1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Testsuite for eBPF verifier
4 *
5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
6 * Copyright (c) 2017 Facebook
7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
8 */
9
10 #include <endian.h>
11 #include <asm/types.h>
12 #include <linux/types.h>
13 #include <stdint.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <unistd.h>
17 #include <errno.h>
18 #include <string.h>
19 #include <stddef.h>
20 #include <stdbool.h>
21 #include <sched.h>
22 #include <limits.h>
23 #include <assert.h>
24
25 #include <sys/capability.h>
26
27 #include <linux/unistd.h>
28 #include <linux/filter.h>
29 #include <linux/bpf_perf_event.h>
30 #include <linux/bpf.h>
31 #include <linux/if_ether.h>
32 #include <linux/btf.h>
33
34 #include <bpf/bpf.h>
35 #include <bpf/libbpf.h>
36
37 #ifdef HAVE_GENHDR
38 # include "autoconf.h"
39 #else
40 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
41 # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
42 # endif
43 #endif
44 #include "bpf_rlimit.h"
45 #include "bpf_rand.h"
46 #include "bpf_util.h"
47 #include "test_btf.h"
48 #include "../../../include/linux/filter.h"
49
50 #define MAX_INSNS BPF_MAXINSNS
51 #define MAX_TEST_INSNS 1000000
52 #define MAX_FIXUPS 8
53 #define MAX_NR_MAPS 21
54 #define MAX_TEST_RUNS 8
55 #define POINTER_VALUE 0xcafe4all
56 #define TEST_DATA_LEN 64
57
58 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0)
59 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1)
60
61 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
62 static bool unpriv_disabled = false;
63 static int skips;
64 static bool verbose = false;
65
66 struct bpf_test {
67 const char *descr;
68 struct bpf_insn insns[MAX_INSNS];
69 struct bpf_insn *fill_insns;
70 int fixup_map_hash_8b[MAX_FIXUPS];
71 int fixup_map_hash_48b[MAX_FIXUPS];
72 int fixup_map_hash_16b[MAX_FIXUPS];
73 int fixup_map_array_48b[MAX_FIXUPS];
74 int fixup_map_sockmap[MAX_FIXUPS];
75 int fixup_map_sockhash[MAX_FIXUPS];
76 int fixup_map_xskmap[MAX_FIXUPS];
77 int fixup_map_stacktrace[MAX_FIXUPS];
78 int fixup_prog1[MAX_FIXUPS];
79 int fixup_prog2[MAX_FIXUPS];
80 int fixup_map_in_map[MAX_FIXUPS];
81 int fixup_cgroup_storage[MAX_FIXUPS];
82 int fixup_percpu_cgroup_storage[MAX_FIXUPS];
83 int fixup_map_spin_lock[MAX_FIXUPS];
84 int fixup_map_array_ro[MAX_FIXUPS];
85 int fixup_map_array_wo[MAX_FIXUPS];
86 int fixup_map_array_small[MAX_FIXUPS];
87 int fixup_sk_storage_map[MAX_FIXUPS];
88 int fixup_map_event_output[MAX_FIXUPS];
89 int fixup_map_reuseport_array[MAX_FIXUPS];
90 int fixup_map_ringbuf[MAX_FIXUPS];
91 /* Expected verifier log output for result REJECT or VERBOSE_ACCEPT.
92 * Can be a tab-separated sequence of expected strings. An empty string
93 * means no log verification.
94 */
95 const char *errstr;
96 const char *errstr_unpriv;
97 uint32_t insn_processed;
98 int prog_len;
99 enum {
100 UNDEF,
101 ACCEPT,
102 REJECT,
103 VERBOSE_ACCEPT,
104 } result, result_unpriv;
105 enum bpf_prog_type prog_type;
106 uint8_t flags;
107 void (*fill_helper)(struct bpf_test *self);
108 int runs;
109 #define bpf_testdata_struct_t \
110 struct { \
111 uint32_t retval, retval_unpriv; \
112 union { \
113 __u8 data[TEST_DATA_LEN]; \
114 __u64 data64[TEST_DATA_LEN / 8]; \
115 }; \
116 }
117 union {
118 bpf_testdata_struct_t;
119 bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
120 };
121 enum bpf_attach_type expected_attach_type;
122 const char *kfunc;
123 };
124
125 /* Note we want this to be 64 bit aligned so that the end of our array is
126 * actually the end of the structure.
127 */
128 #define MAX_ENTRIES 11
129
130 struct test_val {
131 unsigned int index;
132 int foo[MAX_ENTRIES];
133 };
134
135 struct other_val {
136 long long foo;
137 long long bar;
138 };
139
bpf_fill_ld_abs_vlan_push_pop(struct bpf_test * self)140 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
141 {
142 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
143 #define PUSH_CNT 51
144 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
145 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
146 struct bpf_insn *insn = self->fill_insns;
147 int i = 0, j, k = 0;
148
149 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
150 loop:
151 for (j = 0; j < PUSH_CNT; j++) {
152 insn[i++] = BPF_LD_ABS(BPF_B, 0);
153 /* jump to error label */
154 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
155 i++;
156 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
157 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
158 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
159 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
160 BPF_FUNC_skb_vlan_push),
161 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
162 i++;
163 }
164
165 for (j = 0; j < PUSH_CNT; j++) {
166 insn[i++] = BPF_LD_ABS(BPF_B, 0);
167 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
168 i++;
169 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
170 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
171 BPF_FUNC_skb_vlan_pop),
172 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
173 i++;
174 }
175 if (++k < 5)
176 goto loop;
177
178 for (; i < len - 3; i++)
179 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
180 insn[len - 3] = BPF_JMP_A(1);
181 /* error label */
182 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
183 insn[len - 1] = BPF_EXIT_INSN();
184 self->prog_len = len;
185 }
186
bpf_fill_jump_around_ld_abs(struct bpf_test * self)187 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
188 {
189 struct bpf_insn *insn = self->fill_insns;
190 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
191 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
192 * to extend the error value of the inlined ld_abs sequence which then
193 * contains 7 insns. so, set the dividend to 7 so the testcase could
194 * work on all arches.
195 */
196 unsigned int len = (1 << 15) / 7;
197 int i = 0;
198
199 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
200 insn[i++] = BPF_LD_ABS(BPF_B, 0);
201 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
202 i++;
203 while (i < len - 1)
204 insn[i++] = BPF_LD_ABS(BPF_B, 1);
205 insn[i] = BPF_EXIT_INSN();
206 self->prog_len = i + 1;
207 }
208
bpf_fill_rand_ld_dw(struct bpf_test * self)209 static void bpf_fill_rand_ld_dw(struct bpf_test *self)
210 {
211 struct bpf_insn *insn = self->fill_insns;
212 uint64_t res = 0;
213 int i = 0;
214
215 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
216 while (i < self->retval) {
217 uint64_t val = bpf_semi_rand_get();
218 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
219
220 res ^= val;
221 insn[i++] = tmp[0];
222 insn[i++] = tmp[1];
223 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
224 }
225 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
226 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
227 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
228 insn[i] = BPF_EXIT_INSN();
229 self->prog_len = i + 1;
230 res ^= (res >> 32);
231 self->retval = (uint32_t)res;
232 }
233
234 #define MAX_JMP_SEQ 8192
235
236 /* test the sequence of 8k jumps */
bpf_fill_scale1(struct bpf_test * self)237 static void bpf_fill_scale1(struct bpf_test *self)
238 {
239 struct bpf_insn *insn = self->fill_insns;
240 int i = 0, k = 0;
241
242 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
243 /* test to check that the long sequence of jumps is acceptable */
244 while (k++ < MAX_JMP_SEQ) {
245 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
246 BPF_FUNC_get_prandom_u32);
247 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
248 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
249 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
250 -8 * (k % 64 + 1));
251 }
252 /* is_state_visited() doesn't allocate state for pruning for every jump.
253 * Hence multiply jmps by 4 to accommodate that heuristic
254 */
255 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
256 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
257 insn[i] = BPF_EXIT_INSN();
258 self->prog_len = i + 1;
259 self->retval = 42;
260 }
261
262 /* test the sequence of 8k jumps in inner most function (function depth 8)*/
bpf_fill_scale2(struct bpf_test * self)263 static void bpf_fill_scale2(struct bpf_test *self)
264 {
265 struct bpf_insn *insn = self->fill_insns;
266 int i = 0, k = 0;
267
268 #define FUNC_NEST 7
269 for (k = 0; k < FUNC_NEST; k++) {
270 insn[i++] = BPF_CALL_REL(1);
271 insn[i++] = BPF_EXIT_INSN();
272 }
273 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
274 /* test to check that the long sequence of jumps is acceptable */
275 k = 0;
276 while (k++ < MAX_JMP_SEQ) {
277 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
278 BPF_FUNC_get_prandom_u32);
279 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
280 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
281 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
282 -8 * (k % (64 - 4 * FUNC_NEST) + 1));
283 }
284 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
285 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
286 insn[i] = BPF_EXIT_INSN();
287 self->prog_len = i + 1;
288 self->retval = 42;
289 }
290
bpf_fill_scale(struct bpf_test * self)291 static void bpf_fill_scale(struct bpf_test *self)
292 {
293 switch (self->retval) {
294 case 1:
295 return bpf_fill_scale1(self);
296 case 2:
297 return bpf_fill_scale2(self);
298 default:
299 self->prog_len = 0;
300 break;
301 }
302 }
303
bpf_fill_torturous_jumps_insn_1(struct bpf_insn * insn)304 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn)
305 {
306 unsigned int len = 259, hlen = 128;
307 int i;
308
309 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
310 for (i = 1; i <= hlen; i++) {
311 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen);
312 insn[i + hlen] = BPF_JMP_A(hlen - i);
313 }
314 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1);
315 insn[len - 1] = BPF_EXIT_INSN();
316
317 return len;
318 }
319
bpf_fill_torturous_jumps_insn_2(struct bpf_insn * insn)320 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn)
321 {
322 unsigned int len = 4100, jmp_off = 2048;
323 int i, j;
324
325 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
326 for (i = 1; i <= jmp_off; i++) {
327 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off);
328 }
329 insn[i++] = BPF_JMP_A(jmp_off);
330 for (; i <= jmp_off * 2 + 1; i+=16) {
331 for (j = 0; j < 16; j++) {
332 insn[i + j] = BPF_JMP_A(16 - j - 1);
333 }
334 }
335
336 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2);
337 insn[len - 1] = BPF_EXIT_INSN();
338
339 return len;
340 }
341
bpf_fill_torturous_jumps(struct bpf_test * self)342 static void bpf_fill_torturous_jumps(struct bpf_test *self)
343 {
344 struct bpf_insn *insn = self->fill_insns;
345 int i = 0;
346
347 switch (self->retval) {
348 case 1:
349 self->prog_len = bpf_fill_torturous_jumps_insn_1(insn);
350 return;
351 case 2:
352 self->prog_len = bpf_fill_torturous_jumps_insn_2(insn);
353 return;
354 case 3:
355 /* main */
356 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4);
357 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262);
358 insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0);
359 insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3);
360 insn[i++] = BPF_EXIT_INSN();
361
362 /* subprog 1 */
363 i += bpf_fill_torturous_jumps_insn_1(insn + i);
364
365 /* subprog 2 */
366 i += bpf_fill_torturous_jumps_insn_2(insn + i);
367
368 self->prog_len = i;
369 return;
370 default:
371 self->prog_len = 0;
372 break;
373 }
374 }
375
376 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
377 #define BPF_SK_LOOKUP(func) \
378 /* struct bpf_sock_tuple tuple = {} */ \
379 BPF_MOV64_IMM(BPF_REG_2, 0), \
380 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \
381 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \
382 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \
383 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \
384 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \
385 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \
386 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \
387 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \
388 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \
389 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \
390 BPF_MOV64_IMM(BPF_REG_4, 0), \
391 BPF_MOV64_IMM(BPF_REG_5, 0), \
392 BPF_EMIT_CALL(BPF_FUNC_ ## func)
393
394 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
395 * value into 0 and does necessary preparation for direct packet access
396 * through r2. The allowed access range is 8 bytes.
397 */
398 #define BPF_DIRECT_PKT_R2 \
399 BPF_MOV64_IMM(BPF_REG_0, 0), \
400 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \
401 offsetof(struct __sk_buff, data)), \
402 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \
403 offsetof(struct __sk_buff, data_end)), \
404 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \
405 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \
406 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \
407 BPF_EXIT_INSN()
408
409 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
410 * positive u32, and zero-extend it into 64-bit.
411 */
412 #define BPF_RAND_UEXT_R7 \
413 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \
414 BPF_FUNC_get_prandom_u32), \
415 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \
416 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \
417 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
418
419 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
420 * negative u32, and sign-extend it into 64-bit.
421 */
422 #define BPF_RAND_SEXT_R7 \
423 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \
424 BPF_FUNC_get_prandom_u32), \
425 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \
426 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \
427 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \
428 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
429
430 static struct bpf_test tests[] = {
431 #define FILL_ARRAY
432 #include <verifier/tests.h>
433 #undef FILL_ARRAY
434 };
435
probe_filter_length(const struct bpf_insn * fp)436 static int probe_filter_length(const struct bpf_insn *fp)
437 {
438 int len;
439
440 for (len = MAX_INSNS - 1; len > 0; --len)
441 if (fp[len].code != 0 || fp[len].imm != 0)
442 break;
443 return len + 1;
444 }
445
skip_unsupported_map(enum bpf_map_type map_type)446 static bool skip_unsupported_map(enum bpf_map_type map_type)
447 {
448 if (!bpf_probe_map_type(map_type, 0)) {
449 printf("SKIP (unsupported map type %d)\n", map_type);
450 skips++;
451 return true;
452 }
453 return false;
454 }
455
__create_map(uint32_t type,uint32_t size_key,uint32_t size_value,uint32_t max_elem,uint32_t extra_flags)456 static int __create_map(uint32_t type, uint32_t size_key,
457 uint32_t size_value, uint32_t max_elem,
458 uint32_t extra_flags)
459 {
460 int fd;
461
462 fd = bpf_create_map(type, size_key, size_value, max_elem,
463 (type == BPF_MAP_TYPE_HASH ?
464 BPF_F_NO_PREALLOC : 0) | extra_flags);
465 if (fd < 0) {
466 if (skip_unsupported_map(type))
467 return -1;
468 printf("Failed to create hash map '%s'!\n", strerror(errno));
469 }
470
471 return fd;
472 }
473
create_map(uint32_t type,uint32_t size_key,uint32_t size_value,uint32_t max_elem)474 static int create_map(uint32_t type, uint32_t size_key,
475 uint32_t size_value, uint32_t max_elem)
476 {
477 return __create_map(type, size_key, size_value, max_elem, 0);
478 }
479
update_map(int fd,int index)480 static void update_map(int fd, int index)
481 {
482 struct test_val value = {
483 .index = (6 + 1) * sizeof(int),
484 .foo[6] = 0xabcdef12,
485 };
486
487 assert(!bpf_map_update_elem(fd, &index, &value, 0));
488 }
489
create_prog_dummy_simple(enum bpf_prog_type prog_type,int ret)490 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
491 {
492 struct bpf_insn prog[] = {
493 BPF_MOV64_IMM(BPF_REG_0, ret),
494 BPF_EXIT_INSN(),
495 };
496
497 return bpf_load_program(prog_type, prog,
498 ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
499 }
500
create_prog_dummy_loop(enum bpf_prog_type prog_type,int mfd,int idx,int ret)501 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
502 int idx, int ret)
503 {
504 struct bpf_insn prog[] = {
505 BPF_MOV64_IMM(BPF_REG_3, idx),
506 BPF_LD_MAP_FD(BPF_REG_2, mfd),
507 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
508 BPF_FUNC_tail_call),
509 BPF_MOV64_IMM(BPF_REG_0, ret),
510 BPF_EXIT_INSN(),
511 };
512
513 return bpf_load_program(prog_type, prog,
514 ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
515 }
516
create_prog_array(enum bpf_prog_type prog_type,uint32_t max_elem,int p1key,int p2key,int p3key)517 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
518 int p1key, int p2key, int p3key)
519 {
520 int mfd, p1fd, p2fd, p3fd;
521
522 mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int),
523 sizeof(int), max_elem, 0);
524 if (mfd < 0) {
525 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
526 return -1;
527 printf("Failed to create prog array '%s'!\n", strerror(errno));
528 return -1;
529 }
530
531 p1fd = create_prog_dummy_simple(prog_type, 42);
532 p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
533 p3fd = create_prog_dummy_simple(prog_type, 24);
534 if (p1fd < 0 || p2fd < 0 || p3fd < 0)
535 goto err;
536 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
537 goto err;
538 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
539 goto err;
540 if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
541 err:
542 close(mfd);
543 mfd = -1;
544 }
545 close(p3fd);
546 close(p2fd);
547 close(p1fd);
548 return mfd;
549 }
550
create_map_in_map(void)551 static int create_map_in_map(void)
552 {
553 int inner_map_fd, outer_map_fd;
554
555 inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
556 sizeof(int), 1, 0);
557 if (inner_map_fd < 0) {
558 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
559 return -1;
560 printf("Failed to create array '%s'!\n", strerror(errno));
561 return inner_map_fd;
562 }
563
564 outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
565 sizeof(int), inner_map_fd, 1, 0);
566 if (outer_map_fd < 0) {
567 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
568 return -1;
569 printf("Failed to create array of maps '%s'!\n",
570 strerror(errno));
571 }
572
573 close(inner_map_fd);
574
575 return outer_map_fd;
576 }
577
create_cgroup_storage(bool percpu)578 static int create_cgroup_storage(bool percpu)
579 {
580 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
581 BPF_MAP_TYPE_CGROUP_STORAGE;
582 int fd;
583
584 fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key),
585 TEST_DATA_LEN, 0, 0);
586 if (fd < 0) {
587 if (skip_unsupported_map(type))
588 return -1;
589 printf("Failed to create cgroup storage '%s'!\n",
590 strerror(errno));
591 }
592
593 return fd;
594 }
595
596 /* struct bpf_spin_lock {
597 * int val;
598 * };
599 * struct val {
600 * int cnt;
601 * struct bpf_spin_lock l;
602 * };
603 */
604 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l";
605 static __u32 btf_raw_types[] = {
606 /* int */
607 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
608 /* struct bpf_spin_lock */ /* [2] */
609 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
610 BTF_MEMBER_ENC(15, 1, 0), /* int val; */
611 /* struct val */ /* [3] */
612 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
613 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
614 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
615 };
616
load_btf(void)617 static int load_btf(void)
618 {
619 struct btf_header hdr = {
620 .magic = BTF_MAGIC,
621 .version = BTF_VERSION,
622 .hdr_len = sizeof(struct btf_header),
623 .type_len = sizeof(btf_raw_types),
624 .str_off = sizeof(btf_raw_types),
625 .str_len = sizeof(btf_str_sec),
626 };
627 void *ptr, *raw_btf;
628 int btf_fd;
629
630 ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) +
631 sizeof(btf_str_sec));
632
633 memcpy(ptr, &hdr, sizeof(hdr));
634 ptr += sizeof(hdr);
635 memcpy(ptr, btf_raw_types, hdr.type_len);
636 ptr += hdr.type_len;
637 memcpy(ptr, btf_str_sec, hdr.str_len);
638 ptr += hdr.str_len;
639
640 btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0);
641 free(raw_btf);
642 if (btf_fd < 0)
643 return -1;
644 return btf_fd;
645 }
646
create_map_spin_lock(void)647 static int create_map_spin_lock(void)
648 {
649 struct bpf_create_map_attr attr = {
650 .name = "test_map",
651 .map_type = BPF_MAP_TYPE_ARRAY,
652 .key_size = 4,
653 .value_size = 8,
654 .max_entries = 1,
655 .btf_key_type_id = 1,
656 .btf_value_type_id = 3,
657 };
658 int fd, btf_fd;
659
660 btf_fd = load_btf();
661 if (btf_fd < 0)
662 return -1;
663 attr.btf_fd = btf_fd;
664 fd = bpf_create_map_xattr(&attr);
665 if (fd < 0)
666 printf("Failed to create map with spin_lock\n");
667 return fd;
668 }
669
create_sk_storage_map(void)670 static int create_sk_storage_map(void)
671 {
672 struct bpf_create_map_attr attr = {
673 .name = "test_map",
674 .map_type = BPF_MAP_TYPE_SK_STORAGE,
675 .key_size = 4,
676 .value_size = 8,
677 .max_entries = 0,
678 .map_flags = BPF_F_NO_PREALLOC,
679 .btf_key_type_id = 1,
680 .btf_value_type_id = 3,
681 };
682 int fd, btf_fd;
683
684 btf_fd = load_btf();
685 if (btf_fd < 0)
686 return -1;
687 attr.btf_fd = btf_fd;
688 fd = bpf_create_map_xattr(&attr);
689 close(attr.btf_fd);
690 if (fd < 0)
691 printf("Failed to create sk_storage_map\n");
692 return fd;
693 }
694
695 static char bpf_vlog[UINT_MAX >> 8];
696
do_test_fixup(struct bpf_test * test,enum bpf_prog_type prog_type,struct bpf_insn * prog,int * map_fds)697 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
698 struct bpf_insn *prog, int *map_fds)
699 {
700 int *fixup_map_hash_8b = test->fixup_map_hash_8b;
701 int *fixup_map_hash_48b = test->fixup_map_hash_48b;
702 int *fixup_map_hash_16b = test->fixup_map_hash_16b;
703 int *fixup_map_array_48b = test->fixup_map_array_48b;
704 int *fixup_map_sockmap = test->fixup_map_sockmap;
705 int *fixup_map_sockhash = test->fixup_map_sockhash;
706 int *fixup_map_xskmap = test->fixup_map_xskmap;
707 int *fixup_map_stacktrace = test->fixup_map_stacktrace;
708 int *fixup_prog1 = test->fixup_prog1;
709 int *fixup_prog2 = test->fixup_prog2;
710 int *fixup_map_in_map = test->fixup_map_in_map;
711 int *fixup_cgroup_storage = test->fixup_cgroup_storage;
712 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
713 int *fixup_map_spin_lock = test->fixup_map_spin_lock;
714 int *fixup_map_array_ro = test->fixup_map_array_ro;
715 int *fixup_map_array_wo = test->fixup_map_array_wo;
716 int *fixup_map_array_small = test->fixup_map_array_small;
717 int *fixup_sk_storage_map = test->fixup_sk_storage_map;
718 int *fixup_map_event_output = test->fixup_map_event_output;
719 int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
720 int *fixup_map_ringbuf = test->fixup_map_ringbuf;
721
722 if (test->fill_helper) {
723 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
724 test->fill_helper(test);
725 }
726
727 /* Allocating HTs with 1 elem is fine here, since we only test
728 * for verifier and not do a runtime lookup, so the only thing
729 * that really matters is value size in this case.
730 */
731 if (*fixup_map_hash_8b) {
732 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
733 sizeof(long long), 1);
734 do {
735 prog[*fixup_map_hash_8b].imm = map_fds[0];
736 fixup_map_hash_8b++;
737 } while (*fixup_map_hash_8b);
738 }
739
740 if (*fixup_map_hash_48b) {
741 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
742 sizeof(struct test_val), 1);
743 do {
744 prog[*fixup_map_hash_48b].imm = map_fds[1];
745 fixup_map_hash_48b++;
746 } while (*fixup_map_hash_48b);
747 }
748
749 if (*fixup_map_hash_16b) {
750 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
751 sizeof(struct other_val), 1);
752 do {
753 prog[*fixup_map_hash_16b].imm = map_fds[2];
754 fixup_map_hash_16b++;
755 } while (*fixup_map_hash_16b);
756 }
757
758 if (*fixup_map_array_48b) {
759 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
760 sizeof(struct test_val), 1);
761 update_map(map_fds[3], 0);
762 do {
763 prog[*fixup_map_array_48b].imm = map_fds[3];
764 fixup_map_array_48b++;
765 } while (*fixup_map_array_48b);
766 }
767
768 if (*fixup_prog1) {
769 map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
770 do {
771 prog[*fixup_prog1].imm = map_fds[4];
772 fixup_prog1++;
773 } while (*fixup_prog1);
774 }
775
776 if (*fixup_prog2) {
777 map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
778 do {
779 prog[*fixup_prog2].imm = map_fds[5];
780 fixup_prog2++;
781 } while (*fixup_prog2);
782 }
783
784 if (*fixup_map_in_map) {
785 map_fds[6] = create_map_in_map();
786 do {
787 prog[*fixup_map_in_map].imm = map_fds[6];
788 fixup_map_in_map++;
789 } while (*fixup_map_in_map);
790 }
791
792 if (*fixup_cgroup_storage) {
793 map_fds[7] = create_cgroup_storage(false);
794 do {
795 prog[*fixup_cgroup_storage].imm = map_fds[7];
796 fixup_cgroup_storage++;
797 } while (*fixup_cgroup_storage);
798 }
799
800 if (*fixup_percpu_cgroup_storage) {
801 map_fds[8] = create_cgroup_storage(true);
802 do {
803 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
804 fixup_percpu_cgroup_storage++;
805 } while (*fixup_percpu_cgroup_storage);
806 }
807 if (*fixup_map_sockmap) {
808 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
809 sizeof(int), 1);
810 do {
811 prog[*fixup_map_sockmap].imm = map_fds[9];
812 fixup_map_sockmap++;
813 } while (*fixup_map_sockmap);
814 }
815 if (*fixup_map_sockhash) {
816 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
817 sizeof(int), 1);
818 do {
819 prog[*fixup_map_sockhash].imm = map_fds[10];
820 fixup_map_sockhash++;
821 } while (*fixup_map_sockhash);
822 }
823 if (*fixup_map_xskmap) {
824 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
825 sizeof(int), 1);
826 do {
827 prog[*fixup_map_xskmap].imm = map_fds[11];
828 fixup_map_xskmap++;
829 } while (*fixup_map_xskmap);
830 }
831 if (*fixup_map_stacktrace) {
832 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
833 sizeof(u64), 1);
834 do {
835 prog[*fixup_map_stacktrace].imm = map_fds[12];
836 fixup_map_stacktrace++;
837 } while (*fixup_map_stacktrace);
838 }
839 if (*fixup_map_spin_lock) {
840 map_fds[13] = create_map_spin_lock();
841 do {
842 prog[*fixup_map_spin_lock].imm = map_fds[13];
843 fixup_map_spin_lock++;
844 } while (*fixup_map_spin_lock);
845 }
846 if (*fixup_map_array_ro) {
847 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
848 sizeof(struct test_val), 1,
849 BPF_F_RDONLY_PROG);
850 update_map(map_fds[14], 0);
851 do {
852 prog[*fixup_map_array_ro].imm = map_fds[14];
853 fixup_map_array_ro++;
854 } while (*fixup_map_array_ro);
855 }
856 if (*fixup_map_array_wo) {
857 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
858 sizeof(struct test_val), 1,
859 BPF_F_WRONLY_PROG);
860 update_map(map_fds[15], 0);
861 do {
862 prog[*fixup_map_array_wo].imm = map_fds[15];
863 fixup_map_array_wo++;
864 } while (*fixup_map_array_wo);
865 }
866 if (*fixup_map_array_small) {
867 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
868 1, 1, 0);
869 update_map(map_fds[16], 0);
870 do {
871 prog[*fixup_map_array_small].imm = map_fds[16];
872 fixup_map_array_small++;
873 } while (*fixup_map_array_small);
874 }
875 if (*fixup_sk_storage_map) {
876 map_fds[17] = create_sk_storage_map();
877 do {
878 prog[*fixup_sk_storage_map].imm = map_fds[17];
879 fixup_sk_storage_map++;
880 } while (*fixup_sk_storage_map);
881 }
882 if (*fixup_map_event_output) {
883 map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
884 sizeof(int), sizeof(int), 1, 0);
885 do {
886 prog[*fixup_map_event_output].imm = map_fds[18];
887 fixup_map_event_output++;
888 } while (*fixup_map_event_output);
889 }
890 if (*fixup_map_reuseport_array) {
891 map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
892 sizeof(u32), sizeof(u64), 1, 0);
893 do {
894 prog[*fixup_map_reuseport_array].imm = map_fds[19];
895 fixup_map_reuseport_array++;
896 } while (*fixup_map_reuseport_array);
897 }
898 if (*fixup_map_ringbuf) {
899 map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0,
900 0, 4096);
901 do {
902 prog[*fixup_map_ringbuf].imm = map_fds[20];
903 fixup_map_ringbuf++;
904 } while (*fixup_map_ringbuf);
905 }
906 }
907
908 struct libcap {
909 struct __user_cap_header_struct hdr;
910 struct __user_cap_data_struct data[2];
911 };
912
set_admin(bool admin)913 static int set_admin(bool admin)
914 {
915 cap_t caps;
916 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
917 const cap_value_t cap_net_admin = CAP_NET_ADMIN;
918 const cap_value_t cap_sys_admin = CAP_SYS_ADMIN;
919 struct libcap *cap;
920 int ret = -1;
921
922 caps = cap_get_proc();
923 if (!caps) {
924 perror("cap_get_proc");
925 return -1;
926 }
927 cap = (struct libcap *)caps;
928 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_sys_admin, CAP_CLEAR)) {
929 perror("cap_set_flag clear admin");
930 goto out;
931 }
932 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_net_admin,
933 admin ? CAP_SET : CAP_CLEAR)) {
934 perror("cap_set_flag set_or_clear net");
935 goto out;
936 }
937 /* libcap is likely old and simply ignores CAP_BPF and CAP_PERFMON,
938 * so update effective bits manually
939 */
940 if (admin) {
941 cap->data[1].effective |= 1 << (38 /* CAP_PERFMON */ - 32);
942 cap->data[1].effective |= 1 << (39 /* CAP_BPF */ - 32);
943 } else {
944 cap->data[1].effective &= ~(1 << (38 - 32));
945 cap->data[1].effective &= ~(1 << (39 - 32));
946 }
947 if (cap_set_proc(caps)) {
948 perror("cap_set_proc");
949 goto out;
950 }
951 ret = 0;
952 out:
953 if (cap_free(caps))
954 perror("cap_free");
955 return ret;
956 }
957
do_prog_test_run(int fd_prog,bool unpriv,uint32_t expected_val,void * data,size_t size_data)958 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
959 void *data, size_t size_data)
960 {
961 __u8 tmp[TEST_DATA_LEN << 2];
962 __u32 size_tmp = sizeof(tmp);
963 uint32_t retval;
964 int err, saved_errno;
965
966 if (unpriv)
967 set_admin(true);
968 err = bpf_prog_test_run(fd_prog, 1, data, size_data,
969 tmp, &size_tmp, &retval, NULL);
970 saved_errno = errno;
971
972 if (unpriv)
973 set_admin(false);
974
975 if (err) {
976 switch (saved_errno) {
977 case 524/*ENOTSUPP*/:
978 printf("Did not run the program (not supported) ");
979 return 0;
980 case EPERM:
981 if (unpriv) {
982 printf("Did not run the program (no permission) ");
983 return 0;
984 }
985 /* fallthrough; */
986 default:
987 printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
988 strerror(saved_errno));
989 return err;
990 }
991 }
992
993 if (retval != expected_val &&
994 expected_val != POINTER_VALUE) {
995 printf("FAIL retval %d != %d ", retval, expected_val);
996 return 1;
997 }
998
999 return 0;
1000 }
1001
1002 /* Returns true if every part of exp (tab-separated) appears in log, in order.
1003 *
1004 * If exp is an empty string, returns true.
1005 */
cmp_str_seq(const char * log,const char * exp)1006 static bool cmp_str_seq(const char *log, const char *exp)
1007 {
1008 char needle[200];
1009 const char *p, *q;
1010 int len;
1011
1012 do {
1013 if (!strlen(exp))
1014 break;
1015 p = strchr(exp, '\t');
1016 if (!p)
1017 p = exp + strlen(exp);
1018
1019 len = p - exp;
1020 if (len >= sizeof(needle) || !len) {
1021 printf("FAIL\nTestcase bug\n");
1022 return false;
1023 }
1024 strncpy(needle, exp, len);
1025 needle[len] = 0;
1026 q = strstr(log, needle);
1027 if (!q) {
1028 printf("FAIL\nUnexpected verifier log!\n"
1029 "EXP: %s\nRES:\n", needle);
1030 return false;
1031 }
1032 log = q + len;
1033 exp = p + 1;
1034 } while (*p);
1035 return true;
1036 }
1037
do_test_single(struct bpf_test * test,bool unpriv,int * passes,int * errors)1038 static void do_test_single(struct bpf_test *test, bool unpriv,
1039 int *passes, int *errors)
1040 {
1041 int fd_prog, expected_ret, alignment_prevented_execution;
1042 int prog_len, prog_type = test->prog_type;
1043 struct bpf_insn *prog = test->insns;
1044 struct bpf_load_program_attr attr;
1045 int run_errs, run_successes;
1046 int map_fds[MAX_NR_MAPS];
1047 const char *expected_err;
1048 int saved_errno;
1049 int fixup_skips;
1050 __u32 pflags;
1051 int i, err;
1052
1053 for (i = 0; i < MAX_NR_MAPS; i++)
1054 map_fds[i] = -1;
1055
1056 if (!prog_type)
1057 prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
1058 fixup_skips = skips;
1059 do_test_fixup(test, prog_type, prog, map_fds);
1060 if (test->fill_insns) {
1061 prog = test->fill_insns;
1062 prog_len = test->prog_len;
1063 } else {
1064 prog_len = probe_filter_length(prog);
1065 }
1066 /* If there were some map skips during fixup due to missing bpf
1067 * features, skip this test.
1068 */
1069 if (fixup_skips != skips)
1070 return;
1071
1072 pflags = BPF_F_TEST_RND_HI32;
1073 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
1074 pflags |= BPF_F_STRICT_ALIGNMENT;
1075 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1076 pflags |= BPF_F_ANY_ALIGNMENT;
1077 if (test->flags & ~3)
1078 pflags |= test->flags;
1079
1080 expected_ret = unpriv && test->result_unpriv != UNDEF ?
1081 test->result_unpriv : test->result;
1082 expected_err = unpriv && test->errstr_unpriv ?
1083 test->errstr_unpriv : test->errstr;
1084 memset(&attr, 0, sizeof(attr));
1085 attr.prog_type = prog_type;
1086 attr.expected_attach_type = test->expected_attach_type;
1087 attr.insns = prog;
1088 attr.insns_cnt = prog_len;
1089 attr.license = "GPL";
1090 if (verbose)
1091 attr.log_level = 1;
1092 else if (expected_ret == VERBOSE_ACCEPT)
1093 attr.log_level = 2;
1094 else
1095 attr.log_level = 4;
1096 attr.prog_flags = pflags;
1097
1098 if (prog_type == BPF_PROG_TYPE_TRACING && test->kfunc) {
1099 attr.attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
1100 attr.expected_attach_type);
1101 if (attr.attach_btf_id < 0) {
1102 printf("FAIL\nFailed to find BTF ID for '%s'!\n",
1103 test->kfunc);
1104 (*errors)++;
1105 return;
1106 }
1107 }
1108
1109 fd_prog = bpf_load_program_xattr(&attr, bpf_vlog, sizeof(bpf_vlog));
1110 saved_errno = errno;
1111
1112 /* BPF_PROG_TYPE_TRACING requires more setup and
1113 * bpf_probe_prog_type won't give correct answer
1114 */
1115 if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
1116 !bpf_probe_prog_type(prog_type, 0)) {
1117 printf("SKIP (unsupported program type %d)\n", prog_type);
1118 skips++;
1119 goto close_fds;
1120 }
1121
1122 alignment_prevented_execution = 0;
1123
1124 if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
1125 if (fd_prog < 0) {
1126 printf("FAIL\nFailed to load prog '%s'!\n",
1127 strerror(saved_errno));
1128 goto fail_log;
1129 }
1130 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1131 if (fd_prog >= 0 &&
1132 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
1133 alignment_prevented_execution = 1;
1134 #endif
1135 if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
1136 goto fail_log;
1137 }
1138 } else {
1139 if (fd_prog >= 0) {
1140 printf("FAIL\nUnexpected success to load!\n");
1141 goto fail_log;
1142 }
1143 if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) {
1144 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
1145 expected_err, bpf_vlog);
1146 goto fail_log;
1147 }
1148 }
1149
1150 if (test->insn_processed) {
1151 uint32_t insn_processed;
1152 char *proc;
1153
1154 proc = strstr(bpf_vlog, "processed ");
1155 insn_processed = atoi(proc + 10);
1156 if (test->insn_processed != insn_processed) {
1157 printf("FAIL\nUnexpected insn_processed %u vs %u\n",
1158 insn_processed, test->insn_processed);
1159 goto fail_log;
1160 }
1161 }
1162
1163 if (verbose)
1164 printf(", verifier log:\n%s", bpf_vlog);
1165
1166 run_errs = 0;
1167 run_successes = 0;
1168 if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) {
1169 uint32_t expected_val;
1170 int i;
1171
1172 if (!test->runs)
1173 test->runs = 1;
1174
1175 for (i = 0; i < test->runs; i++) {
1176 if (unpriv && test->retvals[i].retval_unpriv)
1177 expected_val = test->retvals[i].retval_unpriv;
1178 else
1179 expected_val = test->retvals[i].retval;
1180
1181 err = do_prog_test_run(fd_prog, unpriv, expected_val,
1182 test->retvals[i].data,
1183 sizeof(test->retvals[i].data));
1184 if (err) {
1185 printf("(run %d/%d) ", i + 1, test->runs);
1186 run_errs++;
1187 } else {
1188 run_successes++;
1189 }
1190 }
1191 }
1192
1193 if (!run_errs) {
1194 (*passes)++;
1195 if (run_successes > 1)
1196 printf("%d cases ", run_successes);
1197 printf("OK");
1198 if (alignment_prevented_execution)
1199 printf(" (NOTE: not executed due to unknown alignment)");
1200 printf("\n");
1201 } else {
1202 printf("\n");
1203 goto fail_log;
1204 }
1205 close_fds:
1206 if (test->fill_insns)
1207 free(test->fill_insns);
1208 close(fd_prog);
1209 for (i = 0; i < MAX_NR_MAPS; i++)
1210 close(map_fds[i]);
1211 sched_yield();
1212 return;
1213 fail_log:
1214 (*errors)++;
1215 printf("%s", bpf_vlog);
1216 goto close_fds;
1217 }
1218
is_admin(void)1219 static bool is_admin(void)
1220 {
1221 cap_flag_value_t net_priv = CAP_CLEAR;
1222 bool perfmon_priv = false;
1223 bool bpf_priv = false;
1224 struct libcap *cap;
1225 cap_t caps;
1226
1227 #ifdef CAP_IS_SUPPORTED
1228 if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) {
1229 perror("cap_get_flag");
1230 return false;
1231 }
1232 #endif
1233 caps = cap_get_proc();
1234 if (!caps) {
1235 perror("cap_get_proc");
1236 return false;
1237 }
1238 cap = (struct libcap *)caps;
1239 bpf_priv = cap->data[1].effective & (1 << (39/* CAP_BPF */ - 32));
1240 perfmon_priv = cap->data[1].effective & (1 << (38/* CAP_PERFMON */ - 32));
1241 if (cap_get_flag(caps, CAP_NET_ADMIN, CAP_EFFECTIVE, &net_priv))
1242 perror("cap_get_flag NET");
1243 if (cap_free(caps))
1244 perror("cap_free");
1245 return bpf_priv && perfmon_priv && net_priv == CAP_SET;
1246 }
1247
get_unpriv_disabled()1248 static void get_unpriv_disabled()
1249 {
1250 char buf[2];
1251 FILE *fd;
1252
1253 fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r");
1254 if (!fd) {
1255 perror("fopen /proc/sys/"UNPRIV_SYSCTL);
1256 unpriv_disabled = true;
1257 return;
1258 }
1259 if (fgets(buf, 2, fd) == buf && atoi(buf))
1260 unpriv_disabled = true;
1261 fclose(fd);
1262 }
1263
test_as_unpriv(struct bpf_test * test)1264 static bool test_as_unpriv(struct bpf_test *test)
1265 {
1266 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1267 /* Some architectures have strict alignment requirements. In
1268 * that case, the BPF verifier detects if a program has
1269 * unaligned accesses and rejects them. A user can pass
1270 * BPF_F_ANY_ALIGNMENT to a program to override this
1271 * check. That, however, will only work when a privileged user
1272 * loads a program. An unprivileged user loading a program
1273 * with this flag will be rejected prior entering the
1274 * verifier.
1275 */
1276 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1277 return false;
1278 #endif
1279 return !test->prog_type ||
1280 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1281 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1282 }
1283
do_test(bool unpriv,unsigned int from,unsigned int to)1284 static int do_test(bool unpriv, unsigned int from, unsigned int to)
1285 {
1286 int i, passes = 0, errors = 0;
1287
1288 for (i = from; i < to; i++) {
1289 struct bpf_test *test = &tests[i];
1290
1291 /* Program types that are not supported by non-root we
1292 * skip right away.
1293 */
1294 if (test_as_unpriv(test) && unpriv_disabled) {
1295 printf("#%d/u %s SKIP\n", i, test->descr);
1296 skips++;
1297 } else if (test_as_unpriv(test)) {
1298 if (!unpriv)
1299 set_admin(false);
1300 printf("#%d/u %s ", i, test->descr);
1301 do_test_single(test, true, &passes, &errors);
1302 if (!unpriv)
1303 set_admin(true);
1304 }
1305
1306 if (unpriv) {
1307 printf("#%d/p %s SKIP\n", i, test->descr);
1308 skips++;
1309 } else {
1310 printf("#%d/p %s ", i, test->descr);
1311 do_test_single(test, false, &passes, &errors);
1312 }
1313 }
1314
1315 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1316 skips, errors);
1317 return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1318 }
1319
main(int argc,char ** argv)1320 int main(int argc, char **argv)
1321 {
1322 unsigned int from = 0, to = ARRAY_SIZE(tests);
1323 bool unpriv = !is_admin();
1324 int arg = 1;
1325
1326 if (argc > 1 && strcmp(argv[1], "-v") == 0) {
1327 arg++;
1328 verbose = true;
1329 argc--;
1330 }
1331
1332 if (argc == 3) {
1333 unsigned int l = atoi(argv[arg]);
1334 unsigned int u = atoi(argv[arg + 1]);
1335
1336 if (l < to && u < to) {
1337 from = l;
1338 to = u + 1;
1339 }
1340 } else if (argc == 2) {
1341 unsigned int t = atoi(argv[arg]);
1342
1343 if (t < to) {
1344 from = t;
1345 to = t + 1;
1346 }
1347 }
1348
1349 get_unpriv_disabled();
1350 if (unpriv && unpriv_disabled) {
1351 printf("Cannot run as unprivileged user with sysctl %s.\n",
1352 UNPRIV_SYSCTL);
1353 return EXIT_FAILURE;
1354 }
1355
1356 bpf_semi_rand_init();
1357 return do_test(unpriv, from, to);
1358 }
1359