\n",
391 			__func__, pe->phb->global_number);
392 		return -EEXIST;
393 	}
394 
395 	/* If the PHB has been in problematic state */
396 	eeh_serialize_lock(&flags);
397 	if (phb_pe->state & EEH_PE_ISOLATED) {
398 		ret = 0;
399 		goto out;
400 	}
401 
402 	/* Check PHB state */
403 	ret = eeh_ops->get_state(phb_pe, NULL);
404 	if ((ret < 0) ||
405 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
406 		ret = 0;
407 		goto out;
408 	}
409 
410 	/* Isolate the PHB and send event */
411 	eeh_pe_mark_isolated(phb_pe);
412 	eeh_serialize_unlock(flags);
413 
414 	pr_debug("EEH: PHB#%x failure detected, location: %s\n",
415 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
416 	eeh_send_failure_event(phb_pe);
417 	return 1;
418 out:
419 	eeh_serialize_unlock(flags);
420 	return ret;
421 }
422 
423 /**
424  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
425  * @edev: eeh device
426  *
427  * Check for an EEH failure for the given device node.  Call this
428  * routine if the result of a read was all 0xff's and you want to
429  * find out if this is due to an EEH slot freeze.  This routine
430  * will query firmware for the EEH status.
431  *
432  * Returns 0 if there has not been an EEH error; otherwise returns
433  * a non-zero value and queues up a slot isolation event notification.
434  *
435  * It is safe to call this routine in an interrupt context.
436  */
eeh_dev_check_failure(struct eeh_dev * edev)437 int eeh_dev_check_failure(struct eeh_dev *edev)
438 {
439 	int ret;
440 	unsigned long flags;
441 	struct device_node *dn;
442 	struct pci_dev *dev;
443 	struct eeh_pe *pe, *parent_pe;
444 	int rc = 0;
445 	const char *location = NULL;
446 
447 	eeh_stats.total_mmio_ffs++;
448 
449 	if (!eeh_enabled())
450 		return 0;
451 
452 	if (!edev) {
453 		eeh_stats.no_dn++;
454 		return 0;
455 	}
456 	dev = eeh_dev_to_pci_dev(edev);
457 	pe = eeh_dev_to_pe(edev);
458 
459 	/* Access to IO BARs might get this far and still not want checking. */
460 	if (!pe) {
461 		eeh_stats.ignored_check++;
462 		eeh_edev_dbg(edev, "Ignored check\n");
463 		return 0;
464 	}
465 
466 	/*
467 	 * On PowerNV platform, we might already have fenced PHB
468 	 * there and we need take care of that firstly.
469 	 */
470 	ret = eeh_phb_check_failure(pe);
471 	if (ret > 0)
472 		return ret;
473 
474 	/*
475 	 * If the PE isn't owned by us, we shouldn't check the
476 	 * state. Instead, let the owner handle it if the PE has
477 	 * been frozen.
478 	 */
479 	if (eeh_pe_passed(pe))
480 		return 0;
481 
482 	/* If we already have a pending isolation event for this
483 	 * slot, we know it's bad already, we don't need to check.
484 	 * Do this checking under a lock; as multiple PCI devices
485 	 * in one slot might report errors simultaneously, and we
486 	 * only want one error recovery routine running.
487 	 */
488 	eeh_serialize_lock(&flags);
489 	rc = 1;
490 	if (pe->state & EEH_PE_ISOLATED) {
491 		pe->check_count++;
492 		if (pe->check_count == EEH_MAX_FAILS) {
493 			dn = pci_device_to_OF_node(dev);
494 			if (dn)
495 				location = of_get_property(dn, "ibm,loc-code",
496 						NULL);
497 			eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
498 				pe->check_count,
499 				location ? location : "unknown",
500 				eeh_driver_name(dev));
501 			eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
502 				eeh_driver_name(dev));
503 			dump_stack();
504 		}
505 		goto dn_unlock;
506 	}
507 
508 	/*
509 	 * Now test for an EEH failure.  This is VERY expensive.
510 	 * Note that the eeh_config_addr may be a parent device
511 	 * in the case of a device behind a bridge, or it may be
512 	 * function zero of a multi-function device.
513 	 * In any case they must share a common PHB.
514 	 */
515 	ret = eeh_ops->get_state(pe, NULL);
516 
517 	/* Note that config-io to empty slots may fail;
518 	 * they are empty when they don't have children.
519 	 * We will punt with the following conditions: Failure to get
520 	 * PE's state, EEH not support and Permanently unavailable
521 	 * state, PE is in good state.
522 	 */
523 	if ((ret < 0) ||
524 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
525 		eeh_stats.false_positives++;
526 		pe->false_positives++;
527 		rc = 0;
528 		goto dn_unlock;
529 	}
530 
531 	/*
532 	 * It should be corner case that the parent PE has been
533 	 * put into frozen state as well. We should take care
534 	 * that at first.
535 	 */
536 	parent_pe = pe->parent;
537 	while (parent_pe) {
538 		/* Hit the ceiling ? */
539 		if (parent_pe->type & EEH_PE_PHB)
540 			break;
541 
542 		/* Frozen parent PE ? */
543 		ret = eeh_ops->get_state(parent_pe, NULL);
544 		if (ret > 0 && !eeh_state_active(ret)) {
545 			pe = parent_pe;
546 			pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
547 			       pe->phb->global_number, pe->addr,
548 			       pe->phb->global_number, parent_pe->addr);
549 		}
550 
551 		/* Next parent level */
552 		parent_pe = parent_pe->parent;
553 	}
554 
555 	eeh_stats.slot_resets++;
556 
557 	/* Avoid repeated reports of this failure, including problems
558 	 * with other functions on this device, and functions under
559 	 * bridges.
560 	 */
561 	eeh_pe_mark_isolated(pe);
562 	eeh_serialize_unlock(flags);
563 
564 	/* Most EEH events are due to device driver bugs.  Having
565 	 * a stack trace will help the device-driver authors figure
566 	 * out what happened.  So print that out.
567 	 */
568 	pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
569 		__func__, pe->phb->global_number, pe->addr);
570 	eeh_send_failure_event(pe);
571 
572 	return 1;
573 
574 dn_unlock:
575 	eeh_serialize_unlock(flags);
576 	return rc;
577 }
578 
579 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
580 
581 /**
582  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
583  * @token: I/O address
584  *
585  * Check for an EEH failure at the given I/O address. Call this
586  * routine if the result of a read was all 0xff's and you want to
587  * find out if this is due to an EEH slot freeze event. This routine
588  * will query firmware for the EEH status.
589  *
590  * Note this routine is safe to call in an interrupt context.
591  */
eeh_check_failure(const volatile void __iomem * token)592 int eeh_check_failure(const volatile void __iomem *token)
593 {
594 	unsigned long addr;
595 	struct eeh_dev *edev;
596 
597 	/* Finding the phys addr + pci device; this is pretty quick. */
598 	addr = eeh_token_to_phys((unsigned long __force) token);
599 	edev = eeh_addr_cache_get_dev(addr);
600 	if (!edev) {
601 		eeh_stats.no_device++;
602 		return 0;
603 	}
604 
605 	return eeh_dev_check_failure(edev);
606 }
607 EXPORT_SYMBOL(eeh_check_failure);
608 
609 
610 /**
611  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
612  * @pe: EEH PE
613  *
614  * This routine should be called to reenable frozen MMIO or DMA
615  * so that it would work correctly again. It's useful while doing
616  * recovery or log collection on the indicated device.
617  */
eeh_pci_enable(struct eeh_pe * pe,int function)618 int eeh_pci_enable(struct eeh_pe *pe, int function)
619 {
620 	int active_flag, rc;
621 
622 	/*
623 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
624 	 * Also, it's pointless to enable them on unfrozen PE. So
625 	 * we have to check before enabling IO or DMA.
626 	 */
627 	switch (function) {
628 	case EEH_OPT_THAW_MMIO:
629 		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
630 		break;
631 	case EEH_OPT_THAW_DMA:
632 		active_flag = EEH_STATE_DMA_ACTIVE;
633 		break;
634 	case EEH_OPT_DISABLE:
635 	case EEH_OPT_ENABLE:
636 	case EEH_OPT_FREEZE_PE:
637 		active_flag = 0;
638 		break;
639 	default:
640 		pr_warn("%s: Invalid function %d\n",
641 			__func__, function);
642 		return -EINVAL;
643 	}
644 
645 	/*
646 	 * Check if IO or DMA has been enabled before
647 	 * enabling them.
648 	 */
649 	if (active_flag) {
650 		rc = eeh_ops->get_state(pe, NULL);
651 		if (rc < 0)
652 			return rc;
653 
654 		/* Needn't enable it at all */
655 		if (rc == EEH_STATE_NOT_SUPPORT)
656 			return 0;
657 
658 		/* It's already enabled */
659 		if (rc & active_flag)
660 			return 0;
661 	}
662 
663 
664 	/* Issue the request */
665 	rc = eeh_ops->set_option(pe, function);
666 	if (rc)
667 		pr_warn("%s: Unexpected state change %d on "
668 			"PHB#%x-PE#%x, err=%d\n",
669 			__func__, function, pe->phb->global_number,
670 			pe->addr, rc);
671 
672 	/* Check if the request is finished successfully */
673 	if (active_flag) {
674 		rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
675 		if (rc < 0)
676 			return rc;
677 
678 		if (rc & active_flag)
679 			return 0;
680 
681 		return -EIO;
682 	}
683 
684 	return rc;
685 }
686 
eeh_disable_and_save_dev_state(struct eeh_dev * edev,void * userdata)687 static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
688 					    void *userdata)
689 {
690 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
691 	struct pci_dev *dev = userdata;
692 
693 	/*
694 	 * The caller should have disabled and saved the
695 	 * state for the specified device
696 	 */
697 	if (!pdev || pdev == dev)
698 		return;
699 
700 	/* Ensure we have D0 power state */
701 	pci_set_power_state(pdev, PCI_D0);
702 
703 	/* Save device state */
704 	pci_save_state(pdev);
705 
706 	/*
707 	 * Disable device to avoid any DMA traffic and
708 	 * interrupt from the device
709 	 */
710 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
711 }
712 
eeh_restore_dev_state(struct eeh_dev * edev,void * userdata)713 static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
714 {
715 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
716 	struct pci_dev *dev = userdata;
717 
718 	if (!pdev)
719 		return;
720 
721 	/* Apply customization from firmware */
722 	if (eeh_ops->restore_config)
723 		eeh_ops->restore_config(edev);
724 
725 	/* The caller should restore state for the specified device */
726 	if (pdev != dev)
727 		pci_restore_state(pdev);
728 }
729 
730 /**
731  * pcibios_set_pcie_reset_state - Set PCI-E reset state
732  * @dev: pci device struct
733  * @state: reset state to enter
734  *
735  * Return value:
736  * 	0 if success
737  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)738 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
739 {
740 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
741 	struct eeh_pe *pe = eeh_dev_to_pe(edev);
742 
743 	if (!pe) {
744 		pr_err("%s: No PE found on PCI device %s\n",
745 			__func__, pci_name(dev));
746 		return -EINVAL;
747 	}
748 
749 	switch (state) {
750 	case pcie_deassert_reset:
751 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
752 		eeh_unfreeze_pe(pe);
753 		if (!(pe->type & EEH_PE_VF))
754 			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
755 		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
756 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
757 		break;
758 	case pcie_hot_reset:
759 		eeh_pe_mark_isolated(pe);
760 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
761 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
762 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
763 		if (!(pe->type & EEH_PE_VF))
764 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
765 		eeh_ops->reset(pe, EEH_RESET_HOT);
766 		break;
767 	case pcie_warm_reset:
768 		eeh_pe_mark_isolated(pe);
769 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
770 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
771 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
772 		if (!(pe->type & EEH_PE_VF))
773 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
774 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
775 		break;
776 	default:
777 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
778 		return -EINVAL;
779 	}
780 
781 	return 0;
782 }
783 
784 /**
785  * eeh_set_pe_freset - Check the required reset for the indicated device
786  * @data: EEH device
787  * @flag: return value
788  *
789  * Each device might have its preferred reset type: fundamental or
790  * hot reset. The routine is used to collected the information for
791  * the indicated device and its children so that the bunch of the
792  * devices could be reset properly.
793  */
eeh_set_dev_freset(struct eeh_dev * edev,void * flag)794 static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
795 {
796 	struct pci_dev *dev;
797 	unsigned int *freset = (unsigned int *)flag;
798 
799 	dev = eeh_dev_to_pci_dev(edev);
800 	if (dev)
801 		*freset |= dev->needs_freset;
802 }
803 
eeh_pe_refreeze_passed(struct eeh_pe * root)804 static void eeh_pe_refreeze_passed(struct eeh_pe *root)
805 {
806 	struct eeh_pe *pe;
807 	int state;
808 
809 	eeh_for_each_pe(root, pe) {
810 		if (eeh_pe_passed(pe)) {
811 			state = eeh_ops->get_state(pe, NULL);
812 			if (state &
813 			   (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
814 				pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
815 					pe->phb->global_number, pe->addr);
816 				eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
817 			}
818 		}
819 	}
820 }
821 
822 /**
823  * eeh_pe_reset_full - Complete a full reset process on the indicated PE
824  * @pe: EEH PE
825  *
826  * This function executes a full reset procedure on a PE, including setting
827  * the appropriate flags, performing a fundamental or hot reset, and then
828  * deactivating the reset status.  It is designed to be used within the EEH
829  * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
830  * only performs a single operation at a time.
831  *
832  * This function will attempt to reset a PE three times before failing.
833  */
eeh_pe_reset_full(struct eeh_pe * pe,bool include_passed)834 int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
835 {
836 	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
837 	int type = EEH_RESET_HOT;
838 	unsigned int freset = 0;
839 	int i, state = 0, ret;
840 
841 	/*
842 	 * Determine the type of reset to perform - hot or fundamental.
843 	 * Hot reset is the default operation, unless any device under the
844 	 * PE requires a fundamental reset.
845 	 */
846 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
847 
848 	if (freset)
849 		type = EEH_RESET_FUNDAMENTAL;
850 
851 	/* Mark the PE as in reset state and block config space accesses */
852 	eeh_pe_state_mark(pe, reset_state);
853 
854 	/* Make three attempts at resetting the bus */
855 	for (i = 0; i < 3; i++) {
856 		ret = eeh_pe_reset(pe, type, include_passed);
857 		if (!ret)
858 			ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
859 					   include_passed);
860 		if (ret) {
861 			ret = -EIO;
862 			pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
863 				state, pe->phb->global_number, pe->addr, i + 1);
864 			continue;
865 		}
866 		if (i)
867 			pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
868 				pe->phb->global_number, pe->addr, i + 1);
869 
870 		/* Wait until the PE is in a functioning state */
871 		state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
872 		if (state < 0) {
873 			pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
874 				pe->phb->global_number, pe->addr);
875 			ret = -ENOTRECOVERABLE;
876 			break;
877 		}
878 		if (eeh_state_active(state))
879 			break;
880 		else
881 			pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
882 				pe->phb->global_number, pe->addr, state, i + 1);
883 	}
884 
885 	/* Resetting the PE may have unfrozen child PEs. If those PEs have been
886 	 * (potentially) passed through to a guest, re-freeze them:
887 	 */
888 	if (!include_passed)
889 		eeh_pe_refreeze_passed(pe);
890 
891 	eeh_pe_state_clear(pe, reset_state, true);
892 	return ret;
893 }
894 
895 /**
896  * eeh_save_bars - Save device bars
897  * @edev: PCI device associated EEH device
898  *
899  * Save the values of the device bars. Unlike the restore
900  * routine, this routine is *not* recursive. This is because
901  * PCI devices are added individually; but, for the restore,
902  * an entire slot is reset at a time.
903  */
eeh_save_bars(struct eeh_dev * edev)904 void eeh_save_bars(struct eeh_dev *edev)
905 {
906 	int i;
907 
908 	if (!edev)
909 		return;
910 
911 	for (i = 0; i < 16; i++)
912 		eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
913 
914 	/*
915 	 * For PCI bridges including root port, we need enable bus
916 	 * master explicitly. Otherwise, it can't fetch IODA table
917 	 * entries correctly. So we cache the bit in advance so that
918 	 * we can restore it after reset, either PHB range or PE range.
919 	 */
920 	if (edev->mode & EEH_DEV_BRIDGE)
921 		edev->config_space[1] |= PCI_COMMAND_MASTER;
922 }
923 
eeh_reboot_notifier(struct notifier_block * nb,unsigned long action,void * unused)924 static int eeh_reboot_notifier(struct notifier_block *nb,
925 			       unsigned long action, void *unused)
926 {
927 	eeh_clear_flag(EEH_ENABLED);
928 	return NOTIFY_DONE;
929 }
930 
931 static struct notifier_block eeh_reboot_nb = {
932 	.notifier_call = eeh_reboot_notifier,
933 };
934 
eeh_device_notifier(struct notifier_block * nb,unsigned long action,void * data)935 static int eeh_device_notifier(struct notifier_block *nb,
936 			       unsigned long action, void *data)
937 {
938 	struct device *dev = data;
939 
940 	switch (action) {
941 	/*
942 	 * Note: It's not possible to perform EEH device addition (i.e.
943 	 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
944 	 * the device's resources, which have not yet been set up.
945 	 */
946 	case BUS_NOTIFY_DEL_DEVICE:
947 		eeh_remove_device(to_pci_dev(dev));
948 		break;
949 	default:
950 		break;
951 	}
952 	return NOTIFY_DONE;
953 }
954 
955 static struct notifier_block eeh_device_nb = {
956 	.notifier_call = eeh_device_notifier,
957 };
958 
959 /**
960  * eeh_init - System wide EEH initialization
961  *
962  * It's the platform's job to call this from an arch_initcall().
963  */
eeh_init(struct eeh_ops * ops)964 int eeh_init(struct eeh_ops *ops)
965 {
966 	struct pci_controller *hose, *tmp;
967 	int ret = 0;
968 
969 	/* the platform should only initialise EEH once */
970 	if (WARN_ON(eeh_ops))
971 		return -EEXIST;
972 	if (WARN_ON(!ops))
973 		return -ENOENT;
974 	eeh_ops = ops;
975 
976 	/* Register reboot notifier */
977 	ret = register_reboot_notifier(&eeh_reboot_nb);
978 	if (ret) {
979 		pr_warn("%s: Failed to register reboot notifier (%d)\n",
980 			__func__, ret);
981 		return ret;
982 	}
983 
984 	ret = bus_register_notifier(&pci_bus_type, &eeh_device_nb);
985 	if (ret) {
986 		pr_warn("%s: Failed to register bus notifier (%d)\n",
987 			__func__, ret);
988 		return ret;
989 	}
990 
991 	/* Initialize PHB PEs */
992 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
993 		eeh_phb_pe_create(hose);
994 
995 	eeh_addr_cache_init();
996 
997 	/* Initialize EEH event */
998 	return eeh_event_init();
999 }
1000 
1001 /**
1002  * eeh_probe_device() - Perform EEH initialization for the indicated pci device
1003  * @dev: pci device for which to set up EEH
1004  *
1005  * This routine must be used to complete EEH initialization for PCI
1006  * devices that were added after system boot (e.g. hotplug, dlpar).
1007  */
eeh_probe_device(struct pci_dev * dev)1008 void eeh_probe_device(struct pci_dev *dev)
1009 {
1010 	struct eeh_dev *edev;
1011 
1012 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1013 
1014 	/*
1015 	 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
1016 	 * already called for this device.
1017 	 */
1018 	if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
1019 		pci_dbg(dev, "Already bound to an eeh_dev!\n");
1020 		return;
1021 	}
1022 
1023 	edev = eeh_ops->probe(dev);
1024 	if (!edev) {
1025 		pr_debug("EEH: Adding device failed\n");
1026 		return;
1027 	}
1028 
1029 	/*
1030 	 * FIXME: We rely on pcibios_release_device() to remove the
1031 	 * existing EEH state. The release function is only called if
1032 	 * the pci_dev's refcount drops to zero so if something is
1033 	 * keeping a ref to a device (e.g. a filesystem) we need to
1034 	 * remove the old EEH state.
1035 	 *
1036 	 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1037 	 */
1038 	if (edev->pdev && edev->pdev != dev) {
1039 		eeh_pe_tree_remove(edev);
1040 		eeh_addr_cache_rmv_dev(edev->pdev);
1041 		eeh_sysfs_remove_device(edev->pdev);
1042 
1043 		/*
1044 		 * We definitely should have the PCI device removed
1045 		 * though it wasn't correctly. So we needn't call
1046 		 * into error handler afterwards.
1047 		 */
1048 		edev->mode |= EEH_DEV_NO_HANDLER;
1049 	}
1050 
1051 	/* bind the pdev and the edev together */
1052 	edev->pdev = dev;
1053 	dev->dev.archdata.edev = edev;
1054 	eeh_addr_cache_insert_dev(dev);
1055 	eeh_sysfs_add_device(dev);
1056 }
1057 
1058 /**
1059  * eeh_remove_device - Undo EEH setup for the indicated pci device
1060  * @dev: pci device to be removed
1061  *
1062  * This routine should be called when a device is removed from
1063  * a running system (e.g. by hotplug or dlpar).  It unregisters
1064  * the PCI device from the EEH subsystem.  I/O errors affecting
1065  * this device will no longer be detected after this call; thus,
1066  * i/o errors affecting this slot may leave this device unusable.
1067  */
eeh_remove_device(struct pci_dev * dev)1068 void eeh_remove_device(struct pci_dev *dev)
1069 {
1070 	struct eeh_dev *edev;
1071 
1072 	if (!dev || !eeh_enabled())
1073 		return;
1074 	edev = pci_dev_to_eeh_dev(dev);
1075 
1076 	/* Unregister the device with the EEH/PCI address search system */
1077 	dev_dbg(&dev->dev, "EEH: Removing device\n");
1078 
1079 	if (!edev || !edev->pdev || !edev->pe) {
1080 		dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1081 		return;
1082 	}
1083 
1084 	/*
1085 	 * During the hotplug for EEH error recovery, we need the EEH
1086 	 * device attached to the parent PE in order for BAR restore
1087 	 * a bit later. So we keep it for BAR restore and remove it
1088 	 * from the parent PE during the BAR resotre.
1089 	 */
1090 	edev->pdev = NULL;
1091 
1092 	/*
1093 	 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1094 	 * remove the sysfs files before clearing dev.archdata.edev
1095 	 */
1096 	if (edev->mode & EEH_DEV_SYSFS)
1097 		eeh_sysfs_remove_device(dev);
1098 
1099 	/*
1100 	 * We're removing from the PCI subsystem, that means
1101 	 * the PCI device driver can't support EEH or not
1102 	 * well. So we rely on hotplug completely to do recovery
1103 	 * for the specific PCI device.
1104 	 */
1105 	edev->mode |= EEH_DEV_NO_HANDLER;
1106 
1107 	eeh_addr_cache_rmv_dev(dev);
1108 
1109 	/*
1110 	 * The flag "in_error" is used to trace EEH devices for VFs
1111 	 * in error state or not. It's set in eeh_report_error(). If
1112 	 * it's not set, eeh_report_{reset,resume}() won't be called
1113 	 * for the VF EEH device.
1114 	 */
1115 	edev->in_error = false;
1116 	dev->dev.archdata.edev = NULL;
1117 	if (!(edev->pe->state & EEH_PE_KEEP))
1118 		eeh_pe_tree_remove(edev);
1119 	else
1120 		edev->mode |= EEH_DEV_DISCONNECTED;
1121 }
1122 
eeh_unfreeze_pe(struct eeh_pe * pe)1123 int eeh_unfreeze_pe(struct eeh_pe *pe)
1124 {
1125 	int ret;
1126 
1127 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1128 	if (ret) {
1129 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1130 			__func__, ret, pe->phb->global_number, pe->addr);
1131 		return ret;
1132 	}
1133 
1134 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1135 	if (ret) {
1136 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1137 			__func__, ret, pe->phb->global_number, pe->addr);
1138 		return ret;
1139 	}
1140 
1141 	return ret;
1142 }
1143 
1144 
1145 static struct pci_device_id eeh_reset_ids[] = {
1146 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1147 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1148 	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1149 	{ 0 }
1150 };
1151 
eeh_pe_change_owner(struct eeh_pe * pe)1152 static int eeh_pe_change_owner(struct eeh_pe *pe)
1153 {
1154 	struct eeh_dev *edev, *tmp;
1155 	struct pci_dev *pdev;
1156 	struct pci_device_id *id;
1157 	int ret;
1158 
1159 	/* Check PE state */
1160 	ret = eeh_ops->get_state(pe, NULL);
1161 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1162 		return 0;
1163 
1164 	/* Unfrozen PE, nothing to do */
1165 	if (eeh_state_active(ret))
1166 		return 0;
1167 
1168 	/* Frozen PE, check if it needs PE level reset */
1169 	eeh_pe_for_each_dev(pe, edev, tmp) {
1170 		pdev = eeh_dev_to_pci_dev(edev);
1171 		if (!pdev)
1172 			continue;
1173 
1174 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1175 			if (id->vendor != PCI_ANY_ID &&
1176 			    id->vendor != pdev->vendor)
1177 				continue;
1178 			if (id->device != PCI_ANY_ID &&
1179 			    id->device != pdev->device)
1180 				continue;
1181 			if (id->subvendor != PCI_ANY_ID &&
1182 			    id->subvendor != pdev->subsystem_vendor)
1183 				continue;
1184 			if (id->subdevice != PCI_ANY_ID &&
1185 			    id->subdevice != pdev->subsystem_device)
1186 				continue;
1187 
1188 			return eeh_pe_reset_and_recover(pe);
1189 		}
1190 	}
1191 
1192 	ret = eeh_unfreeze_pe(pe);
1193 	if (!ret)
1194 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1195 	return ret;
1196 }
1197 
1198 /**
1199  * eeh_dev_open - Increase count of pass through devices for PE
1200  * @pdev: PCI device
1201  *
1202  * Increase count of passed through devices for the indicated
1203  * PE. In the result, the EEH errors detected on the PE won't be
1204  * reported. The PE owner will be responsible for detection
1205  * and recovery.
1206  */
eeh_dev_open(struct pci_dev * pdev)1207 int eeh_dev_open(struct pci_dev *pdev)
1208 {
1209 	struct eeh_dev *edev;
1210 	int ret = -ENODEV;
1211 
1212 	mutex_lock(&eeh_dev_mutex);
1213 
1214 	/* No PCI device ? */
1215 	if (!pdev)
1216 		goto out;
1217 
1218 	/* No EEH device or PE ? */
1219 	edev = pci_dev_to_eeh_dev(pdev);
1220 	if (!edev || !edev->pe)
1221 		goto out;
1222 
1223 	/*
1224 	 * The PE might have been put into frozen state, but we
1225 	 * didn't detect that yet. The passed through PCI devices
1226 	 * in frozen PE won't work properly. Clear the frozen state
1227 	 * in advance.
1228 	 */
1229 	ret = eeh_pe_change_owner(edev->pe);
1230 	if (ret)
1231 		goto out;
1232 
1233 	/* Increase PE's pass through count */
1234 	atomic_inc(&edev->pe->pass_dev_cnt);
1235 	mutex_unlock(&eeh_dev_mutex);
1236 
1237 	return 0;
1238 out:
1239 	mutex_unlock(&eeh_dev_mutex);
1240 	return ret;
1241 }
1242 EXPORT_SYMBOL_GPL(eeh_dev_open);
1243 
1244 /**
1245  * eeh_dev_release - Decrease count of pass through devices for PE
1246  * @pdev: PCI device
1247  *
1248  * Decrease count of pass through devices for the indicated PE. If
1249  * there is no passed through device in PE, the EEH errors detected
1250  * on the PE will be reported and handled as usual.
1251  */
eeh_dev_release(struct pci_dev * pdev)1252 void eeh_dev_release(struct pci_dev *pdev)
1253 {
1254 	struct eeh_dev *edev;
1255 
1256 	mutex_lock(&eeh_dev_mutex);
1257 
1258 	/* No PCI device ? */
1259 	if (!pdev)
1260 		goto out;
1261 
1262 	/* No EEH device ? */
1263 	edev = pci_dev_to_eeh_dev(pdev);
1264 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1265 		goto out;
1266 
1267 	/* Decrease PE's pass through count */
1268 	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1269 	eeh_pe_change_owner(edev->pe);
1270 out:
1271 	mutex_unlock(&eeh_dev_mutex);
1272 }
1273 EXPORT_SYMBOL(eeh_dev_release);
1274 
1275 #ifdef CONFIG_IOMMU_API
1276 
dev_has_iommu_table(struct device * dev,void * data)1277 static int dev_has_iommu_table(struct device *dev, void *data)
1278 {
1279 	struct pci_dev *pdev = to_pci_dev(dev);
1280 	struct pci_dev **ppdev = data;
1281 
1282 	if (!dev)
1283 		return 0;
1284 
1285 	if (device_iommu_mapped(dev)) {
1286 		*ppdev = pdev;
1287 		return 1;
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 /**
1294  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1295  * @group: IOMMU group
1296  *
1297  * The routine is called to convert IOMMU group to EEH PE.
1298  */
eeh_iommu_group_to_pe(struct iommu_group * group)1299 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1300 {
1301 	struct pci_dev *pdev = NULL;
1302 	struct eeh_dev *edev;
1303 	int ret;
1304 
1305 	/* No IOMMU group ? */
1306 	if (!group)
1307 		return NULL;
1308 
1309 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1310 	if (!ret || !pdev)
1311 		return NULL;
1312 
1313 	/* No EEH device or PE ? */
1314 	edev = pci_dev_to_eeh_dev(pdev);
1315 	if (!edev || !edev->pe)
1316 		return NULL;
1317 
1318 	return edev->pe;
1319 }
1320 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1321 
1322 #endif /* CONFIG_IOMMU_API */
1323 
1324 /**
1325  * eeh_pe_set_option - Set options for the indicated PE
1326  * @pe: EEH PE
1327  * @option: requested option
1328  *
1329  * The routine is called to enable or disable EEH functionality
1330  * on the indicated PE, to enable IO or DMA for the frozen PE.
1331  */
eeh_pe_set_option(struct eeh_pe * pe,int option)1332 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1333 {
1334 	int ret = 0;
1335 
1336 	/* Invalid PE ? */
1337 	if (!pe)
1338 		return -ENODEV;
1339 
1340 	/*
1341 	 * EEH functionality could possibly be disabled, just
1342 	 * return error for the case. And the EEH functinality
1343 	 * isn't expected to be disabled on one specific PE.
1344 	 */
1345 	switch (option) {
1346 	case EEH_OPT_ENABLE:
1347 		if (eeh_enabled()) {
1348 			ret = eeh_pe_change_owner(pe);
1349 			break;
1350 		}
1351 		ret = -EIO;
1352 		break;
1353 	case EEH_OPT_DISABLE:
1354 		break;
1355 	case EEH_OPT_THAW_MMIO:
1356 	case EEH_OPT_THAW_DMA:
1357 	case EEH_OPT_FREEZE_PE:
1358 		if (!eeh_ops || !eeh_ops->set_option) {
1359 			ret = -ENOENT;
1360 			break;
1361 		}
1362 
1363 		ret = eeh_pci_enable(pe, option);
1364 		break;
1365 	default:
1366 		pr_debug("%s: Option %d out of range (%d, %d)\n",
1367 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1368 		ret = -EINVAL;
1369 	}
1370 
1371 	return ret;
1372 }
1373 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1374 
1375 /**
1376  * eeh_pe_get_state - Retrieve PE's state
1377  * @pe: EEH PE
1378  *
1379  * Retrieve the PE's state, which includes 3 aspects: enabled
1380  * DMA, enabled IO and asserted reset.
1381  */
eeh_pe_get_state(struct eeh_pe * pe)1382 int eeh_pe_get_state(struct eeh_pe *pe)
1383 {
1384 	int result, ret = 0;
1385 	bool rst_active, dma_en, mmio_en;
1386 
1387 	/* Existing PE ? */
1388 	if (!pe)
1389 		return -ENODEV;
1390 
1391 	if (!eeh_ops || !eeh_ops->get_state)
1392 		return -ENOENT;
1393 
1394 	/*
1395 	 * If the parent PE is owned by the host kernel and is undergoing
1396 	 * error recovery, we should return the PE state as temporarily
1397 	 * unavailable so that the error recovery on the guest is suspended
1398 	 * until the recovery completes on the host.
1399 	 */
1400 	if (pe->parent &&
1401 	    !(pe->state & EEH_PE_REMOVED) &&
1402 	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1403 		return EEH_PE_STATE_UNAVAIL;
1404 
1405 	result = eeh_ops->get_state(pe, NULL);
1406 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1407 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1408 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1409 
1410 	if (rst_active)
1411 		ret = EEH_PE_STATE_RESET;
1412 	else if (dma_en && mmio_en)
1413 		ret = EEH_PE_STATE_NORMAL;
1414 	else if (!dma_en && !mmio_en)
1415 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1416 	else if (!dma_en && mmio_en)
1417 		ret = EEH_PE_STATE_STOPPED_DMA;
1418 	else
1419 		ret = EEH_PE_STATE_UNAVAIL;
1420 
1421 	return ret;
1422 }
1423 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1424 
eeh_pe_reenable_devices(struct eeh_pe * pe,bool include_passed)1425 static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1426 {
1427 	struct eeh_dev *edev, *tmp;
1428 	struct pci_dev *pdev;
1429 	int ret = 0;
1430 
1431 	eeh_pe_restore_bars(pe);
1432 
1433 	/*
1434 	 * Reenable PCI devices as the devices passed
1435 	 * through are always enabled before the reset.
1436 	 */
1437 	eeh_pe_for_each_dev(pe, edev, tmp) {
1438 		pdev = eeh_dev_to_pci_dev(edev);
1439 		if (!pdev)
1440 			continue;
1441 
1442 		ret = pci_reenable_device(pdev);
1443 		if (ret) {
1444 			pr_warn("%s: Failure %d reenabling %s\n",
1445 				__func__, ret, pci_name(pdev));
1446 			return ret;
1447 		}
1448 	}
1449 
1450 	/* The PE is still in frozen state */
1451 	if (include_passed || !eeh_pe_passed(pe)) {
1452 		ret = eeh_unfreeze_pe(pe);
1453 	} else
1454 		pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1455 			pe->phb->global_number, pe->addr);
1456 	if (!ret)
1457 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1458 	return ret;
1459 }
1460 
1461 
1462 /**
1463  * eeh_pe_reset - Issue PE reset according to specified type
1464  * @pe: EEH PE
1465  * @option: reset type
1466  *
1467  * The routine is called to reset the specified PE with the
1468  * indicated type, either fundamental reset or hot reset.
1469  * PE reset is the most important part for error recovery.
1470  */
eeh_pe_reset(struct eeh_pe * pe,int option,bool include_passed)1471 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1472 {
1473 	int ret = 0;
1474 
1475 	/* Invalid PE ? */
1476 	if (!pe)
1477 		return -ENODEV;
1478 
1479 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1480 		return -ENOENT;
1481 
1482 	switch (option) {
1483 	case EEH_RESET_DEACTIVATE:
1484 		ret = eeh_ops->reset(pe, option);
1485 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1486 		if (ret)
1487 			break;
1488 
1489 		ret = eeh_pe_reenable_devices(pe, include_passed);
1490 		break;
1491 	case EEH_RESET_HOT:
1492 	case EEH_RESET_FUNDAMENTAL:
1493 		/*
1494 		 * Proactively freeze the PE to drop all MMIO access
1495 		 * during reset, which should be banned as it's always
1496 		 * cause recursive EEH error.
1497 		 */
1498 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1499 
1500 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1501 		ret = eeh_ops->reset(pe, option);
1502 		break;
1503 	default:
1504 		pr_debug("%s: Unsupported option %d\n",
1505 			__func__, option);
1506 		ret = -EINVAL;
1507 	}
1508 
1509 	return ret;
1510 }
1511 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1512 
1513 /**
1514  * eeh_pe_configure - Configure PCI bridges after PE reset
1515  * @pe: EEH PE
1516  *
1517  * The routine is called to restore the PCI config space for
1518  * those PCI devices, especially PCI bridges affected by PE
1519  * reset issued previously.
1520  */
eeh_pe_configure(struct eeh_pe * pe)1521 int eeh_pe_configure(struct eeh_pe *pe)
1522 {
1523 	int ret = 0;
1524 
1525 	/* Invalid PE ? */
1526 	if (!pe)
1527 		return -ENODEV;
1528 
1529 	return ret;
1530 }
1531 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1532 
1533 /**
1534  * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1535  * @pe: the indicated PE
1536  * @type: error type
1537  * @function: error function
1538  * @addr: address
1539  * @mask: address mask
1540  *
1541  * The routine is called to inject the specified PCI error, which
1542  * is determined by @type and @function, to the indicated PE for
1543  * testing purpose.
1544  */
eeh_pe_inject_err(struct eeh_pe * pe,int type,int func,unsigned long addr,unsigned long mask)1545 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1546 		      unsigned long addr, unsigned long mask)
1547 {
1548 	/* Invalid PE ? */
1549 	if (!pe)
1550 		return -ENODEV;
1551 
1552 	/* Unsupported operation ? */
1553 	if (!eeh_ops || !eeh_ops->err_inject)
1554 		return -ENOENT;
1555 
1556 	/* Check on PCI error type */
1557 	if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1558 		return -EINVAL;
1559 
1560 	/* Check on PCI error function */
1561 	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1562 		return -EINVAL;
1563 
1564 	return eeh_ops->err_inject(pe, type, func, addr, mask);
1565 }
1566 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1567 
1568 #ifdef CONFIG_PROC_FS
proc_eeh_show(struct seq_file * m,void * v)1569 static int proc_eeh_show(struct seq_file *m, void *v)
1570 {
1571 	if (!eeh_enabled()) {
1572 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1573 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1574 	} else {
1575 		seq_printf(m, "EEH Subsystem is enabled\n");
1576 		seq_printf(m,
1577 				"no device=%llu\n"
1578 				"no device node=%llu\n"
1579 				"no config address=%llu\n"
1580 				"check not wanted=%llu\n"
1581 				"eeh_total_mmio_ffs=%llu\n"
1582 				"eeh_false_positives=%llu\n"
1583 				"eeh_slot_resets=%llu\n",
1584 				eeh_stats.no_device,
1585 				eeh_stats.no_dn,
1586 				eeh_stats.no_cfg_addr,
1587 				eeh_stats.ignored_check,
1588 				eeh_stats.total_mmio_ffs,
1589 				eeh_stats.false_positives,
1590 				eeh_stats.slot_resets);
1591 	}
1592 
1593 	return 0;
1594 }
1595 #endif /* CONFIG_PROC_FS */
1596 
1597 #ifdef CONFIG_DEBUG_FS
1598 
1599 
eeh_debug_lookup_pdev(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1600 static struct pci_dev *eeh_debug_lookup_pdev(struct file *filp,
1601 					     const char __user *user_buf,
1602 					     size_t count, loff_t *ppos)
1603 {
1604 	uint32_t domain, bus, dev, fn;
1605 	struct pci_dev *pdev;
1606 	char buf[20];
1607 	int ret;
1608 
1609 	memset(buf, 0, sizeof(buf));
1610 	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1611 	if (!ret)
1612 		return ERR_PTR(-EFAULT);
1613 
1614 	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1615 	if (ret != 4) {
1616 		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1617 		return ERR_PTR(-EINVAL);
1618 	}
1619 
1620 	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1621 	if (!pdev)
1622 		return ERR_PTR(-ENODEV);
1623 
1624 	return pdev;
1625 }
1626 
eeh_enable_dbgfs_set(void * data,u64 val)1627 static int eeh_enable_dbgfs_set(void *data, u64 val)
1628 {
1629 	if (val)
1630 		eeh_clear_flag(EEH_FORCE_DISABLED);
1631 	else
1632 		eeh_add_flag(EEH_FORCE_DISABLED);
1633 
1634 	return 0;
1635 }
1636 
eeh_enable_dbgfs_get(void * data,u64 * val)1637 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1638 {
1639 	if (eeh_enabled())
1640 		*val = 0x1ul;
1641 	else
1642 		*val = 0x0ul;
1643 	return 0;
1644 }
1645 
1646 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1647 			 eeh_enable_dbgfs_set, "0x%llx\n");
1648 
eeh_force_recover_write(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1649 static ssize_t eeh_force_recover_write(struct file *filp,
1650 				const char __user *user_buf,
1651 				size_t count, loff_t *ppos)
1652 {
1653 	struct pci_controller *hose;
1654 	uint32_t phbid, pe_no;
1655 	struct eeh_pe *pe;
1656 	char buf[20];
1657 	int ret;
1658 
1659 	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1660 	if (!ret)
1661 		return -EFAULT;
1662 
1663 	/*
1664 	 * When PE is NULL the event is a "special" event. Rather than
1665 	 * recovering a specific PE it forces the EEH core to scan for failed
1666 	 * PHBs and recovers each. This needs to be done before any device
1667 	 * recoveries can occur.
1668 	 */
1669 	if (!strncmp(buf, "hwcheck", 7)) {
1670 		__eeh_send_failure_event(NULL);
1671 		return count;
1672 	}
1673 
1674 	ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1675 	if (ret != 2)
1676 		return -EINVAL;
1677 
1678 	hose = pci_find_controller_for_domain(phbid);
1679 	if (!hose)
1680 		return -ENODEV;
1681 
1682 	/* Retrieve PE */
1683 	pe = eeh_pe_get(hose, pe_no);
1684 	if (!pe)
1685 		return -ENODEV;
1686 
1687 	/*
1688 	 * We don't do any state checking here since the detection
1689 	 * process is async to the recovery process. The recovery
1690 	 * thread *should* not break even if we schedule a recovery
1691 	 * from an odd state (e.g. PE removed, or recovery of a
1692 	 * non-isolated PE)
1693 	 */
1694 	__eeh_send_failure_event(pe);
1695 
1696 	return ret < 0 ? ret : count;
1697 }
1698 
1699 static const struct file_operations eeh_force_recover_fops = {
1700 	.open	= simple_open,
1701 	.llseek	= no_llseek,
1702 	.write	= eeh_force_recover_write,
1703 };
1704 
eeh_debugfs_dev_usage(struct file * filp,char __user * user_buf,size_t count,loff_t * ppos)1705 static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1706 				char __user *user_buf,
1707 				size_t count, loff_t *ppos)
1708 {
1709 	static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1710 
1711 	return simple_read_from_buffer(user_buf, count, ppos,
1712 				       usage, sizeof(usage) - 1);
1713 }
1714 
eeh_dev_check_write(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1715 static ssize_t eeh_dev_check_write(struct file *filp,
1716 				const char __user *user_buf,
1717 				size_t count, loff_t *ppos)
1718 {
1719 	struct pci_dev *pdev;
1720 	struct eeh_dev *edev;
1721 	int ret;
1722 
1723 	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1724 	if (IS_ERR(pdev))
1725 		return PTR_ERR(pdev);
1726 
1727 	edev = pci_dev_to_eeh_dev(pdev);
1728 	if (!edev) {
1729 		pci_err(pdev, "No eeh_dev for this device!\n");
1730 		pci_dev_put(pdev);
1731 		return -ENODEV;
1732 	}
1733 
1734 	ret = eeh_dev_check_failure(edev);
1735 	pci_info(pdev, "eeh_dev_check_failure(%s) = %d\n",
1736 			pci_name(pdev), ret);
1737 
1738 	pci_dev_put(pdev);
1739 
1740 	return count;
1741 }
1742 
1743 static const struct file_operations eeh_dev_check_fops = {
1744 	.open	= simple_open,
1745 	.llseek	= no_llseek,
1746 	.write	= eeh_dev_check_write,
1747 	.read   = eeh_debugfs_dev_usage,
1748 };
1749 
eeh_debugfs_break_device(struct pci_dev * pdev)1750 static int eeh_debugfs_break_device(struct pci_dev *pdev)
1751 {
1752 	struct resource *bar = NULL;
1753 	void __iomem *mapped;
1754 	u16 old, bit;
1755 	int i, pos;
1756 
1757 	/* Do we have an MMIO BAR to disable? */
1758 	for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1759 		struct resource *r = &pdev->resource[i];
1760 
1761 		if (!r->flags || !r->start)
1762 			continue;
1763 		if (r->flags & IORESOURCE_IO)
1764 			continue;
1765 		if (r->flags & IORESOURCE_UNSET)
1766 			continue;
1767 
1768 		bar = r;
1769 		break;
1770 	}
1771 
1772 	if (!bar) {
1773 		pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1774 		return -ENXIO;
1775 	}
1776 
1777 	pci_err(pdev, "Going to break: %pR\n", bar);
1778 
1779 	if (pdev->is_virtfn) {
1780 #ifndef CONFIG_PCI_IOV
1781 		return -ENXIO;
1782 #else
1783 		/*
1784 		 * VFs don't have a per-function COMMAND register, so the best
1785 		 * we can do is clear the Memory Space Enable bit in the PF's
1786 		 * SRIOV control reg.
1787 		 *
1788 		 * Unfortunately, this requires that we have a PF (i.e doesn't
1789 		 * work for a passed-through VF) and it has the potential side
1790 		 * effect of also causing an EEH on every other VF under the
1791 		 * PF. Oh well.
1792 		 */
1793 		pdev = pdev->physfn;
1794 		if (!pdev)
1795 			return -ENXIO; /* passed through VFs have no PF */
1796 
1797 		pos  = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1798 		pos += PCI_SRIOV_CTRL;
1799 		bit  = PCI_SRIOV_CTRL_MSE;
1800 #endif /* !CONFIG_PCI_IOV */
1801 	} else {
1802 		bit = PCI_COMMAND_MEMORY;
1803 		pos = PCI_COMMAND;
1804 	}
1805 
1806 	/*
1807 	 * Process here is:
1808 	 *
1809 	 * 1. Disable Memory space.
1810 	 *
1811 	 * 2. Perform an MMIO to the device. This should result in an error
1812 	 *    (CA  / UR) being raised by the device which results in an EEH
1813 	 *    PE freeze. Using the in_8() accessor skips the eeh detection hook
1814 	 *    so the freeze hook so the EEH Detection machinery won't be
1815 	 *    triggered here. This is to match the usual behaviour of EEH
1816 	 *    where the HW will asyncronously freeze a PE and it's up to
1817 	 *    the kernel to notice and deal with it.
1818 	 *
1819 	 * 3. Turn Memory space back on. This is more important for VFs
1820 	 *    since recovery will probably fail if we don't. For normal
1821 	 *    the COMMAND register is reset as a part of re-initialising
1822 	 *    the device.
1823 	 *
1824 	 * Breaking stuff is the point so who cares if it's racy ;)
1825 	 */
1826 	pci_read_config_word(pdev, pos, &old);
1827 
1828 	mapped = ioremap(bar->start, PAGE_SIZE);
1829 	if (!mapped) {
1830 		pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1831 		return -ENXIO;
1832 	}
1833 
1834 	pci_write_config_word(pdev, pos, old & ~bit);
1835 	in_8(mapped);
1836 	pci_write_config_word(pdev, pos, old);
1837 
1838 	iounmap(mapped);
1839 
1840 	return 0;
1841 }
1842 
eeh_dev_break_write(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1843 static ssize_t eeh_dev_break_write(struct file *filp,
1844 				const char __user *user_buf,
1845 				size_t count, loff_t *ppos)
1846 {
1847 	struct pci_dev *pdev;
1848 	int ret;
1849 
1850 	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1851 	if (IS_ERR(pdev))
1852 		return PTR_ERR(pdev);
1853 
1854 	ret = eeh_debugfs_break_device(pdev);
1855 	pci_dev_put(pdev);
1856 
1857 	if (ret < 0)
1858 		return ret;
1859 
1860 	return count;
1861 }
1862 
1863 static const struct file_operations eeh_dev_break_fops = {
1864 	.open	= simple_open,
1865 	.llseek	= no_llseek,
1866 	.write	= eeh_dev_break_write,
1867 	.read   = eeh_debugfs_dev_usage,
1868 };
1869 
eeh_dev_can_recover(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1870 static ssize_t eeh_dev_can_recover(struct file *filp,
1871 				   const char __user *user_buf,
1872 				   size_t count, loff_t *ppos)
1873 {
1874 	struct pci_driver *drv;
1875 	struct pci_dev *pdev;
1876 	size_t ret;
1877 
1878 	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1879 	if (IS_ERR(pdev))
1880 		return PTR_ERR(pdev);
1881 
1882 	/*
1883 	 * In order for error recovery to work the driver needs to implement
1884 	 * .error_detected(), so it can quiesce IO to the device, and
1885 	 * .slot_reset() so it can re-initialise the device after a reset.
1886 	 *
1887 	 * Ideally they'd implement .resume() too, but some drivers which
1888 	 * we need to support (notably IPR) don't so I guess we can tolerate
1889 	 * that.
1890 	 *
1891 	 * .mmio_enabled() is mostly there as a work-around for devices which
1892 	 * take forever to re-init after a hot reset. Implementing that is
1893 	 * strictly optional.
1894 	 */
1895 	drv = pci_dev_driver(pdev);
1896 	if (drv &&
1897 	    drv->err_handler &&
1898 	    drv->err_handler->error_detected &&
1899 	    drv->err_handler->slot_reset) {
1900 		ret = count;
1901 	} else {
1902 		ret = -EOPNOTSUPP;
1903 	}
1904 
1905 	pci_dev_put(pdev);
1906 
1907 	return ret;
1908 }
1909 
1910 static const struct file_operations eeh_dev_can_recover_fops = {
1911 	.open	= simple_open,
1912 	.llseek	= no_llseek,
1913 	.write	= eeh_dev_can_recover,
1914 	.read   = eeh_debugfs_dev_usage,
1915 };
1916 
1917 #endif
1918 
eeh_init_proc(void)1919 static int __init eeh_init_proc(void)
1920 {
1921 	if (machine_is(pseries) || machine_is(powernv)) {
1922 		proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1923 #ifdef CONFIG_DEBUG_FS
1924 		debugfs_create_file_unsafe("eeh_enable", 0600,
1925 					   powerpc_debugfs_root, NULL,
1926 					   &eeh_enable_dbgfs_ops);
1927 		debugfs_create_u32("eeh_max_freezes", 0600,
1928 				powerpc_debugfs_root, &eeh_max_freezes);
1929 		debugfs_create_bool("eeh_disable_recovery", 0600,
1930 				powerpc_debugfs_root,
1931 				&eeh_debugfs_no_recover);
1932 		debugfs_create_file_unsafe("eeh_dev_check", 0600,
1933 				powerpc_debugfs_root, NULL,
1934 				&eeh_dev_check_fops);
1935 		debugfs_create_file_unsafe("eeh_dev_break", 0600,
1936 				powerpc_debugfs_root, NULL,
1937 				&eeh_dev_break_fops);
1938 		debugfs_create_file_unsafe("eeh_force_recover", 0600,
1939 				powerpc_debugfs_root, NULL,
1940 				&eeh_force_recover_fops);
1941 		debugfs_create_file_unsafe("eeh_dev_can_recover", 0600,
1942 				powerpc_debugfs_root, NULL,
1943 				&eeh_dev_can_recover_fops);
1944 		eeh_cache_debugfs_init();
1945 #endif
1946 	}
1947 
1948 	return 0;
1949 }
1950 __initcall(eeh_init_proc);
1951