1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/percpu-rwsem.h>
35 
36 #include <trace/events/power.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/cpuhp.h>
39 
40 #include "smpboot.h"
41 
42 /**
43  * cpuhp_cpu_state - Per cpu hotplug state storage
44  * @state:	The current cpu state
45  * @target:	The target state
46  * @thread:	Pointer to the hotplug thread
47  * @should_run:	Thread should execute
48  * @rollback:	Perform a rollback
49  * @single:	Single callback invocation
50  * @bringup:	Single callback bringup or teardown selector
51  * @cb_state:	The state for a single callback (install/uninstall)
52  * @result:	Result of the operation
53  * @done_up:	Signal completion to the issuer of the task for cpu-up
54  * @done_down:	Signal completion to the issuer of the task for cpu-down
55  */
56 struct cpuhp_cpu_state {
57 	enum cpuhp_state	state;
58 	enum cpuhp_state	target;
59 	enum cpuhp_state	fail;
60 #ifdef CONFIG_SMP
61 	struct task_struct	*thread;
62 	bool			should_run;
63 	bool			rollback;
64 	bool			single;
65 	bool			bringup;
66 	int			cpu;
67 	struct hlist_node	*node;
68 	struct hlist_node	*last;
69 	enum cpuhp_state	cb_state;
70 	int			result;
71 	struct completion	done_up;
72 	struct completion	done_down;
73 #endif
74 };
75 
76 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
77 	.fail = CPUHP_INVALID,
78 };
79 
80 #ifdef CONFIG_SMP
81 cpumask_t cpus_booted_once_mask;
82 #endif
83 
84 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
85 static struct lockdep_map cpuhp_state_up_map =
86 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
87 static struct lockdep_map cpuhp_state_down_map =
88 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
89 
90 
cpuhp_lock_acquire(bool bringup)91 static inline void cpuhp_lock_acquire(bool bringup)
92 {
93 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
94 }
95 
cpuhp_lock_release(bool bringup)96 static inline void cpuhp_lock_release(bool bringup)
97 {
98 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
99 }
100 #else
101 
cpuhp_lock_acquire(bool bringup)102 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)103 static inline void cpuhp_lock_release(bool bringup) { }
104 
105 #endif
106 
107 /**
108  * cpuhp_step - Hotplug state machine step
109  * @name:	Name of the step
110  * @startup:	Startup function of the step
111  * @teardown:	Teardown function of the step
112  * @cant_stop:	Bringup/teardown can't be stopped at this step
113  */
114 struct cpuhp_step {
115 	const char		*name;
116 	union {
117 		int		(*single)(unsigned int cpu);
118 		int		(*multi)(unsigned int cpu,
119 					 struct hlist_node *node);
120 	} startup;
121 	union {
122 		int		(*single)(unsigned int cpu);
123 		int		(*multi)(unsigned int cpu,
124 					 struct hlist_node *node);
125 	} teardown;
126 	struct hlist_head	list;
127 	bool			cant_stop;
128 	bool			multi_instance;
129 };
130 
131 static DEFINE_MUTEX(cpuhp_state_mutex);
132 static struct cpuhp_step cpuhp_hp_states[];
133 
cpuhp_get_step(enum cpuhp_state state)134 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
135 {
136 	return cpuhp_hp_states + state;
137 }
138 
cpuhp_step_empty(bool bringup,struct cpuhp_step * step)139 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
140 {
141 	return bringup ? !step->startup.single : !step->teardown.single;
142 }
143 
144 /**
145  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
146  * @cpu:	The cpu for which the callback should be invoked
147  * @state:	The state to do callbacks for
148  * @bringup:	True if the bringup callback should be invoked
149  * @node:	For multi-instance, do a single entry callback for install/remove
150  * @lastp:	For multi-instance rollback, remember how far we got
151  *
152  * Called from cpu hotplug and from the state register machinery.
153  */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)154 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
155 				 bool bringup, struct hlist_node *node,
156 				 struct hlist_node **lastp)
157 {
158 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
159 	struct cpuhp_step *step = cpuhp_get_step(state);
160 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
161 	int (*cb)(unsigned int cpu);
162 	int ret, cnt;
163 
164 	if (st->fail == state) {
165 		st->fail = CPUHP_INVALID;
166 		return -EAGAIN;
167 	}
168 
169 	if (cpuhp_step_empty(bringup, step)) {
170 		WARN_ON_ONCE(1);
171 		return 0;
172 	}
173 
174 	if (!step->multi_instance) {
175 		WARN_ON_ONCE(lastp && *lastp);
176 		cb = bringup ? step->startup.single : step->teardown.single;
177 
178 		trace_cpuhp_enter(cpu, st->target, state, cb);
179 		ret = cb(cpu);
180 		trace_cpuhp_exit(cpu, st->state, state, ret);
181 		return ret;
182 	}
183 	cbm = bringup ? step->startup.multi : step->teardown.multi;
184 
185 	/* Single invocation for instance add/remove */
186 	if (node) {
187 		WARN_ON_ONCE(lastp && *lastp);
188 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
189 		ret = cbm(cpu, node);
190 		trace_cpuhp_exit(cpu, st->state, state, ret);
191 		return ret;
192 	}
193 
194 	/* State transition. Invoke on all instances */
195 	cnt = 0;
196 	hlist_for_each(node, &step->list) {
197 		if (lastp && node == *lastp)
198 			break;
199 
200 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
201 		ret = cbm(cpu, node);
202 		trace_cpuhp_exit(cpu, st->state, state, ret);
203 		if (ret) {
204 			if (!lastp)
205 				goto err;
206 
207 			*lastp = node;
208 			return ret;
209 		}
210 		cnt++;
211 	}
212 	if (lastp)
213 		*lastp = NULL;
214 	return 0;
215 err:
216 	/* Rollback the instances if one failed */
217 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
218 	if (!cbm)
219 		return ret;
220 
221 	hlist_for_each(node, &step->list) {
222 		if (!cnt--)
223 			break;
224 
225 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
226 		ret = cbm(cpu, node);
227 		trace_cpuhp_exit(cpu, st->state, state, ret);
228 		/*
229 		 * Rollback must not fail,
230 		 */
231 		WARN_ON_ONCE(ret);
232 	}
233 	return ret;
234 }
235 
236 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)237 static bool cpuhp_is_ap_state(enum cpuhp_state state)
238 {
239 	/*
240 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
241 	 * purposes as that state is handled explicitly in cpu_down.
242 	 */
243 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
244 }
245 
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)246 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
247 {
248 	struct completion *done = bringup ? &st->done_up : &st->done_down;
249 	wait_for_completion(done);
250 }
251 
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)252 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
253 {
254 	struct completion *done = bringup ? &st->done_up : &st->done_down;
255 	complete(done);
256 }
257 
258 /*
259  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
260  */
cpuhp_is_atomic_state(enum cpuhp_state state)261 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
262 {
263 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
264 }
265 
266 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
267 static DEFINE_MUTEX(cpu_add_remove_lock);
268 bool cpuhp_tasks_frozen;
269 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
270 
271 /*
272  * The following two APIs (cpu_maps_update_begin/done) must be used when
273  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
274  */
cpu_maps_update_begin(void)275 void cpu_maps_update_begin(void)
276 {
277 	mutex_lock(&cpu_add_remove_lock);
278 }
279 
cpu_maps_update_done(void)280 void cpu_maps_update_done(void)
281 {
282 	mutex_unlock(&cpu_add_remove_lock);
283 }
284 
285 /*
286  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
287  * Should always be manipulated under cpu_add_remove_lock
288  */
289 static int cpu_hotplug_disabled;
290 
291 #ifdef CONFIG_HOTPLUG_CPU
292 
293 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
294 
cpus_read_lock(void)295 void cpus_read_lock(void)
296 {
297 	percpu_down_read(&cpu_hotplug_lock);
298 }
299 EXPORT_SYMBOL_GPL(cpus_read_lock);
300 
cpus_read_trylock(void)301 int cpus_read_trylock(void)
302 {
303 	return percpu_down_read_trylock(&cpu_hotplug_lock);
304 }
305 EXPORT_SYMBOL_GPL(cpus_read_trylock);
306 
cpus_read_unlock(void)307 void cpus_read_unlock(void)
308 {
309 	percpu_up_read(&cpu_hotplug_lock);
310 }
311 EXPORT_SYMBOL_GPL(cpus_read_unlock);
312 
cpus_write_lock(void)313 void cpus_write_lock(void)
314 {
315 	percpu_down_write(&cpu_hotplug_lock);
316 }
317 
cpus_write_unlock(void)318 void cpus_write_unlock(void)
319 {
320 	percpu_up_write(&cpu_hotplug_lock);
321 }
322 
lockdep_assert_cpus_held(void)323 void lockdep_assert_cpus_held(void)
324 {
325 	/*
326 	 * We can't have hotplug operations before userspace starts running,
327 	 * and some init codepaths will knowingly not take the hotplug lock.
328 	 * This is all valid, so mute lockdep until it makes sense to report
329 	 * unheld locks.
330 	 */
331 	if (system_state < SYSTEM_RUNNING)
332 		return;
333 
334 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
335 }
336 
337 #ifdef CONFIG_LOCKDEP
lockdep_is_cpus_held(void)338 int lockdep_is_cpus_held(void)
339 {
340 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
341 }
342 #endif
343 
lockdep_acquire_cpus_lock(void)344 static void lockdep_acquire_cpus_lock(void)
345 {
346 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
347 }
348 
lockdep_release_cpus_lock(void)349 static void lockdep_release_cpus_lock(void)
350 {
351 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
352 }
353 
354 /*
355  * Wait for currently running CPU hotplug operations to complete (if any) and
356  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
357  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
358  * hotplug path before performing hotplug operations. So acquiring that lock
359  * guarantees mutual exclusion from any currently running hotplug operations.
360  */
cpu_hotplug_disable(void)361 void cpu_hotplug_disable(void)
362 {
363 	cpu_maps_update_begin();
364 	cpu_hotplug_disabled++;
365 	cpu_maps_update_done();
366 }
367 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
368 
__cpu_hotplug_enable(void)369 static void __cpu_hotplug_enable(void)
370 {
371 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
372 		return;
373 	cpu_hotplug_disabled--;
374 }
375 
cpu_hotplug_enable(void)376 void cpu_hotplug_enable(void)
377 {
378 	cpu_maps_update_begin();
379 	__cpu_hotplug_enable();
380 	cpu_maps_update_done();
381 }
382 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
383 
384 #else
385 
lockdep_acquire_cpus_lock(void)386 static void lockdep_acquire_cpus_lock(void)
387 {
388 }
389 
lockdep_release_cpus_lock(void)390 static void lockdep_release_cpus_lock(void)
391 {
392 }
393 
394 #endif	/* CONFIG_HOTPLUG_CPU */
395 
396 /*
397  * Architectures that need SMT-specific errata handling during SMT hotplug
398  * should override this.
399  */
arch_smt_update(void)400 void __weak arch_smt_update(void) { }
401 
402 #ifdef CONFIG_HOTPLUG_SMT
403 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
404 
cpu_smt_disable(bool force)405 void __init cpu_smt_disable(bool force)
406 {
407 	if (!cpu_smt_possible())
408 		return;
409 
410 	if (force) {
411 		pr_info("SMT: Force disabled\n");
412 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
413 	} else {
414 		pr_info("SMT: disabled\n");
415 		cpu_smt_control = CPU_SMT_DISABLED;
416 	}
417 }
418 
419 /*
420  * The decision whether SMT is supported can only be done after the full
421  * CPU identification. Called from architecture code.
422  */
cpu_smt_check_topology(void)423 void __init cpu_smt_check_topology(void)
424 {
425 	if (!topology_smt_supported())
426 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
427 }
428 
smt_cmdline_disable(char * str)429 static int __init smt_cmdline_disable(char *str)
430 {
431 	cpu_smt_disable(str && !strcmp(str, "force"));
432 	return 0;
433 }
434 early_param("nosmt", smt_cmdline_disable);
435 
cpu_smt_allowed(unsigned int cpu)436 static inline bool cpu_smt_allowed(unsigned int cpu)
437 {
438 	if (cpu_smt_control == CPU_SMT_ENABLED)
439 		return true;
440 
441 	if (topology_is_primary_thread(cpu))
442 		return true;
443 
444 	/*
445 	 * On x86 it's required to boot all logical CPUs at least once so
446 	 * that the init code can get a chance to set CR4.MCE on each
447 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
448 	 * core will shutdown the machine.
449 	 */
450 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
451 }
452 
453 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
cpu_smt_possible(void)454 bool cpu_smt_possible(void)
455 {
456 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
457 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
458 }
459 EXPORT_SYMBOL_GPL(cpu_smt_possible);
460 #else
cpu_smt_allowed(unsigned int cpu)461 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
462 #endif
463 
464 static inline enum cpuhp_state
cpuhp_set_state(struct cpuhp_cpu_state * st,enum cpuhp_state target)465 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
466 {
467 	enum cpuhp_state prev_state = st->state;
468 	bool bringup = st->state < target;
469 
470 	st->rollback = false;
471 	st->last = NULL;
472 
473 	st->target = target;
474 	st->single = false;
475 	st->bringup = bringup;
476 	if (cpu_dying(st->cpu) != !bringup)
477 		set_cpu_dying(st->cpu, !bringup);
478 
479 	return prev_state;
480 }
481 
482 static inline void
cpuhp_reset_state(struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)483 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
484 {
485 	bool bringup = !st->bringup;
486 
487 	st->target = prev_state;
488 
489 	/*
490 	 * Already rolling back. No need invert the bringup value or to change
491 	 * the current state.
492 	 */
493 	if (st->rollback)
494 		return;
495 
496 	st->rollback = true;
497 
498 	/*
499 	 * If we have st->last we need to undo partial multi_instance of this
500 	 * state first. Otherwise start undo at the previous state.
501 	 */
502 	if (!st->last) {
503 		if (st->bringup)
504 			st->state--;
505 		else
506 			st->state++;
507 	}
508 
509 	st->bringup = bringup;
510 	if (cpu_dying(st->cpu) != !bringup)
511 		set_cpu_dying(st->cpu, !bringup);
512 }
513 
514 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)515 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
516 {
517 	if (!st->single && st->state == st->target)
518 		return;
519 
520 	st->result = 0;
521 	/*
522 	 * Make sure the above stores are visible before should_run becomes
523 	 * true. Paired with the mb() above in cpuhp_thread_fun()
524 	 */
525 	smp_mb();
526 	st->should_run = true;
527 	wake_up_process(st->thread);
528 	wait_for_ap_thread(st, st->bringup);
529 }
530 
cpuhp_kick_ap(struct cpuhp_cpu_state * st,enum cpuhp_state target)531 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
532 {
533 	enum cpuhp_state prev_state;
534 	int ret;
535 
536 	prev_state = cpuhp_set_state(st, target);
537 	__cpuhp_kick_ap(st);
538 	if ((ret = st->result)) {
539 		cpuhp_reset_state(st, prev_state);
540 		__cpuhp_kick_ap(st);
541 	}
542 
543 	return ret;
544 }
545 
bringup_wait_for_ap(unsigned int cpu)546 static int bringup_wait_for_ap(unsigned int cpu)
547 {
548 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
549 
550 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
551 	wait_for_ap_thread(st, true);
552 	if (WARN_ON_ONCE((!cpu_online(cpu))))
553 		return -ECANCELED;
554 
555 	/* Unpark the hotplug thread of the target cpu */
556 	kthread_unpark(st->thread);
557 
558 	/*
559 	 * SMT soft disabling on X86 requires to bring the CPU out of the
560 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
561 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
562 	 * cpu_smt_allowed() check will now return false if this is not the
563 	 * primary sibling.
564 	 */
565 	if (!cpu_smt_allowed(cpu))
566 		return -ECANCELED;
567 
568 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
569 		return 0;
570 
571 	return cpuhp_kick_ap(st, st->target);
572 }
573 
bringup_cpu(unsigned int cpu)574 static int bringup_cpu(unsigned int cpu)
575 {
576 	struct task_struct *idle = idle_thread_get(cpu);
577 	int ret;
578 
579 	/*
580 	 * Some architectures have to walk the irq descriptors to
581 	 * setup the vector space for the cpu which comes online.
582 	 * Prevent irq alloc/free across the bringup.
583 	 */
584 	irq_lock_sparse();
585 
586 	/* Arch-specific enabling code. */
587 	ret = __cpu_up(cpu, idle);
588 	irq_unlock_sparse();
589 	if (ret)
590 		return ret;
591 	return bringup_wait_for_ap(cpu);
592 }
593 
finish_cpu(unsigned int cpu)594 static int finish_cpu(unsigned int cpu)
595 {
596 	struct task_struct *idle = idle_thread_get(cpu);
597 	struct mm_struct *mm = idle->active_mm;
598 
599 	/*
600 	 * idle_task_exit() will have switched to &init_mm, now
601 	 * clean up any remaining active_mm state.
602 	 */
603 	if (mm != &init_mm)
604 		idle->active_mm = &init_mm;
605 	mmdrop(mm);
606 	return 0;
607 }
608 
609 /*
610  * Hotplug state machine related functions
611  */
612 
613 /*
614  * Get the next state to run. Empty ones will be skipped. Returns true if a
615  * state must be run.
616  *
617  * st->state will be modified ahead of time, to match state_to_run, as if it
618  * has already ran.
619  */
cpuhp_next_state(bool bringup,enum cpuhp_state * state_to_run,struct cpuhp_cpu_state * st,enum cpuhp_state target)620 static bool cpuhp_next_state(bool bringup,
621 			     enum cpuhp_state *state_to_run,
622 			     struct cpuhp_cpu_state *st,
623 			     enum cpuhp_state target)
624 {
625 	do {
626 		if (bringup) {
627 			if (st->state >= target)
628 				return false;
629 
630 			*state_to_run = ++st->state;
631 		} else {
632 			if (st->state <= target)
633 				return false;
634 
635 			*state_to_run = st->state--;
636 		}
637 
638 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
639 			break;
640 	} while (true);
641 
642 	return true;
643 }
644 
cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)645 static int cpuhp_invoke_callback_range(bool bringup,
646 				       unsigned int cpu,
647 				       struct cpuhp_cpu_state *st,
648 				       enum cpuhp_state target)
649 {
650 	enum cpuhp_state state;
651 	int err = 0;
652 
653 	while (cpuhp_next_state(bringup, &state, st, target)) {
654 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
655 		if (err)
656 			break;
657 	}
658 
659 	return err;
660 }
661 
can_rollback_cpu(struct cpuhp_cpu_state * st)662 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
663 {
664 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
665 		return true;
666 	/*
667 	 * When CPU hotplug is disabled, then taking the CPU down is not
668 	 * possible because takedown_cpu() and the architecture and
669 	 * subsystem specific mechanisms are not available. So the CPU
670 	 * which would be completely unplugged again needs to stay around
671 	 * in the current state.
672 	 */
673 	return st->state <= CPUHP_BRINGUP_CPU;
674 }
675 
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)676 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
677 			      enum cpuhp_state target)
678 {
679 	enum cpuhp_state prev_state = st->state;
680 	int ret = 0;
681 
682 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
683 	if (ret) {
684 		cpuhp_reset_state(st, prev_state);
685 		if (can_rollback_cpu(st))
686 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
687 							    prev_state));
688 	}
689 	return ret;
690 }
691 
692 /*
693  * The cpu hotplug threads manage the bringup and teardown of the cpus
694  */
cpuhp_create(unsigned int cpu)695 static void cpuhp_create(unsigned int cpu)
696 {
697 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
698 
699 	init_completion(&st->done_up);
700 	init_completion(&st->done_down);
701 	st->cpu = cpu;
702 }
703 
cpuhp_should_run(unsigned int cpu)704 static int cpuhp_should_run(unsigned int cpu)
705 {
706 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
707 
708 	return st->should_run;
709 }
710 
711 /*
712  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
713  * callbacks when a state gets [un]installed at runtime.
714  *
715  * Each invocation of this function by the smpboot thread does a single AP
716  * state callback.
717  *
718  * It has 3 modes of operation:
719  *  - single: runs st->cb_state
720  *  - up:     runs ++st->state, while st->state < st->target
721  *  - down:   runs st->state--, while st->state > st->target
722  *
723  * When complete or on error, should_run is cleared and the completion is fired.
724  */
cpuhp_thread_fun(unsigned int cpu)725 static void cpuhp_thread_fun(unsigned int cpu)
726 {
727 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
728 	bool bringup = st->bringup;
729 	enum cpuhp_state state;
730 
731 	if (WARN_ON_ONCE(!st->should_run))
732 		return;
733 
734 	/*
735 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
736 	 * that if we see ->should_run we also see the rest of the state.
737 	 */
738 	smp_mb();
739 
740 	/*
741 	 * The BP holds the hotplug lock, but we're now running on the AP,
742 	 * ensure that anybody asserting the lock is held, will actually find
743 	 * it so.
744 	 */
745 	lockdep_acquire_cpus_lock();
746 	cpuhp_lock_acquire(bringup);
747 
748 	if (st->single) {
749 		state = st->cb_state;
750 		st->should_run = false;
751 	} else {
752 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
753 		if (!st->should_run)
754 			goto end;
755 	}
756 
757 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
758 
759 	if (cpuhp_is_atomic_state(state)) {
760 		local_irq_disable();
761 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
762 		local_irq_enable();
763 
764 		/*
765 		 * STARTING/DYING must not fail!
766 		 */
767 		WARN_ON_ONCE(st->result);
768 	} else {
769 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
770 	}
771 
772 	if (st->result) {
773 		/*
774 		 * If we fail on a rollback, we're up a creek without no
775 		 * paddle, no way forward, no way back. We loose, thanks for
776 		 * playing.
777 		 */
778 		WARN_ON_ONCE(st->rollback);
779 		st->should_run = false;
780 	}
781 
782 end:
783 	cpuhp_lock_release(bringup);
784 	lockdep_release_cpus_lock();
785 
786 	if (!st->should_run)
787 		complete_ap_thread(st, bringup);
788 }
789 
790 /* Invoke a single callback on a remote cpu */
791 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)792 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
793 			 struct hlist_node *node)
794 {
795 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
796 	int ret;
797 
798 	if (!cpu_online(cpu))
799 		return 0;
800 
801 	cpuhp_lock_acquire(false);
802 	cpuhp_lock_release(false);
803 
804 	cpuhp_lock_acquire(true);
805 	cpuhp_lock_release(true);
806 
807 	/*
808 	 * If we are up and running, use the hotplug thread. For early calls
809 	 * we invoke the thread function directly.
810 	 */
811 	if (!st->thread)
812 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
813 
814 	st->rollback = false;
815 	st->last = NULL;
816 
817 	st->node = node;
818 	st->bringup = bringup;
819 	st->cb_state = state;
820 	st->single = true;
821 
822 	__cpuhp_kick_ap(st);
823 
824 	/*
825 	 * If we failed and did a partial, do a rollback.
826 	 */
827 	if ((ret = st->result) && st->last) {
828 		st->rollback = true;
829 		st->bringup = !bringup;
830 
831 		__cpuhp_kick_ap(st);
832 	}
833 
834 	/*
835 	 * Clean up the leftovers so the next hotplug operation wont use stale
836 	 * data.
837 	 */
838 	st->node = st->last = NULL;
839 	return ret;
840 }
841 
cpuhp_kick_ap_work(unsigned int cpu)842 static int cpuhp_kick_ap_work(unsigned int cpu)
843 {
844 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
845 	enum cpuhp_state prev_state = st->state;
846 	int ret;
847 
848 	cpuhp_lock_acquire(false);
849 	cpuhp_lock_release(false);
850 
851 	cpuhp_lock_acquire(true);
852 	cpuhp_lock_release(true);
853 
854 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
855 	ret = cpuhp_kick_ap(st, st->target);
856 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
857 
858 	return ret;
859 }
860 
861 static struct smp_hotplug_thread cpuhp_threads = {
862 	.store			= &cpuhp_state.thread,
863 	.create			= &cpuhp_create,
864 	.thread_should_run	= cpuhp_should_run,
865 	.thread_fn		= cpuhp_thread_fun,
866 	.thread_comm		= "cpuhp/%u",
867 	.selfparking		= true,
868 };
869 
cpuhp_threads_init(void)870 void __init cpuhp_threads_init(void)
871 {
872 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
873 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
874 }
875 
876 #ifdef CONFIG_HOTPLUG_CPU
877 #ifndef arch_clear_mm_cpumask_cpu
878 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
879 #endif
880 
881 /**
882  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
883  * @cpu: a CPU id
884  *
885  * This function walks all processes, finds a valid mm struct for each one and
886  * then clears a corresponding bit in mm's cpumask.  While this all sounds
887  * trivial, there are various non-obvious corner cases, which this function
888  * tries to solve in a safe manner.
889  *
890  * Also note that the function uses a somewhat relaxed locking scheme, so it may
891  * be called only for an already offlined CPU.
892  */
clear_tasks_mm_cpumask(int cpu)893 void clear_tasks_mm_cpumask(int cpu)
894 {
895 	struct task_struct *p;
896 
897 	/*
898 	 * This function is called after the cpu is taken down and marked
899 	 * offline, so its not like new tasks will ever get this cpu set in
900 	 * their mm mask. -- Peter Zijlstra
901 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
902 	 * full-fledged tasklist_lock.
903 	 */
904 	WARN_ON(cpu_online(cpu));
905 	rcu_read_lock();
906 	for_each_process(p) {
907 		struct task_struct *t;
908 
909 		/*
910 		 * Main thread might exit, but other threads may still have
911 		 * a valid mm. Find one.
912 		 */
913 		t = find_lock_task_mm(p);
914 		if (!t)
915 			continue;
916 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
917 		task_unlock(t);
918 	}
919 	rcu_read_unlock();
920 }
921 
922 /* Take this CPU down. */
take_cpu_down(void * _param)923 static int take_cpu_down(void *_param)
924 {
925 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
926 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
927 	int err, cpu = smp_processor_id();
928 	int ret;
929 
930 	/* Ensure this CPU doesn't handle any more interrupts. */
931 	err = __cpu_disable();
932 	if (err < 0)
933 		return err;
934 
935 	/*
936 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
937 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
938 	 */
939 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
940 
941 	/* Invoke the former CPU_DYING callbacks */
942 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
943 
944 	/*
945 	 * DYING must not fail!
946 	 */
947 	WARN_ON_ONCE(ret);
948 
949 	/* Give up timekeeping duties */
950 	tick_handover_do_timer();
951 	/* Remove CPU from timer broadcasting */
952 	tick_offline_cpu(cpu);
953 	/* Park the stopper thread */
954 	stop_machine_park(cpu);
955 	return 0;
956 }
957 
takedown_cpu(unsigned int cpu)958 static int takedown_cpu(unsigned int cpu)
959 {
960 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
961 	int err;
962 
963 	/* Park the smpboot threads */
964 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
965 
966 	/*
967 	 * Prevent irq alloc/free while the dying cpu reorganizes the
968 	 * interrupt affinities.
969 	 */
970 	irq_lock_sparse();
971 
972 	/*
973 	 * So now all preempt/rcu users must observe !cpu_active().
974 	 */
975 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
976 	if (err) {
977 		/* CPU refused to die */
978 		irq_unlock_sparse();
979 		/* Unpark the hotplug thread so we can rollback there */
980 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
981 		return err;
982 	}
983 	BUG_ON(cpu_online(cpu));
984 
985 	/*
986 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
987 	 * all runnable tasks from the CPU, there's only the idle task left now
988 	 * that the migration thread is done doing the stop_machine thing.
989 	 *
990 	 * Wait for the stop thread to go away.
991 	 */
992 	wait_for_ap_thread(st, false);
993 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
994 
995 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
996 	irq_unlock_sparse();
997 
998 	hotplug_cpu__broadcast_tick_pull(cpu);
999 	/* This actually kills the CPU. */
1000 	__cpu_die(cpu);
1001 
1002 	tick_cleanup_dead_cpu(cpu);
1003 	rcutree_migrate_callbacks(cpu);
1004 	return 0;
1005 }
1006 
cpuhp_complete_idle_dead(void * arg)1007 static void cpuhp_complete_idle_dead(void *arg)
1008 {
1009 	struct cpuhp_cpu_state *st = arg;
1010 
1011 	complete_ap_thread(st, false);
1012 }
1013 
cpuhp_report_idle_dead(void)1014 void cpuhp_report_idle_dead(void)
1015 {
1016 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1017 
1018 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1019 	rcu_report_dead(smp_processor_id());
1020 	st->state = CPUHP_AP_IDLE_DEAD;
1021 	/*
1022 	 * We cannot call complete after rcu_report_dead() so we delegate it
1023 	 * to an online cpu.
1024 	 */
1025 	smp_call_function_single(cpumask_first(cpu_online_mask),
1026 				 cpuhp_complete_idle_dead, st, 0);
1027 }
1028 
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1029 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1030 				enum cpuhp_state target)
1031 {
1032 	enum cpuhp_state prev_state = st->state;
1033 	int ret = 0;
1034 
1035 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1036 	if (ret) {
1037 
1038 		cpuhp_reset_state(st, prev_state);
1039 
1040 		if (st->state < prev_state)
1041 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1042 							    prev_state));
1043 	}
1044 
1045 	return ret;
1046 }
1047 
1048 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1049 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1050 			   enum cpuhp_state target)
1051 {
1052 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1053 	int prev_state, ret = 0;
1054 
1055 	if (num_online_cpus() == 1)
1056 		return -EBUSY;
1057 
1058 	if (!cpu_present(cpu))
1059 		return -EINVAL;
1060 
1061 	cpus_write_lock();
1062 
1063 	cpuhp_tasks_frozen = tasks_frozen;
1064 
1065 	prev_state = cpuhp_set_state(st, target);
1066 	/*
1067 	 * If the current CPU state is in the range of the AP hotplug thread,
1068 	 * then we need to kick the thread.
1069 	 */
1070 	if (st->state > CPUHP_TEARDOWN_CPU) {
1071 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1072 		ret = cpuhp_kick_ap_work(cpu);
1073 		/*
1074 		 * The AP side has done the error rollback already. Just
1075 		 * return the error code..
1076 		 */
1077 		if (ret)
1078 			goto out;
1079 
1080 		/*
1081 		 * We might have stopped still in the range of the AP hotplug
1082 		 * thread. Nothing to do anymore.
1083 		 */
1084 		if (st->state > CPUHP_TEARDOWN_CPU)
1085 			goto out;
1086 
1087 		st->target = target;
1088 	}
1089 	/*
1090 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1091 	 * to do the further cleanups.
1092 	 */
1093 	ret = cpuhp_down_callbacks(cpu, st, target);
1094 	if (ret && st->state < prev_state) {
1095 		if (st->state == CPUHP_TEARDOWN_CPU) {
1096 			cpuhp_reset_state(st, prev_state);
1097 			__cpuhp_kick_ap(st);
1098 		} else {
1099 			WARN(1, "DEAD callback error for CPU%d", cpu);
1100 		}
1101 	}
1102 
1103 out:
1104 	cpus_write_unlock();
1105 	/*
1106 	 * Do post unplug cleanup. This is still protected against
1107 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1108 	 */
1109 	lockup_detector_cleanup();
1110 	arch_smt_update();
1111 	return ret;
1112 }
1113 
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1114 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1115 {
1116 	if (cpu_hotplug_disabled)
1117 		return -EBUSY;
1118 	return _cpu_down(cpu, 0, target);
1119 }
1120 
cpu_down(unsigned int cpu,enum cpuhp_state target)1121 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1122 {
1123 	int err;
1124 
1125 	cpu_maps_update_begin();
1126 	err = cpu_down_maps_locked(cpu, target);
1127 	cpu_maps_update_done();
1128 	return err;
1129 }
1130 
1131 /**
1132  * cpu_device_down - Bring down a cpu device
1133  * @dev: Pointer to the cpu device to offline
1134  *
1135  * This function is meant to be used by device core cpu subsystem only.
1136  *
1137  * Other subsystems should use remove_cpu() instead.
1138  */
cpu_device_down(struct device * dev)1139 int cpu_device_down(struct device *dev)
1140 {
1141 	return cpu_down(dev->id, CPUHP_OFFLINE);
1142 }
1143 
remove_cpu(unsigned int cpu)1144 int remove_cpu(unsigned int cpu)
1145 {
1146 	int ret;
1147 
1148 	lock_device_hotplug();
1149 	ret = device_offline(get_cpu_device(cpu));
1150 	unlock_device_hotplug();
1151 
1152 	return ret;
1153 }
1154 EXPORT_SYMBOL_GPL(remove_cpu);
1155 
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1156 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1157 {
1158 	unsigned int cpu;
1159 	int error;
1160 
1161 	cpu_maps_update_begin();
1162 
1163 	/*
1164 	 * Make certain the cpu I'm about to reboot on is online.
1165 	 *
1166 	 * This is inline to what migrate_to_reboot_cpu() already do.
1167 	 */
1168 	if (!cpu_online(primary_cpu))
1169 		primary_cpu = cpumask_first(cpu_online_mask);
1170 
1171 	for_each_online_cpu(cpu) {
1172 		if (cpu == primary_cpu)
1173 			continue;
1174 
1175 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1176 		if (error) {
1177 			pr_err("Failed to offline CPU%d - error=%d",
1178 				cpu, error);
1179 			break;
1180 		}
1181 	}
1182 
1183 	/*
1184 	 * Ensure all but the reboot CPU are offline.
1185 	 */
1186 	BUG_ON(num_online_cpus() > 1);
1187 
1188 	/*
1189 	 * Make sure the CPUs won't be enabled by someone else after this
1190 	 * point. Kexec will reboot to a new kernel shortly resetting
1191 	 * everything along the way.
1192 	 */
1193 	cpu_hotplug_disabled++;
1194 
1195 	cpu_maps_update_done();
1196 }
1197 
1198 #else
1199 #define takedown_cpu		NULL
1200 #endif /*CONFIG_HOTPLUG_CPU*/
1201 
1202 /**
1203  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1204  * @cpu: cpu that just started
1205  *
1206  * It must be called by the arch code on the new cpu, before the new cpu
1207  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1208  */
notify_cpu_starting(unsigned int cpu)1209 void notify_cpu_starting(unsigned int cpu)
1210 {
1211 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1212 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1213 	int ret;
1214 
1215 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1216 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1217 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1218 
1219 	/*
1220 	 * STARTING must not fail!
1221 	 */
1222 	WARN_ON_ONCE(ret);
1223 }
1224 
1225 /*
1226  * Called from the idle task. Wake up the controlling task which brings the
1227  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1228  * online bringup to the hotplug thread.
1229  */
cpuhp_online_idle(enum cpuhp_state state)1230 void cpuhp_online_idle(enum cpuhp_state state)
1231 {
1232 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1233 
1234 	/* Happens for the boot cpu */
1235 	if (state != CPUHP_AP_ONLINE_IDLE)
1236 		return;
1237 
1238 	/*
1239 	 * Unpart the stopper thread before we start the idle loop (and start
1240 	 * scheduling); this ensures the stopper task is always available.
1241 	 */
1242 	stop_machine_unpark(smp_processor_id());
1243 
1244 	st->state = CPUHP_AP_ONLINE_IDLE;
1245 	complete_ap_thread(st, true);
1246 }
1247 
1248 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1249 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1250 {
1251 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1252 	struct task_struct *idle;
1253 	int ret = 0;
1254 
1255 	cpus_write_lock();
1256 
1257 	if (!cpu_present(cpu)) {
1258 		ret = -EINVAL;
1259 		goto out;
1260 	}
1261 
1262 	/*
1263 	 * The caller of cpu_up() might have raced with another
1264 	 * caller. Nothing to do.
1265 	 */
1266 	if (st->state >= target)
1267 		goto out;
1268 
1269 	if (st->state == CPUHP_OFFLINE) {
1270 		/* Let it fail before we try to bring the cpu up */
1271 		idle = idle_thread_get(cpu);
1272 		if (IS_ERR(idle)) {
1273 			ret = PTR_ERR(idle);
1274 			goto out;
1275 		}
1276 	}
1277 
1278 	cpuhp_tasks_frozen = tasks_frozen;
1279 
1280 	cpuhp_set_state(st, target);
1281 	/*
1282 	 * If the current CPU state is in the range of the AP hotplug thread,
1283 	 * then we need to kick the thread once more.
1284 	 */
1285 	if (st->state > CPUHP_BRINGUP_CPU) {
1286 		ret = cpuhp_kick_ap_work(cpu);
1287 		/*
1288 		 * The AP side has done the error rollback already. Just
1289 		 * return the error code..
1290 		 */
1291 		if (ret)
1292 			goto out;
1293 	}
1294 
1295 	/*
1296 	 * Try to reach the target state. We max out on the BP at
1297 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1298 	 * responsible for bringing it up to the target state.
1299 	 */
1300 	target = min((int)target, CPUHP_BRINGUP_CPU);
1301 	ret = cpuhp_up_callbacks(cpu, st, target);
1302 out:
1303 	cpus_write_unlock();
1304 	arch_smt_update();
1305 	return ret;
1306 }
1307 
cpu_up(unsigned int cpu,enum cpuhp_state target)1308 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1309 {
1310 	int err = 0;
1311 
1312 	if (!cpu_possible(cpu)) {
1313 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1314 		       cpu);
1315 #if defined(CONFIG_IA64)
1316 		pr_err("please check additional_cpus= boot parameter\n");
1317 #endif
1318 		return -EINVAL;
1319 	}
1320 
1321 	err = try_online_node(cpu_to_node(cpu));
1322 	if (err)
1323 		return err;
1324 
1325 	cpu_maps_update_begin();
1326 
1327 	if (cpu_hotplug_disabled) {
1328 		err = -EBUSY;
1329 		goto out;
1330 	}
1331 	if (!cpu_smt_allowed(cpu)) {
1332 		err = -EPERM;
1333 		goto out;
1334 	}
1335 
1336 	err = _cpu_up(cpu, 0, target);
1337 out:
1338 	cpu_maps_update_done();
1339 	return err;
1340 }
1341 
1342 /**
1343  * cpu_device_up - Bring up a cpu device
1344  * @dev: Pointer to the cpu device to online
1345  *
1346  * This function is meant to be used by device core cpu subsystem only.
1347  *
1348  * Other subsystems should use add_cpu() instead.
1349  */
cpu_device_up(struct device * dev)1350 int cpu_device_up(struct device *dev)
1351 {
1352 	return cpu_up(dev->id, CPUHP_ONLINE);
1353 }
1354 
add_cpu(unsigned int cpu)1355 int add_cpu(unsigned int cpu)
1356 {
1357 	int ret;
1358 
1359 	lock_device_hotplug();
1360 	ret = device_online(get_cpu_device(cpu));
1361 	unlock_device_hotplug();
1362 
1363 	return ret;
1364 }
1365 EXPORT_SYMBOL_GPL(add_cpu);
1366 
1367 /**
1368  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1369  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1370  *
1371  * On some architectures like arm64, we can hibernate on any CPU, but on
1372  * wake up the CPU we hibernated on might be offline as a side effect of
1373  * using maxcpus= for example.
1374  */
bringup_hibernate_cpu(unsigned int sleep_cpu)1375 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1376 {
1377 	int ret;
1378 
1379 	if (!cpu_online(sleep_cpu)) {
1380 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1381 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1382 		if (ret) {
1383 			pr_err("Failed to bring hibernate-CPU up!\n");
1384 			return ret;
1385 		}
1386 	}
1387 	return 0;
1388 }
1389 
bringup_nonboot_cpus(unsigned int setup_max_cpus)1390 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1391 {
1392 	unsigned int cpu;
1393 
1394 	for_each_present_cpu(cpu) {
1395 		if (num_online_cpus() >= setup_max_cpus)
1396 			break;
1397 		if (!cpu_online(cpu))
1398 			cpu_up(cpu, CPUHP_ONLINE);
1399 	}
1400 }
1401 
1402 #ifdef CONFIG_PM_SLEEP_SMP
1403 static cpumask_var_t frozen_cpus;
1404 
freeze_secondary_cpus(int primary)1405 int freeze_secondary_cpus(int primary)
1406 {
1407 	int cpu, error = 0;
1408 
1409 	cpu_maps_update_begin();
1410 	if (primary == -1) {
1411 		primary = cpumask_first(cpu_online_mask);
1412 		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1413 			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1414 	} else {
1415 		if (!cpu_online(primary))
1416 			primary = cpumask_first(cpu_online_mask);
1417 	}
1418 
1419 	/*
1420 	 * We take down all of the non-boot CPUs in one shot to avoid races
1421 	 * with the userspace trying to use the CPU hotplug at the same time
1422 	 */
1423 	cpumask_clear(frozen_cpus);
1424 
1425 	pr_info("Disabling non-boot CPUs ...\n");
1426 	for_each_online_cpu(cpu) {
1427 		if (cpu == primary)
1428 			continue;
1429 
1430 		if (pm_wakeup_pending()) {
1431 			pr_info("Wakeup pending. Abort CPU freeze\n");
1432 			error = -EBUSY;
1433 			break;
1434 		}
1435 
1436 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1437 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1438 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1439 		if (!error)
1440 			cpumask_set_cpu(cpu, frozen_cpus);
1441 		else {
1442 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1443 			break;
1444 		}
1445 	}
1446 
1447 	if (!error)
1448 		BUG_ON(num_online_cpus() > 1);
1449 	else
1450 		pr_err("Non-boot CPUs are not disabled\n");
1451 
1452 	/*
1453 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1454 	 * this even in case of failure as all freeze_secondary_cpus() users are
1455 	 * supposed to do thaw_secondary_cpus() on the failure path.
1456 	 */
1457 	cpu_hotplug_disabled++;
1458 
1459 	cpu_maps_update_done();
1460 	return error;
1461 }
1462 
arch_thaw_secondary_cpus_begin(void)1463 void __weak arch_thaw_secondary_cpus_begin(void)
1464 {
1465 }
1466 
arch_thaw_secondary_cpus_end(void)1467 void __weak arch_thaw_secondary_cpus_end(void)
1468 {
1469 }
1470 
thaw_secondary_cpus(void)1471 void thaw_secondary_cpus(void)
1472 {
1473 	int cpu, error;
1474 
1475 	/* Allow everyone to use the CPU hotplug again */
1476 	cpu_maps_update_begin();
1477 	__cpu_hotplug_enable();
1478 	if (cpumask_empty(frozen_cpus))
1479 		goto out;
1480 
1481 	pr_info("Enabling non-boot CPUs ...\n");
1482 
1483 	arch_thaw_secondary_cpus_begin();
1484 
1485 	for_each_cpu(cpu, frozen_cpus) {
1486 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1487 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1488 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1489 		if (!error) {
1490 			pr_info("CPU%d is up\n", cpu);
1491 			continue;
1492 		}
1493 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1494 	}
1495 
1496 	arch_thaw_secondary_cpus_end();
1497 
1498 	cpumask_clear(frozen_cpus);
1499 out:
1500 	cpu_maps_update_done();
1501 }
1502 
alloc_frozen_cpus(void)1503 static int __init alloc_frozen_cpus(void)
1504 {
1505 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1506 		return -ENOMEM;
1507 	return 0;
1508 }
1509 core_initcall(alloc_frozen_cpus);
1510 
1511 /*
1512  * When callbacks for CPU hotplug notifications are being executed, we must
1513  * ensure that the state of the system with respect to the tasks being frozen
1514  * or not, as reported by the notification, remains unchanged *throughout the
1515  * duration* of the execution of the callbacks.
1516  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1517  *
1518  * This synchronization is implemented by mutually excluding regular CPU
1519  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1520  * Hibernate notifications.
1521  */
1522 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1523 cpu_hotplug_pm_callback(struct notifier_block *nb,
1524 			unsigned long action, void *ptr)
1525 {
1526 	switch (action) {
1527 
1528 	case PM_SUSPEND_PREPARE:
1529 	case PM_HIBERNATION_PREPARE:
1530 		cpu_hotplug_disable();
1531 		break;
1532 
1533 	case PM_POST_SUSPEND:
1534 	case PM_POST_HIBERNATION:
1535 		cpu_hotplug_enable();
1536 		break;
1537 
1538 	default:
1539 		return NOTIFY_DONE;
1540 	}
1541 
1542 	return NOTIFY_OK;
1543 }
1544 
1545 
cpu_hotplug_pm_sync_init(void)1546 static int __init cpu_hotplug_pm_sync_init(void)
1547 {
1548 	/*
1549 	 * cpu_hotplug_pm_callback has higher priority than x86
1550 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1551 	 * to disable cpu hotplug to avoid cpu hotplug race.
1552 	 */
1553 	pm_notifier(cpu_hotplug_pm_callback, 0);
1554 	return 0;
1555 }
1556 core_initcall(cpu_hotplug_pm_sync_init);
1557 
1558 #endif /* CONFIG_PM_SLEEP_SMP */
1559 
1560 int __boot_cpu_id;
1561 
1562 #endif /* CONFIG_SMP */
1563 
1564 /* Boot processor state steps */
1565 static struct cpuhp_step cpuhp_hp_states[] = {
1566 	[CPUHP_OFFLINE] = {
1567 		.name			= "offline",
1568 		.startup.single		= NULL,
1569 		.teardown.single	= NULL,
1570 	},
1571 #ifdef CONFIG_SMP
1572 	[CPUHP_CREATE_THREADS]= {
1573 		.name			= "threads:prepare",
1574 		.startup.single		= smpboot_create_threads,
1575 		.teardown.single	= NULL,
1576 		.cant_stop		= true,
1577 	},
1578 	[CPUHP_PERF_PREPARE] = {
1579 		.name			= "perf:prepare",
1580 		.startup.single		= perf_event_init_cpu,
1581 		.teardown.single	= perf_event_exit_cpu,
1582 	},
1583 	[CPUHP_WORKQUEUE_PREP] = {
1584 		.name			= "workqueue:prepare",
1585 		.startup.single		= workqueue_prepare_cpu,
1586 		.teardown.single	= NULL,
1587 	},
1588 	[CPUHP_HRTIMERS_PREPARE] = {
1589 		.name			= "hrtimers:prepare",
1590 		.startup.single		= hrtimers_prepare_cpu,
1591 		.teardown.single	= hrtimers_dead_cpu,
1592 	},
1593 	[CPUHP_SMPCFD_PREPARE] = {
1594 		.name			= "smpcfd:prepare",
1595 		.startup.single		= smpcfd_prepare_cpu,
1596 		.teardown.single	= smpcfd_dead_cpu,
1597 	},
1598 	[CPUHP_RELAY_PREPARE] = {
1599 		.name			= "relay:prepare",
1600 		.startup.single		= relay_prepare_cpu,
1601 		.teardown.single	= NULL,
1602 	},
1603 	[CPUHP_SLAB_PREPARE] = {
1604 		.name			= "slab:prepare",
1605 		.startup.single		= slab_prepare_cpu,
1606 		.teardown.single	= slab_dead_cpu,
1607 	},
1608 	[CPUHP_RCUTREE_PREP] = {
1609 		.name			= "RCU/tree:prepare",
1610 		.startup.single		= rcutree_prepare_cpu,
1611 		.teardown.single	= rcutree_dead_cpu,
1612 	},
1613 	/*
1614 	 * On the tear-down path, timers_dead_cpu() must be invoked
1615 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1616 	 * otherwise a RCU stall occurs.
1617 	 */
1618 	[CPUHP_TIMERS_PREPARE] = {
1619 		.name			= "timers:prepare",
1620 		.startup.single		= timers_prepare_cpu,
1621 		.teardown.single	= timers_dead_cpu,
1622 	},
1623 	/* Kicks the plugged cpu into life */
1624 	[CPUHP_BRINGUP_CPU] = {
1625 		.name			= "cpu:bringup",
1626 		.startup.single		= bringup_cpu,
1627 		.teardown.single	= finish_cpu,
1628 		.cant_stop		= true,
1629 	},
1630 	/* Final state before CPU kills itself */
1631 	[CPUHP_AP_IDLE_DEAD] = {
1632 		.name			= "idle:dead",
1633 	},
1634 	/*
1635 	 * Last state before CPU enters the idle loop to die. Transient state
1636 	 * for synchronization.
1637 	 */
1638 	[CPUHP_AP_OFFLINE] = {
1639 		.name			= "ap:offline",
1640 		.cant_stop		= true,
1641 	},
1642 	/* First state is scheduler control. Interrupts are disabled */
1643 	[CPUHP_AP_SCHED_STARTING] = {
1644 		.name			= "sched:starting",
1645 		.startup.single		= sched_cpu_starting,
1646 		.teardown.single	= sched_cpu_dying,
1647 	},
1648 	[CPUHP_AP_RCUTREE_DYING] = {
1649 		.name			= "RCU/tree:dying",
1650 		.startup.single		= NULL,
1651 		.teardown.single	= rcutree_dying_cpu,
1652 	},
1653 	[CPUHP_AP_SMPCFD_DYING] = {
1654 		.name			= "smpcfd:dying",
1655 		.startup.single		= NULL,
1656 		.teardown.single	= smpcfd_dying_cpu,
1657 	},
1658 	/* Entry state on starting. Interrupts enabled from here on. Transient
1659 	 * state for synchronsization */
1660 	[CPUHP_AP_ONLINE] = {
1661 		.name			= "ap:online",
1662 	},
1663 	/*
1664 	 * Handled on control processor until the plugged processor manages
1665 	 * this itself.
1666 	 */
1667 	[CPUHP_TEARDOWN_CPU] = {
1668 		.name			= "cpu:teardown",
1669 		.startup.single		= NULL,
1670 		.teardown.single	= takedown_cpu,
1671 		.cant_stop		= true,
1672 	},
1673 
1674 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
1675 		.name			= "sched:waitempty",
1676 		.startup.single		= NULL,
1677 		.teardown.single	= sched_cpu_wait_empty,
1678 	},
1679 
1680 	/* Handle smpboot threads park/unpark */
1681 	[CPUHP_AP_SMPBOOT_THREADS] = {
1682 		.name			= "smpboot/threads:online",
1683 		.startup.single		= smpboot_unpark_threads,
1684 		.teardown.single	= smpboot_park_threads,
1685 	},
1686 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1687 		.name			= "irq/affinity:online",
1688 		.startup.single		= irq_affinity_online_cpu,
1689 		.teardown.single	= NULL,
1690 	},
1691 	[CPUHP_AP_PERF_ONLINE] = {
1692 		.name			= "perf:online",
1693 		.startup.single		= perf_event_init_cpu,
1694 		.teardown.single	= perf_event_exit_cpu,
1695 	},
1696 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1697 		.name			= "lockup_detector:online",
1698 		.startup.single		= lockup_detector_online_cpu,
1699 		.teardown.single	= lockup_detector_offline_cpu,
1700 	},
1701 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1702 		.name			= "workqueue:online",
1703 		.startup.single		= workqueue_online_cpu,
1704 		.teardown.single	= workqueue_offline_cpu,
1705 	},
1706 	[CPUHP_AP_RCUTREE_ONLINE] = {
1707 		.name			= "RCU/tree:online",
1708 		.startup.single		= rcutree_online_cpu,
1709 		.teardown.single	= rcutree_offline_cpu,
1710 	},
1711 #endif
1712 	/*
1713 	 * The dynamically registered state space is here
1714 	 */
1715 
1716 #ifdef CONFIG_SMP
1717 	/* Last state is scheduler control setting the cpu active */
1718 	[CPUHP_AP_ACTIVE] = {
1719 		.name			= "sched:active",
1720 		.startup.single		= sched_cpu_activate,
1721 		.teardown.single	= sched_cpu_deactivate,
1722 	},
1723 #endif
1724 
1725 	/* CPU is fully up and running. */
1726 	[CPUHP_ONLINE] = {
1727 		.name			= "online",
1728 		.startup.single		= NULL,
1729 		.teardown.single	= NULL,
1730 	},
1731 };
1732 
1733 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1734 static int cpuhp_cb_check(enum cpuhp_state state)
1735 {
1736 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1737 		return -EINVAL;
1738 	return 0;
1739 }
1740 
1741 /*
1742  * Returns a free for dynamic slot assignment of the Online state. The states
1743  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1744  * by having no name assigned.
1745  */
cpuhp_reserve_state(enum cpuhp_state state)1746 static int cpuhp_reserve_state(enum cpuhp_state state)
1747 {
1748 	enum cpuhp_state i, end;
1749 	struct cpuhp_step *step;
1750 
1751 	switch (state) {
1752 	case CPUHP_AP_ONLINE_DYN:
1753 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1754 		end = CPUHP_AP_ONLINE_DYN_END;
1755 		break;
1756 	case CPUHP_BP_PREPARE_DYN:
1757 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1758 		end = CPUHP_BP_PREPARE_DYN_END;
1759 		break;
1760 	default:
1761 		return -EINVAL;
1762 	}
1763 
1764 	for (i = state; i <= end; i++, step++) {
1765 		if (!step->name)
1766 			return i;
1767 	}
1768 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1769 	return -ENOSPC;
1770 }
1771 
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1772 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1773 				 int (*startup)(unsigned int cpu),
1774 				 int (*teardown)(unsigned int cpu),
1775 				 bool multi_instance)
1776 {
1777 	/* (Un)Install the callbacks for further cpu hotplug operations */
1778 	struct cpuhp_step *sp;
1779 	int ret = 0;
1780 
1781 	/*
1782 	 * If name is NULL, then the state gets removed.
1783 	 *
1784 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1785 	 * the first allocation from these dynamic ranges, so the removal
1786 	 * would trigger a new allocation and clear the wrong (already
1787 	 * empty) state, leaving the callbacks of the to be cleared state
1788 	 * dangling, which causes wreckage on the next hotplug operation.
1789 	 */
1790 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1791 		     state == CPUHP_BP_PREPARE_DYN)) {
1792 		ret = cpuhp_reserve_state(state);
1793 		if (ret < 0)
1794 			return ret;
1795 		state = ret;
1796 	}
1797 	sp = cpuhp_get_step(state);
1798 	if (name && sp->name)
1799 		return -EBUSY;
1800 
1801 	sp->startup.single = startup;
1802 	sp->teardown.single = teardown;
1803 	sp->name = name;
1804 	sp->multi_instance = multi_instance;
1805 	INIT_HLIST_HEAD(&sp->list);
1806 	return ret;
1807 }
1808 
cpuhp_get_teardown_cb(enum cpuhp_state state)1809 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1810 {
1811 	return cpuhp_get_step(state)->teardown.single;
1812 }
1813 
1814 /*
1815  * Call the startup/teardown function for a step either on the AP or
1816  * on the current CPU.
1817  */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1818 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1819 			    struct hlist_node *node)
1820 {
1821 	struct cpuhp_step *sp = cpuhp_get_step(state);
1822 	int ret;
1823 
1824 	/*
1825 	 * If there's nothing to do, we done.
1826 	 * Relies on the union for multi_instance.
1827 	 */
1828 	if (cpuhp_step_empty(bringup, sp))
1829 		return 0;
1830 	/*
1831 	 * The non AP bound callbacks can fail on bringup. On teardown
1832 	 * e.g. module removal we crash for now.
1833 	 */
1834 #ifdef CONFIG_SMP
1835 	if (cpuhp_is_ap_state(state))
1836 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1837 	else
1838 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1839 #else
1840 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1841 #endif
1842 	BUG_ON(ret && !bringup);
1843 	return ret;
1844 }
1845 
1846 /*
1847  * Called from __cpuhp_setup_state on a recoverable failure.
1848  *
1849  * Note: The teardown callbacks for rollback are not allowed to fail!
1850  */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)1851 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1852 				   struct hlist_node *node)
1853 {
1854 	int cpu;
1855 
1856 	/* Roll back the already executed steps on the other cpus */
1857 	for_each_present_cpu(cpu) {
1858 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1859 		int cpustate = st->state;
1860 
1861 		if (cpu >= failedcpu)
1862 			break;
1863 
1864 		/* Did we invoke the startup call on that cpu ? */
1865 		if (cpustate >= state)
1866 			cpuhp_issue_call(cpu, state, false, node);
1867 	}
1868 }
1869 
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)1870 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1871 					  struct hlist_node *node,
1872 					  bool invoke)
1873 {
1874 	struct cpuhp_step *sp;
1875 	int cpu;
1876 	int ret;
1877 
1878 	lockdep_assert_cpus_held();
1879 
1880 	sp = cpuhp_get_step(state);
1881 	if (sp->multi_instance == false)
1882 		return -EINVAL;
1883 
1884 	mutex_lock(&cpuhp_state_mutex);
1885 
1886 	if (!invoke || !sp->startup.multi)
1887 		goto add_node;
1888 
1889 	/*
1890 	 * Try to call the startup callback for each present cpu
1891 	 * depending on the hotplug state of the cpu.
1892 	 */
1893 	for_each_present_cpu(cpu) {
1894 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1895 		int cpustate = st->state;
1896 
1897 		if (cpustate < state)
1898 			continue;
1899 
1900 		ret = cpuhp_issue_call(cpu, state, true, node);
1901 		if (ret) {
1902 			if (sp->teardown.multi)
1903 				cpuhp_rollback_install(cpu, state, node);
1904 			goto unlock;
1905 		}
1906 	}
1907 add_node:
1908 	ret = 0;
1909 	hlist_add_head(node, &sp->list);
1910 unlock:
1911 	mutex_unlock(&cpuhp_state_mutex);
1912 	return ret;
1913 }
1914 
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1915 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1916 			       bool invoke)
1917 {
1918 	int ret;
1919 
1920 	cpus_read_lock();
1921 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1922 	cpus_read_unlock();
1923 	return ret;
1924 }
1925 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1926 
1927 /**
1928  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1929  * @state:		The state to setup
1930  * @invoke:		If true, the startup function is invoked for cpus where
1931  *			cpu state >= @state
1932  * @startup:		startup callback function
1933  * @teardown:		teardown callback function
1934  * @multi_instance:	State is set up for multiple instances which get
1935  *			added afterwards.
1936  *
1937  * The caller needs to hold cpus read locked while calling this function.
1938  * Returns:
1939  *   On success:
1940  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1941  *      0 for all other states
1942  *   On failure: proper (negative) error code
1943  */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1944 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1945 				   const char *name, bool invoke,
1946 				   int (*startup)(unsigned int cpu),
1947 				   int (*teardown)(unsigned int cpu),
1948 				   bool multi_instance)
1949 {
1950 	int cpu, ret = 0;
1951 	bool dynstate;
1952 
1953 	lockdep_assert_cpus_held();
1954 
1955 	if (cpuhp_cb_check(state) || !name)
1956 		return -EINVAL;
1957 
1958 	mutex_lock(&cpuhp_state_mutex);
1959 
1960 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1961 				    multi_instance);
1962 
1963 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1964 	if (ret > 0 && dynstate) {
1965 		state = ret;
1966 		ret = 0;
1967 	}
1968 
1969 	if (ret || !invoke || !startup)
1970 		goto out;
1971 
1972 	/*
1973 	 * Try to call the startup callback for each present cpu
1974 	 * depending on the hotplug state of the cpu.
1975 	 */
1976 	for_each_present_cpu(cpu) {
1977 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1978 		int cpustate = st->state;
1979 
1980 		if (cpustate < state)
1981 			continue;
1982 
1983 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1984 		if (ret) {
1985 			if (teardown)
1986 				cpuhp_rollback_install(cpu, state, NULL);
1987 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1988 			goto out;
1989 		}
1990 	}
1991 out:
1992 	mutex_unlock(&cpuhp_state_mutex);
1993 	/*
1994 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1995 	 * dynamically allocated state in case of success.
1996 	 */
1997 	if (!ret && dynstate)
1998 		return state;
1999 	return ret;
2000 }
2001 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2002 
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2003 int __cpuhp_setup_state(enum cpuhp_state state,
2004 			const char *name, bool invoke,
2005 			int (*startup)(unsigned int cpu),
2006 			int (*teardown)(unsigned int cpu),
2007 			bool multi_instance)
2008 {
2009 	int ret;
2010 
2011 	cpus_read_lock();
2012 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2013 					     teardown, multi_instance);
2014 	cpus_read_unlock();
2015 	return ret;
2016 }
2017 EXPORT_SYMBOL(__cpuhp_setup_state);
2018 
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2019 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2020 				  struct hlist_node *node, bool invoke)
2021 {
2022 	struct cpuhp_step *sp = cpuhp_get_step(state);
2023 	int cpu;
2024 
2025 	BUG_ON(cpuhp_cb_check(state));
2026 
2027 	if (!sp->multi_instance)
2028 		return -EINVAL;
2029 
2030 	cpus_read_lock();
2031 	mutex_lock(&cpuhp_state_mutex);
2032 
2033 	if (!invoke || !cpuhp_get_teardown_cb(state))
2034 		goto remove;
2035 	/*
2036 	 * Call the teardown callback for each present cpu depending
2037 	 * on the hotplug state of the cpu. This function is not
2038 	 * allowed to fail currently!
2039 	 */
2040 	for_each_present_cpu(cpu) {
2041 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2042 		int cpustate = st->state;
2043 
2044 		if (cpustate >= state)
2045 			cpuhp_issue_call(cpu, state, false, node);
2046 	}
2047 
2048 remove:
2049 	hlist_del(node);
2050 	mutex_unlock(&cpuhp_state_mutex);
2051 	cpus_read_unlock();
2052 
2053 	return 0;
2054 }
2055 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2056 
2057 /**
2058  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2059  * @state:	The state to remove
2060  * @invoke:	If true, the teardown function is invoked for cpus where
2061  *		cpu state >= @state
2062  *
2063  * The caller needs to hold cpus read locked while calling this function.
2064  * The teardown callback is currently not allowed to fail. Think
2065  * about module removal!
2066  */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2067 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2068 {
2069 	struct cpuhp_step *sp = cpuhp_get_step(state);
2070 	int cpu;
2071 
2072 	BUG_ON(cpuhp_cb_check(state));
2073 
2074 	lockdep_assert_cpus_held();
2075 
2076 	mutex_lock(&cpuhp_state_mutex);
2077 	if (sp->multi_instance) {
2078 		WARN(!hlist_empty(&sp->list),
2079 		     "Error: Removing state %d which has instances left.\n",
2080 		     state);
2081 		goto remove;
2082 	}
2083 
2084 	if (!invoke || !cpuhp_get_teardown_cb(state))
2085 		goto remove;
2086 
2087 	/*
2088 	 * Call the teardown callback for each present cpu depending
2089 	 * on the hotplug state of the cpu. This function is not
2090 	 * allowed to fail currently!
2091 	 */
2092 	for_each_present_cpu(cpu) {
2093 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2094 		int cpustate = st->state;
2095 
2096 		if (cpustate >= state)
2097 			cpuhp_issue_call(cpu, state, false, NULL);
2098 	}
2099 remove:
2100 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2101 	mutex_unlock(&cpuhp_state_mutex);
2102 }
2103 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2104 
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2105 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2106 {
2107 	cpus_read_lock();
2108 	__cpuhp_remove_state_cpuslocked(state, invoke);
2109 	cpus_read_unlock();
2110 }
2111 EXPORT_SYMBOL(__cpuhp_remove_state);
2112 
2113 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2114 static void cpuhp_offline_cpu_device(unsigned int cpu)
2115 {
2116 	struct device *dev = get_cpu_device(cpu);
2117 
2118 	dev->offline = true;
2119 	/* Tell user space about the state change */
2120 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2121 }
2122 
cpuhp_online_cpu_device(unsigned int cpu)2123 static void cpuhp_online_cpu_device(unsigned int cpu)
2124 {
2125 	struct device *dev = get_cpu_device(cpu);
2126 
2127 	dev->offline = false;
2128 	/* Tell user space about the state change */
2129 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2130 }
2131 
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2132 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2133 {
2134 	int cpu, ret = 0;
2135 
2136 	cpu_maps_update_begin();
2137 	for_each_online_cpu(cpu) {
2138 		if (topology_is_primary_thread(cpu))
2139 			continue;
2140 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2141 		if (ret)
2142 			break;
2143 		/*
2144 		 * As this needs to hold the cpu maps lock it's impossible
2145 		 * to call device_offline() because that ends up calling
2146 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2147 		 * needs to be held as this might race against in kernel
2148 		 * abusers of the hotplug machinery (thermal management).
2149 		 *
2150 		 * So nothing would update device:offline state. That would
2151 		 * leave the sysfs entry stale and prevent onlining after
2152 		 * smt control has been changed to 'off' again. This is
2153 		 * called under the sysfs hotplug lock, so it is properly
2154 		 * serialized against the regular offline usage.
2155 		 */
2156 		cpuhp_offline_cpu_device(cpu);
2157 	}
2158 	if (!ret)
2159 		cpu_smt_control = ctrlval;
2160 	cpu_maps_update_done();
2161 	return ret;
2162 }
2163 
cpuhp_smt_enable(void)2164 int cpuhp_smt_enable(void)
2165 {
2166 	int cpu, ret = 0;
2167 
2168 	cpu_maps_update_begin();
2169 	cpu_smt_control = CPU_SMT_ENABLED;
2170 	for_each_present_cpu(cpu) {
2171 		/* Skip online CPUs and CPUs on offline nodes */
2172 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2173 			continue;
2174 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2175 		if (ret)
2176 			break;
2177 		/* See comment in cpuhp_smt_disable() */
2178 		cpuhp_online_cpu_device(cpu);
2179 	}
2180 	cpu_maps_update_done();
2181 	return ret;
2182 }
2183 #endif
2184 
2185 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
show_cpuhp_state(struct device * dev,struct device_attribute * attr,char * buf)2186 static ssize_t show_cpuhp_state(struct device *dev,
2187 				struct device_attribute *attr, char *buf)
2188 {
2189 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2190 
2191 	return sprintf(buf, "%d\n", st->state);
2192 }
2193 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2194 
write_cpuhp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2195 static ssize_t write_cpuhp_target(struct device *dev,
2196 				  struct device_attribute *attr,
2197 				  const char *buf, size_t count)
2198 {
2199 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2200 	struct cpuhp_step *sp;
2201 	int target, ret;
2202 
2203 	ret = kstrtoint(buf, 10, &target);
2204 	if (ret)
2205 		return ret;
2206 
2207 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2208 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2209 		return -EINVAL;
2210 #else
2211 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2212 		return -EINVAL;
2213 #endif
2214 
2215 	ret = lock_device_hotplug_sysfs();
2216 	if (ret)
2217 		return ret;
2218 
2219 	mutex_lock(&cpuhp_state_mutex);
2220 	sp = cpuhp_get_step(target);
2221 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2222 	mutex_unlock(&cpuhp_state_mutex);
2223 	if (ret)
2224 		goto out;
2225 
2226 	if (st->state < target)
2227 		ret = cpu_up(dev->id, target);
2228 	else
2229 		ret = cpu_down(dev->id, target);
2230 out:
2231 	unlock_device_hotplug();
2232 	return ret ? ret : count;
2233 }
2234 
show_cpuhp_target(struct device * dev,struct device_attribute * attr,char * buf)2235 static ssize_t show_cpuhp_target(struct device *dev,
2236 				 struct device_attribute *attr, char *buf)
2237 {
2238 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2239 
2240 	return sprintf(buf, "%d\n", st->target);
2241 }
2242 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2243 
2244 
write_cpuhp_fail(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2245 static ssize_t write_cpuhp_fail(struct device *dev,
2246 				struct device_attribute *attr,
2247 				const char *buf, size_t count)
2248 {
2249 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2250 	struct cpuhp_step *sp;
2251 	int fail, ret;
2252 
2253 	ret = kstrtoint(buf, 10, &fail);
2254 	if (ret)
2255 		return ret;
2256 
2257 	if (fail == CPUHP_INVALID) {
2258 		st->fail = fail;
2259 		return count;
2260 	}
2261 
2262 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2263 		return -EINVAL;
2264 
2265 	/*
2266 	 * Cannot fail STARTING/DYING callbacks.
2267 	 */
2268 	if (cpuhp_is_atomic_state(fail))
2269 		return -EINVAL;
2270 
2271 	/*
2272 	 * DEAD callbacks cannot fail...
2273 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2274 	 * triggering STARTING callbacks, a failure in this state would
2275 	 * hinder rollback.
2276 	 */
2277 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2278 		return -EINVAL;
2279 
2280 	/*
2281 	 * Cannot fail anything that doesn't have callbacks.
2282 	 */
2283 	mutex_lock(&cpuhp_state_mutex);
2284 	sp = cpuhp_get_step(fail);
2285 	if (!sp->startup.single && !sp->teardown.single)
2286 		ret = -EINVAL;
2287 	mutex_unlock(&cpuhp_state_mutex);
2288 	if (ret)
2289 		return ret;
2290 
2291 	st->fail = fail;
2292 
2293 	return count;
2294 }
2295 
show_cpuhp_fail(struct device * dev,struct device_attribute * attr,char * buf)2296 static ssize_t show_cpuhp_fail(struct device *dev,
2297 			       struct device_attribute *attr, char *buf)
2298 {
2299 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2300 
2301 	return sprintf(buf, "%d\n", st->fail);
2302 }
2303 
2304 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2305 
2306 static struct attribute *cpuhp_cpu_attrs[] = {
2307 	&dev_attr_state.attr,
2308 	&dev_attr_target.attr,
2309 	&dev_attr_fail.attr,
2310 	NULL
2311 };
2312 
2313 static const struct attribute_group cpuhp_cpu_attr_group = {
2314 	.attrs = cpuhp_cpu_attrs,
2315 	.name = "hotplug",
2316 	NULL
2317 };
2318 
show_cpuhp_states(struct device * dev,struct device_attribute * attr,char * buf)2319 static ssize_t show_cpuhp_states(struct device *dev,
2320 				 struct device_attribute *attr, char *buf)
2321 {
2322 	ssize_t cur, res = 0;
2323 	int i;
2324 
2325 	mutex_lock(&cpuhp_state_mutex);
2326 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2327 		struct cpuhp_step *sp = cpuhp_get_step(i);
2328 
2329 		if (sp->name) {
2330 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2331 			buf += cur;
2332 			res += cur;
2333 		}
2334 	}
2335 	mutex_unlock(&cpuhp_state_mutex);
2336 	return res;
2337 }
2338 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2339 
2340 static struct attribute *cpuhp_cpu_root_attrs[] = {
2341 	&dev_attr_states.attr,
2342 	NULL
2343 };
2344 
2345 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2346 	.attrs = cpuhp_cpu_root_attrs,
2347 	.name = "hotplug",
2348 	NULL
2349 };
2350 
2351 #ifdef CONFIG_HOTPLUG_SMT
2352 
2353 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2354 __store_smt_control(struct device *dev, struct device_attribute *attr,
2355 		    const char *buf, size_t count)
2356 {
2357 	int ctrlval, ret;
2358 
2359 	if (sysfs_streq(buf, "on"))
2360 		ctrlval = CPU_SMT_ENABLED;
2361 	else if (sysfs_streq(buf, "off"))
2362 		ctrlval = CPU_SMT_DISABLED;
2363 	else if (sysfs_streq(buf, "forceoff"))
2364 		ctrlval = CPU_SMT_FORCE_DISABLED;
2365 	else
2366 		return -EINVAL;
2367 
2368 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2369 		return -EPERM;
2370 
2371 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2372 		return -ENODEV;
2373 
2374 	ret = lock_device_hotplug_sysfs();
2375 	if (ret)
2376 		return ret;
2377 
2378 	if (ctrlval != cpu_smt_control) {
2379 		switch (ctrlval) {
2380 		case CPU_SMT_ENABLED:
2381 			ret = cpuhp_smt_enable();
2382 			break;
2383 		case CPU_SMT_DISABLED:
2384 		case CPU_SMT_FORCE_DISABLED:
2385 			ret = cpuhp_smt_disable(ctrlval);
2386 			break;
2387 		}
2388 	}
2389 
2390 	unlock_device_hotplug();
2391 	return ret ? ret : count;
2392 }
2393 
2394 #else /* !CONFIG_HOTPLUG_SMT */
2395 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2396 __store_smt_control(struct device *dev, struct device_attribute *attr,
2397 		    const char *buf, size_t count)
2398 {
2399 	return -ENODEV;
2400 }
2401 #endif /* CONFIG_HOTPLUG_SMT */
2402 
2403 static const char *smt_states[] = {
2404 	[CPU_SMT_ENABLED]		= "on",
2405 	[CPU_SMT_DISABLED]		= "off",
2406 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2407 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2408 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2409 };
2410 
2411 static ssize_t
show_smt_control(struct device * dev,struct device_attribute * attr,char * buf)2412 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2413 {
2414 	const char *state = smt_states[cpu_smt_control];
2415 
2416 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2417 }
2418 
2419 static ssize_t
store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2420 store_smt_control(struct device *dev, struct device_attribute *attr,
2421 		  const char *buf, size_t count)
2422 {
2423 	return __store_smt_control(dev, attr, buf, count);
2424 }
2425 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2426 
2427 static ssize_t
show_smt_active(struct device * dev,struct device_attribute * attr,char * buf)2428 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2429 {
2430 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2431 }
2432 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2433 
2434 static struct attribute *cpuhp_smt_attrs[] = {
2435 	&dev_attr_control.attr,
2436 	&dev_attr_active.attr,
2437 	NULL
2438 };
2439 
2440 static const struct attribute_group cpuhp_smt_attr_group = {
2441 	.attrs = cpuhp_smt_attrs,
2442 	.name = "smt",
2443 	NULL
2444 };
2445 
cpu_smt_sysfs_init(void)2446 static int __init cpu_smt_sysfs_init(void)
2447 {
2448 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2449 				  &cpuhp_smt_attr_group);
2450 }
2451 
cpuhp_sysfs_init(void)2452 static int __init cpuhp_sysfs_init(void)
2453 {
2454 	int cpu, ret;
2455 
2456 	ret = cpu_smt_sysfs_init();
2457 	if (ret)
2458 		return ret;
2459 
2460 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2461 				 &cpuhp_cpu_root_attr_group);
2462 	if (ret)
2463 		return ret;
2464 
2465 	for_each_possible_cpu(cpu) {
2466 		struct device *dev = get_cpu_device(cpu);
2467 
2468 		if (!dev)
2469 			continue;
2470 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2471 		if (ret)
2472 			return ret;
2473 	}
2474 	return 0;
2475 }
2476 device_initcall(cpuhp_sysfs_init);
2477 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2478 
2479 /*
2480  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2481  * represents all NR_CPUS bits binary values of 1<<nr.
2482  *
2483  * It is used by cpumask_of() to get a constant address to a CPU
2484  * mask value that has a single bit set only.
2485  */
2486 
2487 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2488 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2489 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2490 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2491 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2492 
2493 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2494 
2495 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2496 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2497 #if BITS_PER_LONG > 32
2498 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2499 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2500 #endif
2501 };
2502 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2503 
2504 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2505 EXPORT_SYMBOL(cpu_all_bits);
2506 
2507 #ifdef CONFIG_INIT_ALL_POSSIBLE
2508 struct cpumask __cpu_possible_mask __read_mostly
2509 	= {CPU_BITS_ALL};
2510 #else
2511 struct cpumask __cpu_possible_mask __read_mostly;
2512 #endif
2513 EXPORT_SYMBOL(__cpu_possible_mask);
2514 
2515 struct cpumask __cpu_online_mask __read_mostly;
2516 EXPORT_SYMBOL(__cpu_online_mask);
2517 
2518 struct cpumask __cpu_present_mask __read_mostly;
2519 EXPORT_SYMBOL(__cpu_present_mask);
2520 
2521 struct cpumask __cpu_active_mask __read_mostly;
2522 EXPORT_SYMBOL(__cpu_active_mask);
2523 
2524 struct cpumask __cpu_dying_mask __read_mostly;
2525 EXPORT_SYMBOL(__cpu_dying_mask);
2526 
2527 atomic_t __num_online_cpus __read_mostly;
2528 EXPORT_SYMBOL(__num_online_cpus);
2529 
init_cpu_present(const struct cpumask * src)2530 void init_cpu_present(const struct cpumask *src)
2531 {
2532 	cpumask_copy(&__cpu_present_mask, src);
2533 }
2534 
init_cpu_possible(const struct cpumask * src)2535 void init_cpu_possible(const struct cpumask *src)
2536 {
2537 	cpumask_copy(&__cpu_possible_mask, src);
2538 }
2539 
init_cpu_online(const struct cpumask * src)2540 void init_cpu_online(const struct cpumask *src)
2541 {
2542 	cpumask_copy(&__cpu_online_mask, src);
2543 }
2544 
set_cpu_online(unsigned int cpu,bool online)2545 void set_cpu_online(unsigned int cpu, bool online)
2546 {
2547 	/*
2548 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2549 	 * function by the reboot and kexec code which invoke it from
2550 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2551 	 * regular CPU hotplug is properly serialized.
2552 	 *
2553 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2554 	 * does not protect readers which are not serialized against
2555 	 * concurrent hotplug operations.
2556 	 */
2557 	if (online) {
2558 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2559 			atomic_inc(&__num_online_cpus);
2560 	} else {
2561 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2562 			atomic_dec(&__num_online_cpus);
2563 	}
2564 }
2565 
2566 /*
2567  * Activate the first processor.
2568  */
boot_cpu_init(void)2569 void __init boot_cpu_init(void)
2570 {
2571 	int cpu = smp_processor_id();
2572 
2573 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2574 	set_cpu_online(cpu, true);
2575 	set_cpu_active(cpu, true);
2576 	set_cpu_present(cpu, true);
2577 	set_cpu_possible(cpu, true);
2578 
2579 #ifdef CONFIG_SMP
2580 	__boot_cpu_id = cpu;
2581 #endif
2582 }
2583 
2584 /*
2585  * Must be called _AFTER_ setting up the per_cpu areas
2586  */
boot_cpu_hotplug_init(void)2587 void __init boot_cpu_hotplug_init(void)
2588 {
2589 #ifdef CONFIG_SMP
2590 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2591 #endif
2592 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2593 }
2594 
2595 /*
2596  * These are used for a global "mitigations=" cmdline option for toggling
2597  * optional CPU mitigations.
2598  */
2599 enum cpu_mitigations {
2600 	CPU_MITIGATIONS_OFF,
2601 	CPU_MITIGATIONS_AUTO,
2602 	CPU_MITIGATIONS_AUTO_NOSMT,
2603 };
2604 
2605 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2606 	CPU_MITIGATIONS_AUTO;
2607 
mitigations_parse_cmdline(char * arg)2608 static int __init mitigations_parse_cmdline(char *arg)
2609 {
2610 	if (!strcmp(arg, "off"))
2611 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2612 	else if (!strcmp(arg, "auto"))
2613 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2614 	else if (!strcmp(arg, "auto,nosmt"))
2615 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2616 	else
2617 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2618 			arg);
2619 
2620 	return 0;
2621 }
2622 early_param("mitigations", mitigations_parse_cmdline);
2623 
2624 /* mitigations=off */
cpu_mitigations_off(void)2625 bool cpu_mitigations_off(void)
2626 {
2627 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2628 }
2629 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2630 
2631 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2632 bool cpu_mitigations_auto_nosmt(void)
2633 {
2634 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2635 }
2636 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2637