1// Copyright 2015 The etcd Authors
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//     http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15package raft
16
17import (
18	"context"
19	"errors"
20
21	pb "go.etcd.io/etcd/raft/raftpb"
22)
23
24type SnapshotStatus int
25
26const (
27	SnapshotFinish  SnapshotStatus = 1
28	SnapshotFailure SnapshotStatus = 2
29)
30
31var (
32	emptyState = pb.HardState{}
33
34	// ErrStopped is returned by methods on Nodes that have been stopped.
35	ErrStopped = errors.New("raft: stopped")
36)
37
38// SoftState provides state that is useful for logging and debugging.
39// The state is volatile and does not need to be persisted to the WAL.
40type SoftState struct {
41	Lead      uint64 // must use atomic operations to access; keep 64-bit aligned.
42	RaftState StateType
43}
44
45func (a *SoftState) equal(b *SoftState) bool {
46	return a.Lead == b.Lead && a.RaftState == b.RaftState
47}
48
49// Ready encapsulates the entries and messages that are ready to read,
50// be saved to stable storage, committed or sent to other peers.
51// All fields in Ready are read-only.
52type Ready struct {
53	// The current volatile state of a Node.
54	// SoftState will be nil if there is no update.
55	// It is not required to consume or store SoftState.
56	*SoftState
57
58	// The current state of a Node to be saved to stable storage BEFORE
59	// Messages are sent.
60	// HardState will be equal to empty state if there is no update.
61	pb.HardState
62
63	// ReadStates can be used for node to serve linearizable read requests locally
64	// when its applied index is greater than the index in ReadState.
65	// Note that the readState will be returned when raft receives msgReadIndex.
66	// The returned is only valid for the request that requested to read.
67	ReadStates []ReadState
68
69	// Entries specifies entries to be saved to stable storage BEFORE
70	// Messages are sent.
71	Entries []pb.Entry
72
73	// Snapshot specifies the snapshot to be saved to stable storage.
74	Snapshot pb.Snapshot
75
76	// CommittedEntries specifies entries to be committed to a
77	// store/state-machine. These have previously been committed to stable
78	// store.
79	CommittedEntries []pb.Entry
80
81	// Messages specifies outbound messages to be sent AFTER Entries are
82	// committed to stable storage.
83	// If it contains a MsgSnap message, the application MUST report back to raft
84	// when the snapshot has been received or has failed by calling ReportSnapshot.
85	Messages []pb.Message
86
87	// MustSync indicates whether the HardState and Entries must be synchronously
88	// written to disk or if an asynchronous write is permissible.
89	MustSync bool
90}
91
92func isHardStateEqual(a, b pb.HardState) bool {
93	return a.Term == b.Term && a.Vote == b.Vote && a.Commit == b.Commit
94}
95
96// IsEmptyHardState returns true if the given HardState is empty.
97func IsEmptyHardState(st pb.HardState) bool {
98	return isHardStateEqual(st, emptyState)
99}
100
101// IsEmptySnap returns true if the given Snapshot is empty.
102func IsEmptySnap(sp pb.Snapshot) bool {
103	return sp.Metadata.Index == 0
104}
105
106func (rd Ready) containsUpdates() bool {
107	return rd.SoftState != nil || !IsEmptyHardState(rd.HardState) ||
108		!IsEmptySnap(rd.Snapshot) || len(rd.Entries) > 0 ||
109		len(rd.CommittedEntries) > 0 || len(rd.Messages) > 0 || len(rd.ReadStates) != 0
110}
111
112// appliedCursor extracts from the Ready the highest index the client has
113// applied (once the Ready is confirmed via Advance). If no information is
114// contained in the Ready, returns zero.
115func (rd Ready) appliedCursor() uint64 {
116	if n := len(rd.CommittedEntries); n > 0 {
117		return rd.CommittedEntries[n-1].Index
118	}
119	if index := rd.Snapshot.Metadata.Index; index > 0 {
120		return index
121	}
122	return 0
123}
124
125// Node represents a node in a raft cluster.
126type Node interface {
127	// Tick increments the internal logical clock for the Node by a single tick. Election
128	// timeouts and heartbeat timeouts are in units of ticks.
129	Tick()
130	// Campaign causes the Node to transition to candidate state and start campaigning to become leader.
131	Campaign(ctx context.Context) error
132	// Propose proposes that data be appended to the log. Note that proposals can be lost without
133	// notice, therefore it is user's job to ensure proposal retries.
134	Propose(ctx context.Context, data []byte) error
135	// ProposeConfChange proposes a configuration change. Like any proposal, the
136	// configuration change may be dropped with or without an error being
137	// returned. In particular, configuration changes are dropped unless the
138	// leader has certainty that there is no prior unapplied configuration
139	// change in its log.
140	//
141	// The method accepts either a pb.ConfChange (deprecated) or pb.ConfChangeV2
142	// message. The latter allows arbitrary configuration changes via joint
143	// consensus, notably including replacing a voter. Passing a ConfChangeV2
144	// message is only allowed if all Nodes participating in the cluster run a
145	// version of this library aware of the V2 API. See pb.ConfChangeV2 for
146	// usage details and semantics.
147	ProposeConfChange(ctx context.Context, cc pb.ConfChangeI) error
148
149	// Step advances the state machine using the given message. ctx.Err() will be returned, if any.
150	Step(ctx context.Context, msg pb.Message) error
151
152	// Ready returns a channel that returns the current point-in-time state.
153	// Users of the Node must call Advance after retrieving the state returned by Ready.
154	//
155	// NOTE: No committed entries from the next Ready may be applied until all committed entries
156	// and snapshots from the previous one have finished.
157	Ready() <-chan Ready
158
159	// Advance notifies the Node that the application has saved progress up to the last Ready.
160	// It prepares the node to return the next available Ready.
161	//
162	// The application should generally call Advance after it applies the entries in last Ready.
163	//
164	// However, as an optimization, the application may call Advance while it is applying the
165	// commands. For example. when the last Ready contains a snapshot, the application might take
166	// a long time to apply the snapshot data. To continue receiving Ready without blocking raft
167	// progress, it can call Advance before finishing applying the last ready.
168	Advance()
169	// ApplyConfChange applies a config change (previously passed to
170	// ProposeConfChange) to the node. This must be called whenever a config
171	// change is observed in Ready.CommittedEntries.
172	//
173	// Returns an opaque non-nil ConfState protobuf which must be recorded in
174	// snapshots.
175	ApplyConfChange(cc pb.ConfChangeI) *pb.ConfState
176
177	// TransferLeadership attempts to transfer leadership to the given transferee.
178	TransferLeadership(ctx context.Context, lead, transferee uint64)
179
180	// ReadIndex request a read state. The read state will be set in the ready.
181	// Read state has a read index. Once the application advances further than the read
182	// index, any linearizable read requests issued before the read request can be
183	// processed safely. The read state will have the same rctx attached.
184	ReadIndex(ctx context.Context, rctx []byte) error
185
186	// Status returns the current status of the raft state machine.
187	Status() Status
188	// ReportUnreachable reports the given node is not reachable for the last send.
189	ReportUnreachable(id uint64)
190	// ReportSnapshot reports the status of the sent snapshot. The id is the raft ID of the follower
191	// who is meant to receive the snapshot, and the status is SnapshotFinish or SnapshotFailure.
192	// Calling ReportSnapshot with SnapshotFinish is a no-op. But, any failure in applying a
193	// snapshot (for e.g., while streaming it from leader to follower), should be reported to the
194	// leader with SnapshotFailure. When leader sends a snapshot to a follower, it pauses any raft
195	// log probes until the follower can apply the snapshot and advance its state. If the follower
196	// can't do that, for e.g., due to a crash, it could end up in a limbo, never getting any
197	// updates from the leader. Therefore, it is crucial that the application ensures that any
198	// failure in snapshot sending is caught and reported back to the leader; so it can resume raft
199	// log probing in the follower.
200	ReportSnapshot(id uint64, status SnapshotStatus)
201	// Stop performs any necessary termination of the Node.
202	Stop()
203}
204
205type Peer struct {
206	ID      uint64
207	Context []byte
208}
209
210// StartNode returns a new Node given configuration and a list of raft peers.
211// It appends a ConfChangeAddNode entry for each given peer to the initial log.
212//
213// Peers must not be zero length; call RestartNode in that case.
214func StartNode(c *Config, peers []Peer) Node {
215	if len(peers) == 0 {
216		panic("no peers given; use RestartNode instead")
217	}
218	rn, err := NewRawNode(c)
219	if err != nil {
220		panic(err)
221	}
222	rn.Bootstrap(peers)
223
224	n := newNode(rn)
225
226	go n.run()
227	return &n
228}
229
230// RestartNode is similar to StartNode but does not take a list of peers.
231// The current membership of the cluster will be restored from the Storage.
232// If the caller has an existing state machine, pass in the last log index that
233// has been applied to it; otherwise use zero.
234func RestartNode(c *Config) Node {
235	rn, err := NewRawNode(c)
236	if err != nil {
237		panic(err)
238	}
239	n := newNode(rn)
240	go n.run()
241	return &n
242}
243
244type msgWithResult struct {
245	m      pb.Message
246	result chan error
247}
248
249// node is the canonical implementation of the Node interface
250type node struct {
251	propc      chan msgWithResult
252	recvc      chan pb.Message
253	confc      chan pb.ConfChangeV2
254	confstatec chan pb.ConfState
255	readyc     chan Ready
256	advancec   chan struct{}
257	tickc      chan struct{}
258	done       chan struct{}
259	stop       chan struct{}
260	status     chan chan Status
261
262	rn *RawNode
263}
264
265func newNode(rn *RawNode) node {
266	return node{
267		propc:      make(chan msgWithResult),
268		recvc:      make(chan pb.Message),
269		confc:      make(chan pb.ConfChangeV2),
270		confstatec: make(chan pb.ConfState),
271		readyc:     make(chan Ready),
272		advancec:   make(chan struct{}),
273		// make tickc a buffered chan, so raft node can buffer some ticks when the node
274		// is busy processing raft messages. Raft node will resume process buffered
275		// ticks when it becomes idle.
276		tickc:  make(chan struct{}, 128),
277		done:   make(chan struct{}),
278		stop:   make(chan struct{}),
279		status: make(chan chan Status),
280		rn:     rn,
281	}
282}
283
284func (n *node) Stop() {
285	select {
286	case n.stop <- struct{}{}:
287		// Not already stopped, so trigger it
288	case <-n.done:
289		// Node has already been stopped - no need to do anything
290		return
291	}
292	// Block until the stop has been acknowledged by run()
293	<-n.done
294}
295
296func (n *node) run() {
297	var propc chan msgWithResult
298	var readyc chan Ready
299	var advancec chan struct{}
300	var rd Ready
301
302	r := n.rn.raft
303
304	lead := None
305
306	for {
307		if advancec != nil {
308			readyc = nil
309		} else if n.rn.HasReady() {
310			// Populate a Ready. Note that this Ready is not guaranteed to
311			// actually be handled. We will arm readyc, but there's no guarantee
312			// that we will actually send on it. It's possible that we will
313			// service another channel instead, loop around, and then populate
314			// the Ready again. We could instead force the previous Ready to be
315			// handled first, but it's generally good to emit larger Readys plus
316			// it simplifies testing (by emitting less frequently and more
317			// predictably).
318			rd = n.rn.readyWithoutAccept()
319			readyc = n.readyc
320		}
321
322		if lead != r.lead {
323			if r.hasLeader() {
324				if lead == None {
325					r.logger.Infof("raft.node: %x elected leader %x at term %d", r.id, r.lead, r.Term)
326				} else {
327					r.logger.Infof("raft.node: %x changed leader from %x to %x at term %d", r.id, lead, r.lead, r.Term)
328				}
329				propc = n.propc
330			} else {
331				r.logger.Infof("raft.node: %x lost leader %x at term %d", r.id, lead, r.Term)
332				propc = nil
333			}
334			lead = r.lead
335		}
336
337		select {
338		// TODO: maybe buffer the config propose if there exists one (the way
339		// described in raft dissertation)
340		// Currently it is dropped in Step silently.
341		case pm := <-propc:
342			m := pm.m
343			m.From = r.id
344			err := r.Step(m)
345			if pm.result != nil {
346				pm.result <- err
347				close(pm.result)
348			}
349		case m := <-n.recvc:
350			// filter out response message from unknown From.
351			if pr := r.prs.Progress[m.From]; pr != nil || !IsResponseMsg(m.Type) {
352				r.Step(m)
353			}
354		case cc := <-n.confc:
355			_, okBefore := r.prs.Progress[r.id]
356			cs := r.applyConfChange(cc)
357			// If the node was removed, block incoming proposals. Note that we
358			// only do this if the node was in the config before. Nodes may be
359			// a member of the group without knowing this (when they're catching
360			// up on the log and don't have the latest config) and we don't want
361			// to block the proposal channel in that case.
362			//
363			// NB: propc is reset when the leader changes, which, if we learn
364			// about it, sort of implies that we got readded, maybe? This isn't
365			// very sound and likely has bugs.
366			if _, okAfter := r.prs.Progress[r.id]; okBefore && !okAfter {
367				var found bool
368				for _, sl := range [][]uint64{cs.Voters, cs.VotersOutgoing} {
369					for _, id := range sl {
370						if id == r.id {
371							found = true
372						}
373					}
374				}
375				if !found {
376					propc = nil
377				}
378			}
379			select {
380			case n.confstatec <- cs:
381			case <-n.done:
382			}
383		case <-n.tickc:
384			n.rn.Tick()
385		case readyc <- rd:
386			n.rn.acceptReady(rd)
387			advancec = n.advancec
388		case <-advancec:
389			n.rn.Advance(rd)
390			rd = Ready{}
391			advancec = nil
392		case c := <-n.status:
393			c <- getStatus(r)
394		case <-n.stop:
395			close(n.done)
396			return
397		}
398	}
399}
400
401// Tick increments the internal logical clock for this Node. Election timeouts
402// and heartbeat timeouts are in units of ticks.
403func (n *node) Tick() {
404	select {
405	case n.tickc <- struct{}{}:
406	case <-n.done:
407	default:
408		n.rn.raft.logger.Warningf("%x (leader %v) A tick missed to fire. Node blocks too long!", n.rn.raft.id, n.rn.raft.id == n.rn.raft.lead)
409	}
410}
411
412func (n *node) Campaign(ctx context.Context) error { return n.step(ctx, pb.Message{Type: pb.MsgHup}) }
413
414func (n *node) Propose(ctx context.Context, data []byte) error {
415	return n.stepWait(ctx, pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Data: data}}})
416}
417
418func (n *node) Step(ctx context.Context, m pb.Message) error {
419	// ignore unexpected local messages receiving over network
420	if IsLocalMsg(m.Type) {
421		// TODO: return an error?
422		return nil
423	}
424	return n.step(ctx, m)
425}
426
427func confChangeToMsg(c pb.ConfChangeI) (pb.Message, error) {
428	typ, data, err := pb.MarshalConfChange(c)
429	if err != nil {
430		return pb.Message{}, err
431	}
432	return pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Type: typ, Data: data}}}, nil
433}
434
435func (n *node) ProposeConfChange(ctx context.Context, cc pb.ConfChangeI) error {
436	msg, err := confChangeToMsg(cc)
437	if err != nil {
438		return err
439	}
440	return n.Step(ctx, msg)
441}
442
443func (n *node) step(ctx context.Context, m pb.Message) error {
444	return n.stepWithWaitOption(ctx, m, false)
445}
446
447func (n *node) stepWait(ctx context.Context, m pb.Message) error {
448	return n.stepWithWaitOption(ctx, m, true)
449}
450
451// Step advances the state machine using msgs. The ctx.Err() will be returned,
452// if any.
453func (n *node) stepWithWaitOption(ctx context.Context, m pb.Message, wait bool) error {
454	if m.Type != pb.MsgProp {
455		select {
456		case n.recvc <- m:
457			return nil
458		case <-ctx.Done():
459			return ctx.Err()
460		case <-n.done:
461			return ErrStopped
462		}
463	}
464	ch := n.propc
465	pm := msgWithResult{m: m}
466	if wait {
467		pm.result = make(chan error, 1)
468	}
469	select {
470	case ch <- pm:
471		if !wait {
472			return nil
473		}
474	case <-ctx.Done():
475		return ctx.Err()
476	case <-n.done:
477		return ErrStopped
478	}
479	select {
480	case err := <-pm.result:
481		if err != nil {
482			return err
483		}
484	case <-ctx.Done():
485		return ctx.Err()
486	case <-n.done:
487		return ErrStopped
488	}
489	return nil
490}
491
492func (n *node) Ready() <-chan Ready { return n.readyc }
493
494func (n *node) Advance() {
495	select {
496	case n.advancec <- struct{}{}:
497	case <-n.done:
498	}
499}
500
501func (n *node) ApplyConfChange(cc pb.ConfChangeI) *pb.ConfState {
502	var cs pb.ConfState
503	select {
504	case n.confc <- cc.AsV2():
505	case <-n.done:
506	}
507	select {
508	case cs = <-n.confstatec:
509	case <-n.done:
510	}
511	return &cs
512}
513
514func (n *node) Status() Status {
515	c := make(chan Status)
516	select {
517	case n.status <- c:
518		return <-c
519	case <-n.done:
520		return Status{}
521	}
522}
523
524func (n *node) ReportUnreachable(id uint64) {
525	select {
526	case n.recvc <- pb.Message{Type: pb.MsgUnreachable, From: id}:
527	case <-n.done:
528	}
529}
530
531func (n *node) ReportSnapshot(id uint64, status SnapshotStatus) {
532	rej := status == SnapshotFailure
533
534	select {
535	case n.recvc <- pb.Message{Type: pb.MsgSnapStatus, From: id, Reject: rej}:
536	case <-n.done:
537	}
538}
539
540func (n *node) TransferLeadership(ctx context.Context, lead, transferee uint64) {
541	select {
542	// manually set 'from' and 'to', so that leader can voluntarily transfers its leadership
543	case n.recvc <- pb.Message{Type: pb.MsgTransferLeader, From: transferee, To: lead}:
544	case <-n.done:
545	case <-ctx.Done():
546	}
547}
548
549func (n *node) ReadIndex(ctx context.Context, rctx []byte) error {
550	return n.step(ctx, pb.Message{Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: rctx}}})
551}
552
553func newReady(r *raft, prevSoftSt *SoftState, prevHardSt pb.HardState) Ready {
554	rd := Ready{
555		Entries:          r.raftLog.unstableEntries(),
556		CommittedEntries: r.raftLog.nextEnts(),
557		Messages:         r.msgs,
558	}
559	if softSt := r.softState(); !softSt.equal(prevSoftSt) {
560		rd.SoftState = softSt
561	}
562	if hardSt := r.hardState(); !isHardStateEqual(hardSt, prevHardSt) {
563		rd.HardState = hardSt
564	}
565	if r.raftLog.unstable.snapshot != nil {
566		rd.Snapshot = *r.raftLog.unstable.snapshot
567	}
568	if len(r.readStates) != 0 {
569		rd.ReadStates = r.readStates
570	}
571	rd.MustSync = MustSync(r.hardState(), prevHardSt, len(rd.Entries))
572	return rd
573}
574
575// MustSync returns true if the hard state and count of Raft entries indicate
576// that a synchronous write to persistent storage is required.
577func MustSync(st, prevst pb.HardState, entsnum int) bool {
578	// Persistent state on all servers:
579	// (Updated on stable storage before responding to RPCs)
580	// currentTerm
581	// votedFor
582	// log entries[]
583	return entsnum != 0 || st.Vote != prevst.Vote || st.Term != prevst.Term
584}
585