1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2020 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 
6 #include <merkleblock.h>
7 
8 #include <hash.h>
9 #include <consensus/consensus.h>
10 
11 
BitsToBytes(const std::vector<bool> & bits)12 std::vector<unsigned char> BitsToBytes(const std::vector<bool>& bits)
13 {
14     std::vector<unsigned char> ret((bits.size() + 7) / 8);
15     for (unsigned int p = 0; p < bits.size(); p++) {
16         ret[p / 8] |= bits[p] << (p % 8);
17     }
18     return ret;
19 }
20 
BytesToBits(const std::vector<unsigned char> & bytes)21 std::vector<bool> BytesToBits(const std::vector<unsigned char>& bytes)
22 {
23     std::vector<bool> ret(bytes.size() * 8);
24     for (unsigned int p = 0; p < ret.size(); p++) {
25         ret[p] = (bytes[p / 8] & (1 << (p % 8))) != 0;
26     }
27     return ret;
28 }
29 
CMerkleBlock(const CBlock & block,CBloomFilter * filter,const std::set<uint256> * txids)30 CMerkleBlock::CMerkleBlock(const CBlock& block, CBloomFilter* filter, const std::set<uint256>* txids)
31 {
32     header = block.GetBlockHeader();
33 
34     std::vector<bool> vMatch;
35     std::vector<uint256> vHashes;
36 
37     vMatch.reserve(block.vtx.size());
38     vHashes.reserve(block.vtx.size());
39 
40     for (unsigned int i = 0; i < block.vtx.size(); i++)
41     {
42         const uint256& hash = block.vtx[i]->GetHash();
43         if (txids && txids->count(hash)) {
44             vMatch.push_back(true);
45         } else if (filter && filter->IsRelevantAndUpdate(*block.vtx[i])) {
46             vMatch.push_back(true);
47             vMatchedTxn.emplace_back(i, hash);
48         } else {
49             vMatch.push_back(false);
50         }
51         vHashes.push_back(hash);
52     }
53 
54     txn = CPartialMerkleTree(vHashes, vMatch);
55 }
56 
CalcHash(int height,unsigned int pos,const std::vector<uint256> & vTxid)57 uint256 CPartialMerkleTree::CalcHash(int height, unsigned int pos, const std::vector<uint256> &vTxid) {
58     //we can never have zero txs in a merkle block, we always need the coinbase tx
59     //if we do not have this assert, we can hit a memory access violation when indexing into vTxid
60     assert(vTxid.size() != 0);
61     if (height == 0) {
62         // hash at height 0 is the txids themselves
63         return vTxid[pos];
64     } else {
65         // calculate left hash
66         uint256 left = CalcHash(height-1, pos*2, vTxid), right;
67         // calculate right hash if not beyond the end of the array - copy left hash otherwise
68         if (pos*2+1 < CalcTreeWidth(height-1))
69             right = CalcHash(height-1, pos*2+1, vTxid);
70         else
71             right = left;
72         // combine subhashes
73         return Hash(left, right);
74     }
75 }
76 
TraverseAndBuild(int height,unsigned int pos,const std::vector<uint256> & vTxid,const std::vector<bool> & vMatch)77 void CPartialMerkleTree::TraverseAndBuild(int height, unsigned int pos, const std::vector<uint256> &vTxid, const std::vector<bool> &vMatch) {
78     // determine whether this node is the parent of at least one matched txid
79     bool fParentOfMatch = false;
80     for (unsigned int p = pos << height; p < (pos+1) << height && p < nTransactions; p++)
81         fParentOfMatch |= vMatch[p];
82     // store as flag bit
83     vBits.push_back(fParentOfMatch);
84     if (height==0 || !fParentOfMatch) {
85         // if at height 0, or nothing interesting below, store hash and stop
86         vHash.push_back(CalcHash(height, pos, vTxid));
87     } else {
88         // otherwise, don't store any hash, but descend into the subtrees
89         TraverseAndBuild(height-1, pos*2, vTxid, vMatch);
90         if (pos*2+1 < CalcTreeWidth(height-1))
91             TraverseAndBuild(height-1, pos*2+1, vTxid, vMatch);
92     }
93 }
94 
TraverseAndExtract(int height,unsigned int pos,unsigned int & nBitsUsed,unsigned int & nHashUsed,std::vector<uint256> & vMatch,std::vector<unsigned int> & vnIndex)95 uint256 CPartialMerkleTree::TraverseAndExtract(int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector<uint256> &vMatch, std::vector<unsigned int> &vnIndex) {
96     if (nBitsUsed >= vBits.size()) {
97         // overflowed the bits array - failure
98         fBad = true;
99         return uint256();
100     }
101     bool fParentOfMatch = vBits[nBitsUsed++];
102     if (height==0 || !fParentOfMatch) {
103         // if at height 0, or nothing interesting below, use stored hash and do not descend
104         if (nHashUsed >= vHash.size()) {
105             // overflowed the hash array - failure
106             fBad = true;
107             return uint256();
108         }
109         const uint256 &hash = vHash[nHashUsed++];
110         if (height==0 && fParentOfMatch) { // in case of height 0, we have a matched txid
111             vMatch.push_back(hash);
112             vnIndex.push_back(pos);
113         }
114         return hash;
115     } else {
116         // otherwise, descend into the subtrees to extract matched txids and hashes
117         uint256 left = TraverseAndExtract(height-1, pos*2, nBitsUsed, nHashUsed, vMatch, vnIndex), right;
118         if (pos*2+1 < CalcTreeWidth(height-1)) {
119             right = TraverseAndExtract(height-1, pos*2+1, nBitsUsed, nHashUsed, vMatch, vnIndex);
120             if (right == left) {
121                 // The left and right branches should never be identical, as the transaction
122                 // hashes covered by them must each be unique.
123                 fBad = true;
124             }
125         } else {
126             right = left;
127         }
128         // and combine them before returning
129         return Hash(left, right);
130     }
131 }
132 
CPartialMerkleTree(const std::vector<uint256> & vTxid,const std::vector<bool> & vMatch)133 CPartialMerkleTree::CPartialMerkleTree(const std::vector<uint256> &vTxid, const std::vector<bool> &vMatch) : nTransactions(vTxid.size()), fBad(false) {
134     // reset state
135     vBits.clear();
136     vHash.clear();
137 
138     // calculate height of tree
139     int nHeight = 0;
140     while (CalcTreeWidth(nHeight) > 1)
141         nHeight++;
142 
143     // traverse the partial tree
144     TraverseAndBuild(nHeight, 0, vTxid, vMatch);
145 }
146 
CPartialMerkleTree()147 CPartialMerkleTree::CPartialMerkleTree() : nTransactions(0), fBad(true) {}
148 
ExtractMatches(std::vector<uint256> & vMatch,std::vector<unsigned int> & vnIndex)149 uint256 CPartialMerkleTree::ExtractMatches(std::vector<uint256> &vMatch, std::vector<unsigned int> &vnIndex) {
150     vMatch.clear();
151     // An empty set will not work
152     if (nTransactions == 0)
153         return uint256();
154     // check for excessively high numbers of transactions
155     if (nTransactions > MAX_BLOCK_WEIGHT / MIN_TRANSACTION_WEIGHT)
156         return uint256();
157     // there can never be more hashes provided than one for every txid
158     if (vHash.size() > nTransactions)
159         return uint256();
160     // there must be at least one bit per node in the partial tree, and at least one node per hash
161     if (vBits.size() < vHash.size())
162         return uint256();
163     // calculate height of tree
164     int nHeight = 0;
165     while (CalcTreeWidth(nHeight) > 1)
166         nHeight++;
167     // traverse the partial tree
168     unsigned int nBitsUsed = 0, nHashUsed = 0;
169     uint256 hashMerkleRoot = TraverseAndExtract(nHeight, 0, nBitsUsed, nHashUsed, vMatch, vnIndex);
170     // verify that no problems occurred during the tree traversal
171     if (fBad)
172         return uint256();
173     // verify that all bits were consumed (except for the padding caused by serializing it as a byte sequence)
174     if ((nBitsUsed+7)/8 != (vBits.size()+7)/8)
175         return uint256();
176     // verify that all hashes were consumed
177     if (nHashUsed != vHash.size())
178         return uint256();
179     return hashMerkleRoot;
180 }
181