1 // Copyright (c) 2012-2020 The Bitcoin Core developers
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 
5 #include <random.h>
6 #include <scheduler.h>
7 #include <util/time.h>
8 
9 #include <boost/test/unit_test.hpp>
10 #include <boost/thread/thread.hpp>
11 
12 #include <mutex>
13 
BOOST_AUTO_TEST_SUITE(scheduler_tests)14 BOOST_AUTO_TEST_SUITE(scheduler_tests)
15 
16 static void microTask(CScheduler& s, std::mutex& mutex, int& counter, int delta, std::chrono::system_clock::time_point rescheduleTime)
17 {
18     {
19         std::lock_guard<std::mutex> lock(mutex);
20         counter += delta;
21     }
22     std::chrono::system_clock::time_point noTime = std::chrono::system_clock::time_point::min();
23     if (rescheduleTime != noTime) {
24         CScheduler::Function f = std::bind(&microTask, std::ref(s), std::ref(mutex), std::ref(counter), -delta + 1, noTime);
25         s.schedule(f, rescheduleTime);
26     }
27 }
28 
BOOST_AUTO_TEST_CASE(manythreads)29 BOOST_AUTO_TEST_CASE(manythreads)
30 {
31     // Stress test: hundreds of microsecond-scheduled tasks,
32     // serviced by 10 threads.
33     //
34     // So... ten shared counters, which if all the tasks execute
35     // properly will sum to the number of tasks done.
36     // Each task adds or subtracts a random amount from one of the
37     // counters, and then schedules another task 0-1000
38     // microseconds in the future to subtract or add from
39     // the counter -random_amount+1, so in the end the shared
40     // counters should sum to the number of initial tasks performed.
41     CScheduler microTasks;
42 
43     std::mutex counterMutex[10];
44     int counter[10] = { 0 };
45     FastRandomContext rng{/* fDeterministic */ true};
46     auto zeroToNine = [](FastRandomContext& rc) -> int { return rc.randrange(10); }; // [0, 9]
47     auto randomMsec = [](FastRandomContext& rc) -> int { return -11 + (int)rc.randrange(1012); }; // [-11, 1000]
48     auto randomDelta = [](FastRandomContext& rc) -> int { return -1000 + (int)rc.randrange(2001); }; // [-1000, 1000]
49 
50     std::chrono::system_clock::time_point start = std::chrono::system_clock::now();
51     std::chrono::system_clock::time_point now = start;
52     std::chrono::system_clock::time_point first, last;
53     size_t nTasks = microTasks.getQueueInfo(first, last);
54     BOOST_CHECK(nTasks == 0);
55 
56     for (int i = 0; i < 100; ++i) {
57         std::chrono::system_clock::time_point t = now + std::chrono::microseconds(randomMsec(rng));
58         std::chrono::system_clock::time_point tReschedule = now + std::chrono::microseconds(500 + randomMsec(rng));
59         int whichCounter = zeroToNine(rng);
60         CScheduler::Function f = std::bind(&microTask, std::ref(microTasks),
61                                              std::ref(counterMutex[whichCounter]), std::ref(counter[whichCounter]),
62                                              randomDelta(rng), tReschedule);
63         microTasks.schedule(f, t);
64     }
65     nTasks = microTasks.getQueueInfo(first, last);
66     BOOST_CHECK(nTasks == 100);
67     BOOST_CHECK(first < last);
68     BOOST_CHECK(last > now);
69 
70     // As soon as these are created they will start running and servicing the queue
71     boost::thread_group microThreads;
72     for (int i = 0; i < 5; i++)
73         microThreads.create_thread(std::bind(&CScheduler::serviceQueue, &microTasks));
74 
75     UninterruptibleSleep(std::chrono::microseconds{600});
76     now = std::chrono::system_clock::now();
77 
78     // More threads and more tasks:
79     for (int i = 0; i < 5; i++)
80         microThreads.create_thread(std::bind(&CScheduler::serviceQueue, &microTasks));
81     for (int i = 0; i < 100; i++) {
82         std::chrono::system_clock::time_point t = now + std::chrono::microseconds(randomMsec(rng));
83         std::chrono::system_clock::time_point tReschedule = now + std::chrono::microseconds(500 + randomMsec(rng));
84         int whichCounter = zeroToNine(rng);
85         CScheduler::Function f = std::bind(&microTask, std::ref(microTasks),
86                                              std::ref(counterMutex[whichCounter]), std::ref(counter[whichCounter]),
87                                              randomDelta(rng), tReschedule);
88         microTasks.schedule(f, t);
89     }
90 
91     // Drain the task queue then exit threads
92     microTasks.StopWhenDrained();
93     microThreads.join_all(); // ... wait until all the threads are done
94 
95     int counterSum = 0;
96     for (int i = 0; i < 10; i++) {
97         BOOST_CHECK(counter[i] != 0);
98         counterSum += counter[i];
99     }
100     BOOST_CHECK_EQUAL(counterSum, 200);
101 }
102 
BOOST_AUTO_TEST_CASE(wait_until_past)103 BOOST_AUTO_TEST_CASE(wait_until_past)
104 {
105     std::condition_variable condvar;
106     Mutex mtx;
107     WAIT_LOCK(mtx, lock);
108 
109     const auto no_wait= [&](const std::chrono::seconds& d) {
110         return condvar.wait_until(lock, std::chrono::system_clock::now() - d);
111     };
112 
113     BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::seconds{1}));
114     BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::minutes{1}));
115     BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::hours{1}));
116     BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::hours{10}));
117     BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::hours{100}));
118     BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::hours{1000}));
119 }
120 
BOOST_AUTO_TEST_CASE(singlethreadedscheduler_ordered)121 BOOST_AUTO_TEST_CASE(singlethreadedscheduler_ordered)
122 {
123     CScheduler scheduler;
124 
125     // each queue should be well ordered with respect to itself but not other queues
126     SingleThreadedSchedulerClient queue1(&scheduler);
127     SingleThreadedSchedulerClient queue2(&scheduler);
128 
129     // create more threads than queues
130     // if the queues only permit execution of one task at once then
131     // the extra threads should effectively be doing nothing
132     // if they don't we'll get out of order behaviour
133     boost::thread_group threads;
134     for (int i = 0; i < 5; ++i) {
135         threads.create_thread(std::bind(&CScheduler::serviceQueue, &scheduler));
136     }
137 
138     // these are not atomic, if SinglethreadedSchedulerClient prevents
139     // parallel execution at the queue level no synchronization should be required here
140     int counter1 = 0;
141     int counter2 = 0;
142 
143     // just simply count up on each queue - if execution is properly ordered then
144     // the callbacks should run in exactly the order in which they were enqueued
145     for (int i = 0; i < 100; ++i) {
146         queue1.AddToProcessQueue([i, &counter1]() {
147             bool expectation = i == counter1++;
148             assert(expectation);
149         });
150 
151         queue2.AddToProcessQueue([i, &counter2]() {
152             bool expectation = i == counter2++;
153             assert(expectation);
154         });
155     }
156 
157     // finish up
158     scheduler.StopWhenDrained();
159     threads.join_all();
160 
161     BOOST_CHECK_EQUAL(counter1, 100);
162     BOOST_CHECK_EQUAL(counter2, 100);
163 }
164 
BOOST_AUTO_TEST_CASE(mockforward)165 BOOST_AUTO_TEST_CASE(mockforward)
166 {
167     CScheduler scheduler;
168 
169     int counter{0};
170     CScheduler::Function dummy = [&counter]{counter++;};
171 
172     // schedule jobs for 2, 5 & 8 minutes into the future
173 
174     scheduler.scheduleFromNow(dummy, std::chrono::minutes{2});
175     scheduler.scheduleFromNow(dummy, std::chrono::minutes{5});
176     scheduler.scheduleFromNow(dummy, std::chrono::minutes{8});
177 
178     // check taskQueue
179     std::chrono::system_clock::time_point first, last;
180     size_t num_tasks = scheduler.getQueueInfo(first, last);
181     BOOST_CHECK_EQUAL(num_tasks, 3ul);
182 
183     std::thread scheduler_thread([&]() { scheduler.serviceQueue(); });
184 
185     // bump the scheduler forward 5 minutes
186     scheduler.MockForward(std::chrono::minutes{5});
187 
188     // ensure scheduler has chance to process all tasks queued for before 1 ms from now.
189     scheduler.scheduleFromNow([&scheduler] { scheduler.stop(); }, std::chrono::milliseconds{1});
190     scheduler_thread.join();
191 
192     // check that the queue only has one job remaining
193     num_tasks = scheduler.getQueueInfo(first, last);
194     BOOST_CHECK_EQUAL(num_tasks, 1ul);
195 
196     // check that the dummy function actually ran
197     BOOST_CHECK_EQUAL(counter, 2);
198 
199     // check that the time of the remaining job has been updated
200     std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
201     int delta = std::chrono::duration_cast<std::chrono::seconds>(first - now).count();
202     // should be between 2 & 3 minutes from now
203     BOOST_CHECK(delta > 2*60 && delta < 3*60);
204 }
205 
206 BOOST_AUTO_TEST_SUITE_END()
207