1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24 
25 #include "../perf_event.h"
26 
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
33 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
34 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
35 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
36 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
37 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
38 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
39 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
40 };
41 
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50 	EVENT_CONSTRAINT_END
51 };
52 
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68 	EVENT_CONSTRAINT_END
69 };
70 
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84 	EVENT_CONSTRAINT_END
85 };
86 
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 	EVENT_EXTRA_END
93 };
94 
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 	EVENT_CONSTRAINT_END
105 };
106 
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121 
122 	/*
123 	 * When HT is off these events can only run on the bottom 4 counters
124 	 * When HT is on, they are impacted by the HT bug and require EXCL access
125 	 */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130 
131 	EVENT_CONSTRAINT_END
132 };
133 
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
141 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149 
150 	/*
151 	 * When HT is off these events can only run on the bottom 4 counters
152 	 * When HT is on, they are impacted by the HT bug and require EXCL access
153 	 */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158 
159 	EVENT_CONSTRAINT_END
160 };
161 
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 	EVENT_EXTRA_END
169 };
170 
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173 	EVENT_CONSTRAINT_END
174 };
175 
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 	EVENT_CONSTRAINT_END
182 };
183 
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189 	EVENT_CONSTRAINT_END
190 };
191 
192 static struct event_constraint intel_skl_event_constraints[] = {
193 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
194 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
195 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
196 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
197 
198 	/*
199 	 * when HT is off, these can only run on the bottom 4 counters
200 	 */
201 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
203 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
204 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
205 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
206 
207 	EVENT_CONSTRAINT_END
208 };
209 
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213 	EVENT_EXTRA_END
214 };
215 
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 	EVENT_EXTRA_END
222 };
223 
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 	EVENT_EXTRA_END
230 };
231 
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236 	/*
237 	 * Note the low 8 bits eventsel code is not a continuous field, containing
238 	 * some #GPing bits. These are masked out.
239 	 */
240 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241 	EVENT_EXTRA_END
242 };
243 
244 static struct event_constraint intel_icl_event_constraints[] = {
245 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
246 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* INST_RETIRED.PREC_DIST */
247 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
248 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
249 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
250 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
251 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
252 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
253 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
254 	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
255 	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
256 	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
257 	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
258 	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
259 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
260 	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
261 	INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
262 	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
263 	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
264 	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
265 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
266 	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
267 	EVENT_CONSTRAINT_END
268 };
269 
270 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
271 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
272 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
273 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
274 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
275 	EVENT_EXTRA_END
276 };
277 
278 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
279 	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
280 	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
281 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
282 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
283 	EVENT_EXTRA_END
284 };
285 
286 static struct event_constraint intel_spr_event_constraints[] = {
287 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
288 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* INST_RETIRED.PREC_DIST */
289 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
290 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
291 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
292 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
293 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
294 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
295 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
296 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
297 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
298 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
299 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
300 
301 	INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
302 	INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
303 	/*
304 	 * Generally event codes < 0x90 are restricted to counters 0-3.
305 	 * The 0x2E and 0x3C are exception, which has no restriction.
306 	 */
307 	INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
308 
309 	INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
310 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
311 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
312 	INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
313 	INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
314 	INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
315 	INTEL_EVENT_CONSTRAINT(0xce, 0x1),
316 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
317 	/*
318 	 * Generally event codes >= 0x90 are likely to have no restrictions.
319 	 * The exception are defined as above.
320 	 */
321 	INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
322 
323 	EVENT_CONSTRAINT_END
324 };
325 
326 
327 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
328 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
329 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
330 
331 static struct attribute *nhm_mem_events_attrs[] = {
332 	EVENT_PTR(mem_ld_nhm),
333 	NULL,
334 };
335 
336 /*
337  * topdown events for Intel Core CPUs.
338  *
339  * The events are all in slots, which is a free slot in a 4 wide
340  * pipeline. Some events are already reported in slots, for cycle
341  * events we multiply by the pipeline width (4).
342  *
343  * With Hyper Threading on, topdown metrics are either summed or averaged
344  * between the threads of a core: (count_t0 + count_t1).
345  *
346  * For the average case the metric is always scaled to pipeline width,
347  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
348  */
349 
350 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
351 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
352 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
353 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
354 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
355 	"event=0xe,umask=0x1");			/* uops_issued.any */
356 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
357 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
358 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
359 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
360 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
361 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
362 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
363 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
364 	"4", "2");
365 
366 EVENT_ATTR_STR(slots,			slots,			"event=0x00,umask=0x4");
367 EVENT_ATTR_STR(topdown-retiring,	td_retiring,		"event=0x00,umask=0x80");
368 EVENT_ATTR_STR(topdown-bad-spec,	td_bad_spec,		"event=0x00,umask=0x81");
369 EVENT_ATTR_STR(topdown-fe-bound,	td_fe_bound,		"event=0x00,umask=0x82");
370 EVENT_ATTR_STR(topdown-be-bound,	td_be_bound,		"event=0x00,umask=0x83");
371 EVENT_ATTR_STR(topdown-heavy-ops,	td_heavy_ops,		"event=0x00,umask=0x84");
372 EVENT_ATTR_STR(topdown-br-mispredict,	td_br_mispredict,	"event=0x00,umask=0x85");
373 EVENT_ATTR_STR(topdown-fetch-lat,	td_fetch_lat,		"event=0x00,umask=0x86");
374 EVENT_ATTR_STR(topdown-mem-bound,	td_mem_bound,		"event=0x00,umask=0x87");
375 
376 static struct attribute *snb_events_attrs[] = {
377 	EVENT_PTR(td_slots_issued),
378 	EVENT_PTR(td_slots_retired),
379 	EVENT_PTR(td_fetch_bubbles),
380 	EVENT_PTR(td_total_slots),
381 	EVENT_PTR(td_total_slots_scale),
382 	EVENT_PTR(td_recovery_bubbles),
383 	EVENT_PTR(td_recovery_bubbles_scale),
384 	NULL,
385 };
386 
387 static struct attribute *snb_mem_events_attrs[] = {
388 	EVENT_PTR(mem_ld_snb),
389 	EVENT_PTR(mem_st_snb),
390 	NULL,
391 };
392 
393 static struct event_constraint intel_hsw_event_constraints[] = {
394 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
395 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
396 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
397 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
398 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
399 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
400 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
401 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
402 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
403 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
404 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
405 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
406 
407 	/*
408 	 * When HT is off these events can only run on the bottom 4 counters
409 	 * When HT is on, they are impacted by the HT bug and require EXCL access
410 	 */
411 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
412 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
413 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
414 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
415 
416 	EVENT_CONSTRAINT_END
417 };
418 
419 static struct event_constraint intel_bdw_event_constraints[] = {
420 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
421 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
422 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
423 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
424 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
425 	/*
426 	 * when HT is off, these can only run on the bottom 4 counters
427 	 */
428 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
429 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
430 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
431 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
432 	EVENT_CONSTRAINT_END
433 };
434 
intel_pmu_event_map(int hw_event)435 static u64 intel_pmu_event_map(int hw_event)
436 {
437 	return intel_perfmon_event_map[hw_event];
438 }
439 
440 static __initconst const u64 spr_hw_cache_event_ids
441 				[PERF_COUNT_HW_CACHE_MAX]
442 				[PERF_COUNT_HW_CACHE_OP_MAX]
443 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
444 {
445  [ C(L1D ) ] = {
446 	[ C(OP_READ) ] = {
447 		[ C(RESULT_ACCESS) ] = 0x81d0,
448 		[ C(RESULT_MISS)   ] = 0xe124,
449 	},
450 	[ C(OP_WRITE) ] = {
451 		[ C(RESULT_ACCESS) ] = 0x82d0,
452 	},
453  },
454  [ C(L1I ) ] = {
455 	[ C(OP_READ) ] = {
456 		[ C(RESULT_MISS)   ] = 0xe424,
457 	},
458 	[ C(OP_WRITE) ] = {
459 		[ C(RESULT_ACCESS) ] = -1,
460 		[ C(RESULT_MISS)   ] = -1,
461 	},
462  },
463  [ C(LL  ) ] = {
464 	[ C(OP_READ) ] = {
465 		[ C(RESULT_ACCESS) ] = 0x12a,
466 		[ C(RESULT_MISS)   ] = 0x12a,
467 	},
468 	[ C(OP_WRITE) ] = {
469 		[ C(RESULT_ACCESS) ] = 0x12a,
470 		[ C(RESULT_MISS)   ] = 0x12a,
471 	},
472  },
473  [ C(DTLB) ] = {
474 	[ C(OP_READ) ] = {
475 		[ C(RESULT_ACCESS) ] = 0x81d0,
476 		[ C(RESULT_MISS)   ] = 0xe12,
477 	},
478 	[ C(OP_WRITE) ] = {
479 		[ C(RESULT_ACCESS) ] = 0x82d0,
480 		[ C(RESULT_MISS)   ] = 0xe13,
481 	},
482  },
483  [ C(ITLB) ] = {
484 	[ C(OP_READ) ] = {
485 		[ C(RESULT_ACCESS) ] = -1,
486 		[ C(RESULT_MISS)   ] = 0xe11,
487 	},
488 	[ C(OP_WRITE) ] = {
489 		[ C(RESULT_ACCESS) ] = -1,
490 		[ C(RESULT_MISS)   ] = -1,
491 	},
492 	[ C(OP_PREFETCH) ] = {
493 		[ C(RESULT_ACCESS) ] = -1,
494 		[ C(RESULT_MISS)   ] = -1,
495 	},
496  },
497  [ C(BPU ) ] = {
498 	[ C(OP_READ) ] = {
499 		[ C(RESULT_ACCESS) ] = 0x4c4,
500 		[ C(RESULT_MISS)   ] = 0x4c5,
501 	},
502 	[ C(OP_WRITE) ] = {
503 		[ C(RESULT_ACCESS) ] = -1,
504 		[ C(RESULT_MISS)   ] = -1,
505 	},
506 	[ C(OP_PREFETCH) ] = {
507 		[ C(RESULT_ACCESS) ] = -1,
508 		[ C(RESULT_MISS)   ] = -1,
509 	},
510  },
511  [ C(NODE) ] = {
512 	[ C(OP_READ) ] = {
513 		[ C(RESULT_ACCESS) ] = 0x12a,
514 		[ C(RESULT_MISS)   ] = 0x12a,
515 	},
516  },
517 };
518 
519 static __initconst const u64 spr_hw_cache_extra_regs
520 				[PERF_COUNT_HW_CACHE_MAX]
521 				[PERF_COUNT_HW_CACHE_OP_MAX]
522 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
523 {
524  [ C(LL  ) ] = {
525 	[ C(OP_READ) ] = {
526 		[ C(RESULT_ACCESS) ] = 0x10001,
527 		[ C(RESULT_MISS)   ] = 0x3fbfc00001,
528 	},
529 	[ C(OP_WRITE) ] = {
530 		[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
531 		[ C(RESULT_MISS)   ] = 0x3f3fc00002,
532 	},
533  },
534  [ C(NODE) ] = {
535 	[ C(OP_READ) ] = {
536 		[ C(RESULT_ACCESS) ] = 0x10c000001,
537 		[ C(RESULT_MISS)   ] = 0x3fb3000001,
538 	},
539  },
540 };
541 
542 /*
543  * Notes on the events:
544  * - data reads do not include code reads (comparable to earlier tables)
545  * - data counts include speculative execution (except L1 write, dtlb, bpu)
546  * - remote node access includes remote memory, remote cache, remote mmio.
547  * - prefetches are not included in the counts.
548  * - icache miss does not include decoded icache
549  */
550 
551 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
552 #define SKL_DEMAND_RFO			BIT_ULL(1)
553 #define SKL_ANY_RESPONSE		BIT_ULL(16)
554 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
555 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
556 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
557 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
558 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
559 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
560 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
561 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
562 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
563 #define SKL_SPL_HIT			BIT_ULL(30)
564 #define SKL_SNOOP_NONE			BIT_ULL(31)
565 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
566 #define SKL_SNOOP_MISS			BIT_ULL(33)
567 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
568 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
569 #define SKL_SNOOP_HITM			BIT_ULL(36)
570 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
571 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
572 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
573 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
574 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
575 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
576 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
577 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
578 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
579 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
580 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
581 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
582 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
583 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
584 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
585 
586 static __initconst const u64 skl_hw_cache_event_ids
587 				[PERF_COUNT_HW_CACHE_MAX]
588 				[PERF_COUNT_HW_CACHE_OP_MAX]
589 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
590 {
591  [ C(L1D ) ] = {
592 	[ C(OP_READ) ] = {
593 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
594 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
595 	},
596 	[ C(OP_WRITE) ] = {
597 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
598 		[ C(RESULT_MISS)   ] = 0x0,
599 	},
600 	[ C(OP_PREFETCH) ] = {
601 		[ C(RESULT_ACCESS) ] = 0x0,
602 		[ C(RESULT_MISS)   ] = 0x0,
603 	},
604  },
605  [ C(L1I ) ] = {
606 	[ C(OP_READ) ] = {
607 		[ C(RESULT_ACCESS) ] = 0x0,
608 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
609 	},
610 	[ C(OP_WRITE) ] = {
611 		[ C(RESULT_ACCESS) ] = -1,
612 		[ C(RESULT_MISS)   ] = -1,
613 	},
614 	[ C(OP_PREFETCH) ] = {
615 		[ C(RESULT_ACCESS) ] = 0x0,
616 		[ C(RESULT_MISS)   ] = 0x0,
617 	},
618  },
619  [ C(LL  ) ] = {
620 	[ C(OP_READ) ] = {
621 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
622 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
623 	},
624 	[ C(OP_WRITE) ] = {
625 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
626 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
627 	},
628 	[ C(OP_PREFETCH) ] = {
629 		[ C(RESULT_ACCESS) ] = 0x0,
630 		[ C(RESULT_MISS)   ] = 0x0,
631 	},
632  },
633  [ C(DTLB) ] = {
634 	[ C(OP_READ) ] = {
635 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
636 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
637 	},
638 	[ C(OP_WRITE) ] = {
639 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
640 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
641 	},
642 	[ C(OP_PREFETCH) ] = {
643 		[ C(RESULT_ACCESS) ] = 0x0,
644 		[ C(RESULT_MISS)   ] = 0x0,
645 	},
646  },
647  [ C(ITLB) ] = {
648 	[ C(OP_READ) ] = {
649 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
650 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
651 	},
652 	[ C(OP_WRITE) ] = {
653 		[ C(RESULT_ACCESS) ] = -1,
654 		[ C(RESULT_MISS)   ] = -1,
655 	},
656 	[ C(OP_PREFETCH) ] = {
657 		[ C(RESULT_ACCESS) ] = -1,
658 		[ C(RESULT_MISS)   ] = -1,
659 	},
660  },
661  [ C(BPU ) ] = {
662 	[ C(OP_READ) ] = {
663 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
664 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
665 	},
666 	[ C(OP_WRITE) ] = {
667 		[ C(RESULT_ACCESS) ] = -1,
668 		[ C(RESULT_MISS)   ] = -1,
669 	},
670 	[ C(OP_PREFETCH) ] = {
671 		[ C(RESULT_ACCESS) ] = -1,
672 		[ C(RESULT_MISS)   ] = -1,
673 	},
674  },
675  [ C(NODE) ] = {
676 	[ C(OP_READ) ] = {
677 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
678 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
679 	},
680 	[ C(OP_WRITE) ] = {
681 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
682 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
683 	},
684 	[ C(OP_PREFETCH) ] = {
685 		[ C(RESULT_ACCESS) ] = 0x0,
686 		[ C(RESULT_MISS)   ] = 0x0,
687 	},
688  },
689 };
690 
691 static __initconst const u64 skl_hw_cache_extra_regs
692 				[PERF_COUNT_HW_CACHE_MAX]
693 				[PERF_COUNT_HW_CACHE_OP_MAX]
694 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
695 {
696  [ C(LL  ) ] = {
697 	[ C(OP_READ) ] = {
698 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
699 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
700 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
701 				       SKL_L3_MISS|SKL_ANY_SNOOP|
702 				       SKL_SUPPLIER_NONE,
703 	},
704 	[ C(OP_WRITE) ] = {
705 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
706 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
707 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
708 				       SKL_L3_MISS|SKL_ANY_SNOOP|
709 				       SKL_SUPPLIER_NONE,
710 	},
711 	[ C(OP_PREFETCH) ] = {
712 		[ C(RESULT_ACCESS) ] = 0x0,
713 		[ C(RESULT_MISS)   ] = 0x0,
714 	},
715  },
716  [ C(NODE) ] = {
717 	[ C(OP_READ) ] = {
718 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
719 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
720 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
721 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
722 	},
723 	[ C(OP_WRITE) ] = {
724 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
725 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
726 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
727 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
728 	},
729 	[ C(OP_PREFETCH) ] = {
730 		[ C(RESULT_ACCESS) ] = 0x0,
731 		[ C(RESULT_MISS)   ] = 0x0,
732 	},
733  },
734 };
735 
736 #define SNB_DMND_DATA_RD	(1ULL << 0)
737 #define SNB_DMND_RFO		(1ULL << 1)
738 #define SNB_DMND_IFETCH		(1ULL << 2)
739 #define SNB_DMND_WB		(1ULL << 3)
740 #define SNB_PF_DATA_RD		(1ULL << 4)
741 #define SNB_PF_RFO		(1ULL << 5)
742 #define SNB_PF_IFETCH		(1ULL << 6)
743 #define SNB_LLC_DATA_RD		(1ULL << 7)
744 #define SNB_LLC_RFO		(1ULL << 8)
745 #define SNB_LLC_IFETCH		(1ULL << 9)
746 #define SNB_BUS_LOCKS		(1ULL << 10)
747 #define SNB_STRM_ST		(1ULL << 11)
748 #define SNB_OTHER		(1ULL << 15)
749 #define SNB_RESP_ANY		(1ULL << 16)
750 #define SNB_NO_SUPP		(1ULL << 17)
751 #define SNB_LLC_HITM		(1ULL << 18)
752 #define SNB_LLC_HITE		(1ULL << 19)
753 #define SNB_LLC_HITS		(1ULL << 20)
754 #define SNB_LLC_HITF		(1ULL << 21)
755 #define SNB_LOCAL		(1ULL << 22)
756 #define SNB_REMOTE		(0xffULL << 23)
757 #define SNB_SNP_NONE		(1ULL << 31)
758 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
759 #define SNB_SNP_MISS		(1ULL << 33)
760 #define SNB_NO_FWD		(1ULL << 34)
761 #define SNB_SNP_FWD		(1ULL << 35)
762 #define SNB_HITM		(1ULL << 36)
763 #define SNB_NON_DRAM		(1ULL << 37)
764 
765 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
766 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
767 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
768 
769 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
770 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
771 				 SNB_HITM)
772 
773 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
774 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
775 
776 #define SNB_L3_ACCESS		SNB_RESP_ANY
777 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
778 
779 static __initconst const u64 snb_hw_cache_extra_regs
780 				[PERF_COUNT_HW_CACHE_MAX]
781 				[PERF_COUNT_HW_CACHE_OP_MAX]
782 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
783 {
784  [ C(LL  ) ] = {
785 	[ C(OP_READ) ] = {
786 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
787 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
788 	},
789 	[ C(OP_WRITE) ] = {
790 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
791 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
792 	},
793 	[ C(OP_PREFETCH) ] = {
794 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
795 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
796 	},
797  },
798  [ C(NODE) ] = {
799 	[ C(OP_READ) ] = {
800 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
801 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
802 	},
803 	[ C(OP_WRITE) ] = {
804 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
805 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
806 	},
807 	[ C(OP_PREFETCH) ] = {
808 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
809 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
810 	},
811  },
812 };
813 
814 static __initconst const u64 snb_hw_cache_event_ids
815 				[PERF_COUNT_HW_CACHE_MAX]
816 				[PERF_COUNT_HW_CACHE_OP_MAX]
817 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
818 {
819  [ C(L1D) ] = {
820 	[ C(OP_READ) ] = {
821 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
822 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
823 	},
824 	[ C(OP_WRITE) ] = {
825 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
826 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
827 	},
828 	[ C(OP_PREFETCH) ] = {
829 		[ C(RESULT_ACCESS) ] = 0x0,
830 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
831 	},
832  },
833  [ C(L1I ) ] = {
834 	[ C(OP_READ) ] = {
835 		[ C(RESULT_ACCESS) ] = 0x0,
836 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
837 	},
838 	[ C(OP_WRITE) ] = {
839 		[ C(RESULT_ACCESS) ] = -1,
840 		[ C(RESULT_MISS)   ] = -1,
841 	},
842 	[ C(OP_PREFETCH) ] = {
843 		[ C(RESULT_ACCESS) ] = 0x0,
844 		[ C(RESULT_MISS)   ] = 0x0,
845 	},
846  },
847  [ C(LL  ) ] = {
848 	[ C(OP_READ) ] = {
849 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
850 		[ C(RESULT_ACCESS) ] = 0x01b7,
851 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
852 		[ C(RESULT_MISS)   ] = 0x01b7,
853 	},
854 	[ C(OP_WRITE) ] = {
855 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
856 		[ C(RESULT_ACCESS) ] = 0x01b7,
857 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
858 		[ C(RESULT_MISS)   ] = 0x01b7,
859 	},
860 	[ C(OP_PREFETCH) ] = {
861 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
862 		[ C(RESULT_ACCESS) ] = 0x01b7,
863 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
864 		[ C(RESULT_MISS)   ] = 0x01b7,
865 	},
866  },
867  [ C(DTLB) ] = {
868 	[ C(OP_READ) ] = {
869 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
870 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
871 	},
872 	[ C(OP_WRITE) ] = {
873 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
874 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
875 	},
876 	[ C(OP_PREFETCH) ] = {
877 		[ C(RESULT_ACCESS) ] = 0x0,
878 		[ C(RESULT_MISS)   ] = 0x0,
879 	},
880  },
881  [ C(ITLB) ] = {
882 	[ C(OP_READ) ] = {
883 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
884 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
885 	},
886 	[ C(OP_WRITE) ] = {
887 		[ C(RESULT_ACCESS) ] = -1,
888 		[ C(RESULT_MISS)   ] = -1,
889 	},
890 	[ C(OP_PREFETCH) ] = {
891 		[ C(RESULT_ACCESS) ] = -1,
892 		[ C(RESULT_MISS)   ] = -1,
893 	},
894  },
895  [ C(BPU ) ] = {
896 	[ C(OP_READ) ] = {
897 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
898 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
899 	},
900 	[ C(OP_WRITE) ] = {
901 		[ C(RESULT_ACCESS) ] = -1,
902 		[ C(RESULT_MISS)   ] = -1,
903 	},
904 	[ C(OP_PREFETCH) ] = {
905 		[ C(RESULT_ACCESS) ] = -1,
906 		[ C(RESULT_MISS)   ] = -1,
907 	},
908  },
909  [ C(NODE) ] = {
910 	[ C(OP_READ) ] = {
911 		[ C(RESULT_ACCESS) ] = 0x01b7,
912 		[ C(RESULT_MISS)   ] = 0x01b7,
913 	},
914 	[ C(OP_WRITE) ] = {
915 		[ C(RESULT_ACCESS) ] = 0x01b7,
916 		[ C(RESULT_MISS)   ] = 0x01b7,
917 	},
918 	[ C(OP_PREFETCH) ] = {
919 		[ C(RESULT_ACCESS) ] = 0x01b7,
920 		[ C(RESULT_MISS)   ] = 0x01b7,
921 	},
922  },
923 
924 };
925 
926 /*
927  * Notes on the events:
928  * - data reads do not include code reads (comparable to earlier tables)
929  * - data counts include speculative execution (except L1 write, dtlb, bpu)
930  * - remote node access includes remote memory, remote cache, remote mmio.
931  * - prefetches are not included in the counts because they are not
932  *   reliably counted.
933  */
934 
935 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
936 #define HSW_DEMAND_RFO			BIT_ULL(1)
937 #define HSW_ANY_RESPONSE		BIT_ULL(16)
938 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
939 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
940 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
941 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
942 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
943 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
944 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
945 					 HSW_L3_MISS_REMOTE_HOP2P)
946 #define HSW_SNOOP_NONE			BIT_ULL(31)
947 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
948 #define HSW_SNOOP_MISS			BIT_ULL(33)
949 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
950 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
951 #define HSW_SNOOP_HITM			BIT_ULL(36)
952 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
953 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
954 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
955 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
956 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
957 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
958 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
959 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
960 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
961 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
962 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
963 
964 #define BDW_L3_MISS_LOCAL		BIT(26)
965 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
966 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
967 					 HSW_L3_MISS_REMOTE_HOP2P)
968 
969 
970 static __initconst const u64 hsw_hw_cache_event_ids
971 				[PERF_COUNT_HW_CACHE_MAX]
972 				[PERF_COUNT_HW_CACHE_OP_MAX]
973 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
974 {
975  [ C(L1D ) ] = {
976 	[ C(OP_READ) ] = {
977 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
978 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
979 	},
980 	[ C(OP_WRITE) ] = {
981 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
982 		[ C(RESULT_MISS)   ] = 0x0,
983 	},
984 	[ C(OP_PREFETCH) ] = {
985 		[ C(RESULT_ACCESS) ] = 0x0,
986 		[ C(RESULT_MISS)   ] = 0x0,
987 	},
988  },
989  [ C(L1I ) ] = {
990 	[ C(OP_READ) ] = {
991 		[ C(RESULT_ACCESS) ] = 0x0,
992 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
993 	},
994 	[ C(OP_WRITE) ] = {
995 		[ C(RESULT_ACCESS) ] = -1,
996 		[ C(RESULT_MISS)   ] = -1,
997 	},
998 	[ C(OP_PREFETCH) ] = {
999 		[ C(RESULT_ACCESS) ] = 0x0,
1000 		[ C(RESULT_MISS)   ] = 0x0,
1001 	},
1002  },
1003  [ C(LL  ) ] = {
1004 	[ C(OP_READ) ] = {
1005 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1006 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1007 	},
1008 	[ C(OP_WRITE) ] = {
1009 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1010 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1011 	},
1012 	[ C(OP_PREFETCH) ] = {
1013 		[ C(RESULT_ACCESS) ] = 0x0,
1014 		[ C(RESULT_MISS)   ] = 0x0,
1015 	},
1016  },
1017  [ C(DTLB) ] = {
1018 	[ C(OP_READ) ] = {
1019 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1020 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1021 	},
1022 	[ C(OP_WRITE) ] = {
1023 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1024 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1025 	},
1026 	[ C(OP_PREFETCH) ] = {
1027 		[ C(RESULT_ACCESS) ] = 0x0,
1028 		[ C(RESULT_MISS)   ] = 0x0,
1029 	},
1030  },
1031  [ C(ITLB) ] = {
1032 	[ C(OP_READ) ] = {
1033 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
1034 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
1035 	},
1036 	[ C(OP_WRITE) ] = {
1037 		[ C(RESULT_ACCESS) ] = -1,
1038 		[ C(RESULT_MISS)   ] = -1,
1039 	},
1040 	[ C(OP_PREFETCH) ] = {
1041 		[ C(RESULT_ACCESS) ] = -1,
1042 		[ C(RESULT_MISS)   ] = -1,
1043 	},
1044  },
1045  [ C(BPU ) ] = {
1046 	[ C(OP_READ) ] = {
1047 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1048 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1049 	},
1050 	[ C(OP_WRITE) ] = {
1051 		[ C(RESULT_ACCESS) ] = -1,
1052 		[ C(RESULT_MISS)   ] = -1,
1053 	},
1054 	[ C(OP_PREFETCH) ] = {
1055 		[ C(RESULT_ACCESS) ] = -1,
1056 		[ C(RESULT_MISS)   ] = -1,
1057 	},
1058  },
1059  [ C(NODE) ] = {
1060 	[ C(OP_READ) ] = {
1061 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1062 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1063 	},
1064 	[ C(OP_WRITE) ] = {
1065 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1066 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1067 	},
1068 	[ C(OP_PREFETCH) ] = {
1069 		[ C(RESULT_ACCESS) ] = 0x0,
1070 		[ C(RESULT_MISS)   ] = 0x0,
1071 	},
1072  },
1073 };
1074 
1075 static __initconst const u64 hsw_hw_cache_extra_regs
1076 				[PERF_COUNT_HW_CACHE_MAX]
1077 				[PERF_COUNT_HW_CACHE_OP_MAX]
1078 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1079 {
1080  [ C(LL  ) ] = {
1081 	[ C(OP_READ) ] = {
1082 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1083 				       HSW_LLC_ACCESS,
1084 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1085 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1086 	},
1087 	[ C(OP_WRITE) ] = {
1088 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1089 				       HSW_LLC_ACCESS,
1090 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1091 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1092 	},
1093 	[ C(OP_PREFETCH) ] = {
1094 		[ C(RESULT_ACCESS) ] = 0x0,
1095 		[ C(RESULT_MISS)   ] = 0x0,
1096 	},
1097  },
1098  [ C(NODE) ] = {
1099 	[ C(OP_READ) ] = {
1100 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1101 				       HSW_L3_MISS_LOCAL_DRAM|
1102 				       HSW_SNOOP_DRAM,
1103 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1104 				       HSW_L3_MISS_REMOTE|
1105 				       HSW_SNOOP_DRAM,
1106 	},
1107 	[ C(OP_WRITE) ] = {
1108 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1109 				       HSW_L3_MISS_LOCAL_DRAM|
1110 				       HSW_SNOOP_DRAM,
1111 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1112 				       HSW_L3_MISS_REMOTE|
1113 				       HSW_SNOOP_DRAM,
1114 	},
1115 	[ C(OP_PREFETCH) ] = {
1116 		[ C(RESULT_ACCESS) ] = 0x0,
1117 		[ C(RESULT_MISS)   ] = 0x0,
1118 	},
1119  },
1120 };
1121 
1122 static __initconst const u64 westmere_hw_cache_event_ids
1123 				[PERF_COUNT_HW_CACHE_MAX]
1124 				[PERF_COUNT_HW_CACHE_OP_MAX]
1125 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1126 {
1127  [ C(L1D) ] = {
1128 	[ C(OP_READ) ] = {
1129 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1130 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1131 	},
1132 	[ C(OP_WRITE) ] = {
1133 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1134 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1135 	},
1136 	[ C(OP_PREFETCH) ] = {
1137 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1138 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1139 	},
1140  },
1141  [ C(L1I ) ] = {
1142 	[ C(OP_READ) ] = {
1143 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1144 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1145 	},
1146 	[ C(OP_WRITE) ] = {
1147 		[ C(RESULT_ACCESS) ] = -1,
1148 		[ C(RESULT_MISS)   ] = -1,
1149 	},
1150 	[ C(OP_PREFETCH) ] = {
1151 		[ C(RESULT_ACCESS) ] = 0x0,
1152 		[ C(RESULT_MISS)   ] = 0x0,
1153 	},
1154  },
1155  [ C(LL  ) ] = {
1156 	[ C(OP_READ) ] = {
1157 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1158 		[ C(RESULT_ACCESS) ] = 0x01b7,
1159 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1160 		[ C(RESULT_MISS)   ] = 0x01b7,
1161 	},
1162 	/*
1163 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1164 	 * on RFO.
1165 	 */
1166 	[ C(OP_WRITE) ] = {
1167 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1168 		[ C(RESULT_ACCESS) ] = 0x01b7,
1169 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1170 		[ C(RESULT_MISS)   ] = 0x01b7,
1171 	},
1172 	[ C(OP_PREFETCH) ] = {
1173 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1174 		[ C(RESULT_ACCESS) ] = 0x01b7,
1175 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1176 		[ C(RESULT_MISS)   ] = 0x01b7,
1177 	},
1178  },
1179  [ C(DTLB) ] = {
1180 	[ C(OP_READ) ] = {
1181 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1182 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1183 	},
1184 	[ C(OP_WRITE) ] = {
1185 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1186 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1187 	},
1188 	[ C(OP_PREFETCH) ] = {
1189 		[ C(RESULT_ACCESS) ] = 0x0,
1190 		[ C(RESULT_MISS)   ] = 0x0,
1191 	},
1192  },
1193  [ C(ITLB) ] = {
1194 	[ C(OP_READ) ] = {
1195 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1196 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1197 	},
1198 	[ C(OP_WRITE) ] = {
1199 		[ C(RESULT_ACCESS) ] = -1,
1200 		[ C(RESULT_MISS)   ] = -1,
1201 	},
1202 	[ C(OP_PREFETCH) ] = {
1203 		[ C(RESULT_ACCESS) ] = -1,
1204 		[ C(RESULT_MISS)   ] = -1,
1205 	},
1206  },
1207  [ C(BPU ) ] = {
1208 	[ C(OP_READ) ] = {
1209 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1210 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1211 	},
1212 	[ C(OP_WRITE) ] = {
1213 		[ C(RESULT_ACCESS) ] = -1,
1214 		[ C(RESULT_MISS)   ] = -1,
1215 	},
1216 	[ C(OP_PREFETCH) ] = {
1217 		[ C(RESULT_ACCESS) ] = -1,
1218 		[ C(RESULT_MISS)   ] = -1,
1219 	},
1220  },
1221  [ C(NODE) ] = {
1222 	[ C(OP_READ) ] = {
1223 		[ C(RESULT_ACCESS) ] = 0x01b7,
1224 		[ C(RESULT_MISS)   ] = 0x01b7,
1225 	},
1226 	[ C(OP_WRITE) ] = {
1227 		[ C(RESULT_ACCESS) ] = 0x01b7,
1228 		[ C(RESULT_MISS)   ] = 0x01b7,
1229 	},
1230 	[ C(OP_PREFETCH) ] = {
1231 		[ C(RESULT_ACCESS) ] = 0x01b7,
1232 		[ C(RESULT_MISS)   ] = 0x01b7,
1233 	},
1234  },
1235 };
1236 
1237 /*
1238  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1239  * See IA32 SDM Vol 3B 30.6.1.3
1240  */
1241 
1242 #define NHM_DMND_DATA_RD	(1 << 0)
1243 #define NHM_DMND_RFO		(1 << 1)
1244 #define NHM_DMND_IFETCH		(1 << 2)
1245 #define NHM_DMND_WB		(1 << 3)
1246 #define NHM_PF_DATA_RD		(1 << 4)
1247 #define NHM_PF_DATA_RFO		(1 << 5)
1248 #define NHM_PF_IFETCH		(1 << 6)
1249 #define NHM_OFFCORE_OTHER	(1 << 7)
1250 #define NHM_UNCORE_HIT		(1 << 8)
1251 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1252 #define NHM_OTHER_CORE_HITM	(1 << 10)
1253         			/* reserved */
1254 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1255 #define NHM_REMOTE_DRAM		(1 << 13)
1256 #define NHM_LOCAL_DRAM		(1 << 14)
1257 #define NHM_NON_DRAM		(1 << 15)
1258 
1259 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1260 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1261 
1262 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1263 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1264 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1265 
1266 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1267 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1268 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1269 
1270 static __initconst const u64 nehalem_hw_cache_extra_regs
1271 				[PERF_COUNT_HW_CACHE_MAX]
1272 				[PERF_COUNT_HW_CACHE_OP_MAX]
1273 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1274 {
1275  [ C(LL  ) ] = {
1276 	[ C(OP_READ) ] = {
1277 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1278 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1279 	},
1280 	[ C(OP_WRITE) ] = {
1281 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1282 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1283 	},
1284 	[ C(OP_PREFETCH) ] = {
1285 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1286 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1287 	},
1288  },
1289  [ C(NODE) ] = {
1290 	[ C(OP_READ) ] = {
1291 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1292 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1293 	},
1294 	[ C(OP_WRITE) ] = {
1295 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1296 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1297 	},
1298 	[ C(OP_PREFETCH) ] = {
1299 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1300 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1301 	},
1302  },
1303 };
1304 
1305 static __initconst const u64 nehalem_hw_cache_event_ids
1306 				[PERF_COUNT_HW_CACHE_MAX]
1307 				[PERF_COUNT_HW_CACHE_OP_MAX]
1308 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1309 {
1310  [ C(L1D) ] = {
1311 	[ C(OP_READ) ] = {
1312 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1313 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1314 	},
1315 	[ C(OP_WRITE) ] = {
1316 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1317 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1318 	},
1319 	[ C(OP_PREFETCH) ] = {
1320 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1321 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1322 	},
1323  },
1324  [ C(L1I ) ] = {
1325 	[ C(OP_READ) ] = {
1326 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1327 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1328 	},
1329 	[ C(OP_WRITE) ] = {
1330 		[ C(RESULT_ACCESS) ] = -1,
1331 		[ C(RESULT_MISS)   ] = -1,
1332 	},
1333 	[ C(OP_PREFETCH) ] = {
1334 		[ C(RESULT_ACCESS) ] = 0x0,
1335 		[ C(RESULT_MISS)   ] = 0x0,
1336 	},
1337  },
1338  [ C(LL  ) ] = {
1339 	[ C(OP_READ) ] = {
1340 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1341 		[ C(RESULT_ACCESS) ] = 0x01b7,
1342 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1343 		[ C(RESULT_MISS)   ] = 0x01b7,
1344 	},
1345 	/*
1346 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1347 	 * on RFO.
1348 	 */
1349 	[ C(OP_WRITE) ] = {
1350 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1351 		[ C(RESULT_ACCESS) ] = 0x01b7,
1352 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1353 		[ C(RESULT_MISS)   ] = 0x01b7,
1354 	},
1355 	[ C(OP_PREFETCH) ] = {
1356 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1357 		[ C(RESULT_ACCESS) ] = 0x01b7,
1358 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1359 		[ C(RESULT_MISS)   ] = 0x01b7,
1360 	},
1361  },
1362  [ C(DTLB) ] = {
1363 	[ C(OP_READ) ] = {
1364 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1365 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1366 	},
1367 	[ C(OP_WRITE) ] = {
1368 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1369 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1370 	},
1371 	[ C(OP_PREFETCH) ] = {
1372 		[ C(RESULT_ACCESS) ] = 0x0,
1373 		[ C(RESULT_MISS)   ] = 0x0,
1374 	},
1375  },
1376  [ C(ITLB) ] = {
1377 	[ C(OP_READ) ] = {
1378 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1379 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1380 	},
1381 	[ C(OP_WRITE) ] = {
1382 		[ C(RESULT_ACCESS) ] = -1,
1383 		[ C(RESULT_MISS)   ] = -1,
1384 	},
1385 	[ C(OP_PREFETCH) ] = {
1386 		[ C(RESULT_ACCESS) ] = -1,
1387 		[ C(RESULT_MISS)   ] = -1,
1388 	},
1389  },
1390  [ C(BPU ) ] = {
1391 	[ C(OP_READ) ] = {
1392 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1393 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1394 	},
1395 	[ C(OP_WRITE) ] = {
1396 		[ C(RESULT_ACCESS) ] = -1,
1397 		[ C(RESULT_MISS)   ] = -1,
1398 	},
1399 	[ C(OP_PREFETCH) ] = {
1400 		[ C(RESULT_ACCESS) ] = -1,
1401 		[ C(RESULT_MISS)   ] = -1,
1402 	},
1403  },
1404  [ C(NODE) ] = {
1405 	[ C(OP_READ) ] = {
1406 		[ C(RESULT_ACCESS) ] = 0x01b7,
1407 		[ C(RESULT_MISS)   ] = 0x01b7,
1408 	},
1409 	[ C(OP_WRITE) ] = {
1410 		[ C(RESULT_ACCESS) ] = 0x01b7,
1411 		[ C(RESULT_MISS)   ] = 0x01b7,
1412 	},
1413 	[ C(OP_PREFETCH) ] = {
1414 		[ C(RESULT_ACCESS) ] = 0x01b7,
1415 		[ C(RESULT_MISS)   ] = 0x01b7,
1416 	},
1417  },
1418 };
1419 
1420 static __initconst const u64 core2_hw_cache_event_ids
1421 				[PERF_COUNT_HW_CACHE_MAX]
1422 				[PERF_COUNT_HW_CACHE_OP_MAX]
1423 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1424 {
1425  [ C(L1D) ] = {
1426 	[ C(OP_READ) ] = {
1427 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1428 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1429 	},
1430 	[ C(OP_WRITE) ] = {
1431 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1432 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1433 	},
1434 	[ C(OP_PREFETCH) ] = {
1435 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1436 		[ C(RESULT_MISS)   ] = 0,
1437 	},
1438  },
1439  [ C(L1I ) ] = {
1440 	[ C(OP_READ) ] = {
1441 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1442 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1443 	},
1444 	[ C(OP_WRITE) ] = {
1445 		[ C(RESULT_ACCESS) ] = -1,
1446 		[ C(RESULT_MISS)   ] = -1,
1447 	},
1448 	[ C(OP_PREFETCH) ] = {
1449 		[ C(RESULT_ACCESS) ] = 0,
1450 		[ C(RESULT_MISS)   ] = 0,
1451 	},
1452  },
1453  [ C(LL  ) ] = {
1454 	[ C(OP_READ) ] = {
1455 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1456 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1457 	},
1458 	[ C(OP_WRITE) ] = {
1459 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1460 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1461 	},
1462 	[ C(OP_PREFETCH) ] = {
1463 		[ C(RESULT_ACCESS) ] = 0,
1464 		[ C(RESULT_MISS)   ] = 0,
1465 	},
1466  },
1467  [ C(DTLB) ] = {
1468 	[ C(OP_READ) ] = {
1469 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1470 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1471 	},
1472 	[ C(OP_WRITE) ] = {
1473 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1474 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1475 	},
1476 	[ C(OP_PREFETCH) ] = {
1477 		[ C(RESULT_ACCESS) ] = 0,
1478 		[ C(RESULT_MISS)   ] = 0,
1479 	},
1480  },
1481  [ C(ITLB) ] = {
1482 	[ C(OP_READ) ] = {
1483 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1484 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1485 	},
1486 	[ C(OP_WRITE) ] = {
1487 		[ C(RESULT_ACCESS) ] = -1,
1488 		[ C(RESULT_MISS)   ] = -1,
1489 	},
1490 	[ C(OP_PREFETCH) ] = {
1491 		[ C(RESULT_ACCESS) ] = -1,
1492 		[ C(RESULT_MISS)   ] = -1,
1493 	},
1494  },
1495  [ C(BPU ) ] = {
1496 	[ C(OP_READ) ] = {
1497 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1498 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1499 	},
1500 	[ C(OP_WRITE) ] = {
1501 		[ C(RESULT_ACCESS) ] = -1,
1502 		[ C(RESULT_MISS)   ] = -1,
1503 	},
1504 	[ C(OP_PREFETCH) ] = {
1505 		[ C(RESULT_ACCESS) ] = -1,
1506 		[ C(RESULT_MISS)   ] = -1,
1507 	},
1508  },
1509 };
1510 
1511 static __initconst const u64 atom_hw_cache_event_ids
1512 				[PERF_COUNT_HW_CACHE_MAX]
1513 				[PERF_COUNT_HW_CACHE_OP_MAX]
1514 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1515 {
1516  [ C(L1D) ] = {
1517 	[ C(OP_READ) ] = {
1518 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1519 		[ C(RESULT_MISS)   ] = 0,
1520 	},
1521 	[ C(OP_WRITE) ] = {
1522 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1523 		[ C(RESULT_MISS)   ] = 0,
1524 	},
1525 	[ C(OP_PREFETCH) ] = {
1526 		[ C(RESULT_ACCESS) ] = 0x0,
1527 		[ C(RESULT_MISS)   ] = 0,
1528 	},
1529  },
1530  [ C(L1I ) ] = {
1531 	[ C(OP_READ) ] = {
1532 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1533 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1534 	},
1535 	[ C(OP_WRITE) ] = {
1536 		[ C(RESULT_ACCESS) ] = -1,
1537 		[ C(RESULT_MISS)   ] = -1,
1538 	},
1539 	[ C(OP_PREFETCH) ] = {
1540 		[ C(RESULT_ACCESS) ] = 0,
1541 		[ C(RESULT_MISS)   ] = 0,
1542 	},
1543  },
1544  [ C(LL  ) ] = {
1545 	[ C(OP_READ) ] = {
1546 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1547 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1548 	},
1549 	[ C(OP_WRITE) ] = {
1550 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1551 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1552 	},
1553 	[ C(OP_PREFETCH) ] = {
1554 		[ C(RESULT_ACCESS) ] = 0,
1555 		[ C(RESULT_MISS)   ] = 0,
1556 	},
1557  },
1558  [ C(DTLB) ] = {
1559 	[ C(OP_READ) ] = {
1560 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1561 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1562 	},
1563 	[ C(OP_WRITE) ] = {
1564 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1565 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1566 	},
1567 	[ C(OP_PREFETCH) ] = {
1568 		[ C(RESULT_ACCESS) ] = 0,
1569 		[ C(RESULT_MISS)   ] = 0,
1570 	},
1571  },
1572  [ C(ITLB) ] = {
1573 	[ C(OP_READ) ] = {
1574 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1575 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1576 	},
1577 	[ C(OP_WRITE) ] = {
1578 		[ C(RESULT_ACCESS) ] = -1,
1579 		[ C(RESULT_MISS)   ] = -1,
1580 	},
1581 	[ C(OP_PREFETCH) ] = {
1582 		[ C(RESULT_ACCESS) ] = -1,
1583 		[ C(RESULT_MISS)   ] = -1,
1584 	},
1585  },
1586  [ C(BPU ) ] = {
1587 	[ C(OP_READ) ] = {
1588 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1589 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1590 	},
1591 	[ C(OP_WRITE) ] = {
1592 		[ C(RESULT_ACCESS) ] = -1,
1593 		[ C(RESULT_MISS)   ] = -1,
1594 	},
1595 	[ C(OP_PREFETCH) ] = {
1596 		[ C(RESULT_ACCESS) ] = -1,
1597 		[ C(RESULT_MISS)   ] = -1,
1598 	},
1599  },
1600 };
1601 
1602 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1603 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1604 /* no_alloc_cycles.not_delivered */
1605 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1606 	       "event=0xca,umask=0x50");
1607 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1608 /* uops_retired.all */
1609 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1610 	       "event=0xc2,umask=0x10");
1611 /* uops_retired.all */
1612 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1613 	       "event=0xc2,umask=0x10");
1614 
1615 static struct attribute *slm_events_attrs[] = {
1616 	EVENT_PTR(td_total_slots_slm),
1617 	EVENT_PTR(td_total_slots_scale_slm),
1618 	EVENT_PTR(td_fetch_bubbles_slm),
1619 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1620 	EVENT_PTR(td_slots_issued_slm),
1621 	EVENT_PTR(td_slots_retired_slm),
1622 	NULL
1623 };
1624 
1625 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1626 {
1627 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1628 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1629 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1630 	EVENT_EXTRA_END
1631 };
1632 
1633 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1634 #define SLM_DMND_WRITE		SNB_DMND_RFO
1635 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1636 
1637 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1638 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1639 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1640 
1641 static __initconst const u64 slm_hw_cache_extra_regs
1642 				[PERF_COUNT_HW_CACHE_MAX]
1643 				[PERF_COUNT_HW_CACHE_OP_MAX]
1644 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1645 {
1646  [ C(LL  ) ] = {
1647 	[ C(OP_READ) ] = {
1648 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1649 		[ C(RESULT_MISS)   ] = 0,
1650 	},
1651 	[ C(OP_WRITE) ] = {
1652 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1653 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1654 	},
1655 	[ C(OP_PREFETCH) ] = {
1656 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1657 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1658 	},
1659  },
1660 };
1661 
1662 static __initconst const u64 slm_hw_cache_event_ids
1663 				[PERF_COUNT_HW_CACHE_MAX]
1664 				[PERF_COUNT_HW_CACHE_OP_MAX]
1665 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1666 {
1667  [ C(L1D) ] = {
1668 	[ C(OP_READ) ] = {
1669 		[ C(RESULT_ACCESS) ] = 0,
1670 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1671 	},
1672 	[ C(OP_WRITE) ] = {
1673 		[ C(RESULT_ACCESS) ] = 0,
1674 		[ C(RESULT_MISS)   ] = 0,
1675 	},
1676 	[ C(OP_PREFETCH) ] = {
1677 		[ C(RESULT_ACCESS) ] = 0,
1678 		[ C(RESULT_MISS)   ] = 0,
1679 	},
1680  },
1681  [ C(L1I ) ] = {
1682 	[ C(OP_READ) ] = {
1683 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1684 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1685 	},
1686 	[ C(OP_WRITE) ] = {
1687 		[ C(RESULT_ACCESS) ] = -1,
1688 		[ C(RESULT_MISS)   ] = -1,
1689 	},
1690 	[ C(OP_PREFETCH) ] = {
1691 		[ C(RESULT_ACCESS) ] = 0,
1692 		[ C(RESULT_MISS)   ] = 0,
1693 	},
1694  },
1695  [ C(LL  ) ] = {
1696 	[ C(OP_READ) ] = {
1697 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1698 		[ C(RESULT_ACCESS) ] = 0x01b7,
1699 		[ C(RESULT_MISS)   ] = 0,
1700 	},
1701 	[ C(OP_WRITE) ] = {
1702 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1703 		[ C(RESULT_ACCESS) ] = 0x01b7,
1704 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1705 		[ C(RESULT_MISS)   ] = 0x01b7,
1706 	},
1707 	[ C(OP_PREFETCH) ] = {
1708 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1709 		[ C(RESULT_ACCESS) ] = 0x01b7,
1710 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1711 		[ C(RESULT_MISS)   ] = 0x01b7,
1712 	},
1713  },
1714  [ C(DTLB) ] = {
1715 	[ C(OP_READ) ] = {
1716 		[ C(RESULT_ACCESS) ] = 0,
1717 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1718 	},
1719 	[ C(OP_WRITE) ] = {
1720 		[ C(RESULT_ACCESS) ] = 0,
1721 		[ C(RESULT_MISS)   ] = 0,
1722 	},
1723 	[ C(OP_PREFETCH) ] = {
1724 		[ C(RESULT_ACCESS) ] = 0,
1725 		[ C(RESULT_MISS)   ] = 0,
1726 	},
1727  },
1728  [ C(ITLB) ] = {
1729 	[ C(OP_READ) ] = {
1730 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1731 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1732 	},
1733 	[ C(OP_WRITE) ] = {
1734 		[ C(RESULT_ACCESS) ] = -1,
1735 		[ C(RESULT_MISS)   ] = -1,
1736 	},
1737 	[ C(OP_PREFETCH) ] = {
1738 		[ C(RESULT_ACCESS) ] = -1,
1739 		[ C(RESULT_MISS)   ] = -1,
1740 	},
1741  },
1742  [ C(BPU ) ] = {
1743 	[ C(OP_READ) ] = {
1744 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1745 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1746 	},
1747 	[ C(OP_WRITE) ] = {
1748 		[ C(RESULT_ACCESS) ] = -1,
1749 		[ C(RESULT_MISS)   ] = -1,
1750 	},
1751 	[ C(OP_PREFETCH) ] = {
1752 		[ C(RESULT_ACCESS) ] = -1,
1753 		[ C(RESULT_MISS)   ] = -1,
1754 	},
1755  },
1756 };
1757 
1758 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1759 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1760 /* UOPS_NOT_DELIVERED.ANY */
1761 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1762 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1763 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1764 /* UOPS_RETIRED.ANY */
1765 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1766 /* UOPS_ISSUED.ANY */
1767 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1768 
1769 static struct attribute *glm_events_attrs[] = {
1770 	EVENT_PTR(td_total_slots_glm),
1771 	EVENT_PTR(td_total_slots_scale_glm),
1772 	EVENT_PTR(td_fetch_bubbles_glm),
1773 	EVENT_PTR(td_recovery_bubbles_glm),
1774 	EVENT_PTR(td_slots_issued_glm),
1775 	EVENT_PTR(td_slots_retired_glm),
1776 	NULL
1777 };
1778 
1779 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1780 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1781 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1782 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1783 	EVENT_EXTRA_END
1784 };
1785 
1786 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1787 #define GLM_DEMAND_RFO			BIT_ULL(1)
1788 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1789 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1790 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1791 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1792 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1793 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1794 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1795 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1796 
1797 static __initconst const u64 glm_hw_cache_event_ids
1798 				[PERF_COUNT_HW_CACHE_MAX]
1799 				[PERF_COUNT_HW_CACHE_OP_MAX]
1800 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1801 	[C(L1D)] = {
1802 		[C(OP_READ)] = {
1803 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1804 			[C(RESULT_MISS)]	= 0x0,
1805 		},
1806 		[C(OP_WRITE)] = {
1807 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1808 			[C(RESULT_MISS)]	= 0x0,
1809 		},
1810 		[C(OP_PREFETCH)] = {
1811 			[C(RESULT_ACCESS)]	= 0x0,
1812 			[C(RESULT_MISS)]	= 0x0,
1813 		},
1814 	},
1815 	[C(L1I)] = {
1816 		[C(OP_READ)] = {
1817 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1818 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1819 		},
1820 		[C(OP_WRITE)] = {
1821 			[C(RESULT_ACCESS)]	= -1,
1822 			[C(RESULT_MISS)]	= -1,
1823 		},
1824 		[C(OP_PREFETCH)] = {
1825 			[C(RESULT_ACCESS)]	= 0x0,
1826 			[C(RESULT_MISS)]	= 0x0,
1827 		},
1828 	},
1829 	[C(LL)] = {
1830 		[C(OP_READ)] = {
1831 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1832 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1833 		},
1834 		[C(OP_WRITE)] = {
1835 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1836 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1837 		},
1838 		[C(OP_PREFETCH)] = {
1839 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1840 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1841 		},
1842 	},
1843 	[C(DTLB)] = {
1844 		[C(OP_READ)] = {
1845 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1846 			[C(RESULT_MISS)]	= 0x0,
1847 		},
1848 		[C(OP_WRITE)] = {
1849 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1850 			[C(RESULT_MISS)]	= 0x0,
1851 		},
1852 		[C(OP_PREFETCH)] = {
1853 			[C(RESULT_ACCESS)]	= 0x0,
1854 			[C(RESULT_MISS)]	= 0x0,
1855 		},
1856 	},
1857 	[C(ITLB)] = {
1858 		[C(OP_READ)] = {
1859 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1860 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1861 		},
1862 		[C(OP_WRITE)] = {
1863 			[C(RESULT_ACCESS)]	= -1,
1864 			[C(RESULT_MISS)]	= -1,
1865 		},
1866 		[C(OP_PREFETCH)] = {
1867 			[C(RESULT_ACCESS)]	= -1,
1868 			[C(RESULT_MISS)]	= -1,
1869 		},
1870 	},
1871 	[C(BPU)] = {
1872 		[C(OP_READ)] = {
1873 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1874 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1875 		},
1876 		[C(OP_WRITE)] = {
1877 			[C(RESULT_ACCESS)]	= -1,
1878 			[C(RESULT_MISS)]	= -1,
1879 		},
1880 		[C(OP_PREFETCH)] = {
1881 			[C(RESULT_ACCESS)]	= -1,
1882 			[C(RESULT_MISS)]	= -1,
1883 		},
1884 	},
1885 };
1886 
1887 static __initconst const u64 glm_hw_cache_extra_regs
1888 				[PERF_COUNT_HW_CACHE_MAX]
1889 				[PERF_COUNT_HW_CACHE_OP_MAX]
1890 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1891 	[C(LL)] = {
1892 		[C(OP_READ)] = {
1893 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1894 						  GLM_LLC_ACCESS,
1895 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1896 						  GLM_LLC_MISS,
1897 		},
1898 		[C(OP_WRITE)] = {
1899 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1900 						  GLM_LLC_ACCESS,
1901 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1902 						  GLM_LLC_MISS,
1903 		},
1904 		[C(OP_PREFETCH)] = {
1905 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1906 						  GLM_LLC_ACCESS,
1907 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1908 						  GLM_LLC_MISS,
1909 		},
1910 	},
1911 };
1912 
1913 static __initconst const u64 glp_hw_cache_event_ids
1914 				[PERF_COUNT_HW_CACHE_MAX]
1915 				[PERF_COUNT_HW_CACHE_OP_MAX]
1916 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1917 	[C(L1D)] = {
1918 		[C(OP_READ)] = {
1919 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1920 			[C(RESULT_MISS)]	= 0x0,
1921 		},
1922 		[C(OP_WRITE)] = {
1923 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1924 			[C(RESULT_MISS)]	= 0x0,
1925 		},
1926 		[C(OP_PREFETCH)] = {
1927 			[C(RESULT_ACCESS)]	= 0x0,
1928 			[C(RESULT_MISS)]	= 0x0,
1929 		},
1930 	},
1931 	[C(L1I)] = {
1932 		[C(OP_READ)] = {
1933 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1934 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1935 		},
1936 		[C(OP_WRITE)] = {
1937 			[C(RESULT_ACCESS)]	= -1,
1938 			[C(RESULT_MISS)]	= -1,
1939 		},
1940 		[C(OP_PREFETCH)] = {
1941 			[C(RESULT_ACCESS)]	= 0x0,
1942 			[C(RESULT_MISS)]	= 0x0,
1943 		},
1944 	},
1945 	[C(LL)] = {
1946 		[C(OP_READ)] = {
1947 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1948 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1949 		},
1950 		[C(OP_WRITE)] = {
1951 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1952 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1953 		},
1954 		[C(OP_PREFETCH)] = {
1955 			[C(RESULT_ACCESS)]	= 0x0,
1956 			[C(RESULT_MISS)]	= 0x0,
1957 		},
1958 	},
1959 	[C(DTLB)] = {
1960 		[C(OP_READ)] = {
1961 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1962 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1963 		},
1964 		[C(OP_WRITE)] = {
1965 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1966 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1967 		},
1968 		[C(OP_PREFETCH)] = {
1969 			[C(RESULT_ACCESS)]	= 0x0,
1970 			[C(RESULT_MISS)]	= 0x0,
1971 		},
1972 	},
1973 	[C(ITLB)] = {
1974 		[C(OP_READ)] = {
1975 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1976 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1977 		},
1978 		[C(OP_WRITE)] = {
1979 			[C(RESULT_ACCESS)]	= -1,
1980 			[C(RESULT_MISS)]	= -1,
1981 		},
1982 		[C(OP_PREFETCH)] = {
1983 			[C(RESULT_ACCESS)]	= -1,
1984 			[C(RESULT_MISS)]	= -1,
1985 		},
1986 	},
1987 	[C(BPU)] = {
1988 		[C(OP_READ)] = {
1989 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1990 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1991 		},
1992 		[C(OP_WRITE)] = {
1993 			[C(RESULT_ACCESS)]	= -1,
1994 			[C(RESULT_MISS)]	= -1,
1995 		},
1996 		[C(OP_PREFETCH)] = {
1997 			[C(RESULT_ACCESS)]	= -1,
1998 			[C(RESULT_MISS)]	= -1,
1999 		},
2000 	},
2001 };
2002 
2003 static __initconst const u64 glp_hw_cache_extra_regs
2004 				[PERF_COUNT_HW_CACHE_MAX]
2005 				[PERF_COUNT_HW_CACHE_OP_MAX]
2006 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2007 	[C(LL)] = {
2008 		[C(OP_READ)] = {
2009 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
2010 						  GLM_LLC_ACCESS,
2011 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
2012 						  GLM_LLC_MISS,
2013 		},
2014 		[C(OP_WRITE)] = {
2015 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
2016 						  GLM_LLC_ACCESS,
2017 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
2018 						  GLM_LLC_MISS,
2019 		},
2020 		[C(OP_PREFETCH)] = {
2021 			[C(RESULT_ACCESS)]	= 0x0,
2022 			[C(RESULT_MISS)]	= 0x0,
2023 		},
2024 	},
2025 };
2026 
2027 #define TNT_LOCAL_DRAM			BIT_ULL(26)
2028 #define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
2029 #define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
2030 #define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
2031 #define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2032 					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2033 #define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2034 
2035 static __initconst const u64 tnt_hw_cache_extra_regs
2036 				[PERF_COUNT_HW_CACHE_MAX]
2037 				[PERF_COUNT_HW_CACHE_OP_MAX]
2038 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2039 	[C(LL)] = {
2040 		[C(OP_READ)] = {
2041 			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
2042 						  TNT_LLC_ACCESS,
2043 			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
2044 						  TNT_LLC_MISS,
2045 		},
2046 		[C(OP_WRITE)] = {
2047 			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
2048 						  TNT_LLC_ACCESS,
2049 			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
2050 						  TNT_LLC_MISS,
2051 		},
2052 		[C(OP_PREFETCH)] = {
2053 			[C(RESULT_ACCESS)]	= 0x0,
2054 			[C(RESULT_MISS)]	= 0x0,
2055 		},
2056 	},
2057 };
2058 
2059 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2060 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2061 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2062 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2063 
2064 static struct attribute *tnt_events_attrs[] = {
2065 	EVENT_PTR(td_fe_bound_tnt),
2066 	EVENT_PTR(td_retiring_tnt),
2067 	EVENT_PTR(td_bad_spec_tnt),
2068 	EVENT_PTR(td_be_bound_tnt),
2069 	NULL,
2070 };
2071 
2072 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2073 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2074 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2075 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2076 	EVENT_EXTRA_END
2077 };
2078 
2079 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2080 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2081 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2082 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2083 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2084 	EVENT_EXTRA_END
2085 };
2086 
2087 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
2088 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
2089 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
2090 #define KNL_MCDRAM_FAR		BIT_ULL(22)
2091 #define KNL_DDR_LOCAL		BIT_ULL(23)
2092 #define KNL_DDR_FAR		BIT_ULL(24)
2093 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2094 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
2095 #define KNL_L2_READ		SLM_DMND_READ
2096 #define KNL_L2_WRITE		SLM_DMND_WRITE
2097 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
2098 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
2099 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2100 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
2101 						  SNB_NON_DRAM)
2102 
2103 static __initconst const u64 knl_hw_cache_extra_regs
2104 				[PERF_COUNT_HW_CACHE_MAX]
2105 				[PERF_COUNT_HW_CACHE_OP_MAX]
2106 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2107 	[C(LL)] = {
2108 		[C(OP_READ)] = {
2109 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2110 			[C(RESULT_MISS)]   = 0,
2111 		},
2112 		[C(OP_WRITE)] = {
2113 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2114 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2115 		},
2116 		[C(OP_PREFETCH)] = {
2117 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2118 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2119 		},
2120 	},
2121 };
2122 
2123 /*
2124  * Used from PMIs where the LBRs are already disabled.
2125  *
2126  * This function could be called consecutively. It is required to remain in
2127  * disabled state if called consecutively.
2128  *
2129  * During consecutive calls, the same disable value will be written to related
2130  * registers, so the PMU state remains unchanged.
2131  *
2132  * intel_bts events don't coexist with intel PMU's BTS events because of
2133  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2134  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2135  *
2136  * Avoid PEBS_ENABLE MSR access in PMIs.
2137  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2138  * It doesn't matter if the PEBS is enabled or not.
2139  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2140  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2141  * However, there are some cases which may change PEBS status, e.g. PMI
2142  * throttle. The PEBS_ENABLE should be updated where the status changes.
2143  */
__intel_pmu_disable_all(void)2144 static void __intel_pmu_disable_all(void)
2145 {
2146 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2147 
2148 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2149 
2150 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2151 		intel_pmu_disable_bts();
2152 }
2153 
intel_pmu_disable_all(void)2154 static void intel_pmu_disable_all(void)
2155 {
2156 	__intel_pmu_disable_all();
2157 	intel_pmu_pebs_disable_all();
2158 	intel_pmu_lbr_disable_all();
2159 }
2160 
__intel_pmu_enable_all(int added,bool pmi)2161 static void __intel_pmu_enable_all(int added, bool pmi)
2162 {
2163 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2164 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2165 
2166 	intel_pmu_lbr_enable_all(pmi);
2167 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2168 	       intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2169 
2170 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2171 		struct perf_event *event =
2172 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2173 
2174 		if (WARN_ON_ONCE(!event))
2175 			return;
2176 
2177 		intel_pmu_enable_bts(event->hw.config);
2178 	}
2179 }
2180 
intel_pmu_enable_all(int added)2181 static void intel_pmu_enable_all(int added)
2182 {
2183 	intel_pmu_pebs_enable_all();
2184 	__intel_pmu_enable_all(added, false);
2185 }
2186 
2187 /*
2188  * Workaround for:
2189  *   Intel Errata AAK100 (model 26)
2190  *   Intel Errata AAP53  (model 30)
2191  *   Intel Errata BD53   (model 44)
2192  *
2193  * The official story:
2194  *   These chips need to be 'reset' when adding counters by programming the
2195  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2196  *   in sequence on the same PMC or on different PMCs.
2197  *
2198  * In practice it appears some of these events do in fact count, and
2199  * we need to program all 4 events.
2200  */
intel_pmu_nhm_workaround(void)2201 static void intel_pmu_nhm_workaround(void)
2202 {
2203 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2204 	static const unsigned long nhm_magic[4] = {
2205 		0x4300B5,
2206 		0x4300D2,
2207 		0x4300B1,
2208 		0x4300B1
2209 	};
2210 	struct perf_event *event;
2211 	int i;
2212 
2213 	/*
2214 	 * The Errata requires below steps:
2215 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2216 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2217 	 *    the corresponding PMCx;
2218 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2219 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2220 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2221 	 */
2222 
2223 	/*
2224 	 * The real steps we choose are a little different from above.
2225 	 * A) To reduce MSR operations, we don't run step 1) as they
2226 	 *    are already cleared before this function is called;
2227 	 * B) Call x86_perf_event_update to save PMCx before configuring
2228 	 *    PERFEVTSELx with magic number;
2229 	 * C) With step 5), we do clear only when the PERFEVTSELx is
2230 	 *    not used currently.
2231 	 * D) Call x86_perf_event_set_period to restore PMCx;
2232 	 */
2233 
2234 	/* We always operate 4 pairs of PERF Counters */
2235 	for (i = 0; i < 4; i++) {
2236 		event = cpuc->events[i];
2237 		if (event)
2238 			x86_perf_event_update(event);
2239 	}
2240 
2241 	for (i = 0; i < 4; i++) {
2242 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2243 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2244 	}
2245 
2246 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2247 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2248 
2249 	for (i = 0; i < 4; i++) {
2250 		event = cpuc->events[i];
2251 
2252 		if (event) {
2253 			x86_perf_event_set_period(event);
2254 			__x86_pmu_enable_event(&event->hw,
2255 					ARCH_PERFMON_EVENTSEL_ENABLE);
2256 		} else
2257 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2258 	}
2259 }
2260 
intel_pmu_nhm_enable_all(int added)2261 static void intel_pmu_nhm_enable_all(int added)
2262 {
2263 	if (added)
2264 		intel_pmu_nhm_workaround();
2265 	intel_pmu_enable_all(added);
2266 }
2267 
intel_set_tfa(struct cpu_hw_events * cpuc,bool on)2268 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2269 {
2270 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2271 
2272 	if (cpuc->tfa_shadow != val) {
2273 		cpuc->tfa_shadow = val;
2274 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
2275 	}
2276 }
2277 
intel_tfa_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)2278 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2279 {
2280 	/*
2281 	 * We're going to use PMC3, make sure TFA is set before we touch it.
2282 	 */
2283 	if (cntr == 3)
2284 		intel_set_tfa(cpuc, true);
2285 }
2286 
intel_tfa_pmu_enable_all(int added)2287 static void intel_tfa_pmu_enable_all(int added)
2288 {
2289 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2290 
2291 	/*
2292 	 * If we find PMC3 is no longer used when we enable the PMU, we can
2293 	 * clear TFA.
2294 	 */
2295 	if (!test_bit(3, cpuc->active_mask))
2296 		intel_set_tfa(cpuc, false);
2297 
2298 	intel_pmu_enable_all(added);
2299 }
2300 
intel_pmu_get_status(void)2301 static inline u64 intel_pmu_get_status(void)
2302 {
2303 	u64 status;
2304 
2305 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2306 
2307 	return status;
2308 }
2309 
intel_pmu_ack_status(u64 ack)2310 static inline void intel_pmu_ack_status(u64 ack)
2311 {
2312 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2313 }
2314 
event_is_checkpointed(struct perf_event * event)2315 static inline bool event_is_checkpointed(struct perf_event *event)
2316 {
2317 	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2318 }
2319 
intel_set_masks(struct perf_event * event,int idx)2320 static inline void intel_set_masks(struct perf_event *event, int idx)
2321 {
2322 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2323 
2324 	if (event->attr.exclude_host)
2325 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2326 	if (event->attr.exclude_guest)
2327 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2328 	if (event_is_checkpointed(event))
2329 		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2330 }
2331 
intel_clear_masks(struct perf_event * event,int idx)2332 static inline void intel_clear_masks(struct perf_event *event, int idx)
2333 {
2334 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2335 
2336 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2337 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2338 	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2339 }
2340 
intel_pmu_disable_fixed(struct perf_event * event)2341 static void intel_pmu_disable_fixed(struct perf_event *event)
2342 {
2343 	struct hw_perf_event *hwc = &event->hw;
2344 	u64 ctrl_val, mask;
2345 	int idx = hwc->idx;
2346 
2347 	if (is_topdown_idx(idx)) {
2348 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2349 
2350 		/*
2351 		 * When there are other active TopDown events,
2352 		 * don't disable the fixed counter 3.
2353 		 */
2354 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2355 			return;
2356 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2357 	}
2358 
2359 	intel_clear_masks(event, idx);
2360 
2361 	mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2362 	rdmsrl(hwc->config_base, ctrl_val);
2363 	ctrl_val &= ~mask;
2364 	wrmsrl(hwc->config_base, ctrl_val);
2365 }
2366 
intel_pmu_disable_event(struct perf_event * event)2367 static void intel_pmu_disable_event(struct perf_event *event)
2368 {
2369 	struct hw_perf_event *hwc = &event->hw;
2370 	int idx = hwc->idx;
2371 
2372 	switch (idx) {
2373 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2374 		intel_clear_masks(event, idx);
2375 		x86_pmu_disable_event(event);
2376 		break;
2377 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2378 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2379 		intel_pmu_disable_fixed(event);
2380 		break;
2381 	case INTEL_PMC_IDX_FIXED_BTS:
2382 		intel_pmu_disable_bts();
2383 		intel_pmu_drain_bts_buffer();
2384 		return;
2385 	case INTEL_PMC_IDX_FIXED_VLBR:
2386 		intel_clear_masks(event, idx);
2387 		break;
2388 	default:
2389 		intel_clear_masks(event, idx);
2390 		pr_warn("Failed to disable the event with invalid index %d\n",
2391 			idx);
2392 		return;
2393 	}
2394 
2395 	/*
2396 	 * Needs to be called after x86_pmu_disable_event,
2397 	 * so we don't trigger the event without PEBS bit set.
2398 	 */
2399 	if (unlikely(event->attr.precise_ip))
2400 		intel_pmu_pebs_disable(event);
2401 }
2402 
intel_pmu_del_event(struct perf_event * event)2403 static void intel_pmu_del_event(struct perf_event *event)
2404 {
2405 	if (needs_branch_stack(event))
2406 		intel_pmu_lbr_del(event);
2407 	if (event->attr.precise_ip)
2408 		intel_pmu_pebs_del(event);
2409 }
2410 
icl_set_topdown_event_period(struct perf_event * event)2411 static int icl_set_topdown_event_period(struct perf_event *event)
2412 {
2413 	struct hw_perf_event *hwc = &event->hw;
2414 	s64 left = local64_read(&hwc->period_left);
2415 
2416 	/*
2417 	 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2418 	 * Software should start both registers, PERF_METRICS and fixed
2419 	 * counter 3, from zero.
2420 	 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2421 	 * After that, both MSRs will be cleared for each read.
2422 	 * Don't need to clear them again.
2423 	 */
2424 	if (left == x86_pmu.max_period) {
2425 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2426 		wrmsrl(MSR_PERF_METRICS, 0);
2427 		hwc->saved_slots = 0;
2428 		hwc->saved_metric = 0;
2429 	}
2430 
2431 	if ((hwc->saved_slots) && is_slots_event(event)) {
2432 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2433 		wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2434 	}
2435 
2436 	perf_event_update_userpage(event);
2437 
2438 	return 0;
2439 }
2440 
adl_set_topdown_event_period(struct perf_event * event)2441 static int adl_set_topdown_event_period(struct perf_event *event)
2442 {
2443 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2444 
2445 	if (pmu->cpu_type != hybrid_big)
2446 		return 0;
2447 
2448 	return icl_set_topdown_event_period(event);
2449 }
2450 
icl_get_metrics_event_value(u64 metric,u64 slots,int idx)2451 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2452 {
2453 	u32 val;
2454 
2455 	/*
2456 	 * The metric is reported as an 8bit integer fraction
2457 	 * summing up to 0xff.
2458 	 * slots-in-metric = (Metric / 0xff) * slots
2459 	 */
2460 	val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2461 	return  mul_u64_u32_div(slots, val, 0xff);
2462 }
2463 
icl_get_topdown_value(struct perf_event * event,u64 slots,u64 metrics)2464 static u64 icl_get_topdown_value(struct perf_event *event,
2465 				       u64 slots, u64 metrics)
2466 {
2467 	int idx = event->hw.idx;
2468 	u64 delta;
2469 
2470 	if (is_metric_idx(idx))
2471 		delta = icl_get_metrics_event_value(metrics, slots, idx);
2472 	else
2473 		delta = slots;
2474 
2475 	return delta;
2476 }
2477 
__icl_update_topdown_event(struct perf_event * event,u64 slots,u64 metrics,u64 last_slots,u64 last_metrics)2478 static void __icl_update_topdown_event(struct perf_event *event,
2479 				       u64 slots, u64 metrics,
2480 				       u64 last_slots, u64 last_metrics)
2481 {
2482 	u64 delta, last = 0;
2483 
2484 	delta = icl_get_topdown_value(event, slots, metrics);
2485 	if (last_slots)
2486 		last = icl_get_topdown_value(event, last_slots, last_metrics);
2487 
2488 	/*
2489 	 * The 8bit integer fraction of metric may be not accurate,
2490 	 * especially when the changes is very small.
2491 	 * For example, if only a few bad_spec happens, the fraction
2492 	 * may be reduced from 1 to 0. If so, the bad_spec event value
2493 	 * will be 0 which is definitely less than the last value.
2494 	 * Avoid update event->count for this case.
2495 	 */
2496 	if (delta > last) {
2497 		delta -= last;
2498 		local64_add(delta, &event->count);
2499 	}
2500 }
2501 
update_saved_topdown_regs(struct perf_event * event,u64 slots,u64 metrics,int metric_end)2502 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2503 				      u64 metrics, int metric_end)
2504 {
2505 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2506 	struct perf_event *other;
2507 	int idx;
2508 
2509 	event->hw.saved_slots = slots;
2510 	event->hw.saved_metric = metrics;
2511 
2512 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2513 		if (!is_topdown_idx(idx))
2514 			continue;
2515 		other = cpuc->events[idx];
2516 		other->hw.saved_slots = slots;
2517 		other->hw.saved_metric = metrics;
2518 	}
2519 }
2520 
2521 /*
2522  * Update all active Topdown events.
2523  *
2524  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2525  * modify by a NMI. PMU has to be disabled before calling this function.
2526  */
2527 
intel_update_topdown_event(struct perf_event * event,int metric_end)2528 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2529 {
2530 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2531 	struct perf_event *other;
2532 	u64 slots, metrics;
2533 	bool reset = true;
2534 	int idx;
2535 
2536 	/* read Fixed counter 3 */
2537 	rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2538 	if (!slots)
2539 		return 0;
2540 
2541 	/* read PERF_METRICS */
2542 	rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2543 
2544 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2545 		if (!is_topdown_idx(idx))
2546 			continue;
2547 		other = cpuc->events[idx];
2548 		__icl_update_topdown_event(other, slots, metrics,
2549 					   event ? event->hw.saved_slots : 0,
2550 					   event ? event->hw.saved_metric : 0);
2551 	}
2552 
2553 	/*
2554 	 * Check and update this event, which may have been cleared
2555 	 * in active_mask e.g. x86_pmu_stop()
2556 	 */
2557 	if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2558 		__icl_update_topdown_event(event, slots, metrics,
2559 					   event->hw.saved_slots,
2560 					   event->hw.saved_metric);
2561 
2562 		/*
2563 		 * In x86_pmu_stop(), the event is cleared in active_mask first,
2564 		 * then drain the delta, which indicates context switch for
2565 		 * counting.
2566 		 * Save metric and slots for context switch.
2567 		 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2568 		 * Because the values will be restored in next schedule in.
2569 		 */
2570 		update_saved_topdown_regs(event, slots, metrics, metric_end);
2571 		reset = false;
2572 	}
2573 
2574 	if (reset) {
2575 		/* The fixed counter 3 has to be written before the PERF_METRICS. */
2576 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2577 		wrmsrl(MSR_PERF_METRICS, 0);
2578 		if (event)
2579 			update_saved_topdown_regs(event, 0, 0, metric_end);
2580 	}
2581 
2582 	return slots;
2583 }
2584 
icl_update_topdown_event(struct perf_event * event)2585 static u64 icl_update_topdown_event(struct perf_event *event)
2586 {
2587 	return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2588 						 x86_pmu.num_topdown_events - 1);
2589 }
2590 
adl_update_topdown_event(struct perf_event * event)2591 static u64 adl_update_topdown_event(struct perf_event *event)
2592 {
2593 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2594 
2595 	if (pmu->cpu_type != hybrid_big)
2596 		return 0;
2597 
2598 	return icl_update_topdown_event(event);
2599 }
2600 
2601 
intel_pmu_read_topdown_event(struct perf_event * event)2602 static void intel_pmu_read_topdown_event(struct perf_event *event)
2603 {
2604 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2605 
2606 	/* Only need to call update_topdown_event() once for group read. */
2607 	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2608 	    !is_slots_event(event))
2609 		return;
2610 
2611 	perf_pmu_disable(event->pmu);
2612 	x86_pmu.update_topdown_event(event);
2613 	perf_pmu_enable(event->pmu);
2614 }
2615 
intel_pmu_read_event(struct perf_event * event)2616 static void intel_pmu_read_event(struct perf_event *event)
2617 {
2618 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2619 		intel_pmu_auto_reload_read(event);
2620 	else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2621 		intel_pmu_read_topdown_event(event);
2622 	else
2623 		x86_perf_event_update(event);
2624 }
2625 
intel_pmu_enable_fixed(struct perf_event * event)2626 static void intel_pmu_enable_fixed(struct perf_event *event)
2627 {
2628 	struct hw_perf_event *hwc = &event->hw;
2629 	u64 ctrl_val, mask, bits = 0;
2630 	int idx = hwc->idx;
2631 
2632 	if (is_topdown_idx(idx)) {
2633 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2634 		/*
2635 		 * When there are other active TopDown events,
2636 		 * don't enable the fixed counter 3 again.
2637 		 */
2638 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2639 			return;
2640 
2641 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2642 	}
2643 
2644 	intel_set_masks(event, idx);
2645 
2646 	/*
2647 	 * Enable IRQ generation (0x8), if not PEBS,
2648 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2649 	 * if requested:
2650 	 */
2651 	if (!event->attr.precise_ip)
2652 		bits |= 0x8;
2653 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2654 		bits |= 0x2;
2655 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2656 		bits |= 0x1;
2657 
2658 	/*
2659 	 * ANY bit is supported in v3 and up
2660 	 */
2661 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2662 		bits |= 0x4;
2663 
2664 	idx -= INTEL_PMC_IDX_FIXED;
2665 	bits <<= (idx * 4);
2666 	mask = 0xfULL << (idx * 4);
2667 
2668 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2669 		bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2670 		mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2671 	}
2672 
2673 	rdmsrl(hwc->config_base, ctrl_val);
2674 	ctrl_val &= ~mask;
2675 	ctrl_val |= bits;
2676 	wrmsrl(hwc->config_base, ctrl_val);
2677 }
2678 
intel_pmu_enable_event(struct perf_event * event)2679 static void intel_pmu_enable_event(struct perf_event *event)
2680 {
2681 	struct hw_perf_event *hwc = &event->hw;
2682 	int idx = hwc->idx;
2683 
2684 	if (unlikely(event->attr.precise_ip))
2685 		intel_pmu_pebs_enable(event);
2686 
2687 	switch (idx) {
2688 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2689 		intel_set_masks(event, idx);
2690 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2691 		break;
2692 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2693 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2694 		intel_pmu_enable_fixed(event);
2695 		break;
2696 	case INTEL_PMC_IDX_FIXED_BTS:
2697 		if (!__this_cpu_read(cpu_hw_events.enabled))
2698 			return;
2699 		intel_pmu_enable_bts(hwc->config);
2700 		break;
2701 	case INTEL_PMC_IDX_FIXED_VLBR:
2702 		intel_set_masks(event, idx);
2703 		break;
2704 	default:
2705 		pr_warn("Failed to enable the event with invalid index %d\n",
2706 			idx);
2707 	}
2708 }
2709 
intel_pmu_add_event(struct perf_event * event)2710 static void intel_pmu_add_event(struct perf_event *event)
2711 {
2712 	if (event->attr.precise_ip)
2713 		intel_pmu_pebs_add(event);
2714 	if (needs_branch_stack(event))
2715 		intel_pmu_lbr_add(event);
2716 }
2717 
2718 /*
2719  * Save and restart an expired event. Called by NMI contexts,
2720  * so it has to be careful about preempting normal event ops:
2721  */
intel_pmu_save_and_restart(struct perf_event * event)2722 int intel_pmu_save_and_restart(struct perf_event *event)
2723 {
2724 	x86_perf_event_update(event);
2725 	/*
2726 	 * For a checkpointed counter always reset back to 0.  This
2727 	 * avoids a situation where the counter overflows, aborts the
2728 	 * transaction and is then set back to shortly before the
2729 	 * overflow, and overflows and aborts again.
2730 	 */
2731 	if (unlikely(event_is_checkpointed(event))) {
2732 		/* No race with NMIs because the counter should not be armed */
2733 		wrmsrl(event->hw.event_base, 0);
2734 		local64_set(&event->hw.prev_count, 0);
2735 	}
2736 	return x86_perf_event_set_period(event);
2737 }
2738 
intel_pmu_reset(void)2739 static void intel_pmu_reset(void)
2740 {
2741 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2742 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2743 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2744 	int num_counters = hybrid(cpuc->pmu, num_counters);
2745 	unsigned long flags;
2746 	int idx;
2747 
2748 	if (!num_counters)
2749 		return;
2750 
2751 	local_irq_save(flags);
2752 
2753 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2754 
2755 	for (idx = 0; idx < num_counters; idx++) {
2756 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2757 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2758 	}
2759 	for (idx = 0; idx < num_counters_fixed; idx++) {
2760 		if (fixed_counter_disabled(idx, cpuc->pmu))
2761 			continue;
2762 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2763 	}
2764 
2765 	if (ds)
2766 		ds->bts_index = ds->bts_buffer_base;
2767 
2768 	/* Ack all overflows and disable fixed counters */
2769 	if (x86_pmu.version >= 2) {
2770 		intel_pmu_ack_status(intel_pmu_get_status());
2771 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2772 	}
2773 
2774 	/* Reset LBRs and LBR freezing */
2775 	if (x86_pmu.lbr_nr) {
2776 		update_debugctlmsr(get_debugctlmsr() &
2777 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2778 	}
2779 
2780 	local_irq_restore(flags);
2781 }
2782 
handle_pmi_common(struct pt_regs * regs,u64 status)2783 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2784 {
2785 	struct perf_sample_data data;
2786 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2787 	int bit;
2788 	int handled = 0;
2789 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2790 
2791 	inc_irq_stat(apic_perf_irqs);
2792 
2793 	/*
2794 	 * Ignore a range of extra bits in status that do not indicate
2795 	 * overflow by themselves.
2796 	 */
2797 	status &= ~(GLOBAL_STATUS_COND_CHG |
2798 		    GLOBAL_STATUS_ASIF |
2799 		    GLOBAL_STATUS_LBRS_FROZEN);
2800 	if (!status)
2801 		return 0;
2802 	/*
2803 	 * In case multiple PEBS events are sampled at the same time,
2804 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2805 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2806 	 * having their bits set in the status register. This is a sign
2807 	 * that there was at least one PEBS record pending at the time
2808 	 * of the PMU interrupt. PEBS counters must only be processed
2809 	 * via the drain_pebs() calls and not via the regular sample
2810 	 * processing loop coming after that the function, otherwise
2811 	 * phony regular samples may be generated in the sampling buffer
2812 	 * not marked with the EXACT tag. Another possibility is to have
2813 	 * one PEBS event and at least one non-PEBS event which overflows
2814 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2815 	 * not be set, yet the overflow status bit for the PEBS counter will
2816 	 * be on Skylake.
2817 	 *
2818 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2819 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2820 	 * events via drain_pebs().
2821 	 */
2822 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2823 		status &= ~cpuc->pebs_enabled;
2824 	else
2825 		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2826 
2827 	/*
2828 	 * PEBS overflow sets bit 62 in the global status register
2829 	 */
2830 	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2831 		u64 pebs_enabled = cpuc->pebs_enabled;
2832 
2833 		handled++;
2834 		x86_pmu.drain_pebs(regs, &data);
2835 		status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2836 
2837 		/*
2838 		 * PMI throttle may be triggered, which stops the PEBS event.
2839 		 * Although cpuc->pebs_enabled is updated accordingly, the
2840 		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
2841 		 * cpuc->enabled has been forced to 0 in PMI.
2842 		 * Update the MSR if pebs_enabled is changed.
2843 		 */
2844 		if (pebs_enabled != cpuc->pebs_enabled)
2845 			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2846 	}
2847 
2848 	/*
2849 	 * Intel PT
2850 	 */
2851 	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2852 		handled++;
2853 		if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2854 			perf_guest_cbs->handle_intel_pt_intr))
2855 			perf_guest_cbs->handle_intel_pt_intr();
2856 		else
2857 			intel_pt_interrupt();
2858 	}
2859 
2860 	/*
2861 	 * Intel Perf metrics
2862 	 */
2863 	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2864 		handled++;
2865 		if (x86_pmu.update_topdown_event)
2866 			x86_pmu.update_topdown_event(NULL);
2867 	}
2868 
2869 	/*
2870 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2871 	 * rollback caused by the PMI will have cleared the overflow status
2872 	 * bit. Therefore always force probe these counters.
2873 	 */
2874 	status |= cpuc->intel_cp_status;
2875 
2876 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2877 		struct perf_event *event = cpuc->events[bit];
2878 
2879 		handled++;
2880 
2881 		if (!test_bit(bit, cpuc->active_mask))
2882 			continue;
2883 
2884 		if (!intel_pmu_save_and_restart(event))
2885 			continue;
2886 
2887 		perf_sample_data_init(&data, 0, event->hw.last_period);
2888 
2889 		if (has_branch_stack(event))
2890 			data.br_stack = &cpuc->lbr_stack;
2891 
2892 		if (perf_event_overflow(event, &data, regs))
2893 			x86_pmu_stop(event, 0);
2894 	}
2895 
2896 	return handled;
2897 }
2898 
2899 /*
2900  * This handler is triggered by the local APIC, so the APIC IRQ handling
2901  * rules apply:
2902  */
intel_pmu_handle_irq(struct pt_regs * regs)2903 static int intel_pmu_handle_irq(struct pt_regs *regs)
2904 {
2905 	struct cpu_hw_events *cpuc;
2906 	int loops;
2907 	u64 status;
2908 	int handled;
2909 	int pmu_enabled;
2910 
2911 	cpuc = this_cpu_ptr(&cpu_hw_events);
2912 
2913 	/*
2914 	 * Save the PMU state.
2915 	 * It needs to be restored when leaving the handler.
2916 	 */
2917 	pmu_enabled = cpuc->enabled;
2918 	/*
2919 	 * No known reason to not always do late ACK,
2920 	 * but just in case do it opt-in.
2921 	 */
2922 	if (!x86_pmu.late_ack)
2923 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2924 	intel_bts_disable_local();
2925 	cpuc->enabled = 0;
2926 	__intel_pmu_disable_all();
2927 	handled = intel_pmu_drain_bts_buffer();
2928 	handled += intel_bts_interrupt();
2929 	status = intel_pmu_get_status();
2930 	if (!status)
2931 		goto done;
2932 
2933 	loops = 0;
2934 again:
2935 	intel_pmu_lbr_read();
2936 	intel_pmu_ack_status(status);
2937 	if (++loops > 100) {
2938 		static bool warned;
2939 
2940 		if (!warned) {
2941 			WARN(1, "perfevents: irq loop stuck!\n");
2942 			perf_event_print_debug();
2943 			warned = true;
2944 		}
2945 		intel_pmu_reset();
2946 		goto done;
2947 	}
2948 
2949 	handled += handle_pmi_common(regs, status);
2950 
2951 	/*
2952 	 * Repeat if there is more work to be done:
2953 	 */
2954 	status = intel_pmu_get_status();
2955 	if (status)
2956 		goto again;
2957 
2958 done:
2959 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2960 	cpuc->enabled = pmu_enabled;
2961 	if (pmu_enabled)
2962 		__intel_pmu_enable_all(0, true);
2963 	intel_bts_enable_local();
2964 
2965 	/*
2966 	 * Only unmask the NMI after the overflow counters
2967 	 * have been reset. This avoids spurious NMIs on
2968 	 * Haswell CPUs.
2969 	 */
2970 	if (x86_pmu.late_ack)
2971 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2972 	return handled;
2973 }
2974 
2975 static struct event_constraint *
intel_bts_constraints(struct perf_event * event)2976 intel_bts_constraints(struct perf_event *event)
2977 {
2978 	if (unlikely(intel_pmu_has_bts(event)))
2979 		return &bts_constraint;
2980 
2981 	return NULL;
2982 }
2983 
2984 /*
2985  * Note: matches a fake event, like Fixed2.
2986  */
2987 static struct event_constraint *
intel_vlbr_constraints(struct perf_event * event)2988 intel_vlbr_constraints(struct perf_event *event)
2989 {
2990 	struct event_constraint *c = &vlbr_constraint;
2991 
2992 	if (unlikely(constraint_match(c, event->hw.config)))
2993 		return c;
2994 
2995 	return NULL;
2996 }
2997 
intel_alt_er(struct cpu_hw_events * cpuc,int idx,u64 config)2998 static int intel_alt_er(struct cpu_hw_events *cpuc,
2999 			int idx, u64 config)
3000 {
3001 	struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3002 	int alt_idx = idx;
3003 
3004 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3005 		return idx;
3006 
3007 	if (idx == EXTRA_REG_RSP_0)
3008 		alt_idx = EXTRA_REG_RSP_1;
3009 
3010 	if (idx == EXTRA_REG_RSP_1)
3011 		alt_idx = EXTRA_REG_RSP_0;
3012 
3013 	if (config & ~extra_regs[alt_idx].valid_mask)
3014 		return idx;
3015 
3016 	return alt_idx;
3017 }
3018 
intel_fixup_er(struct perf_event * event,int idx)3019 static void intel_fixup_er(struct perf_event *event, int idx)
3020 {
3021 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3022 	event->hw.extra_reg.idx = idx;
3023 
3024 	if (idx == EXTRA_REG_RSP_0) {
3025 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3026 		event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3027 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3028 	} else if (idx == EXTRA_REG_RSP_1) {
3029 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3030 		event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3031 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3032 	}
3033 }
3034 
3035 /*
3036  * manage allocation of shared extra msr for certain events
3037  *
3038  * sharing can be:
3039  * per-cpu: to be shared between the various events on a single PMU
3040  * per-core: per-cpu + shared by HT threads
3041  */
3042 static struct event_constraint *
__intel_shared_reg_get_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,struct hw_perf_event_extra * reg)3043 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3044 				   struct perf_event *event,
3045 				   struct hw_perf_event_extra *reg)
3046 {
3047 	struct event_constraint *c = &emptyconstraint;
3048 	struct er_account *era;
3049 	unsigned long flags;
3050 	int idx = reg->idx;
3051 
3052 	/*
3053 	 * reg->alloc can be set due to existing state, so for fake cpuc we
3054 	 * need to ignore this, otherwise we might fail to allocate proper fake
3055 	 * state for this extra reg constraint. Also see the comment below.
3056 	 */
3057 	if (reg->alloc && !cpuc->is_fake)
3058 		return NULL; /* call x86_get_event_constraint() */
3059 
3060 again:
3061 	era = &cpuc->shared_regs->regs[idx];
3062 	/*
3063 	 * we use spin_lock_irqsave() to avoid lockdep issues when
3064 	 * passing a fake cpuc
3065 	 */
3066 	raw_spin_lock_irqsave(&era->lock, flags);
3067 
3068 	if (!atomic_read(&era->ref) || era->config == reg->config) {
3069 
3070 		/*
3071 		 * If its a fake cpuc -- as per validate_{group,event}() we
3072 		 * shouldn't touch event state and we can avoid doing so
3073 		 * since both will only call get_event_constraints() once
3074 		 * on each event, this avoids the need for reg->alloc.
3075 		 *
3076 		 * Not doing the ER fixup will only result in era->reg being
3077 		 * wrong, but since we won't actually try and program hardware
3078 		 * this isn't a problem either.
3079 		 */
3080 		if (!cpuc->is_fake) {
3081 			if (idx != reg->idx)
3082 				intel_fixup_er(event, idx);
3083 
3084 			/*
3085 			 * x86_schedule_events() can call get_event_constraints()
3086 			 * multiple times on events in the case of incremental
3087 			 * scheduling(). reg->alloc ensures we only do the ER
3088 			 * allocation once.
3089 			 */
3090 			reg->alloc = 1;
3091 		}
3092 
3093 		/* lock in msr value */
3094 		era->config = reg->config;
3095 		era->reg = reg->reg;
3096 
3097 		/* one more user */
3098 		atomic_inc(&era->ref);
3099 
3100 		/*
3101 		 * need to call x86_get_event_constraint()
3102 		 * to check if associated event has constraints
3103 		 */
3104 		c = NULL;
3105 	} else {
3106 		idx = intel_alt_er(cpuc, idx, reg->config);
3107 		if (idx != reg->idx) {
3108 			raw_spin_unlock_irqrestore(&era->lock, flags);
3109 			goto again;
3110 		}
3111 	}
3112 	raw_spin_unlock_irqrestore(&era->lock, flags);
3113 
3114 	return c;
3115 }
3116 
3117 static void
__intel_shared_reg_put_constraints(struct cpu_hw_events * cpuc,struct hw_perf_event_extra * reg)3118 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3119 				   struct hw_perf_event_extra *reg)
3120 {
3121 	struct er_account *era;
3122 
3123 	/*
3124 	 * Only put constraint if extra reg was actually allocated. Also takes
3125 	 * care of event which do not use an extra shared reg.
3126 	 *
3127 	 * Also, if this is a fake cpuc we shouldn't touch any event state
3128 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3129 	 * either since it'll be thrown out.
3130 	 */
3131 	if (!reg->alloc || cpuc->is_fake)
3132 		return;
3133 
3134 	era = &cpuc->shared_regs->regs[reg->idx];
3135 
3136 	/* one fewer user */
3137 	atomic_dec(&era->ref);
3138 
3139 	/* allocate again next time */
3140 	reg->alloc = 0;
3141 }
3142 
3143 static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3144 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3145 			      struct perf_event *event)
3146 {
3147 	struct event_constraint *c = NULL, *d;
3148 	struct hw_perf_event_extra *xreg, *breg;
3149 
3150 	xreg = &event->hw.extra_reg;
3151 	if (xreg->idx != EXTRA_REG_NONE) {
3152 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3153 		if (c == &emptyconstraint)
3154 			return c;
3155 	}
3156 	breg = &event->hw.branch_reg;
3157 	if (breg->idx != EXTRA_REG_NONE) {
3158 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3159 		if (d == &emptyconstraint) {
3160 			__intel_shared_reg_put_constraints(cpuc, xreg);
3161 			c = d;
3162 		}
3163 	}
3164 	return c;
3165 }
3166 
3167 struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3168 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3169 			  struct perf_event *event)
3170 {
3171 	struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3172 	struct event_constraint *c;
3173 
3174 	if (event_constraints) {
3175 		for_each_event_constraint(c, event_constraints) {
3176 			if (constraint_match(c, event->hw.config)) {
3177 				event->hw.flags |= c->flags;
3178 				return c;
3179 			}
3180 		}
3181 	}
3182 
3183 	return &hybrid_var(cpuc->pmu, unconstrained);
3184 }
3185 
3186 static struct event_constraint *
__intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3187 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3188 			    struct perf_event *event)
3189 {
3190 	struct event_constraint *c;
3191 
3192 	c = intel_vlbr_constraints(event);
3193 	if (c)
3194 		return c;
3195 
3196 	c = intel_bts_constraints(event);
3197 	if (c)
3198 		return c;
3199 
3200 	c = intel_shared_regs_constraints(cpuc, event);
3201 	if (c)
3202 		return c;
3203 
3204 	c = intel_pebs_constraints(event);
3205 	if (c)
3206 		return c;
3207 
3208 	return x86_get_event_constraints(cpuc, idx, event);
3209 }
3210 
3211 static void
intel_start_scheduling(struct cpu_hw_events * cpuc)3212 intel_start_scheduling(struct cpu_hw_events *cpuc)
3213 {
3214 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3215 	struct intel_excl_states *xl;
3216 	int tid = cpuc->excl_thread_id;
3217 
3218 	/*
3219 	 * nothing needed if in group validation mode
3220 	 */
3221 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3222 		return;
3223 
3224 	/*
3225 	 * no exclusion needed
3226 	 */
3227 	if (WARN_ON_ONCE(!excl_cntrs))
3228 		return;
3229 
3230 	xl = &excl_cntrs->states[tid];
3231 
3232 	xl->sched_started = true;
3233 	/*
3234 	 * lock shared state until we are done scheduling
3235 	 * in stop_event_scheduling()
3236 	 * makes scheduling appear as a transaction
3237 	 */
3238 	raw_spin_lock(&excl_cntrs->lock);
3239 }
3240 
intel_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)3241 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3242 {
3243 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3244 	struct event_constraint *c = cpuc->event_constraint[idx];
3245 	struct intel_excl_states *xl;
3246 	int tid = cpuc->excl_thread_id;
3247 
3248 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3249 		return;
3250 
3251 	if (WARN_ON_ONCE(!excl_cntrs))
3252 		return;
3253 
3254 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3255 		return;
3256 
3257 	xl = &excl_cntrs->states[tid];
3258 
3259 	lockdep_assert_held(&excl_cntrs->lock);
3260 
3261 	if (c->flags & PERF_X86_EVENT_EXCL)
3262 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3263 	else
3264 		xl->state[cntr] = INTEL_EXCL_SHARED;
3265 }
3266 
3267 static void
intel_stop_scheduling(struct cpu_hw_events * cpuc)3268 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3269 {
3270 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3271 	struct intel_excl_states *xl;
3272 	int tid = cpuc->excl_thread_id;
3273 
3274 	/*
3275 	 * nothing needed if in group validation mode
3276 	 */
3277 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3278 		return;
3279 	/*
3280 	 * no exclusion needed
3281 	 */
3282 	if (WARN_ON_ONCE(!excl_cntrs))
3283 		return;
3284 
3285 	xl = &excl_cntrs->states[tid];
3286 
3287 	xl->sched_started = false;
3288 	/*
3289 	 * release shared state lock (acquired in intel_start_scheduling())
3290 	 */
3291 	raw_spin_unlock(&excl_cntrs->lock);
3292 }
3293 
3294 static struct event_constraint *
dyn_constraint(struct cpu_hw_events * cpuc,struct event_constraint * c,int idx)3295 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3296 {
3297 	WARN_ON_ONCE(!cpuc->constraint_list);
3298 
3299 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3300 		struct event_constraint *cx;
3301 
3302 		/*
3303 		 * grab pre-allocated constraint entry
3304 		 */
3305 		cx = &cpuc->constraint_list[idx];
3306 
3307 		/*
3308 		 * initialize dynamic constraint
3309 		 * with static constraint
3310 		 */
3311 		*cx = *c;
3312 
3313 		/*
3314 		 * mark constraint as dynamic
3315 		 */
3316 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
3317 		c = cx;
3318 	}
3319 
3320 	return c;
3321 }
3322 
3323 static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,int idx,struct event_constraint * c)3324 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3325 			   int idx, struct event_constraint *c)
3326 {
3327 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3328 	struct intel_excl_states *xlo;
3329 	int tid = cpuc->excl_thread_id;
3330 	int is_excl, i, w;
3331 
3332 	/*
3333 	 * validating a group does not require
3334 	 * enforcing cross-thread  exclusion
3335 	 */
3336 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3337 		return c;
3338 
3339 	/*
3340 	 * no exclusion needed
3341 	 */
3342 	if (WARN_ON_ONCE(!excl_cntrs))
3343 		return c;
3344 
3345 	/*
3346 	 * because we modify the constraint, we need
3347 	 * to make a copy. Static constraints come
3348 	 * from static const tables.
3349 	 *
3350 	 * only needed when constraint has not yet
3351 	 * been cloned (marked dynamic)
3352 	 */
3353 	c = dyn_constraint(cpuc, c, idx);
3354 
3355 	/*
3356 	 * From here on, the constraint is dynamic.
3357 	 * Either it was just allocated above, or it
3358 	 * was allocated during a earlier invocation
3359 	 * of this function
3360 	 */
3361 
3362 	/*
3363 	 * state of sibling HT
3364 	 */
3365 	xlo = &excl_cntrs->states[tid ^ 1];
3366 
3367 	/*
3368 	 * event requires exclusive counter access
3369 	 * across HT threads
3370 	 */
3371 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
3372 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3373 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3374 		if (!cpuc->n_excl++)
3375 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3376 	}
3377 
3378 	/*
3379 	 * Modify static constraint with current dynamic
3380 	 * state of thread
3381 	 *
3382 	 * EXCLUSIVE: sibling counter measuring exclusive event
3383 	 * SHARED   : sibling counter measuring non-exclusive event
3384 	 * UNUSED   : sibling counter unused
3385 	 */
3386 	w = c->weight;
3387 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3388 		/*
3389 		 * exclusive event in sibling counter
3390 		 * our corresponding counter cannot be used
3391 		 * regardless of our event
3392 		 */
3393 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3394 			__clear_bit(i, c->idxmsk);
3395 			w--;
3396 			continue;
3397 		}
3398 		/*
3399 		 * if measuring an exclusive event, sibling
3400 		 * measuring non-exclusive, then counter cannot
3401 		 * be used
3402 		 */
3403 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3404 			__clear_bit(i, c->idxmsk);
3405 			w--;
3406 			continue;
3407 		}
3408 	}
3409 
3410 	/*
3411 	 * if we return an empty mask, then switch
3412 	 * back to static empty constraint to avoid
3413 	 * the cost of freeing later on
3414 	 */
3415 	if (!w)
3416 		c = &emptyconstraint;
3417 
3418 	c->weight = w;
3419 
3420 	return c;
3421 }
3422 
3423 static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3424 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3425 			    struct perf_event *event)
3426 {
3427 	struct event_constraint *c1, *c2;
3428 
3429 	c1 = cpuc->event_constraint[idx];
3430 
3431 	/*
3432 	 * first time only
3433 	 * - static constraint: no change across incremental scheduling calls
3434 	 * - dynamic constraint: handled by intel_get_excl_constraints()
3435 	 */
3436 	c2 = __intel_get_event_constraints(cpuc, idx, event);
3437 	if (c1) {
3438 	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3439 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3440 		c1->weight = c2->weight;
3441 		c2 = c1;
3442 	}
3443 
3444 	if (cpuc->excl_cntrs)
3445 		return intel_get_excl_constraints(cpuc, event, idx, c2);
3446 
3447 	return c2;
3448 }
3449 
intel_put_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3450 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3451 		struct perf_event *event)
3452 {
3453 	struct hw_perf_event *hwc = &event->hw;
3454 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3455 	int tid = cpuc->excl_thread_id;
3456 	struct intel_excl_states *xl;
3457 
3458 	/*
3459 	 * nothing needed if in group validation mode
3460 	 */
3461 	if (cpuc->is_fake)
3462 		return;
3463 
3464 	if (WARN_ON_ONCE(!excl_cntrs))
3465 		return;
3466 
3467 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3468 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3469 		if (!--cpuc->n_excl)
3470 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3471 	}
3472 
3473 	/*
3474 	 * If event was actually assigned, then mark the counter state as
3475 	 * unused now.
3476 	 */
3477 	if (hwc->idx >= 0) {
3478 		xl = &excl_cntrs->states[tid];
3479 
3480 		/*
3481 		 * put_constraint may be called from x86_schedule_events()
3482 		 * which already has the lock held so here make locking
3483 		 * conditional.
3484 		 */
3485 		if (!xl->sched_started)
3486 			raw_spin_lock(&excl_cntrs->lock);
3487 
3488 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3489 
3490 		if (!xl->sched_started)
3491 			raw_spin_unlock(&excl_cntrs->lock);
3492 	}
3493 }
3494 
3495 static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3496 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3497 					struct perf_event *event)
3498 {
3499 	struct hw_perf_event_extra *reg;
3500 
3501 	reg = &event->hw.extra_reg;
3502 	if (reg->idx != EXTRA_REG_NONE)
3503 		__intel_shared_reg_put_constraints(cpuc, reg);
3504 
3505 	reg = &event->hw.branch_reg;
3506 	if (reg->idx != EXTRA_REG_NONE)
3507 		__intel_shared_reg_put_constraints(cpuc, reg);
3508 }
3509 
intel_put_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3510 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3511 					struct perf_event *event)
3512 {
3513 	intel_put_shared_regs_event_constraints(cpuc, event);
3514 
3515 	/*
3516 	 * is PMU has exclusive counter restrictions, then
3517 	 * all events are subject to and must call the
3518 	 * put_excl_constraints() routine
3519 	 */
3520 	if (cpuc->excl_cntrs)
3521 		intel_put_excl_constraints(cpuc, event);
3522 }
3523 
intel_pebs_aliases_core2(struct perf_event * event)3524 static void intel_pebs_aliases_core2(struct perf_event *event)
3525 {
3526 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3527 		/*
3528 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3529 		 * (0x003c) so that we can use it with PEBS.
3530 		 *
3531 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3532 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3533 		 * (0x00c0), which is a PEBS capable event, to get the same
3534 		 * count.
3535 		 *
3536 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3537 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3538 		 * larger than the maximum number of instructions that can be
3539 		 * retired per cycle (4) and then inverting the condition, we
3540 		 * count all cycles that retire 16 or less instructions, which
3541 		 * is every cycle.
3542 		 *
3543 		 * Thereby we gain a PEBS capable cycle counter.
3544 		 */
3545 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3546 
3547 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3548 		event->hw.config = alt_config;
3549 	}
3550 }
3551 
intel_pebs_aliases_snb(struct perf_event * event)3552 static void intel_pebs_aliases_snb(struct perf_event *event)
3553 {
3554 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3555 		/*
3556 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3557 		 * (0x003c) so that we can use it with PEBS.
3558 		 *
3559 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3560 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3561 		 * (0x01c2), which is a PEBS capable event, to get the same
3562 		 * count.
3563 		 *
3564 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3565 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3566 		 * larger than the maximum number of micro-ops that can be
3567 		 * retired per cycle (4) and then inverting the condition, we
3568 		 * count all cycles that retire 16 or less micro-ops, which
3569 		 * is every cycle.
3570 		 *
3571 		 * Thereby we gain a PEBS capable cycle counter.
3572 		 */
3573 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3574 
3575 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3576 		event->hw.config = alt_config;
3577 	}
3578 }
3579 
intel_pebs_aliases_precdist(struct perf_event * event)3580 static void intel_pebs_aliases_precdist(struct perf_event *event)
3581 {
3582 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3583 		/*
3584 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3585 		 * (0x003c) so that we can use it with PEBS.
3586 		 *
3587 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3588 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3589 		 * (0x01c0), which is a PEBS capable event, to get the same
3590 		 * count.
3591 		 *
3592 		 * The PREC_DIST event has special support to minimize sample
3593 		 * shadowing effects. One drawback is that it can be
3594 		 * only programmed on counter 1, but that seems like an
3595 		 * acceptable trade off.
3596 		 */
3597 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3598 
3599 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3600 		event->hw.config = alt_config;
3601 	}
3602 }
3603 
intel_pebs_aliases_ivb(struct perf_event * event)3604 static void intel_pebs_aliases_ivb(struct perf_event *event)
3605 {
3606 	if (event->attr.precise_ip < 3)
3607 		return intel_pebs_aliases_snb(event);
3608 	return intel_pebs_aliases_precdist(event);
3609 }
3610 
intel_pebs_aliases_skl(struct perf_event * event)3611 static void intel_pebs_aliases_skl(struct perf_event *event)
3612 {
3613 	if (event->attr.precise_ip < 3)
3614 		return intel_pebs_aliases_core2(event);
3615 	return intel_pebs_aliases_precdist(event);
3616 }
3617 
intel_pmu_large_pebs_flags(struct perf_event * event)3618 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3619 {
3620 	unsigned long flags = x86_pmu.large_pebs_flags;
3621 
3622 	if (event->attr.use_clockid)
3623 		flags &= ~PERF_SAMPLE_TIME;
3624 	if (!event->attr.exclude_kernel)
3625 		flags &= ~PERF_SAMPLE_REGS_USER;
3626 	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3627 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3628 	return flags;
3629 }
3630 
intel_pmu_bts_config(struct perf_event * event)3631 static int intel_pmu_bts_config(struct perf_event *event)
3632 {
3633 	struct perf_event_attr *attr = &event->attr;
3634 
3635 	if (unlikely(intel_pmu_has_bts(event))) {
3636 		/* BTS is not supported by this architecture. */
3637 		if (!x86_pmu.bts_active)
3638 			return -EOPNOTSUPP;
3639 
3640 		/* BTS is currently only allowed for user-mode. */
3641 		if (!attr->exclude_kernel)
3642 			return -EOPNOTSUPP;
3643 
3644 		/* BTS is not allowed for precise events. */
3645 		if (attr->precise_ip)
3646 			return -EOPNOTSUPP;
3647 
3648 		/* disallow bts if conflicting events are present */
3649 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3650 			return -EBUSY;
3651 
3652 		event->destroy = hw_perf_lbr_event_destroy;
3653 	}
3654 
3655 	return 0;
3656 }
3657 
core_pmu_hw_config(struct perf_event * event)3658 static int core_pmu_hw_config(struct perf_event *event)
3659 {
3660 	int ret = x86_pmu_hw_config(event);
3661 
3662 	if (ret)
3663 		return ret;
3664 
3665 	return intel_pmu_bts_config(event);
3666 }
3667 
3668 #define INTEL_TD_METRIC_AVAILABLE_MAX	(INTEL_TD_METRIC_RETIRING + \
3669 					 ((x86_pmu.num_topdown_events - 1) << 8))
3670 
is_available_metric_event(struct perf_event * event)3671 static bool is_available_metric_event(struct perf_event *event)
3672 {
3673 	return is_metric_event(event) &&
3674 		event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3675 }
3676 
is_mem_loads_event(struct perf_event * event)3677 static inline bool is_mem_loads_event(struct perf_event *event)
3678 {
3679 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3680 }
3681 
is_mem_loads_aux_event(struct perf_event * event)3682 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3683 {
3684 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3685 }
3686 
require_mem_loads_aux_event(struct perf_event * event)3687 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3688 {
3689 	if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3690 		return false;
3691 
3692 	if (is_hybrid())
3693 		return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3694 
3695 	return true;
3696 }
3697 
intel_pmu_has_cap(struct perf_event * event,int idx)3698 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3699 {
3700 	union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3701 
3702 	return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3703 }
3704 
intel_pmu_hw_config(struct perf_event * event)3705 static int intel_pmu_hw_config(struct perf_event *event)
3706 {
3707 	int ret = x86_pmu_hw_config(event);
3708 
3709 	if (ret)
3710 		return ret;
3711 
3712 	ret = intel_pmu_bts_config(event);
3713 	if (ret)
3714 		return ret;
3715 
3716 	if (event->attr.precise_ip) {
3717 		if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3718 			return -EINVAL;
3719 
3720 		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3721 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3722 			if (!(event->attr.sample_type &
3723 			      ~intel_pmu_large_pebs_flags(event))) {
3724 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3725 				event->attach_state |= PERF_ATTACH_SCHED_CB;
3726 			}
3727 		}
3728 		if (x86_pmu.pebs_aliases)
3729 			x86_pmu.pebs_aliases(event);
3730 
3731 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3732 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3733 	}
3734 
3735 	if (needs_branch_stack(event)) {
3736 		ret = intel_pmu_setup_lbr_filter(event);
3737 		if (ret)
3738 			return ret;
3739 		event->attach_state |= PERF_ATTACH_SCHED_CB;
3740 
3741 		/*
3742 		 * BTS is set up earlier in this path, so don't account twice
3743 		 */
3744 		if (!unlikely(intel_pmu_has_bts(event))) {
3745 			/* disallow lbr if conflicting events are present */
3746 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3747 				return -EBUSY;
3748 
3749 			event->destroy = hw_perf_lbr_event_destroy;
3750 		}
3751 	}
3752 
3753 	if (event->attr.aux_output) {
3754 		if (!event->attr.precise_ip)
3755 			return -EINVAL;
3756 
3757 		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3758 	}
3759 
3760 	if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3761 	    (event->attr.type == PERF_TYPE_HW_CACHE))
3762 		return 0;
3763 
3764 	/*
3765 	 * Config Topdown slots and metric events
3766 	 *
3767 	 * The slots event on Fixed Counter 3 can support sampling,
3768 	 * which will be handled normally in x86_perf_event_update().
3769 	 *
3770 	 * Metric events don't support sampling and require being paired
3771 	 * with a slots event as group leader. When the slots event
3772 	 * is used in a metrics group, it too cannot support sampling.
3773 	 */
3774 	if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3775 		if (event->attr.config1 || event->attr.config2)
3776 			return -EINVAL;
3777 
3778 		/*
3779 		 * The TopDown metrics events and slots event don't
3780 		 * support any filters.
3781 		 */
3782 		if (event->attr.config & X86_ALL_EVENT_FLAGS)
3783 			return -EINVAL;
3784 
3785 		if (is_available_metric_event(event)) {
3786 			struct perf_event *leader = event->group_leader;
3787 
3788 			/* The metric events don't support sampling. */
3789 			if (is_sampling_event(event))
3790 				return -EINVAL;
3791 
3792 			/* The metric events require a slots group leader. */
3793 			if (!is_slots_event(leader))
3794 				return -EINVAL;
3795 
3796 			/*
3797 			 * The leader/SLOTS must not be a sampling event for
3798 			 * metric use; hardware requires it starts at 0 when used
3799 			 * in conjunction with MSR_PERF_METRICS.
3800 			 */
3801 			if (is_sampling_event(leader))
3802 				return -EINVAL;
3803 
3804 			event->event_caps |= PERF_EV_CAP_SIBLING;
3805 			/*
3806 			 * Only once we have a METRICs sibling do we
3807 			 * need TopDown magic.
3808 			 */
3809 			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3810 			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3811 		}
3812 	}
3813 
3814 	/*
3815 	 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3816 	 * doesn't function quite right. As a work-around it needs to always be
3817 	 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3818 	 * The actual count of this second event is irrelevant it just needs
3819 	 * to be active to make the first event function correctly.
3820 	 *
3821 	 * In a group, the auxiliary event must be in front of the load latency
3822 	 * event. The rule is to simplify the implementation of the check.
3823 	 * That's because perf cannot have a complete group at the moment.
3824 	 */
3825 	if (require_mem_loads_aux_event(event) &&
3826 	    (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3827 	    is_mem_loads_event(event)) {
3828 		struct perf_event *leader = event->group_leader;
3829 		struct perf_event *sibling = NULL;
3830 
3831 		if (!is_mem_loads_aux_event(leader)) {
3832 			for_each_sibling_event(sibling, leader) {
3833 				if (is_mem_loads_aux_event(sibling))
3834 					break;
3835 			}
3836 			if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3837 				return -ENODATA;
3838 		}
3839 	}
3840 
3841 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3842 		return 0;
3843 
3844 	if (x86_pmu.version < 3)
3845 		return -EINVAL;
3846 
3847 	ret = perf_allow_cpu(&event->attr);
3848 	if (ret)
3849 		return ret;
3850 
3851 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3852 
3853 	return 0;
3854 }
3855 
intel_guest_get_msrs(int * nr)3856 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3857 {
3858 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3859 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3860 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3861 
3862 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3863 	arr[0].host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3864 	arr[0].guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3865 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3866 		arr[0].guest &= ~cpuc->pebs_enabled;
3867 	else
3868 		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3869 	*nr = 1;
3870 
3871 	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3872 		/*
3873 		 * If PMU counter has PEBS enabled it is not enough to
3874 		 * disable counter on a guest entry since PEBS memory
3875 		 * write can overshoot guest entry and corrupt guest
3876 		 * memory. Disabling PEBS solves the problem.
3877 		 *
3878 		 * Don't do this if the CPU already enforces it.
3879 		 */
3880 		arr[1].msr = MSR_IA32_PEBS_ENABLE;
3881 		arr[1].host = cpuc->pebs_enabled;
3882 		arr[1].guest = 0;
3883 		*nr = 2;
3884 	}
3885 
3886 	return arr;
3887 }
3888 
core_guest_get_msrs(int * nr)3889 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3890 {
3891 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3892 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3893 	int idx;
3894 
3895 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3896 		struct perf_event *event = cpuc->events[idx];
3897 
3898 		arr[idx].msr = x86_pmu_config_addr(idx);
3899 		arr[idx].host = arr[idx].guest = 0;
3900 
3901 		if (!test_bit(idx, cpuc->active_mask))
3902 			continue;
3903 
3904 		arr[idx].host = arr[idx].guest =
3905 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3906 
3907 		if (event->attr.exclude_host)
3908 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3909 		else if (event->attr.exclude_guest)
3910 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3911 	}
3912 
3913 	*nr = x86_pmu.num_counters;
3914 	return arr;
3915 }
3916 
core_pmu_enable_event(struct perf_event * event)3917 static void core_pmu_enable_event(struct perf_event *event)
3918 {
3919 	if (!event->attr.exclude_host)
3920 		x86_pmu_enable_event(event);
3921 }
3922 
core_pmu_enable_all(int added)3923 static void core_pmu_enable_all(int added)
3924 {
3925 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3926 	int idx;
3927 
3928 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3929 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3930 
3931 		if (!test_bit(idx, cpuc->active_mask) ||
3932 				cpuc->events[idx]->attr.exclude_host)
3933 			continue;
3934 
3935 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3936 	}
3937 }
3938 
hsw_hw_config(struct perf_event * event)3939 static int hsw_hw_config(struct perf_event *event)
3940 {
3941 	int ret = intel_pmu_hw_config(event);
3942 
3943 	if (ret)
3944 		return ret;
3945 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3946 		return 0;
3947 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3948 
3949 	/*
3950 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3951 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3952 	 * this combination.
3953 	 */
3954 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3955 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3956 	      event->attr.precise_ip > 0))
3957 		return -EOPNOTSUPP;
3958 
3959 	if (event_is_checkpointed(event)) {
3960 		/*
3961 		 * Sampling of checkpointed events can cause situations where
3962 		 * the CPU constantly aborts because of a overflow, which is
3963 		 * then checkpointed back and ignored. Forbid checkpointing
3964 		 * for sampling.
3965 		 *
3966 		 * But still allow a long sampling period, so that perf stat
3967 		 * from KVM works.
3968 		 */
3969 		if (event->attr.sample_period > 0 &&
3970 		    event->attr.sample_period < 0x7fffffff)
3971 			return -EOPNOTSUPP;
3972 	}
3973 	return 0;
3974 }
3975 
3976 static struct event_constraint counter0_constraint =
3977 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3978 
3979 static struct event_constraint counter2_constraint =
3980 			EVENT_CONSTRAINT(0, 0x4, 0);
3981 
3982 static struct event_constraint fixed0_constraint =
3983 			FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3984 
3985 static struct event_constraint fixed0_counter0_constraint =
3986 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3987 
3988 static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3989 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3990 			  struct perf_event *event)
3991 {
3992 	struct event_constraint *c;
3993 
3994 	c = intel_get_event_constraints(cpuc, idx, event);
3995 
3996 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
3997 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3998 		if (c->idxmsk64 & (1U << 2))
3999 			return &counter2_constraint;
4000 		return &emptyconstraint;
4001 	}
4002 
4003 	return c;
4004 }
4005 
4006 static struct event_constraint *
icl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4007 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4008 			  struct perf_event *event)
4009 {
4010 	/*
4011 	 * Fixed counter 0 has less skid.
4012 	 * Force instruction:ppp in Fixed counter 0
4013 	 */
4014 	if ((event->attr.precise_ip == 3) &&
4015 	    constraint_match(&fixed0_constraint, event->hw.config))
4016 		return &fixed0_constraint;
4017 
4018 	return hsw_get_event_constraints(cpuc, idx, event);
4019 }
4020 
4021 static struct event_constraint *
spr_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4022 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4023 			  struct perf_event *event)
4024 {
4025 	struct event_constraint *c;
4026 
4027 	c = icl_get_event_constraints(cpuc, idx, event);
4028 
4029 	/*
4030 	 * The :ppp indicates the Precise Distribution (PDist) facility, which
4031 	 * is only supported on the GP counter 0. If a :ppp event which is not
4032 	 * available on the GP counter 0, error out.
4033 	 */
4034 	if (event->attr.precise_ip == 3) {
4035 		if (c->idxmsk64 & BIT_ULL(0))
4036 			return &counter0_constraint;
4037 
4038 		return &emptyconstraint;
4039 	}
4040 
4041 	return c;
4042 }
4043 
4044 static struct event_constraint *
glp_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4045 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4046 			  struct perf_event *event)
4047 {
4048 	struct event_constraint *c;
4049 
4050 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
4051 	if (event->attr.precise_ip == 3)
4052 		return &counter0_constraint;
4053 
4054 	c = intel_get_event_constraints(cpuc, idx, event);
4055 
4056 	return c;
4057 }
4058 
4059 static struct event_constraint *
tnt_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4060 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4061 			  struct perf_event *event)
4062 {
4063 	struct event_constraint *c;
4064 
4065 	/*
4066 	 * :ppp means to do reduced skid PEBS,
4067 	 * which is available on PMC0 and fixed counter 0.
4068 	 */
4069 	if (event->attr.precise_ip == 3) {
4070 		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
4071 		if (constraint_match(&fixed0_constraint, event->hw.config))
4072 			return &fixed0_counter0_constraint;
4073 
4074 		return &counter0_constraint;
4075 	}
4076 
4077 	c = intel_get_event_constraints(cpuc, idx, event);
4078 
4079 	return c;
4080 }
4081 
4082 static bool allow_tsx_force_abort = true;
4083 
4084 static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4085 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4086 			  struct perf_event *event)
4087 {
4088 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4089 
4090 	/*
4091 	 * Without TFA we must not use PMC3.
4092 	 */
4093 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4094 		c = dyn_constraint(cpuc, c, idx);
4095 		c->idxmsk64 &= ~(1ULL << 3);
4096 		c->weight--;
4097 	}
4098 
4099 	return c;
4100 }
4101 
4102 static struct event_constraint *
adl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4103 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4104 			  struct perf_event *event)
4105 {
4106 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4107 
4108 	if (pmu->cpu_type == hybrid_big)
4109 		return spr_get_event_constraints(cpuc, idx, event);
4110 	else if (pmu->cpu_type == hybrid_small)
4111 		return tnt_get_event_constraints(cpuc, idx, event);
4112 
4113 	WARN_ON(1);
4114 	return &emptyconstraint;
4115 }
4116 
adl_hw_config(struct perf_event * event)4117 static int adl_hw_config(struct perf_event *event)
4118 {
4119 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4120 
4121 	if (pmu->cpu_type == hybrid_big)
4122 		return hsw_hw_config(event);
4123 	else if (pmu->cpu_type == hybrid_small)
4124 		return intel_pmu_hw_config(event);
4125 
4126 	WARN_ON(1);
4127 	return -EOPNOTSUPP;
4128 }
4129 
adl_get_hybrid_cpu_type(void)4130 static u8 adl_get_hybrid_cpu_type(void)
4131 {
4132 	return hybrid_big;
4133 }
4134 
4135 /*
4136  * Broadwell:
4137  *
4138  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4139  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4140  * the two to enforce a minimum period of 128 (the smallest value that has bits
4141  * 0-5 cleared and >= 100).
4142  *
4143  * Because of how the code in x86_perf_event_set_period() works, the truncation
4144  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4145  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4146  *
4147  * Therefore the effective (average) period matches the requested period,
4148  * despite coarser hardware granularity.
4149  */
bdw_limit_period(struct perf_event * event,u64 left)4150 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4151 {
4152 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4153 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
4154 		if (left < 128)
4155 			left = 128;
4156 		left &= ~0x3fULL;
4157 	}
4158 	return left;
4159 }
4160 
nhm_limit_period(struct perf_event * event,u64 left)4161 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4162 {
4163 	return max(left, 32ULL);
4164 }
4165 
spr_limit_period(struct perf_event * event,u64 left)4166 static u64 spr_limit_period(struct perf_event *event, u64 left)
4167 {
4168 	if (event->attr.precise_ip == 3)
4169 		return max(left, 128ULL);
4170 
4171 	return left;
4172 }
4173 
4174 PMU_FORMAT_ATTR(event,	"config:0-7"	);
4175 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
4176 PMU_FORMAT_ATTR(edge,	"config:18"	);
4177 PMU_FORMAT_ATTR(pc,	"config:19"	);
4178 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
4179 PMU_FORMAT_ATTR(inv,	"config:23"	);
4180 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
4181 PMU_FORMAT_ATTR(in_tx,  "config:32");
4182 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4183 
4184 static struct attribute *intel_arch_formats_attr[] = {
4185 	&format_attr_event.attr,
4186 	&format_attr_umask.attr,
4187 	&format_attr_edge.attr,
4188 	&format_attr_pc.attr,
4189 	&format_attr_inv.attr,
4190 	&format_attr_cmask.attr,
4191 	NULL,
4192 };
4193 
intel_event_sysfs_show(char * page,u64 config)4194 ssize_t intel_event_sysfs_show(char *page, u64 config)
4195 {
4196 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4197 
4198 	return x86_event_sysfs_show(page, config, event);
4199 }
4200 
allocate_shared_regs(int cpu)4201 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4202 {
4203 	struct intel_shared_regs *regs;
4204 	int i;
4205 
4206 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
4207 			    GFP_KERNEL, cpu_to_node(cpu));
4208 	if (regs) {
4209 		/*
4210 		 * initialize the locks to keep lockdep happy
4211 		 */
4212 		for (i = 0; i < EXTRA_REG_MAX; i++)
4213 			raw_spin_lock_init(&regs->regs[i].lock);
4214 
4215 		regs->core_id = -1;
4216 	}
4217 	return regs;
4218 }
4219 
allocate_excl_cntrs(int cpu)4220 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4221 {
4222 	struct intel_excl_cntrs *c;
4223 
4224 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4225 			 GFP_KERNEL, cpu_to_node(cpu));
4226 	if (c) {
4227 		raw_spin_lock_init(&c->lock);
4228 		c->core_id = -1;
4229 	}
4230 	return c;
4231 }
4232 
4233 
intel_cpuc_prepare(struct cpu_hw_events * cpuc,int cpu)4234 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4235 {
4236 	cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4237 
4238 	if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4239 		cpuc->shared_regs = allocate_shared_regs(cpu);
4240 		if (!cpuc->shared_regs)
4241 			goto err;
4242 	}
4243 
4244 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4245 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4246 
4247 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4248 		if (!cpuc->constraint_list)
4249 			goto err_shared_regs;
4250 	}
4251 
4252 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4253 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4254 		if (!cpuc->excl_cntrs)
4255 			goto err_constraint_list;
4256 
4257 		cpuc->excl_thread_id = 0;
4258 	}
4259 
4260 	return 0;
4261 
4262 err_constraint_list:
4263 	kfree(cpuc->constraint_list);
4264 	cpuc->constraint_list = NULL;
4265 
4266 err_shared_regs:
4267 	kfree(cpuc->shared_regs);
4268 	cpuc->shared_regs = NULL;
4269 
4270 err:
4271 	return -ENOMEM;
4272 }
4273 
intel_pmu_cpu_prepare(int cpu)4274 static int intel_pmu_cpu_prepare(int cpu)
4275 {
4276 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4277 }
4278 
flip_smm_bit(void * data)4279 static void flip_smm_bit(void *data)
4280 {
4281 	unsigned long set = *(unsigned long *)data;
4282 
4283 	if (set > 0) {
4284 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4285 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4286 	} else {
4287 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4288 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4289 	}
4290 }
4291 
init_hybrid_pmu(int cpu)4292 static bool init_hybrid_pmu(int cpu)
4293 {
4294 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4295 	u8 cpu_type = get_this_hybrid_cpu_type();
4296 	struct x86_hybrid_pmu *pmu = NULL;
4297 	int i;
4298 
4299 	if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4300 		cpu_type = x86_pmu.get_hybrid_cpu_type();
4301 
4302 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4303 		if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4304 			pmu = &x86_pmu.hybrid_pmu[i];
4305 			break;
4306 		}
4307 	}
4308 	if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4309 		cpuc->pmu = NULL;
4310 		return false;
4311 	}
4312 
4313 	/* Only check and dump the PMU information for the first CPU */
4314 	if (!cpumask_empty(&pmu->supported_cpus))
4315 		goto end;
4316 
4317 	if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4318 		return false;
4319 
4320 	pr_info("%s PMU driver: ", pmu->name);
4321 
4322 	if (pmu->intel_cap.pebs_output_pt_available)
4323 		pr_cont("PEBS-via-PT ");
4324 
4325 	pr_cont("\n");
4326 
4327 	x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4328 			     pmu->intel_ctrl);
4329 
4330 end:
4331 	cpumask_set_cpu(cpu, &pmu->supported_cpus);
4332 	cpuc->pmu = &pmu->pmu;
4333 
4334 	x86_pmu_update_cpu_context(&pmu->pmu, cpu);
4335 
4336 	return true;
4337 }
4338 
intel_pmu_cpu_starting(int cpu)4339 static void intel_pmu_cpu_starting(int cpu)
4340 {
4341 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4342 	int core_id = topology_core_id(cpu);
4343 	int i;
4344 
4345 	if (is_hybrid() && !init_hybrid_pmu(cpu))
4346 		return;
4347 
4348 	init_debug_store_on_cpu(cpu);
4349 	/*
4350 	 * Deal with CPUs that don't clear their LBRs on power-up.
4351 	 */
4352 	intel_pmu_lbr_reset();
4353 
4354 	cpuc->lbr_sel = NULL;
4355 
4356 	if (x86_pmu.flags & PMU_FL_TFA) {
4357 		WARN_ON_ONCE(cpuc->tfa_shadow);
4358 		cpuc->tfa_shadow = ~0ULL;
4359 		intel_set_tfa(cpuc, false);
4360 	}
4361 
4362 	if (x86_pmu.version > 1)
4363 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4364 
4365 	/*
4366 	 * Disable perf metrics if any added CPU doesn't support it.
4367 	 *
4368 	 * Turn off the check for a hybrid architecture, because the
4369 	 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4370 	 * the architecture features. The perf metrics is a model-specific
4371 	 * feature for now. The corresponding bit should always be 0 on
4372 	 * a hybrid platform, e.g., Alder Lake.
4373 	 */
4374 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4375 		union perf_capabilities perf_cap;
4376 
4377 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4378 		if (!perf_cap.perf_metrics) {
4379 			x86_pmu.intel_cap.perf_metrics = 0;
4380 			x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4381 		}
4382 	}
4383 
4384 	if (!cpuc->shared_regs)
4385 		return;
4386 
4387 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4388 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4389 			struct intel_shared_regs *pc;
4390 
4391 			pc = per_cpu(cpu_hw_events, i).shared_regs;
4392 			if (pc && pc->core_id == core_id) {
4393 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
4394 				cpuc->shared_regs = pc;
4395 				break;
4396 			}
4397 		}
4398 		cpuc->shared_regs->core_id = core_id;
4399 		cpuc->shared_regs->refcnt++;
4400 	}
4401 
4402 	if (x86_pmu.lbr_sel_map)
4403 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4404 
4405 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4406 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4407 			struct cpu_hw_events *sibling;
4408 			struct intel_excl_cntrs *c;
4409 
4410 			sibling = &per_cpu(cpu_hw_events, i);
4411 			c = sibling->excl_cntrs;
4412 			if (c && c->core_id == core_id) {
4413 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4414 				cpuc->excl_cntrs = c;
4415 				if (!sibling->excl_thread_id)
4416 					cpuc->excl_thread_id = 1;
4417 				break;
4418 			}
4419 		}
4420 		cpuc->excl_cntrs->core_id = core_id;
4421 		cpuc->excl_cntrs->refcnt++;
4422 	}
4423 }
4424 
free_excl_cntrs(struct cpu_hw_events * cpuc)4425 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4426 {
4427 	struct intel_excl_cntrs *c;
4428 
4429 	c = cpuc->excl_cntrs;
4430 	if (c) {
4431 		if (c->core_id == -1 || --c->refcnt == 0)
4432 			kfree(c);
4433 		cpuc->excl_cntrs = NULL;
4434 	}
4435 
4436 	kfree(cpuc->constraint_list);
4437 	cpuc->constraint_list = NULL;
4438 }
4439 
intel_pmu_cpu_dying(int cpu)4440 static void intel_pmu_cpu_dying(int cpu)
4441 {
4442 	fini_debug_store_on_cpu(cpu);
4443 }
4444 
intel_cpuc_finish(struct cpu_hw_events * cpuc)4445 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4446 {
4447 	struct intel_shared_regs *pc;
4448 
4449 	pc = cpuc->shared_regs;
4450 	if (pc) {
4451 		if (pc->core_id == -1 || --pc->refcnt == 0)
4452 			kfree(pc);
4453 		cpuc->shared_regs = NULL;
4454 	}
4455 
4456 	free_excl_cntrs(cpuc);
4457 }
4458 
intel_pmu_cpu_dead(int cpu)4459 static void intel_pmu_cpu_dead(int cpu)
4460 {
4461 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4462 
4463 	intel_cpuc_finish(cpuc);
4464 
4465 	if (is_hybrid() && cpuc->pmu)
4466 		cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4467 }
4468 
intel_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)4469 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4470 				 bool sched_in)
4471 {
4472 	intel_pmu_pebs_sched_task(ctx, sched_in);
4473 	intel_pmu_lbr_sched_task(ctx, sched_in);
4474 }
4475 
intel_pmu_swap_task_ctx(struct perf_event_context * prev,struct perf_event_context * next)4476 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4477 				    struct perf_event_context *next)
4478 {
4479 	intel_pmu_lbr_swap_task_ctx(prev, next);
4480 }
4481 
intel_pmu_check_period(struct perf_event * event,u64 value)4482 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4483 {
4484 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4485 }
4486 
intel_pmu_aux_output_match(struct perf_event * event)4487 static int intel_pmu_aux_output_match(struct perf_event *event)
4488 {
4489 	if (!x86_pmu.intel_cap.pebs_output_pt_available)
4490 		return 0;
4491 
4492 	return is_intel_pt_event(event);
4493 }
4494 
intel_pmu_filter_match(struct perf_event * event)4495 static int intel_pmu_filter_match(struct perf_event *event)
4496 {
4497 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4498 	unsigned int cpu = smp_processor_id();
4499 
4500 	return cpumask_test_cpu(cpu, &pmu->supported_cpus);
4501 }
4502 
4503 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4504 
4505 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4506 
4507 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4508 
4509 static struct attribute *intel_arch3_formats_attr[] = {
4510 	&format_attr_event.attr,
4511 	&format_attr_umask.attr,
4512 	&format_attr_edge.attr,
4513 	&format_attr_pc.attr,
4514 	&format_attr_any.attr,
4515 	&format_attr_inv.attr,
4516 	&format_attr_cmask.attr,
4517 	NULL,
4518 };
4519 
4520 static struct attribute *hsw_format_attr[] = {
4521 	&format_attr_in_tx.attr,
4522 	&format_attr_in_tx_cp.attr,
4523 	&format_attr_offcore_rsp.attr,
4524 	&format_attr_ldlat.attr,
4525 	NULL
4526 };
4527 
4528 static struct attribute *nhm_format_attr[] = {
4529 	&format_attr_offcore_rsp.attr,
4530 	&format_attr_ldlat.attr,
4531 	NULL
4532 };
4533 
4534 static struct attribute *slm_format_attr[] = {
4535 	&format_attr_offcore_rsp.attr,
4536 	NULL
4537 };
4538 
4539 static struct attribute *skl_format_attr[] = {
4540 	&format_attr_frontend.attr,
4541 	NULL,
4542 };
4543 
4544 static __initconst const struct x86_pmu core_pmu = {
4545 	.name			= "core",
4546 	.handle_irq		= x86_pmu_handle_irq,
4547 	.disable_all		= x86_pmu_disable_all,
4548 	.enable_all		= core_pmu_enable_all,
4549 	.enable			= core_pmu_enable_event,
4550 	.disable		= x86_pmu_disable_event,
4551 	.hw_config		= core_pmu_hw_config,
4552 	.schedule_events	= x86_schedule_events,
4553 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4554 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4555 	.event_map		= intel_pmu_event_map,
4556 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4557 	.apic			= 1,
4558 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4559 
4560 	/*
4561 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
4562 	 * so we install an artificial 1<<31 period regardless of
4563 	 * the generic event period:
4564 	 */
4565 	.max_period		= (1ULL<<31) - 1,
4566 	.get_event_constraints	= intel_get_event_constraints,
4567 	.put_event_constraints	= intel_put_event_constraints,
4568 	.event_constraints	= intel_core_event_constraints,
4569 	.guest_get_msrs		= core_guest_get_msrs,
4570 	.format_attrs		= intel_arch_formats_attr,
4571 	.events_sysfs_show	= intel_event_sysfs_show,
4572 
4573 	/*
4574 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4575 	 * together with PMU version 1 and thus be using core_pmu with
4576 	 * shared_regs. We need following callbacks here to allocate
4577 	 * it properly.
4578 	 */
4579 	.cpu_prepare		= intel_pmu_cpu_prepare,
4580 	.cpu_starting		= intel_pmu_cpu_starting,
4581 	.cpu_dying		= intel_pmu_cpu_dying,
4582 	.cpu_dead		= intel_pmu_cpu_dead,
4583 
4584 	.check_period		= intel_pmu_check_period,
4585 
4586 	.lbr_reset		= intel_pmu_lbr_reset_64,
4587 	.lbr_read		= intel_pmu_lbr_read_64,
4588 	.lbr_save		= intel_pmu_lbr_save,
4589 	.lbr_restore		= intel_pmu_lbr_restore,
4590 };
4591 
4592 static __initconst const struct x86_pmu intel_pmu = {
4593 	.name			= "Intel",
4594 	.handle_irq		= intel_pmu_handle_irq,
4595 	.disable_all		= intel_pmu_disable_all,
4596 	.enable_all		= intel_pmu_enable_all,
4597 	.enable			= intel_pmu_enable_event,
4598 	.disable		= intel_pmu_disable_event,
4599 	.add			= intel_pmu_add_event,
4600 	.del			= intel_pmu_del_event,
4601 	.read			= intel_pmu_read_event,
4602 	.hw_config		= intel_pmu_hw_config,
4603 	.schedule_events	= x86_schedule_events,
4604 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4605 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4606 	.event_map		= intel_pmu_event_map,
4607 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4608 	.apic			= 1,
4609 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4610 	/*
4611 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
4612 	 * so we install an artificial 1<<31 period regardless of
4613 	 * the generic event period:
4614 	 */
4615 	.max_period		= (1ULL << 31) - 1,
4616 	.get_event_constraints	= intel_get_event_constraints,
4617 	.put_event_constraints	= intel_put_event_constraints,
4618 	.pebs_aliases		= intel_pebs_aliases_core2,
4619 
4620 	.format_attrs		= intel_arch3_formats_attr,
4621 	.events_sysfs_show	= intel_event_sysfs_show,
4622 
4623 	.cpu_prepare		= intel_pmu_cpu_prepare,
4624 	.cpu_starting		= intel_pmu_cpu_starting,
4625 	.cpu_dying		= intel_pmu_cpu_dying,
4626 	.cpu_dead		= intel_pmu_cpu_dead,
4627 
4628 	.guest_get_msrs		= intel_guest_get_msrs,
4629 	.sched_task		= intel_pmu_sched_task,
4630 	.swap_task_ctx		= intel_pmu_swap_task_ctx,
4631 
4632 	.check_period		= intel_pmu_check_period,
4633 
4634 	.aux_output_match	= intel_pmu_aux_output_match,
4635 
4636 	.lbr_reset		= intel_pmu_lbr_reset_64,
4637 	.lbr_read		= intel_pmu_lbr_read_64,
4638 	.lbr_save		= intel_pmu_lbr_save,
4639 	.lbr_restore		= intel_pmu_lbr_restore,
4640 };
4641 
intel_clovertown_quirk(void)4642 static __init void intel_clovertown_quirk(void)
4643 {
4644 	/*
4645 	 * PEBS is unreliable due to:
4646 	 *
4647 	 *   AJ67  - PEBS may experience CPL leaks
4648 	 *   AJ68  - PEBS PMI may be delayed by one event
4649 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4650 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4651 	 *
4652 	 * AJ67 could be worked around by restricting the OS/USR flags.
4653 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4654 	 *
4655 	 * AJ106 could possibly be worked around by not allowing LBR
4656 	 *       usage from PEBS, including the fixup.
4657 	 * AJ68  could possibly be worked around by always programming
4658 	 *	 a pebs_event_reset[0] value and coping with the lost events.
4659 	 *
4660 	 * But taken together it might just make sense to not enable PEBS on
4661 	 * these chips.
4662 	 */
4663 	pr_warn("PEBS disabled due to CPU errata\n");
4664 	x86_pmu.pebs = 0;
4665 	x86_pmu.pebs_constraints = NULL;
4666 }
4667 
4668 static const struct x86_cpu_desc isolation_ucodes[] = {
4669 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
4670 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
4671 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
4672 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
4673 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
4674 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
4675 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
4676 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
4677 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
4678 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
4679 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
4680 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 1, 0x0b000014),
4681 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
4682 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
4683 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 5, 0x00000000),
4684 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 6, 0x00000000),
4685 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 7, 0x00000000),
4686 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
4687 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
4688 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
4689 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
4690 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
4691 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
4692 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
4693 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
4694 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
4695 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
4696 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
4697 	{}
4698 };
4699 
intel_check_pebs_isolation(void)4700 static void intel_check_pebs_isolation(void)
4701 {
4702 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4703 }
4704 
intel_pebs_isolation_quirk(void)4705 static __init void intel_pebs_isolation_quirk(void)
4706 {
4707 	WARN_ON_ONCE(x86_pmu.check_microcode);
4708 	x86_pmu.check_microcode = intel_check_pebs_isolation;
4709 	intel_check_pebs_isolation();
4710 }
4711 
4712 static const struct x86_cpu_desc pebs_ucodes[] = {
4713 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
4714 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
4715 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
4716 	{}
4717 };
4718 
intel_snb_pebs_broken(void)4719 static bool intel_snb_pebs_broken(void)
4720 {
4721 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4722 }
4723 
intel_snb_check_microcode(void)4724 static void intel_snb_check_microcode(void)
4725 {
4726 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4727 		return;
4728 
4729 	/*
4730 	 * Serialized by the microcode lock..
4731 	 */
4732 	if (x86_pmu.pebs_broken) {
4733 		pr_info("PEBS enabled due to microcode update\n");
4734 		x86_pmu.pebs_broken = 0;
4735 	} else {
4736 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4737 		x86_pmu.pebs_broken = 1;
4738 	}
4739 }
4740 
is_lbr_from(unsigned long msr)4741 static bool is_lbr_from(unsigned long msr)
4742 {
4743 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4744 
4745 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4746 }
4747 
4748 /*
4749  * Under certain circumstances, access certain MSR may cause #GP.
4750  * The function tests if the input MSR can be safely accessed.
4751  */
check_msr(unsigned long msr,u64 mask)4752 static bool check_msr(unsigned long msr, u64 mask)
4753 {
4754 	u64 val_old, val_new, val_tmp;
4755 
4756 	/*
4757 	 * Disable the check for real HW, so we don't
4758 	 * mess with potentially enabled registers:
4759 	 */
4760 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4761 		return true;
4762 
4763 	/*
4764 	 * Read the current value, change it and read it back to see if it
4765 	 * matches, this is needed to detect certain hardware emulators
4766 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4767 	 */
4768 	if (rdmsrl_safe(msr, &val_old))
4769 		return false;
4770 
4771 	/*
4772 	 * Only change the bits which can be updated by wrmsrl.
4773 	 */
4774 	val_tmp = val_old ^ mask;
4775 
4776 	if (is_lbr_from(msr))
4777 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4778 
4779 	if (wrmsrl_safe(msr, val_tmp) ||
4780 	    rdmsrl_safe(msr, &val_new))
4781 		return false;
4782 
4783 	/*
4784 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4785 	 * should equal rdmsrl()'s even with the quirk.
4786 	 */
4787 	if (val_new != val_tmp)
4788 		return false;
4789 
4790 	if (is_lbr_from(msr))
4791 		val_old = lbr_from_signext_quirk_wr(val_old);
4792 
4793 	/* Here it's sure that the MSR can be safely accessed.
4794 	 * Restore the old value and return.
4795 	 */
4796 	wrmsrl(msr, val_old);
4797 
4798 	return true;
4799 }
4800 
intel_sandybridge_quirk(void)4801 static __init void intel_sandybridge_quirk(void)
4802 {
4803 	x86_pmu.check_microcode = intel_snb_check_microcode;
4804 	cpus_read_lock();
4805 	intel_snb_check_microcode();
4806 	cpus_read_unlock();
4807 }
4808 
4809 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4810 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4811 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4812 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4813 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4814 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4815 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4816 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4817 };
4818 
intel_arch_events_quirk(void)4819 static __init void intel_arch_events_quirk(void)
4820 {
4821 	int bit;
4822 
4823 	/* disable event that reported as not present by cpuid */
4824 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4825 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4826 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
4827 			intel_arch_events_map[bit].name);
4828 	}
4829 }
4830 
intel_nehalem_quirk(void)4831 static __init void intel_nehalem_quirk(void)
4832 {
4833 	union cpuid10_ebx ebx;
4834 
4835 	ebx.full = x86_pmu.events_maskl;
4836 	if (ebx.split.no_branch_misses_retired) {
4837 		/*
4838 		 * Erratum AAJ80 detected, we work it around by using
4839 		 * the BR_MISP_EXEC.ANY event. This will over-count
4840 		 * branch-misses, but it's still much better than the
4841 		 * architectural event which is often completely bogus:
4842 		 */
4843 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4844 		ebx.split.no_branch_misses_retired = 0;
4845 		x86_pmu.events_maskl = ebx.full;
4846 		pr_info("CPU erratum AAJ80 worked around\n");
4847 	}
4848 }
4849 
4850 /*
4851  * enable software workaround for errata:
4852  * SNB: BJ122
4853  * IVB: BV98
4854  * HSW: HSD29
4855  *
4856  * Only needed when HT is enabled. However detecting
4857  * if HT is enabled is difficult (model specific). So instead,
4858  * we enable the workaround in the early boot, and verify if
4859  * it is needed in a later initcall phase once we have valid
4860  * topology information to check if HT is actually enabled
4861  */
intel_ht_bug(void)4862 static __init void intel_ht_bug(void)
4863 {
4864 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4865 
4866 	x86_pmu.start_scheduling = intel_start_scheduling;
4867 	x86_pmu.commit_scheduling = intel_commit_scheduling;
4868 	x86_pmu.stop_scheduling = intel_stop_scheduling;
4869 }
4870 
4871 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
4872 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
4873 
4874 /* Haswell special events */
4875 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
4876 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
4877 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
4878 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
4879 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
4880 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
4881 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
4882 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
4883 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
4884 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
4885 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
4886 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
4887 
4888 static struct attribute *hsw_events_attrs[] = {
4889 	EVENT_PTR(td_slots_issued),
4890 	EVENT_PTR(td_slots_retired),
4891 	EVENT_PTR(td_fetch_bubbles),
4892 	EVENT_PTR(td_total_slots),
4893 	EVENT_PTR(td_total_slots_scale),
4894 	EVENT_PTR(td_recovery_bubbles),
4895 	EVENT_PTR(td_recovery_bubbles_scale),
4896 	NULL
4897 };
4898 
4899 static struct attribute *hsw_mem_events_attrs[] = {
4900 	EVENT_PTR(mem_ld_hsw),
4901 	EVENT_PTR(mem_st_hsw),
4902 	NULL,
4903 };
4904 
4905 static struct attribute *hsw_tsx_events_attrs[] = {
4906 	EVENT_PTR(tx_start),
4907 	EVENT_PTR(tx_commit),
4908 	EVENT_PTR(tx_abort),
4909 	EVENT_PTR(tx_capacity),
4910 	EVENT_PTR(tx_conflict),
4911 	EVENT_PTR(el_start),
4912 	EVENT_PTR(el_commit),
4913 	EVENT_PTR(el_abort),
4914 	EVENT_PTR(el_capacity),
4915 	EVENT_PTR(el_conflict),
4916 	EVENT_PTR(cycles_t),
4917 	EVENT_PTR(cycles_ct),
4918 	NULL
4919 };
4920 
4921 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4922 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4923 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4924 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4925 
4926 static struct attribute *icl_events_attrs[] = {
4927 	EVENT_PTR(mem_ld_hsw),
4928 	EVENT_PTR(mem_st_hsw),
4929 	NULL,
4930 };
4931 
4932 static struct attribute *icl_td_events_attrs[] = {
4933 	EVENT_PTR(slots),
4934 	EVENT_PTR(td_retiring),
4935 	EVENT_PTR(td_bad_spec),
4936 	EVENT_PTR(td_fe_bound),
4937 	EVENT_PTR(td_be_bound),
4938 	NULL,
4939 };
4940 
4941 static struct attribute *icl_tsx_events_attrs[] = {
4942 	EVENT_PTR(tx_start),
4943 	EVENT_PTR(tx_abort),
4944 	EVENT_PTR(tx_commit),
4945 	EVENT_PTR(tx_capacity_read),
4946 	EVENT_PTR(tx_capacity_write),
4947 	EVENT_PTR(tx_conflict),
4948 	EVENT_PTR(el_start),
4949 	EVENT_PTR(el_abort),
4950 	EVENT_PTR(el_commit),
4951 	EVENT_PTR(el_capacity_read),
4952 	EVENT_PTR(el_capacity_write),
4953 	EVENT_PTR(el_conflict),
4954 	EVENT_PTR(cycles_t),
4955 	EVENT_PTR(cycles_ct),
4956 	NULL,
4957 };
4958 
4959 
4960 EVENT_ATTR_STR(mem-stores,	mem_st_spr,	"event=0xcd,umask=0x2");
4961 EVENT_ATTR_STR(mem-loads-aux,	mem_ld_aux,	"event=0x03,umask=0x82");
4962 
4963 static struct attribute *spr_events_attrs[] = {
4964 	EVENT_PTR(mem_ld_hsw),
4965 	EVENT_PTR(mem_st_spr),
4966 	EVENT_PTR(mem_ld_aux),
4967 	NULL,
4968 };
4969 
4970 static struct attribute *spr_td_events_attrs[] = {
4971 	EVENT_PTR(slots),
4972 	EVENT_PTR(td_retiring),
4973 	EVENT_PTR(td_bad_spec),
4974 	EVENT_PTR(td_fe_bound),
4975 	EVENT_PTR(td_be_bound),
4976 	EVENT_PTR(td_heavy_ops),
4977 	EVENT_PTR(td_br_mispredict),
4978 	EVENT_PTR(td_fetch_lat),
4979 	EVENT_PTR(td_mem_bound),
4980 	NULL,
4981 };
4982 
4983 static struct attribute *spr_tsx_events_attrs[] = {
4984 	EVENT_PTR(tx_start),
4985 	EVENT_PTR(tx_abort),
4986 	EVENT_PTR(tx_commit),
4987 	EVENT_PTR(tx_capacity_read),
4988 	EVENT_PTR(tx_capacity_write),
4989 	EVENT_PTR(tx_conflict),
4990 	EVENT_PTR(cycles_t),
4991 	EVENT_PTR(cycles_ct),
4992 	NULL,
4993 };
4994 
freeze_on_smi_show(struct device * cdev,struct device_attribute * attr,char * buf)4995 static ssize_t freeze_on_smi_show(struct device *cdev,
4996 				  struct device_attribute *attr,
4997 				  char *buf)
4998 {
4999 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5000 }
5001 
5002 static DEFINE_MUTEX(freeze_on_smi_mutex);
5003 
freeze_on_smi_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)5004 static ssize_t freeze_on_smi_store(struct device *cdev,
5005 				   struct device_attribute *attr,
5006 				   const char *buf, size_t count)
5007 {
5008 	unsigned long val;
5009 	ssize_t ret;
5010 
5011 	ret = kstrtoul(buf, 0, &val);
5012 	if (ret)
5013 		return ret;
5014 
5015 	if (val > 1)
5016 		return -EINVAL;
5017 
5018 	mutex_lock(&freeze_on_smi_mutex);
5019 
5020 	if (x86_pmu.attr_freeze_on_smi == val)
5021 		goto done;
5022 
5023 	x86_pmu.attr_freeze_on_smi = val;
5024 
5025 	get_online_cpus();
5026 	on_each_cpu(flip_smm_bit, &val, 1);
5027 	put_online_cpus();
5028 done:
5029 	mutex_unlock(&freeze_on_smi_mutex);
5030 
5031 	return count;
5032 }
5033 
update_tfa_sched(void * ignored)5034 static void update_tfa_sched(void *ignored)
5035 {
5036 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5037 
5038 	/*
5039 	 * check if PMC3 is used
5040 	 * and if so force schedule out for all event types all contexts
5041 	 */
5042 	if (test_bit(3, cpuc->active_mask))
5043 		perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5044 }
5045 
show_sysctl_tfa(struct device * cdev,struct device_attribute * attr,char * buf)5046 static ssize_t show_sysctl_tfa(struct device *cdev,
5047 			      struct device_attribute *attr,
5048 			      char *buf)
5049 {
5050 	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5051 }
5052 
set_sysctl_tfa(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)5053 static ssize_t set_sysctl_tfa(struct device *cdev,
5054 			      struct device_attribute *attr,
5055 			      const char *buf, size_t count)
5056 {
5057 	bool val;
5058 	ssize_t ret;
5059 
5060 	ret = kstrtobool(buf, &val);
5061 	if (ret)
5062 		return ret;
5063 
5064 	/* no change */
5065 	if (val == allow_tsx_force_abort)
5066 		return count;
5067 
5068 	allow_tsx_force_abort = val;
5069 
5070 	get_online_cpus();
5071 	on_each_cpu(update_tfa_sched, NULL, 1);
5072 	put_online_cpus();
5073 
5074 	return count;
5075 }
5076 
5077 
5078 static DEVICE_ATTR_RW(freeze_on_smi);
5079 
branches_show(struct device * cdev,struct device_attribute * attr,char * buf)5080 static ssize_t branches_show(struct device *cdev,
5081 			     struct device_attribute *attr,
5082 			     char *buf)
5083 {
5084 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5085 }
5086 
5087 static DEVICE_ATTR_RO(branches);
5088 
5089 static struct attribute *lbr_attrs[] = {
5090 	&dev_attr_branches.attr,
5091 	NULL
5092 };
5093 
5094 static char pmu_name_str[30];
5095 
pmu_name_show(struct device * cdev,struct device_attribute * attr,char * buf)5096 static ssize_t pmu_name_show(struct device *cdev,
5097 			     struct device_attribute *attr,
5098 			     char *buf)
5099 {
5100 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5101 }
5102 
5103 static DEVICE_ATTR_RO(pmu_name);
5104 
5105 static struct attribute *intel_pmu_caps_attrs[] = {
5106        &dev_attr_pmu_name.attr,
5107        NULL
5108 };
5109 
5110 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5111 		   show_sysctl_tfa,
5112 		   set_sysctl_tfa);
5113 
5114 static struct attribute *intel_pmu_attrs[] = {
5115 	&dev_attr_freeze_on_smi.attr,
5116 	&dev_attr_allow_tsx_force_abort.attr,
5117 	NULL,
5118 };
5119 
5120 static umode_t
tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)5121 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5122 {
5123 	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5124 }
5125 
5126 static umode_t
pebs_is_visible(struct kobject * kobj,struct attribute * attr,int i)5127 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5128 {
5129 	return x86_pmu.pebs ? attr->mode : 0;
5130 }
5131 
5132 static umode_t
lbr_is_visible(struct kobject * kobj,struct attribute * attr,int i)5133 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5134 {
5135 	return x86_pmu.lbr_nr ? attr->mode : 0;
5136 }
5137 
5138 static umode_t
exra_is_visible(struct kobject * kobj,struct attribute * attr,int i)5139 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5140 {
5141 	return x86_pmu.version >= 2 ? attr->mode : 0;
5142 }
5143 
5144 static umode_t
default_is_visible(struct kobject * kobj,struct attribute * attr,int i)5145 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5146 {
5147 	if (attr == &dev_attr_allow_tsx_force_abort.attr)
5148 		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5149 
5150 	return attr->mode;
5151 }
5152 
5153 static struct attribute_group group_events_td  = {
5154 	.name = "events",
5155 };
5156 
5157 static struct attribute_group group_events_mem = {
5158 	.name       = "events",
5159 	.is_visible = pebs_is_visible,
5160 };
5161 
5162 static struct attribute_group group_events_tsx = {
5163 	.name       = "events",
5164 	.is_visible = tsx_is_visible,
5165 };
5166 
5167 static struct attribute_group group_caps_gen = {
5168 	.name  = "caps",
5169 	.attrs = intel_pmu_caps_attrs,
5170 };
5171 
5172 static struct attribute_group group_caps_lbr = {
5173 	.name       = "caps",
5174 	.attrs	    = lbr_attrs,
5175 	.is_visible = lbr_is_visible,
5176 };
5177 
5178 static struct attribute_group group_format_extra = {
5179 	.name       = "format",
5180 	.is_visible = exra_is_visible,
5181 };
5182 
5183 static struct attribute_group group_format_extra_skl = {
5184 	.name       = "format",
5185 	.is_visible = exra_is_visible,
5186 };
5187 
5188 static struct attribute_group group_default = {
5189 	.attrs      = intel_pmu_attrs,
5190 	.is_visible = default_is_visible,
5191 };
5192 
5193 static const struct attribute_group *attr_update[] = {
5194 	&group_events_td,
5195 	&group_events_mem,
5196 	&group_events_tsx,
5197 	&group_caps_gen,
5198 	&group_caps_lbr,
5199 	&group_format_extra,
5200 	&group_format_extra_skl,
5201 	&group_default,
5202 	NULL,
5203 };
5204 
5205 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5206 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5207 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5208 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5209 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5210 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5211 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5212 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5213 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5214 
5215 static struct attribute *adl_hybrid_events_attrs[] = {
5216 	EVENT_PTR(slots_adl),
5217 	EVENT_PTR(td_retiring_adl),
5218 	EVENT_PTR(td_bad_spec_adl),
5219 	EVENT_PTR(td_fe_bound_adl),
5220 	EVENT_PTR(td_be_bound_adl),
5221 	EVENT_PTR(td_heavy_ops_adl),
5222 	EVENT_PTR(td_br_mis_adl),
5223 	EVENT_PTR(td_fetch_lat_adl),
5224 	EVENT_PTR(td_mem_bound_adl),
5225 	NULL,
5226 };
5227 
5228 /* Must be in IDX order */
5229 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5230 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5231 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5232 
5233 static struct attribute *adl_hybrid_mem_attrs[] = {
5234 	EVENT_PTR(mem_ld_adl),
5235 	EVENT_PTR(mem_st_adl),
5236 	EVENT_PTR(mem_ld_aux_adl),
5237 	NULL,
5238 };
5239 
5240 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5241 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5242 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5243 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5244 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5245 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5246 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5247 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5248 
5249 static struct attribute *adl_hybrid_tsx_attrs[] = {
5250 	EVENT_PTR(tx_start_adl),
5251 	EVENT_PTR(tx_abort_adl),
5252 	EVENT_PTR(tx_commit_adl),
5253 	EVENT_PTR(tx_capacity_read_adl),
5254 	EVENT_PTR(tx_capacity_write_adl),
5255 	EVENT_PTR(tx_conflict_adl),
5256 	EVENT_PTR(cycles_t_adl),
5257 	EVENT_PTR(cycles_ct_adl),
5258 	NULL,
5259 };
5260 
5261 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5262 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5263 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5264 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5265 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5266 
5267 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5268 	FORMAT_HYBRID_PTR(in_tx),
5269 	FORMAT_HYBRID_PTR(in_tx_cp),
5270 	FORMAT_HYBRID_PTR(offcore_rsp),
5271 	FORMAT_HYBRID_PTR(ldlat),
5272 	FORMAT_HYBRID_PTR(frontend),
5273 	NULL,
5274 };
5275 
5276 static struct attribute *adl_hybrid_extra_attr[] = {
5277 	FORMAT_HYBRID_PTR(offcore_rsp),
5278 	FORMAT_HYBRID_PTR(ldlat),
5279 	FORMAT_HYBRID_PTR(frontend),
5280 	NULL,
5281 };
5282 
is_attr_for_this_pmu(struct kobject * kobj,struct attribute * attr)5283 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5284 {
5285 	struct device *dev = kobj_to_dev(kobj);
5286 	struct x86_hybrid_pmu *pmu =
5287 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5288 	struct perf_pmu_events_hybrid_attr *pmu_attr =
5289 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5290 
5291 	return pmu->cpu_type & pmu_attr->pmu_type;
5292 }
5293 
hybrid_events_is_visible(struct kobject * kobj,struct attribute * attr,int i)5294 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5295 					struct attribute *attr, int i)
5296 {
5297 	return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5298 }
5299 
hybrid_find_supported_cpu(struct x86_hybrid_pmu * pmu)5300 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5301 {
5302 	int cpu = cpumask_first(&pmu->supported_cpus);
5303 
5304 	return (cpu >= nr_cpu_ids) ? -1 : cpu;
5305 }
5306 
hybrid_tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)5307 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5308 				     struct attribute *attr, int i)
5309 {
5310 	struct device *dev = kobj_to_dev(kobj);
5311 	struct x86_hybrid_pmu *pmu =
5312 		 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5313 	int cpu = hybrid_find_supported_cpu(pmu);
5314 
5315 	return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5316 }
5317 
hybrid_format_is_visible(struct kobject * kobj,struct attribute * attr,int i)5318 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5319 					struct attribute *attr, int i)
5320 {
5321 	struct device *dev = kobj_to_dev(kobj);
5322 	struct x86_hybrid_pmu *pmu =
5323 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5324 	struct perf_pmu_format_hybrid_attr *pmu_attr =
5325 		container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5326 	int cpu = hybrid_find_supported_cpu(pmu);
5327 
5328 	return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5329 }
5330 
5331 static struct attribute_group hybrid_group_events_td  = {
5332 	.name		= "events",
5333 	.is_visible	= hybrid_events_is_visible,
5334 };
5335 
5336 static struct attribute_group hybrid_group_events_mem = {
5337 	.name		= "events",
5338 	.is_visible	= hybrid_events_is_visible,
5339 };
5340 
5341 static struct attribute_group hybrid_group_events_tsx = {
5342 	.name		= "events",
5343 	.is_visible	= hybrid_tsx_is_visible,
5344 };
5345 
5346 static struct attribute_group hybrid_group_format_extra = {
5347 	.name		= "format",
5348 	.is_visible	= hybrid_format_is_visible,
5349 };
5350 
intel_hybrid_get_attr_cpus(struct device * dev,struct device_attribute * attr,char * buf)5351 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5352 					  struct device_attribute *attr,
5353 					  char *buf)
5354 {
5355 	struct x86_hybrid_pmu *pmu =
5356 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5357 
5358 	return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5359 }
5360 
5361 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5362 static struct attribute *intel_hybrid_cpus_attrs[] = {
5363 	&dev_attr_cpus.attr,
5364 	NULL,
5365 };
5366 
5367 static struct attribute_group hybrid_group_cpus = {
5368 	.attrs		= intel_hybrid_cpus_attrs,
5369 };
5370 
5371 static const struct attribute_group *hybrid_attr_update[] = {
5372 	&hybrid_group_events_td,
5373 	&hybrid_group_events_mem,
5374 	&hybrid_group_events_tsx,
5375 	&group_caps_gen,
5376 	&group_caps_lbr,
5377 	&hybrid_group_format_extra,
5378 	&group_default,
5379 	&hybrid_group_cpus,
5380 	NULL,
5381 };
5382 
5383 static struct attribute *empty_attrs;
5384 
intel_pmu_check_num_counters(int * num_counters,int * num_counters_fixed,u64 * intel_ctrl,u64 fixed_mask)5385 static void intel_pmu_check_num_counters(int *num_counters,
5386 					 int *num_counters_fixed,
5387 					 u64 *intel_ctrl, u64 fixed_mask)
5388 {
5389 	if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5390 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5391 		     *num_counters, INTEL_PMC_MAX_GENERIC);
5392 		*num_counters = INTEL_PMC_MAX_GENERIC;
5393 	}
5394 	*intel_ctrl = (1ULL << *num_counters) - 1;
5395 
5396 	if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5397 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5398 		     *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5399 		*num_counters_fixed = INTEL_PMC_MAX_FIXED;
5400 	}
5401 
5402 	*intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5403 }
5404 
intel_pmu_check_event_constraints(struct event_constraint * event_constraints,int num_counters,int num_counters_fixed,u64 intel_ctrl)5405 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5406 					      int num_counters,
5407 					      int num_counters_fixed,
5408 					      u64 intel_ctrl)
5409 {
5410 	struct event_constraint *c;
5411 
5412 	if (!event_constraints)
5413 		return;
5414 
5415 	/*
5416 	 * event on fixed counter2 (REF_CYCLES) only works on this
5417 	 * counter, so do not extend mask to generic counters
5418 	 */
5419 	for_each_event_constraint(c, event_constraints) {
5420 		/*
5421 		 * Don't extend the topdown slots and metrics
5422 		 * events to the generic counters.
5423 		 */
5424 		if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5425 			/*
5426 			 * Disable topdown slots and metrics events,
5427 			 * if slots event is not in CPUID.
5428 			 */
5429 			if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5430 				c->idxmsk64 = 0;
5431 			c->weight = hweight64(c->idxmsk64);
5432 			continue;
5433 		}
5434 
5435 		if (c->cmask == FIXED_EVENT_FLAGS) {
5436 			/* Disabled fixed counters which are not in CPUID */
5437 			c->idxmsk64 &= intel_ctrl;
5438 
5439 			if (c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES)
5440 				c->idxmsk64 |= (1ULL << num_counters) - 1;
5441 		}
5442 		c->idxmsk64 &=
5443 			~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5444 		c->weight = hweight64(c->idxmsk64);
5445 	}
5446 }
5447 
intel_pmu_check_extra_regs(struct extra_reg * extra_regs)5448 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5449 {
5450 	struct extra_reg *er;
5451 
5452 	/*
5453 	 * Access extra MSR may cause #GP under certain circumstances.
5454 	 * E.g. KVM doesn't support offcore event
5455 	 * Check all extra_regs here.
5456 	 */
5457 	if (!extra_regs)
5458 		return;
5459 
5460 	for (er = extra_regs; er->msr; er++) {
5461 		er->extra_msr_access = check_msr(er->msr, 0x11UL);
5462 		/* Disable LBR select mapping */
5463 		if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5464 			x86_pmu.lbr_sel_map = NULL;
5465 	}
5466 }
5467 
intel_pmu_check_hybrid_pmus(u64 fixed_mask)5468 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5469 {
5470 	struct x86_hybrid_pmu *pmu;
5471 	int i;
5472 
5473 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5474 		pmu = &x86_pmu.hybrid_pmu[i];
5475 
5476 		intel_pmu_check_num_counters(&pmu->num_counters,
5477 					     &pmu->num_counters_fixed,
5478 					     &pmu->intel_ctrl,
5479 					     fixed_mask);
5480 
5481 		if (pmu->intel_cap.perf_metrics) {
5482 			pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5483 			pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5484 		}
5485 
5486 		if (pmu->intel_cap.pebs_output_pt_available)
5487 			pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5488 
5489 		intel_pmu_check_event_constraints(pmu->event_constraints,
5490 						  pmu->num_counters,
5491 						  pmu->num_counters_fixed,
5492 						  pmu->intel_ctrl);
5493 
5494 		intel_pmu_check_extra_regs(pmu->extra_regs);
5495 	}
5496 }
5497 
intel_pmu_init(void)5498 __init int intel_pmu_init(void)
5499 {
5500 	struct attribute **extra_skl_attr = &empty_attrs;
5501 	struct attribute **extra_attr = &empty_attrs;
5502 	struct attribute **td_attr    = &empty_attrs;
5503 	struct attribute **mem_attr   = &empty_attrs;
5504 	struct attribute **tsx_attr   = &empty_attrs;
5505 	union cpuid10_edx edx;
5506 	union cpuid10_eax eax;
5507 	union cpuid10_ebx ebx;
5508 	unsigned int fixed_mask;
5509 	bool pmem = false;
5510 	int version, i;
5511 	char *name;
5512 	struct x86_hybrid_pmu *pmu;
5513 
5514 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5515 		switch (boot_cpu_data.x86) {
5516 		case 0x6:
5517 			return p6_pmu_init();
5518 		case 0xb:
5519 			return knc_pmu_init();
5520 		case 0xf:
5521 			return p4_pmu_init();
5522 		}
5523 		return -ENODEV;
5524 	}
5525 
5526 	/*
5527 	 * Check whether the Architectural PerfMon supports
5528 	 * Branch Misses Retired hw_event or not.
5529 	 */
5530 	cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5531 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5532 		return -ENODEV;
5533 
5534 	version = eax.split.version_id;
5535 	if (version < 2)
5536 		x86_pmu = core_pmu;
5537 	else
5538 		x86_pmu = intel_pmu;
5539 
5540 	x86_pmu.version			= version;
5541 	x86_pmu.num_counters		= eax.split.num_counters;
5542 	x86_pmu.cntval_bits		= eax.split.bit_width;
5543 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
5544 
5545 	x86_pmu.events_maskl		= ebx.full;
5546 	x86_pmu.events_mask_len		= eax.split.mask_length;
5547 
5548 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5549 
5550 	/*
5551 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
5552 	 * assume at least 3 events, when not running in a hypervisor:
5553 	 */
5554 	if (version > 1 && version < 5) {
5555 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5556 
5557 		x86_pmu.num_counters_fixed =
5558 			max((int)edx.split.num_counters_fixed, assume);
5559 
5560 		fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5561 	} else if (version >= 5)
5562 		x86_pmu.num_counters_fixed = fls(fixed_mask);
5563 
5564 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
5565 		u64 capabilities;
5566 
5567 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5568 		x86_pmu.intel_cap.capabilities = capabilities;
5569 	}
5570 
5571 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5572 		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5573 		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5574 	}
5575 
5576 	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5577 		intel_pmu_arch_lbr_init();
5578 
5579 	intel_ds_init();
5580 
5581 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5582 
5583 	if (version >= 5) {
5584 		x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5585 		if (x86_pmu.intel_cap.anythread_deprecated)
5586 			pr_cont(" AnyThread deprecated, ");
5587 	}
5588 
5589 	/*
5590 	 * Install the hw-cache-events table:
5591 	 */
5592 	switch (boot_cpu_data.x86_model) {
5593 	case INTEL_FAM6_CORE_YONAH:
5594 		pr_cont("Core events, ");
5595 		name = "core";
5596 		break;
5597 
5598 	case INTEL_FAM6_CORE2_MEROM:
5599 		x86_add_quirk(intel_clovertown_quirk);
5600 		fallthrough;
5601 
5602 	case INTEL_FAM6_CORE2_MEROM_L:
5603 	case INTEL_FAM6_CORE2_PENRYN:
5604 	case INTEL_FAM6_CORE2_DUNNINGTON:
5605 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5606 		       sizeof(hw_cache_event_ids));
5607 
5608 		intel_pmu_lbr_init_core();
5609 
5610 		x86_pmu.event_constraints = intel_core2_event_constraints;
5611 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5612 		pr_cont("Core2 events, ");
5613 		name = "core2";
5614 		break;
5615 
5616 	case INTEL_FAM6_NEHALEM:
5617 	case INTEL_FAM6_NEHALEM_EP:
5618 	case INTEL_FAM6_NEHALEM_EX:
5619 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5620 		       sizeof(hw_cache_event_ids));
5621 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5622 		       sizeof(hw_cache_extra_regs));
5623 
5624 		intel_pmu_lbr_init_nhm();
5625 
5626 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
5627 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5628 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5629 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
5630 		x86_pmu.limit_period = nhm_limit_period;
5631 
5632 		mem_attr = nhm_mem_events_attrs;
5633 
5634 		/* UOPS_ISSUED.STALLED_CYCLES */
5635 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5636 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5637 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5638 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5639 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5640 
5641 		intel_pmu_pebs_data_source_nhm();
5642 		x86_add_quirk(intel_nehalem_quirk);
5643 		x86_pmu.pebs_no_tlb = 1;
5644 		extra_attr = nhm_format_attr;
5645 
5646 		pr_cont("Nehalem events, ");
5647 		name = "nehalem";
5648 		break;
5649 
5650 	case INTEL_FAM6_ATOM_BONNELL:
5651 	case INTEL_FAM6_ATOM_BONNELL_MID:
5652 	case INTEL_FAM6_ATOM_SALTWELL:
5653 	case INTEL_FAM6_ATOM_SALTWELL_MID:
5654 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5655 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5656 		       sizeof(hw_cache_event_ids));
5657 
5658 		intel_pmu_lbr_init_atom();
5659 
5660 		x86_pmu.event_constraints = intel_gen_event_constraints;
5661 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5662 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5663 		pr_cont("Atom events, ");
5664 		name = "bonnell";
5665 		break;
5666 
5667 	case INTEL_FAM6_ATOM_SILVERMONT:
5668 	case INTEL_FAM6_ATOM_SILVERMONT_D:
5669 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
5670 	case INTEL_FAM6_ATOM_AIRMONT:
5671 	case INTEL_FAM6_ATOM_AIRMONT_MID:
5672 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5673 			sizeof(hw_cache_event_ids));
5674 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5675 		       sizeof(hw_cache_extra_regs));
5676 
5677 		intel_pmu_lbr_init_slm();
5678 
5679 		x86_pmu.event_constraints = intel_slm_event_constraints;
5680 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5681 		x86_pmu.extra_regs = intel_slm_extra_regs;
5682 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5683 		td_attr = slm_events_attrs;
5684 		extra_attr = slm_format_attr;
5685 		pr_cont("Silvermont events, ");
5686 		name = "silvermont";
5687 		break;
5688 
5689 	case INTEL_FAM6_ATOM_GOLDMONT:
5690 	case INTEL_FAM6_ATOM_GOLDMONT_D:
5691 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5692 		       sizeof(hw_cache_event_ids));
5693 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5694 		       sizeof(hw_cache_extra_regs));
5695 
5696 		intel_pmu_lbr_init_skl();
5697 
5698 		x86_pmu.event_constraints = intel_slm_event_constraints;
5699 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5700 		x86_pmu.extra_regs = intel_glm_extra_regs;
5701 		/*
5702 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5703 		 * for precise cycles.
5704 		 * :pp is identical to :ppp
5705 		 */
5706 		x86_pmu.pebs_aliases = NULL;
5707 		x86_pmu.pebs_prec_dist = true;
5708 		x86_pmu.lbr_pt_coexist = true;
5709 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5710 		td_attr = glm_events_attrs;
5711 		extra_attr = slm_format_attr;
5712 		pr_cont("Goldmont events, ");
5713 		name = "goldmont";
5714 		break;
5715 
5716 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5717 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5718 		       sizeof(hw_cache_event_ids));
5719 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5720 		       sizeof(hw_cache_extra_regs));
5721 
5722 		intel_pmu_lbr_init_skl();
5723 
5724 		x86_pmu.event_constraints = intel_slm_event_constraints;
5725 		x86_pmu.extra_regs = intel_glm_extra_regs;
5726 		/*
5727 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5728 		 * for precise cycles.
5729 		 */
5730 		x86_pmu.pebs_aliases = NULL;
5731 		x86_pmu.pebs_prec_dist = true;
5732 		x86_pmu.lbr_pt_coexist = true;
5733 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5734 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
5735 		x86_pmu.get_event_constraints = glp_get_event_constraints;
5736 		td_attr = glm_events_attrs;
5737 		/* Goldmont Plus has 4-wide pipeline */
5738 		event_attr_td_total_slots_scale_glm.event_str = "4";
5739 		extra_attr = slm_format_attr;
5740 		pr_cont("Goldmont plus events, ");
5741 		name = "goldmont_plus";
5742 		break;
5743 
5744 	case INTEL_FAM6_ATOM_TREMONT_D:
5745 	case INTEL_FAM6_ATOM_TREMONT:
5746 	case INTEL_FAM6_ATOM_TREMONT_L:
5747 		x86_pmu.late_ack = true;
5748 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5749 		       sizeof(hw_cache_event_ids));
5750 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5751 		       sizeof(hw_cache_extra_regs));
5752 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5753 
5754 		intel_pmu_lbr_init_skl();
5755 
5756 		x86_pmu.event_constraints = intel_slm_event_constraints;
5757 		x86_pmu.extra_regs = intel_tnt_extra_regs;
5758 		/*
5759 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5760 		 * for precise cycles.
5761 		 */
5762 		x86_pmu.pebs_aliases = NULL;
5763 		x86_pmu.pebs_prec_dist = true;
5764 		x86_pmu.lbr_pt_coexist = true;
5765 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5766 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
5767 		td_attr = tnt_events_attrs;
5768 		extra_attr = slm_format_attr;
5769 		pr_cont("Tremont events, ");
5770 		name = "Tremont";
5771 		break;
5772 
5773 	case INTEL_FAM6_WESTMERE:
5774 	case INTEL_FAM6_WESTMERE_EP:
5775 	case INTEL_FAM6_WESTMERE_EX:
5776 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5777 		       sizeof(hw_cache_event_ids));
5778 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5779 		       sizeof(hw_cache_extra_regs));
5780 
5781 		intel_pmu_lbr_init_nhm();
5782 
5783 		x86_pmu.event_constraints = intel_westmere_event_constraints;
5784 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5785 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5786 		x86_pmu.extra_regs = intel_westmere_extra_regs;
5787 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5788 
5789 		mem_attr = nhm_mem_events_attrs;
5790 
5791 		/* UOPS_ISSUED.STALLED_CYCLES */
5792 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5793 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5794 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5795 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5796 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5797 
5798 		intel_pmu_pebs_data_source_nhm();
5799 		extra_attr = nhm_format_attr;
5800 		pr_cont("Westmere events, ");
5801 		name = "westmere";
5802 		break;
5803 
5804 	case INTEL_FAM6_SANDYBRIDGE:
5805 	case INTEL_FAM6_SANDYBRIDGE_X:
5806 		x86_add_quirk(intel_sandybridge_quirk);
5807 		x86_add_quirk(intel_ht_bug);
5808 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5809 		       sizeof(hw_cache_event_ids));
5810 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5811 		       sizeof(hw_cache_extra_regs));
5812 
5813 		intel_pmu_lbr_init_snb();
5814 
5815 		x86_pmu.event_constraints = intel_snb_event_constraints;
5816 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5817 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5818 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5819 			x86_pmu.extra_regs = intel_snbep_extra_regs;
5820 		else
5821 			x86_pmu.extra_regs = intel_snb_extra_regs;
5822 
5823 
5824 		/* all extra regs are per-cpu when HT is on */
5825 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5826 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5827 
5828 		td_attr  = snb_events_attrs;
5829 		mem_attr = snb_mem_events_attrs;
5830 
5831 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5832 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5833 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5834 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5835 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5836 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5837 
5838 		extra_attr = nhm_format_attr;
5839 
5840 		pr_cont("SandyBridge events, ");
5841 		name = "sandybridge";
5842 		break;
5843 
5844 	case INTEL_FAM6_IVYBRIDGE:
5845 	case INTEL_FAM6_IVYBRIDGE_X:
5846 		x86_add_quirk(intel_ht_bug);
5847 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5848 		       sizeof(hw_cache_event_ids));
5849 		/* dTLB-load-misses on IVB is different than SNB */
5850 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5851 
5852 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5853 		       sizeof(hw_cache_extra_regs));
5854 
5855 		intel_pmu_lbr_init_snb();
5856 
5857 		x86_pmu.event_constraints = intel_ivb_event_constraints;
5858 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5859 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5860 		x86_pmu.pebs_prec_dist = true;
5861 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5862 			x86_pmu.extra_regs = intel_snbep_extra_regs;
5863 		else
5864 			x86_pmu.extra_regs = intel_snb_extra_regs;
5865 		/* all extra regs are per-cpu when HT is on */
5866 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5867 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5868 
5869 		td_attr  = snb_events_attrs;
5870 		mem_attr = snb_mem_events_attrs;
5871 
5872 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5873 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5874 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5875 
5876 		extra_attr = nhm_format_attr;
5877 
5878 		pr_cont("IvyBridge events, ");
5879 		name = "ivybridge";
5880 		break;
5881 
5882 
5883 	case INTEL_FAM6_HASWELL:
5884 	case INTEL_FAM6_HASWELL_X:
5885 	case INTEL_FAM6_HASWELL_L:
5886 	case INTEL_FAM6_HASWELL_G:
5887 		x86_add_quirk(intel_ht_bug);
5888 		x86_add_quirk(intel_pebs_isolation_quirk);
5889 		x86_pmu.late_ack = true;
5890 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5891 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5892 
5893 		intel_pmu_lbr_init_hsw();
5894 
5895 		x86_pmu.event_constraints = intel_hsw_event_constraints;
5896 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5897 		x86_pmu.extra_regs = intel_snbep_extra_regs;
5898 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5899 		x86_pmu.pebs_prec_dist = true;
5900 		/* all extra regs are per-cpu when HT is on */
5901 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5902 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5903 
5904 		x86_pmu.hw_config = hsw_hw_config;
5905 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5906 		x86_pmu.lbr_double_abort = true;
5907 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5908 			hsw_format_attr : nhm_format_attr;
5909 		td_attr  = hsw_events_attrs;
5910 		mem_attr = hsw_mem_events_attrs;
5911 		tsx_attr = hsw_tsx_events_attrs;
5912 		pr_cont("Haswell events, ");
5913 		name = "haswell";
5914 		break;
5915 
5916 	case INTEL_FAM6_BROADWELL:
5917 	case INTEL_FAM6_BROADWELL_D:
5918 	case INTEL_FAM6_BROADWELL_G:
5919 	case INTEL_FAM6_BROADWELL_X:
5920 		x86_add_quirk(intel_pebs_isolation_quirk);
5921 		x86_pmu.late_ack = true;
5922 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5923 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5924 
5925 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5926 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
5927 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
5928 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
5929 									  HSW_SNOOP_DRAM;
5930 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
5931 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5932 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
5933 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5934 
5935 		intel_pmu_lbr_init_hsw();
5936 
5937 		x86_pmu.event_constraints = intel_bdw_event_constraints;
5938 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5939 		x86_pmu.extra_regs = intel_snbep_extra_regs;
5940 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5941 		x86_pmu.pebs_prec_dist = true;
5942 		/* all extra regs are per-cpu when HT is on */
5943 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5944 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5945 
5946 		x86_pmu.hw_config = hsw_hw_config;
5947 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5948 		x86_pmu.limit_period = bdw_limit_period;
5949 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5950 			hsw_format_attr : nhm_format_attr;
5951 		td_attr  = hsw_events_attrs;
5952 		mem_attr = hsw_mem_events_attrs;
5953 		tsx_attr = hsw_tsx_events_attrs;
5954 		pr_cont("Broadwell events, ");
5955 		name = "broadwell";
5956 		break;
5957 
5958 	case INTEL_FAM6_XEON_PHI_KNL:
5959 	case INTEL_FAM6_XEON_PHI_KNM:
5960 		memcpy(hw_cache_event_ids,
5961 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5962 		memcpy(hw_cache_extra_regs,
5963 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5964 		intel_pmu_lbr_init_knl();
5965 
5966 		x86_pmu.event_constraints = intel_slm_event_constraints;
5967 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5968 		x86_pmu.extra_regs = intel_knl_extra_regs;
5969 
5970 		/* all extra regs are per-cpu when HT is on */
5971 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5972 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5973 		extra_attr = slm_format_attr;
5974 		pr_cont("Knights Landing/Mill events, ");
5975 		name = "knights-landing";
5976 		break;
5977 
5978 	case INTEL_FAM6_SKYLAKE_X:
5979 		pmem = true;
5980 		fallthrough;
5981 	case INTEL_FAM6_SKYLAKE_L:
5982 	case INTEL_FAM6_SKYLAKE:
5983 	case INTEL_FAM6_KABYLAKE_L:
5984 	case INTEL_FAM6_KABYLAKE:
5985 	case INTEL_FAM6_COMETLAKE_L:
5986 	case INTEL_FAM6_COMETLAKE:
5987 		x86_add_quirk(intel_pebs_isolation_quirk);
5988 		x86_pmu.late_ack = true;
5989 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5990 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5991 		intel_pmu_lbr_init_skl();
5992 
5993 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
5994 		event_attr_td_recovery_bubbles.event_str_noht =
5995 			"event=0xd,umask=0x1,cmask=1";
5996 		event_attr_td_recovery_bubbles.event_str_ht =
5997 			"event=0xd,umask=0x1,cmask=1,any=1";
5998 
5999 		x86_pmu.event_constraints = intel_skl_event_constraints;
6000 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6001 		x86_pmu.extra_regs = intel_skl_extra_regs;
6002 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6003 		x86_pmu.pebs_prec_dist = true;
6004 		/* all extra regs are per-cpu when HT is on */
6005 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6006 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6007 
6008 		x86_pmu.hw_config = hsw_hw_config;
6009 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6010 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6011 			hsw_format_attr : nhm_format_attr;
6012 		extra_skl_attr = skl_format_attr;
6013 		td_attr  = hsw_events_attrs;
6014 		mem_attr = hsw_mem_events_attrs;
6015 		tsx_attr = hsw_tsx_events_attrs;
6016 		intel_pmu_pebs_data_source_skl(pmem);
6017 
6018 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
6019 			x86_pmu.flags |= PMU_FL_TFA;
6020 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
6021 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6022 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6023 		}
6024 
6025 		pr_cont("Skylake events, ");
6026 		name = "skylake";
6027 		break;
6028 
6029 	case INTEL_FAM6_ICELAKE_X:
6030 	case INTEL_FAM6_ICELAKE_D:
6031 		pmem = true;
6032 		fallthrough;
6033 	case INTEL_FAM6_ICELAKE_L:
6034 	case INTEL_FAM6_ICELAKE:
6035 	case INTEL_FAM6_TIGERLAKE_L:
6036 	case INTEL_FAM6_TIGERLAKE:
6037 	case INTEL_FAM6_ROCKETLAKE:
6038 		x86_pmu.late_ack = true;
6039 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6040 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6041 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6042 		intel_pmu_lbr_init_skl();
6043 
6044 		x86_pmu.event_constraints = intel_icl_event_constraints;
6045 		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6046 		x86_pmu.extra_regs = intel_icl_extra_regs;
6047 		x86_pmu.pebs_aliases = NULL;
6048 		x86_pmu.pebs_prec_dist = true;
6049 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6050 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6051 
6052 		x86_pmu.hw_config = hsw_hw_config;
6053 		x86_pmu.get_event_constraints = icl_get_event_constraints;
6054 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6055 			hsw_format_attr : nhm_format_attr;
6056 		extra_skl_attr = skl_format_attr;
6057 		mem_attr = icl_events_attrs;
6058 		td_attr = icl_td_events_attrs;
6059 		tsx_attr = icl_tsx_events_attrs;
6060 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6061 		x86_pmu.lbr_pt_coexist = true;
6062 		intel_pmu_pebs_data_source_skl(pmem);
6063 		x86_pmu.num_topdown_events = 4;
6064 		x86_pmu.update_topdown_event = icl_update_topdown_event;
6065 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6066 		pr_cont("Icelake events, ");
6067 		name = "icelake";
6068 		break;
6069 
6070 	case INTEL_FAM6_SAPPHIRERAPIDS_X:
6071 		pmem = true;
6072 		x86_pmu.late_ack = true;
6073 		memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6074 		memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6075 
6076 		x86_pmu.event_constraints = intel_spr_event_constraints;
6077 		x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6078 		x86_pmu.extra_regs = intel_spr_extra_regs;
6079 		x86_pmu.limit_period = spr_limit_period;
6080 		x86_pmu.pebs_aliases = NULL;
6081 		x86_pmu.pebs_prec_dist = true;
6082 		x86_pmu.pebs_block = true;
6083 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6084 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6085 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
6086 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6087 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6088 
6089 		x86_pmu.hw_config = hsw_hw_config;
6090 		x86_pmu.get_event_constraints = spr_get_event_constraints;
6091 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6092 			hsw_format_attr : nhm_format_attr;
6093 		extra_skl_attr = skl_format_attr;
6094 		mem_attr = spr_events_attrs;
6095 		td_attr = spr_td_events_attrs;
6096 		tsx_attr = spr_tsx_events_attrs;
6097 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6098 		x86_pmu.lbr_pt_coexist = true;
6099 		intel_pmu_pebs_data_source_skl(pmem);
6100 		x86_pmu.num_topdown_events = 8;
6101 		x86_pmu.update_topdown_event = icl_update_topdown_event;
6102 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6103 		pr_cont("Sapphire Rapids events, ");
6104 		name = "sapphire_rapids";
6105 		break;
6106 
6107 	case INTEL_FAM6_ALDERLAKE:
6108 	case INTEL_FAM6_ALDERLAKE_L:
6109 		/*
6110 		 * Alder Lake has 2 types of CPU, core and atom.
6111 		 *
6112 		 * Initialize the common PerfMon capabilities here.
6113 		 */
6114 		x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6115 					     sizeof(struct x86_hybrid_pmu),
6116 					     GFP_KERNEL);
6117 		if (!x86_pmu.hybrid_pmu)
6118 			return -ENOMEM;
6119 		static_branch_enable(&perf_is_hybrid);
6120 		x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6121 
6122 		x86_pmu.late_ack = true;
6123 		x86_pmu.pebs_aliases = NULL;
6124 		x86_pmu.pebs_prec_dist = true;
6125 		x86_pmu.pebs_block = true;
6126 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6127 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6128 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
6129 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6130 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6131 		x86_pmu.lbr_pt_coexist = true;
6132 		intel_pmu_pebs_data_source_skl(false);
6133 		x86_pmu.num_topdown_events = 8;
6134 		x86_pmu.update_topdown_event = adl_update_topdown_event;
6135 		x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
6136 
6137 		x86_pmu.filter_match = intel_pmu_filter_match;
6138 		x86_pmu.get_event_constraints = adl_get_event_constraints;
6139 		x86_pmu.hw_config = adl_hw_config;
6140 		x86_pmu.limit_period = spr_limit_period;
6141 		x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6142 		/*
6143 		 * The rtm_abort_event is used to check whether to enable GPRs
6144 		 * for the RTM abort event. Atom doesn't have the RTM abort
6145 		 * event. There is no harmful to set it in the common
6146 		 * x86_pmu.rtm_abort_event.
6147 		 */
6148 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6149 
6150 		td_attr = adl_hybrid_events_attrs;
6151 		mem_attr = adl_hybrid_mem_attrs;
6152 		tsx_attr = adl_hybrid_tsx_attrs;
6153 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6154 			adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6155 
6156 		/* Initialize big core specific PerfMon capabilities.*/
6157 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6158 		pmu->name = "cpu_core";
6159 		pmu->cpu_type = hybrid_big;
6160 		pmu->num_counters = x86_pmu.num_counters + 2;
6161 		pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6162 		pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6163 		pmu->unconstrained = (struct event_constraint)
6164 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6165 							   0, pmu->num_counters, 0, 0);
6166 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6167 		pmu->intel_cap.perf_metrics = 1;
6168 		pmu->intel_cap.pebs_output_pt_available = 0;
6169 
6170 		memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6171 		memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6172 		pmu->event_constraints = intel_spr_event_constraints;
6173 		pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6174 		pmu->extra_regs = intel_spr_extra_regs;
6175 
6176 		/* Initialize Atom core specific PerfMon capabilities.*/
6177 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6178 		pmu->name = "cpu_atom";
6179 		pmu->cpu_type = hybrid_small;
6180 		pmu->num_counters = x86_pmu.num_counters;
6181 		pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6182 		pmu->max_pebs_events = x86_pmu.max_pebs_events;
6183 		pmu->unconstrained = (struct event_constraint)
6184 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6185 							   0, pmu->num_counters, 0, 0);
6186 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6187 		pmu->intel_cap.perf_metrics = 0;
6188 		pmu->intel_cap.pebs_output_pt_available = 1;
6189 
6190 		memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6191 		memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6192 		pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6193 		pmu->event_constraints = intel_slm_event_constraints;
6194 		pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6195 		pmu->extra_regs = intel_grt_extra_regs;
6196 		pr_cont("Alderlake Hybrid events, ");
6197 		name = "alderlake_hybrid";
6198 		break;
6199 
6200 	default:
6201 		switch (x86_pmu.version) {
6202 		case 1:
6203 			x86_pmu.event_constraints = intel_v1_event_constraints;
6204 			pr_cont("generic architected perfmon v1, ");
6205 			name = "generic_arch_v1";
6206 			break;
6207 		default:
6208 			/*
6209 			 * default constraints for v2 and up
6210 			 */
6211 			x86_pmu.event_constraints = intel_gen_event_constraints;
6212 			pr_cont("generic architected perfmon, ");
6213 			name = "generic_arch_v2+";
6214 			break;
6215 		}
6216 	}
6217 
6218 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6219 
6220 	if (!is_hybrid()) {
6221 		group_events_td.attrs  = td_attr;
6222 		group_events_mem.attrs = mem_attr;
6223 		group_events_tsx.attrs = tsx_attr;
6224 		group_format_extra.attrs = extra_attr;
6225 		group_format_extra_skl.attrs = extra_skl_attr;
6226 
6227 		x86_pmu.attr_update = attr_update;
6228 	} else {
6229 		hybrid_group_events_td.attrs  = td_attr;
6230 		hybrid_group_events_mem.attrs = mem_attr;
6231 		hybrid_group_events_tsx.attrs = tsx_attr;
6232 		hybrid_group_format_extra.attrs = extra_attr;
6233 
6234 		x86_pmu.attr_update = hybrid_attr_update;
6235 	}
6236 
6237 	intel_pmu_check_num_counters(&x86_pmu.num_counters,
6238 				     &x86_pmu.num_counters_fixed,
6239 				     &x86_pmu.intel_ctrl,
6240 				     (u64)fixed_mask);
6241 
6242 	/* AnyThread may be deprecated on arch perfmon v5 or later */
6243 	if (x86_pmu.intel_cap.anythread_deprecated)
6244 		x86_pmu.format_attrs = intel_arch_formats_attr;
6245 
6246 	intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6247 					  x86_pmu.num_counters,
6248 					  x86_pmu.num_counters_fixed,
6249 					  x86_pmu.intel_ctrl);
6250 	/*
6251 	 * Access LBR MSR may cause #GP under certain circumstances.
6252 	 * E.g. KVM doesn't support LBR MSR
6253 	 * Check all LBT MSR here.
6254 	 * Disable LBR access if any LBR MSRs can not be accessed.
6255 	 */
6256 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6257 		x86_pmu.lbr_nr = 0;
6258 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
6259 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6260 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6261 			x86_pmu.lbr_nr = 0;
6262 	}
6263 
6264 	if (x86_pmu.lbr_nr)
6265 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6266 
6267 	intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6268 
6269 	/* Support full width counters using alternative MSR range */
6270 	if (x86_pmu.intel_cap.full_width_write) {
6271 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6272 		x86_pmu.perfctr = MSR_IA32_PMC0;
6273 		pr_cont("full-width counters, ");
6274 	}
6275 
6276 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6277 		x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6278 
6279 	if (is_hybrid())
6280 		intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6281 
6282 	return 0;
6283 }
6284 
6285 /*
6286  * HT bug: phase 2 init
6287  * Called once we have valid topology information to check
6288  * whether or not HT is enabled
6289  * If HT is off, then we disable the workaround
6290  */
fixup_ht_bug(void)6291 static __init int fixup_ht_bug(void)
6292 {
6293 	int c;
6294 	/*
6295 	 * problem not present on this CPU model, nothing to do
6296 	 */
6297 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6298 		return 0;
6299 
6300 	if (topology_max_smt_threads() > 1) {
6301 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6302 		return 0;
6303 	}
6304 
6305 	cpus_read_lock();
6306 
6307 	hardlockup_detector_perf_stop();
6308 
6309 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6310 
6311 	x86_pmu.start_scheduling = NULL;
6312 	x86_pmu.commit_scheduling = NULL;
6313 	x86_pmu.stop_scheduling = NULL;
6314 
6315 	hardlockup_detector_perf_restart();
6316 
6317 	for_each_online_cpu(c)
6318 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6319 
6320 	cpus_read_unlock();
6321 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6322 	return 0;
6323 }
6324 subsys_initcall(fixup_ht_bug)
6325