1 use std::error;
2 use std::fmt;
3 use std::result;
4 
5 use hir;
6 
7 /// A type alias for errors specific to Unicode handling of classes.
8 pub type Result<T> = result::Result<T, Error>;
9 
10 /// An inclusive range of codepoints from a generated file (hence the static
11 /// lifetime).
12 type Range = &'static [(char, char)];
13 
14 /// An error that occurs when dealing with Unicode.
15 ///
16 /// We don't impl the Error trait here because these always get converted
17 /// into other public errors. (This error type isn't exported.)
18 #[derive(Debug)]
19 pub enum Error {
20     PropertyNotFound,
21     PropertyValueNotFound,
22     // Not used when unicode-perl is enabled.
23     #[allow(dead_code)]
24     PerlClassNotFound,
25 }
26 
27 /// A type alias for errors specific to Unicode case folding.
28 pub type FoldResult<T> = result::Result<T, CaseFoldError>;
29 
30 /// An error that occurs when Unicode-aware simple case folding fails.
31 ///
32 /// This error can occur when the case mapping tables necessary for Unicode
33 /// aware case folding are unavailable. This only occurs when the
34 /// `unicode-case` feature is disabled. (The feature is enabled by default.)
35 #[derive(Debug)]
36 pub struct CaseFoldError(());
37 
38 impl error::Error for CaseFoldError {}
39 
40 impl fmt::Display for CaseFoldError {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result41     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
42         write!(
43             f,
44             "Unicode-aware case folding is not available \
45              (probably because the unicode-case feature is not enabled)"
46         )
47     }
48 }
49 
50 /// An error that occurs when the Unicode-aware `\w` class is unavailable.
51 ///
52 /// This error can occur when the data tables necessary for the Unicode aware
53 /// Perl character class `\w` are unavailable. This only occurs when the
54 /// `unicode-perl` feature is disabled. (The feature is enabled by default.)
55 #[derive(Debug)]
56 pub struct UnicodeWordError(());
57 
58 impl error::Error for UnicodeWordError {}
59 
60 impl fmt::Display for UnicodeWordError {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result61     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
62         write!(
63             f,
64             "Unicode-aware \\w class is not available \
65              (probably because the unicode-perl feature is not enabled)"
66         )
67     }
68 }
69 
70 /// Return an iterator over the equivalence class of simple case mappings
71 /// for the given codepoint. The equivalence class does not include the
72 /// given codepoint.
73 ///
74 /// If the equivalence class is empty, then this returns the next scalar
75 /// value that has a non-empty equivalence class, if it exists. If no such
76 /// scalar value exists, then `None` is returned. The point of this behavior
77 /// is to permit callers to avoid calling `simple_fold` more than they need
78 /// to, since there is some cost to fetching the equivalence class.
79 ///
80 /// This returns an error if the Unicode case folding tables are not available.
simple_fold( c: char, ) -> FoldResult<result::Result<impl Iterator<Item = char>, Option<char>>>81 pub fn simple_fold(
82     c: char,
83 ) -> FoldResult<result::Result<impl Iterator<Item = char>, Option<char>>> {
84     #[cfg(not(feature = "unicode-case"))]
85     fn imp(
86         _: char,
87     ) -> FoldResult<result::Result<impl Iterator<Item = char>, Option<char>>>
88     {
89         use std::option::IntoIter;
90         Err::<result::Result<IntoIter<char>, _>, _>(CaseFoldError(()))
91     }
92 
93     #[cfg(feature = "unicode-case")]
94     fn imp(
95         c: char,
96     ) -> FoldResult<result::Result<impl Iterator<Item = char>, Option<char>>>
97     {
98         use unicode_tables::case_folding_simple::CASE_FOLDING_SIMPLE;
99 
100         Ok(CASE_FOLDING_SIMPLE
101             .binary_search_by_key(&c, |&(c1, _)| c1)
102             .map(|i| CASE_FOLDING_SIMPLE[i].1.iter().map(|&c| c))
103             .map_err(|i| {
104                 if i >= CASE_FOLDING_SIMPLE.len() {
105                     None
106                 } else {
107                     Some(CASE_FOLDING_SIMPLE[i].0)
108                 }
109             }))
110     }
111 
112     imp(c)
113 }
114 
115 /// Returns true if and only if the given (inclusive) range contains at least
116 /// one Unicode scalar value that has a non-empty non-trivial simple case
117 /// mapping.
118 ///
119 /// This function panics if `end < start`.
120 ///
121 /// This returns an error if the Unicode case folding tables are not available.
contains_simple_case_mapping( start: char, end: char, ) -> FoldResult<bool>122 pub fn contains_simple_case_mapping(
123     start: char,
124     end: char,
125 ) -> FoldResult<bool> {
126     #[cfg(not(feature = "unicode-case"))]
127     fn imp(_: char, _: char) -> FoldResult<bool> {
128         Err(CaseFoldError(()))
129     }
130 
131     #[cfg(feature = "unicode-case")]
132     fn imp(start: char, end: char) -> FoldResult<bool> {
133         use std::cmp::Ordering;
134         use unicode_tables::case_folding_simple::CASE_FOLDING_SIMPLE;
135 
136         assert!(start <= end);
137         Ok(CASE_FOLDING_SIMPLE
138             .binary_search_by(|&(c, _)| {
139                 if start <= c && c <= end {
140                     Ordering::Equal
141                 } else if c > end {
142                     Ordering::Greater
143                 } else {
144                     Ordering::Less
145                 }
146             })
147             .is_ok())
148     }
149 
150     imp(start, end)
151 }
152 
153 /// A query for finding a character class defined by Unicode. This supports
154 /// either use of a property name directly, or lookup by property value. The
155 /// former generally refers to Binary properties (see UTS#44, Table 8), but
156 /// as a special exception (see UTS#18, Section 1.2) both general categories
157 /// (an enumeration) and scripts (a catalog) are supported as if each of their
158 /// possible values were a binary property.
159 ///
160 /// In all circumstances, property names and values are normalized and
161 /// canonicalized. That is, `GC == gc == GeneralCategory == general_category`.
162 ///
163 /// The lifetime `'a` refers to the shorter of the lifetimes of property name
164 /// and property value.
165 #[derive(Debug)]
166 pub enum ClassQuery<'a> {
167     /// Return a class corresponding to a Unicode binary property, named by
168     /// a single letter.
169     OneLetter(char),
170     /// Return a class corresponding to a Unicode binary property.
171     ///
172     /// Note that, by special exception (see UTS#18, Section 1.2), both
173     /// general category values and script values are permitted here as if
174     /// they were a binary property.
175     Binary(&'a str),
176     /// Return a class corresponding to all codepoints whose property
177     /// (identified by `property_name`) corresponds to the given value
178     /// (identified by `property_value`).
179     ByValue {
180         /// A property name.
181         property_name: &'a str,
182         /// A property value.
183         property_value: &'a str,
184     },
185 }
186 
187 impl<'a> ClassQuery<'a> {
canonicalize(&self) -> Result<CanonicalClassQuery>188     fn canonicalize(&self) -> Result<CanonicalClassQuery> {
189         match *self {
190             ClassQuery::OneLetter(c) => self.canonical_binary(&c.to_string()),
191             ClassQuery::Binary(name) => self.canonical_binary(name),
192             ClassQuery::ByValue { property_name, property_value } => {
193                 let property_name = symbolic_name_normalize(property_name);
194                 let property_value = symbolic_name_normalize(property_value);
195 
196                 let canon_name = match canonical_prop(&property_name)? {
197                     None => return Err(Error::PropertyNotFound),
198                     Some(canon_name) => canon_name,
199                 };
200                 Ok(match canon_name {
201                     "General_Category" => {
202                         let canon = match canonical_gencat(&property_value)? {
203                             None => return Err(Error::PropertyValueNotFound),
204                             Some(canon) => canon,
205                         };
206                         CanonicalClassQuery::GeneralCategory(canon)
207                     }
208                     "Script" => {
209                         let canon = match canonical_script(&property_value)? {
210                             None => return Err(Error::PropertyValueNotFound),
211                             Some(canon) => canon,
212                         };
213                         CanonicalClassQuery::Script(canon)
214                     }
215                     _ => {
216                         let vals = match property_values(canon_name)? {
217                             None => return Err(Error::PropertyValueNotFound),
218                             Some(vals) => vals,
219                         };
220                         let canon_val =
221                             match canonical_value(vals, &property_value) {
222                                 None => {
223                                     return Err(Error::PropertyValueNotFound)
224                                 }
225                                 Some(canon_val) => canon_val,
226                             };
227                         CanonicalClassQuery::ByValue {
228                             property_name: canon_name,
229                             property_value: canon_val,
230                         }
231                     }
232                 })
233             }
234         }
235     }
236 
canonical_binary(&self, name: &str) -> Result<CanonicalClassQuery>237     fn canonical_binary(&self, name: &str) -> Result<CanonicalClassQuery> {
238         let norm = symbolic_name_normalize(name);
239 
240         if let Some(canon) = canonical_prop(&norm)? {
241             return Ok(CanonicalClassQuery::Binary(canon));
242         }
243         if let Some(canon) = canonical_gencat(&norm)? {
244             return Ok(CanonicalClassQuery::GeneralCategory(canon));
245         }
246         if let Some(canon) = canonical_script(&norm)? {
247             return Ok(CanonicalClassQuery::Script(canon));
248         }
249         Err(Error::PropertyNotFound)
250     }
251 }
252 
253 /// Like ClassQuery, but its parameters have been canonicalized. This also
254 /// differentiates binary properties from flattened general categories and
255 /// scripts.
256 #[derive(Debug, Eq, PartialEq)]
257 enum CanonicalClassQuery {
258     /// The canonical binary property name.
259     Binary(&'static str),
260     /// The canonical general category name.
261     GeneralCategory(&'static str),
262     /// The canonical script name.
263     Script(&'static str),
264     /// An arbitrary association between property and value, both of which
265     /// have been canonicalized.
266     ///
267     /// Note that by construction, the property name of ByValue will never
268     /// be General_Category or Script. Those two cases are subsumed by the
269     /// eponymous variants.
270     ByValue {
271         /// The canonical property name.
272         property_name: &'static str,
273         /// The canonical property value.
274         property_value: &'static str,
275     },
276 }
277 
278 /// Looks up a Unicode class given a query. If one doesn't exist, then
279 /// `None` is returned.
class(query: ClassQuery) -> Result<hir::ClassUnicode>280 pub fn class(query: ClassQuery) -> Result<hir::ClassUnicode> {
281     use self::CanonicalClassQuery::*;
282 
283     match query.canonicalize()? {
284         Binary(name) => bool_property(name),
285         GeneralCategory(name) => gencat(name),
286         Script(name) => script(name),
287         ByValue { property_name: "Age", property_value } => {
288             let mut class = hir::ClassUnicode::empty();
289             for set in ages(property_value)? {
290                 class.union(&hir_class(set));
291             }
292             Ok(class)
293         }
294         ByValue { property_name: "Script_Extensions", property_value } => {
295             script_extension(property_value)
296         }
297         ByValue {
298             property_name: "Grapheme_Cluster_Break",
299             property_value,
300         } => gcb(property_value),
301         ByValue { property_name: "Sentence_Break", property_value } => {
302             sb(property_value)
303         }
304         ByValue { property_name: "Word_Break", property_value } => {
305             wb(property_value)
306         }
307         _ => {
308             // What else should we support?
309             Err(Error::PropertyNotFound)
310         }
311     }
312 }
313 
314 /// Returns a Unicode aware class for \w.
315 ///
316 /// This returns an error if the data is not available for \w.
perl_word() -> Result<hir::ClassUnicode>317 pub fn perl_word() -> Result<hir::ClassUnicode> {
318     #[cfg(not(feature = "unicode-perl"))]
319     fn imp() -> Result<hir::ClassUnicode> {
320         Err(Error::PerlClassNotFound)
321     }
322 
323     #[cfg(feature = "unicode-perl")]
324     fn imp() -> Result<hir::ClassUnicode> {
325         use unicode_tables::perl_word::PERL_WORD;
326         Ok(hir_class(PERL_WORD))
327     }
328 
329     imp()
330 }
331 
332 /// Returns a Unicode aware class for \s.
333 ///
334 /// This returns an error if the data is not available for \s.
perl_space() -> Result<hir::ClassUnicode>335 pub fn perl_space() -> Result<hir::ClassUnicode> {
336     #[cfg(not(any(feature = "unicode-perl", feature = "unicode-bool")))]
337     fn imp() -> Result<hir::ClassUnicode> {
338         Err(Error::PerlClassNotFound)
339     }
340 
341     #[cfg(all(feature = "unicode-perl", not(feature = "unicode-bool")))]
342     fn imp() -> Result<hir::ClassUnicode> {
343         use unicode_tables::perl_space::WHITE_SPACE;
344         Ok(hir_class(WHITE_SPACE))
345     }
346 
347     #[cfg(feature = "unicode-bool")]
348     fn imp() -> Result<hir::ClassUnicode> {
349         use unicode_tables::property_bool::WHITE_SPACE;
350         Ok(hir_class(WHITE_SPACE))
351     }
352 
353     imp()
354 }
355 
356 /// Returns a Unicode aware class for \d.
357 ///
358 /// This returns an error if the data is not available for \d.
perl_digit() -> Result<hir::ClassUnicode>359 pub fn perl_digit() -> Result<hir::ClassUnicode> {
360     #[cfg(not(any(feature = "unicode-perl", feature = "unicode-gencat")))]
361     fn imp() -> Result<hir::ClassUnicode> {
362         Err(Error::PerlClassNotFound)
363     }
364 
365     #[cfg(all(feature = "unicode-perl", not(feature = "unicode-gencat")))]
366     fn imp() -> Result<hir::ClassUnicode> {
367         use unicode_tables::perl_decimal::DECIMAL_NUMBER;
368         Ok(hir_class(DECIMAL_NUMBER))
369     }
370 
371     #[cfg(feature = "unicode-gencat")]
372     fn imp() -> Result<hir::ClassUnicode> {
373         use unicode_tables::general_category::DECIMAL_NUMBER;
374         Ok(hir_class(DECIMAL_NUMBER))
375     }
376 
377     imp()
378 }
379 
380 /// Build a Unicode HIR class from a sequence of Unicode scalar value ranges.
hir_class(ranges: &[(char, char)]) -> hir::ClassUnicode381 pub fn hir_class(ranges: &[(char, char)]) -> hir::ClassUnicode {
382     let hir_ranges: Vec<hir::ClassUnicodeRange> = ranges
383         .iter()
384         .map(|&(s, e)| hir::ClassUnicodeRange::new(s, e))
385         .collect();
386     hir::ClassUnicode::new(hir_ranges)
387 }
388 
389 /// Returns true only if the given codepoint is in the `\w` character class.
390 ///
391 /// If the `unicode-perl` feature is not enabled, then this returns an error.
is_word_character(c: char) -> result::Result<bool, UnicodeWordError>392 pub fn is_word_character(c: char) -> result::Result<bool, UnicodeWordError> {
393     #[cfg(not(feature = "unicode-perl"))]
394     fn imp(_: char) -> result::Result<bool, UnicodeWordError> {
395         Err(UnicodeWordError(()))
396     }
397 
398     #[cfg(feature = "unicode-perl")]
399     fn imp(c: char) -> result::Result<bool, UnicodeWordError> {
400         use is_word_byte;
401         use std::cmp::Ordering;
402         use unicode_tables::perl_word::PERL_WORD;
403 
404         if c <= 0x7F as char && is_word_byte(c as u8) {
405             return Ok(true);
406         }
407         Ok(PERL_WORD
408             .binary_search_by(|&(start, end)| {
409                 if start <= c && c <= end {
410                     Ordering::Equal
411                 } else if start > c {
412                     Ordering::Greater
413                 } else {
414                     Ordering::Less
415                 }
416             })
417             .is_ok())
418     }
419 
420     imp(c)
421 }
422 
423 /// A mapping of property values for a specific property.
424 ///
425 /// The first element of each tuple is a normalized property value while the
426 /// second element of each tuple is the corresponding canonical property
427 /// value.
428 type PropertyValues = &'static [(&'static str, &'static str)];
429 
canonical_gencat(normalized_value: &str) -> Result<Option<&'static str>>430 fn canonical_gencat(normalized_value: &str) -> Result<Option<&'static str>> {
431     Ok(match normalized_value {
432         "any" => Some("Any"),
433         "assigned" => Some("Assigned"),
434         "ascii" => Some("ASCII"),
435         _ => {
436             let gencats = property_values("General_Category")?.unwrap();
437             canonical_value(gencats, normalized_value)
438         }
439     })
440 }
441 
canonical_script(normalized_value: &str) -> Result<Option<&'static str>>442 fn canonical_script(normalized_value: &str) -> Result<Option<&'static str>> {
443     let scripts = property_values("Script")?.unwrap();
444     Ok(canonical_value(scripts, normalized_value))
445 }
446 
447 /// Find the canonical property name for the given normalized property name.
448 ///
449 /// If no such property exists, then `None` is returned.
450 ///
451 /// The normalized property name must have been normalized according to
452 /// UAX44 LM3, which can be done using `symbolic_name_normalize`.
453 ///
454 /// If the property names data is not available, then an error is returned.
canonical_prop(normalized_name: &str) -> Result<Option<&'static str>>455 fn canonical_prop(normalized_name: &str) -> Result<Option<&'static str>> {
456     #[cfg(not(any(
457         feature = "unicode-age",
458         feature = "unicode-bool",
459         feature = "unicode-gencat",
460         feature = "unicode-perl",
461         feature = "unicode-script",
462         feature = "unicode-segment",
463     )))]
464     fn imp(_: &str) -> Result<Option<&'static str>> {
465         Err(Error::PropertyNotFound)
466     }
467 
468     #[cfg(any(
469         feature = "unicode-age",
470         feature = "unicode-bool",
471         feature = "unicode-gencat",
472         feature = "unicode-perl",
473         feature = "unicode-script",
474         feature = "unicode-segment",
475     ))]
476     fn imp(name: &str) -> Result<Option<&'static str>> {
477         use unicode_tables::property_names::PROPERTY_NAMES;
478 
479         Ok(PROPERTY_NAMES
480             .binary_search_by_key(&name, |&(n, _)| n)
481             .ok()
482             .map(|i| PROPERTY_NAMES[i].1))
483     }
484 
485     imp(normalized_name)
486 }
487 
488 /// Find the canonical property value for the given normalized property
489 /// value.
490 ///
491 /// The given property values should correspond to the values for the property
492 /// under question, which can be found using `property_values`.
493 ///
494 /// If no such property value exists, then `None` is returned.
495 ///
496 /// The normalized property value must have been normalized according to
497 /// UAX44 LM3, which can be done using `symbolic_name_normalize`.
canonical_value( vals: PropertyValues, normalized_value: &str, ) -> Option<&'static str>498 fn canonical_value(
499     vals: PropertyValues,
500     normalized_value: &str,
501 ) -> Option<&'static str> {
502     vals.binary_search_by_key(&normalized_value, |&(n, _)| n)
503         .ok()
504         .map(|i| vals[i].1)
505 }
506 
507 /// Return the table of property values for the given property name.
508 ///
509 /// If the property values data is not available, then an error is returned.
property_values( canonical_property_name: &'static str, ) -> Result<Option<PropertyValues>>510 fn property_values(
511     canonical_property_name: &'static str,
512 ) -> Result<Option<PropertyValues>> {
513     #[cfg(not(any(
514         feature = "unicode-age",
515         feature = "unicode-bool",
516         feature = "unicode-gencat",
517         feature = "unicode-perl",
518         feature = "unicode-script",
519         feature = "unicode-segment",
520     )))]
521     fn imp(_: &'static str) -> Result<Option<PropertyValues>> {
522         Err(Error::PropertyValueNotFound)
523     }
524 
525     #[cfg(any(
526         feature = "unicode-age",
527         feature = "unicode-bool",
528         feature = "unicode-gencat",
529         feature = "unicode-perl",
530         feature = "unicode-script",
531         feature = "unicode-segment",
532     ))]
533     fn imp(name: &'static str) -> Result<Option<PropertyValues>> {
534         use unicode_tables::property_values::PROPERTY_VALUES;
535 
536         Ok(PROPERTY_VALUES
537             .binary_search_by_key(&name, |&(n, _)| n)
538             .ok()
539             .map(|i| PROPERTY_VALUES[i].1))
540     }
541 
542     imp(canonical_property_name)
543 }
544 
545 // This is only used in some cases, but small enough to just let it be dead
546 // instead of figuring out (and maintaining) the right set of features.
547 #[allow(dead_code)]
property_set( name_map: &'static [(&'static str, Range)], canonical: &'static str, ) -> Option<Range>548 fn property_set(
549     name_map: &'static [(&'static str, Range)],
550     canonical: &'static str,
551 ) -> Option<Range> {
552     name_map
553         .binary_search_by_key(&canonical, |x| x.0)
554         .ok()
555         .map(|i| name_map[i].1)
556 }
557 
558 /// Returns an iterator over Unicode Age sets. Each item corresponds to a set
559 /// of codepoints that were added in a particular revision of Unicode. The
560 /// iterator yields items in chronological order.
561 ///
562 /// If the given age value isn't valid or if the data isn't available, then an
563 /// error is returned instead.
ages(canonical_age: &str) -> Result<impl Iterator<Item = Range>>564 fn ages(canonical_age: &str) -> Result<impl Iterator<Item = Range>> {
565     #[cfg(not(feature = "unicode-age"))]
566     fn imp(_: &str) -> Result<impl Iterator<Item = Range>> {
567         use std::option::IntoIter;
568         Err::<IntoIter<Range>, _>(Error::PropertyNotFound)
569     }
570 
571     #[cfg(feature = "unicode-age")]
572     fn imp(canonical_age: &str) -> Result<impl Iterator<Item = Range>> {
573         use unicode_tables::age;
574 
575         const AGES: &'static [(&'static str, Range)] = &[
576             ("V1_1", age::V1_1),
577             ("V2_0", age::V2_0),
578             ("V2_1", age::V2_1),
579             ("V3_0", age::V3_0),
580             ("V3_1", age::V3_1),
581             ("V3_2", age::V3_2),
582             ("V4_0", age::V4_0),
583             ("V4_1", age::V4_1),
584             ("V5_0", age::V5_0),
585             ("V5_1", age::V5_1),
586             ("V5_2", age::V5_2),
587             ("V6_0", age::V6_0),
588             ("V6_1", age::V6_1),
589             ("V6_2", age::V6_2),
590             ("V6_3", age::V6_3),
591             ("V7_0", age::V7_0),
592             ("V8_0", age::V8_0),
593             ("V9_0", age::V9_0),
594             ("V10_0", age::V10_0),
595             ("V11_0", age::V11_0),
596             ("V12_0", age::V12_0),
597             ("V12_1", age::V12_1),
598             ("V13_0", age::V13_0),
599         ];
600         assert_eq!(AGES.len(), age::BY_NAME.len(), "ages are out of sync");
601 
602         let pos = AGES.iter().position(|&(age, _)| canonical_age == age);
603         match pos {
604             None => Err(Error::PropertyValueNotFound),
605             Some(i) => Ok(AGES[..i + 1].iter().map(|&(_, classes)| classes)),
606         }
607     }
608 
609     imp(canonical_age)
610 }
611 
612 /// Returns the Unicode HIR class corresponding to the given general category.
613 ///
614 /// Name canonicalization is assumed to be performed by the caller.
615 ///
616 /// If the given general category could not be found, or if the general
617 /// category data is not available, then an error is returned.
gencat(canonical_name: &'static str) -> Result<hir::ClassUnicode>618 fn gencat(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
619     #[cfg(not(feature = "unicode-gencat"))]
620     fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
621         Err(Error::PropertyNotFound)
622     }
623 
624     #[cfg(feature = "unicode-gencat")]
625     fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
626         use unicode_tables::general_category::BY_NAME;
627         match name {
628             "ASCII" => Ok(hir_class(&[('\0', '\x7F')])),
629             "Any" => Ok(hir_class(&[('\0', '\u{10FFFF}')])),
630             "Assigned" => {
631                 let mut cls = gencat("Unassigned")?;
632                 cls.negate();
633                 Ok(cls)
634             }
635             name => property_set(BY_NAME, name)
636                 .map(hir_class)
637                 .ok_or(Error::PropertyValueNotFound),
638         }
639     }
640 
641     match canonical_name {
642         "Decimal_Number" => perl_digit(),
643         name => imp(name),
644     }
645 }
646 
647 /// Returns the Unicode HIR class corresponding to the given script.
648 ///
649 /// Name canonicalization is assumed to be performed by the caller.
650 ///
651 /// If the given script could not be found, or if the script data is not
652 /// available, then an error is returned.
script(canonical_name: &'static str) -> Result<hir::ClassUnicode>653 fn script(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
654     #[cfg(not(feature = "unicode-script"))]
655     fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
656         Err(Error::PropertyNotFound)
657     }
658 
659     #[cfg(feature = "unicode-script")]
660     fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
661         use unicode_tables::script::BY_NAME;
662         property_set(BY_NAME, name)
663             .map(hir_class)
664             .ok_or(Error::PropertyValueNotFound)
665     }
666 
667     imp(canonical_name)
668 }
669 
670 /// Returns the Unicode HIR class corresponding to the given script extension.
671 ///
672 /// Name canonicalization is assumed to be performed by the caller.
673 ///
674 /// If the given script extension could not be found, or if the script data is
675 /// not available, then an error is returned.
script_extension( canonical_name: &'static str, ) -> Result<hir::ClassUnicode>676 fn script_extension(
677     canonical_name: &'static str,
678 ) -> Result<hir::ClassUnicode> {
679     #[cfg(not(feature = "unicode-script"))]
680     fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
681         Err(Error::PropertyNotFound)
682     }
683 
684     #[cfg(feature = "unicode-script")]
685     fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
686         use unicode_tables::script_extension::BY_NAME;
687         property_set(BY_NAME, name)
688             .map(hir_class)
689             .ok_or(Error::PropertyValueNotFound)
690     }
691 
692     imp(canonical_name)
693 }
694 
695 /// Returns the Unicode HIR class corresponding to the given Unicode boolean
696 /// property.
697 ///
698 /// Name canonicalization is assumed to be performed by the caller.
699 ///
700 /// If the given boolean property could not be found, or if the boolean
701 /// property data is not available, then an error is returned.
bool_property(canonical_name: &'static str) -> Result<hir::ClassUnicode>702 fn bool_property(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
703     #[cfg(not(feature = "unicode-bool"))]
704     fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
705         Err(Error::PropertyNotFound)
706     }
707 
708     #[cfg(feature = "unicode-bool")]
709     fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
710         use unicode_tables::property_bool::BY_NAME;
711         property_set(BY_NAME, name)
712             .map(hir_class)
713             .ok_or(Error::PropertyNotFound)
714     }
715 
716     match canonical_name {
717         "Decimal_Number" => perl_digit(),
718         "White_Space" => perl_space(),
719         name => imp(name),
720     }
721 }
722 
723 /// Returns the Unicode HIR class corresponding to the given grapheme cluster
724 /// break property.
725 ///
726 /// Name canonicalization is assumed to be performed by the caller.
727 ///
728 /// If the given property could not be found, or if the corresponding data is
729 /// not available, then an error is returned.
gcb(canonical_name: &'static str) -> Result<hir::ClassUnicode>730 fn gcb(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
731     #[cfg(not(feature = "unicode-segment"))]
732     fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
733         Err(Error::PropertyNotFound)
734     }
735 
736     #[cfg(feature = "unicode-segment")]
737     fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
738         use unicode_tables::grapheme_cluster_break::BY_NAME;
739         property_set(BY_NAME, name)
740             .map(hir_class)
741             .ok_or(Error::PropertyValueNotFound)
742     }
743 
744     imp(canonical_name)
745 }
746 
747 /// Returns the Unicode HIR class corresponding to the given word break
748 /// property.
749 ///
750 /// Name canonicalization is assumed to be performed by the caller.
751 ///
752 /// If the given property could not be found, or if the corresponding data is
753 /// not available, then an error is returned.
wb(canonical_name: &'static str) -> Result<hir::ClassUnicode>754 fn wb(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
755     #[cfg(not(feature = "unicode-segment"))]
756     fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
757         Err(Error::PropertyNotFound)
758     }
759 
760     #[cfg(feature = "unicode-segment")]
761     fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
762         use unicode_tables::word_break::BY_NAME;
763         property_set(BY_NAME, name)
764             .map(hir_class)
765             .ok_or(Error::PropertyValueNotFound)
766     }
767 
768     imp(canonical_name)
769 }
770 
771 /// Returns the Unicode HIR class corresponding to the given sentence
772 /// break property.
773 ///
774 /// Name canonicalization is assumed to be performed by the caller.
775 ///
776 /// If the given property could not be found, or if the corresponding data is
777 /// not available, then an error is returned.
sb(canonical_name: &'static str) -> Result<hir::ClassUnicode>778 fn sb(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
779     #[cfg(not(feature = "unicode-segment"))]
780     fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
781         Err(Error::PropertyNotFound)
782     }
783 
784     #[cfg(feature = "unicode-segment")]
785     fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
786         use unicode_tables::sentence_break::BY_NAME;
787         property_set(BY_NAME, name)
788             .map(hir_class)
789             .ok_or(Error::PropertyValueNotFound)
790     }
791 
792     imp(canonical_name)
793 }
794 
795 /// Like symbolic_name_normalize_bytes, but operates on a string.
symbolic_name_normalize(x: &str) -> String796 fn symbolic_name_normalize(x: &str) -> String {
797     let mut tmp = x.as_bytes().to_vec();
798     let len = symbolic_name_normalize_bytes(&mut tmp).len();
799     tmp.truncate(len);
800     // This should always succeed because `symbolic_name_normalize_bytes`
801     // guarantees that `&tmp[..len]` is always valid UTF-8.
802     //
803     // N.B. We could avoid the additional UTF-8 check here, but it's unlikely
804     // to be worth skipping the additional safety check. A benchmark must
805     // justify it first.
806     String::from_utf8(tmp).unwrap()
807 }
808 
809 /// Normalize the given symbolic name in place according to UAX44-LM3.
810 ///
811 /// A "symbolic name" typically corresponds to property names and property
812 /// value aliases. Note, though, that it should not be applied to property
813 /// string values.
814 ///
815 /// The slice returned is guaranteed to be valid UTF-8 for all possible values
816 /// of `slice`.
817 ///
818 /// See: http://unicode.org/reports/tr44/#UAX44-LM3
symbolic_name_normalize_bytes(slice: &mut [u8]) -> &mut [u8]819 fn symbolic_name_normalize_bytes(slice: &mut [u8]) -> &mut [u8] {
820     // I couldn't find a place in the standard that specified that property
821     // names/aliases had a particular structure (unlike character names), but
822     // we assume that it's ASCII only and drop anything that isn't ASCII.
823     let mut start = 0;
824     let mut starts_with_is = false;
825     if slice.len() >= 2 {
826         // Ignore any "is" prefix.
827         starts_with_is = slice[0..2] == b"is"[..]
828             || slice[0..2] == b"IS"[..]
829             || slice[0..2] == b"iS"[..]
830             || slice[0..2] == b"Is"[..];
831         if starts_with_is {
832             start = 2;
833         }
834     }
835     let mut next_write = 0;
836     for i in start..slice.len() {
837         // VALIDITY ARGUMENT: To guarantee that the resulting slice is valid
838         // UTF-8, we ensure that the slice contains only ASCII bytes. In
839         // particular, we drop every non-ASCII byte from the normalized string.
840         let b = slice[i];
841         if b == b' ' || b == b'_' || b == b'-' {
842             continue;
843         } else if b'A' <= b && b <= b'Z' {
844             slice[next_write] = b + (b'a' - b'A');
845             next_write += 1;
846         } else if b <= 0x7F {
847             slice[next_write] = b;
848             next_write += 1;
849         }
850     }
851     // Special case: ISO_Comment has a 'isc' abbreviation. Since we generally
852     // ignore 'is' prefixes, the 'isc' abbreviation gets caught in the cross
853     // fire and ends up creating an alias for 'c' to 'ISO_Comment', but it
854     // is actually an alias for the 'Other' general category.
855     if starts_with_is && next_write == 1 && slice[0] == b'c' {
856         slice[0] = b'i';
857         slice[1] = b's';
858         slice[2] = b'c';
859         next_write = 3;
860     }
861     &mut slice[..next_write]
862 }
863 
864 #[cfg(test)]
865 mod tests {
866     use super::{
867         contains_simple_case_mapping, simple_fold, symbolic_name_normalize,
868         symbolic_name_normalize_bytes,
869     };
870 
871     #[cfg(feature = "unicode-case")]
simple_fold_ok(c: char) -> impl Iterator<Item = char>872     fn simple_fold_ok(c: char) -> impl Iterator<Item = char> {
873         simple_fold(c).unwrap().unwrap()
874     }
875 
876     #[cfg(feature = "unicode-case")]
simple_fold_err(c: char) -> Option<char>877     fn simple_fold_err(c: char) -> Option<char> {
878         match simple_fold(c).unwrap() {
879             Ok(_) => unreachable!("simple_fold returned Ok iterator"),
880             Err(next) => next,
881         }
882     }
883 
884     #[cfg(feature = "unicode-case")]
contains_case_map(start: char, end: char) -> bool885     fn contains_case_map(start: char, end: char) -> bool {
886         contains_simple_case_mapping(start, end).unwrap()
887     }
888 
889     #[test]
890     #[cfg(feature = "unicode-case")]
simple_fold_k()891     fn simple_fold_k() {
892         let xs: Vec<char> = simple_fold_ok('k').collect();
893         assert_eq!(xs, vec!['K', 'K']);
894 
895         let xs: Vec<char> = simple_fold_ok('K').collect();
896         assert_eq!(xs, vec!['k', 'K']);
897 
898         let xs: Vec<char> = simple_fold_ok('K').collect();
899         assert_eq!(xs, vec!['K', 'k']);
900     }
901 
902     #[test]
903     #[cfg(feature = "unicode-case")]
simple_fold_a()904     fn simple_fold_a() {
905         let xs: Vec<char> = simple_fold_ok('a').collect();
906         assert_eq!(xs, vec!['A']);
907 
908         let xs: Vec<char> = simple_fold_ok('A').collect();
909         assert_eq!(xs, vec!['a']);
910     }
911 
912     #[test]
913     #[cfg(feature = "unicode-case")]
simple_fold_empty()914     fn simple_fold_empty() {
915         assert_eq!(Some('A'), simple_fold_err('?'));
916         assert_eq!(Some('A'), simple_fold_err('@'));
917         assert_eq!(Some('a'), simple_fold_err('['));
918         assert_eq!(Some('Ⰰ'), simple_fold_err('☃'));
919     }
920 
921     #[test]
922     #[cfg(feature = "unicode-case")]
simple_fold_max()923     fn simple_fold_max() {
924         assert_eq!(None, simple_fold_err('\u{10FFFE}'));
925         assert_eq!(None, simple_fold_err('\u{10FFFF}'));
926     }
927 
928     #[test]
929     #[cfg(not(feature = "unicode-case"))]
simple_fold_disabled()930     fn simple_fold_disabled() {
931         assert!(simple_fold('a').is_err());
932     }
933 
934     #[test]
935     #[cfg(feature = "unicode-case")]
range_contains()936     fn range_contains() {
937         assert!(contains_case_map('A', 'A'));
938         assert!(contains_case_map('Z', 'Z'));
939         assert!(contains_case_map('A', 'Z'));
940         assert!(contains_case_map('@', 'A'));
941         assert!(contains_case_map('Z', '['));
942         assert!(contains_case_map('☃', 'Ⰰ'));
943 
944         assert!(!contains_case_map('[', '['));
945         assert!(!contains_case_map('[', '`'));
946 
947         assert!(!contains_case_map('☃', '☃'));
948     }
949 
950     #[test]
951     #[cfg(not(feature = "unicode-case"))]
range_contains_disabled()952     fn range_contains_disabled() {
953         assert!(contains_simple_case_mapping('a', 'a').is_err());
954     }
955 
956     #[test]
957     #[cfg(feature = "unicode-gencat")]
regression_466()958     fn regression_466() {
959         use super::{CanonicalClassQuery, ClassQuery};
960 
961         let q = ClassQuery::OneLetter('C');
962         assert_eq!(
963             q.canonicalize().unwrap(),
964             CanonicalClassQuery::GeneralCategory("Other")
965         );
966     }
967 
968     #[test]
sym_normalize()969     fn sym_normalize() {
970         let sym_norm = symbolic_name_normalize;
971 
972         assert_eq!(sym_norm("Line_Break"), "linebreak");
973         assert_eq!(sym_norm("Line-break"), "linebreak");
974         assert_eq!(sym_norm("linebreak"), "linebreak");
975         assert_eq!(sym_norm("BA"), "ba");
976         assert_eq!(sym_norm("ba"), "ba");
977         assert_eq!(sym_norm("Greek"), "greek");
978         assert_eq!(sym_norm("isGreek"), "greek");
979         assert_eq!(sym_norm("IS_Greek"), "greek");
980         assert_eq!(sym_norm("isc"), "isc");
981         assert_eq!(sym_norm("is c"), "isc");
982         assert_eq!(sym_norm("is_c"), "isc");
983     }
984 
985     #[test]
valid_utf8_symbolic()986     fn valid_utf8_symbolic() {
987         let mut x = b"abc\xFFxyz".to_vec();
988         let y = symbolic_name_normalize_bytes(&mut x);
989         assert_eq!(y, b"abcxyz");
990     }
991 }
992