1 /*
2  * Time calculation functions.
3  *
4  * Copyright 2000-2011 Willy Tarreau <w@1wt.eu>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  *
11  */
12 
13 #include <sys/time.h>
14 
15 #include <common/config.h>
16 #include <common/standard.h>
17 #include <common/time.h>
18 
19 unsigned int   curr_sec_ms;     /* millisecond of current second (0..999) */
20 unsigned int   ms_left_scaled;  /* milliseconds left for current second (0..2^32-1) */
21 unsigned int   now_ms;          /* internal date in milliseconds (may wrap) */
22 unsigned int   samp_time;       /* total elapsed time over current sample */
23 unsigned int   idle_time;       /* total idle time over current sample */
24 unsigned int   idle_pct;        /* idle to total ratio over last sample (percent) */
25 struct timeval now;             /* internal date is a monotonic function of real clock */
26 struct timeval date;            /* the real current date */
27 struct timeval start_date;      /* the process's start date */
28 struct timeval before_poll;     /* system date before calling poll() */
29 struct timeval after_poll;      /* system date after leaving poll() */
30 
31 /*
32  * adds <ms> ms to <from>, set the result to <tv> and returns a pointer <tv>
33  */
_tv_ms_add(struct timeval * tv,const struct timeval * from,int ms)34 REGPRM3 struct timeval *_tv_ms_add(struct timeval *tv, const struct timeval *from, int ms)
35 {
36 	tv->tv_usec = from->tv_usec + (ms % 1000) * 1000;
37 	tv->tv_sec  = from->tv_sec  + (ms / 1000);
38 	while (tv->tv_usec >= 1000000) {
39 		tv->tv_usec -= 1000000;
40 		tv->tv_sec++;
41 	}
42 	return tv;
43 }
44 
45 /*
46  * compares <tv1> and <tv2> modulo 1ms: returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2
47  * Must not be used when either argument is eternity. Use tv_ms_cmp2() for that.
48  */
_tv_ms_cmp(const struct timeval * tv1,const struct timeval * tv2)49 REGPRM2 int _tv_ms_cmp(const struct timeval *tv1, const struct timeval *tv2)
50 {
51 	return __tv_ms_cmp(tv1, tv2);
52 }
53 
54 /*
55  * compares <tv1> and <tv2> modulo 1 ms: returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2,
56  * assuming that TV_ETERNITY is greater than everything.
57  */
_tv_ms_cmp2(const struct timeval * tv1,const struct timeval * tv2)58 REGPRM2 int _tv_ms_cmp2(const struct timeval *tv1, const struct timeval *tv2)
59 {
60 	return __tv_ms_cmp2(tv1, tv2);
61 }
62 
63 /*
64  * compares <tv1> and <tv2> modulo 1 ms: returns 1 if tv1 <= tv2, 0 if tv1 > tv2,
65  * assuming that TV_ETERNITY is greater than everything. Returns 0 if tv1 is
66  * TV_ETERNITY, and always assumes that tv2 != TV_ETERNITY. Designed to replace
67  * occurrences of (tv_ms_cmp2(tv,now) <= 0).
68  */
_tv_ms_le2(const struct timeval * tv1,const struct timeval * tv2)69 REGPRM2 int _tv_ms_le2(const struct timeval *tv1, const struct timeval *tv2)
70 {
71 	return __tv_ms_le2(tv1, tv2);
72 }
73 
74 /*
75  * returns the remaining time between tv1=now and event=tv2
76  * if tv2 is passed, 0 is returned.
77  * Must not be used when either argument is eternity.
78  */
_tv_ms_remain(const struct timeval * tv1,const struct timeval * tv2)79 REGPRM2 unsigned long _tv_ms_remain(const struct timeval *tv1, const struct timeval *tv2)
80 {
81 	return __tv_ms_remain(tv1, tv2);
82 }
83 
84 /*
85  * returns the remaining time between tv1=now and event=tv2
86  * if tv2 is passed, 0 is returned.
87  * Returns TIME_ETERNITY if tv2 is eternity.
88  */
_tv_ms_remain2(const struct timeval * tv1,const struct timeval * tv2)89 REGPRM2 unsigned long _tv_ms_remain2(const struct timeval *tv1, const struct timeval *tv2)
90 {
91 	if (tv_iseternity(tv2))
92 		return TIME_ETERNITY;
93 
94 	return __tv_ms_remain(tv1, tv2);
95 }
96 
97 /*
98  * Returns the time in ms elapsed between tv1 and tv2, assuming that tv1<=tv2.
99  * Must not be used when either argument is eternity.
100  */
_tv_ms_elapsed(const struct timeval * tv1,const struct timeval * tv2)101 REGPRM2 unsigned long _tv_ms_elapsed(const struct timeval *tv1, const struct timeval *tv2)
102 {
103 	return __tv_ms_elapsed(tv1, tv2);
104 }
105 
106 /*
107  * adds <inc> to <from>, set the result to <tv> and returns a pointer <tv>
108  */
_tv_add(struct timeval * tv,const struct timeval * from,const struct timeval * inc)109 REGPRM3 struct timeval *_tv_add(struct timeval *tv, const struct timeval *from, const struct timeval *inc)
110 {
111 	return __tv_add(tv, from, inc);
112 }
113 
114 /*
115  * If <inc> is set, then add it to <from> and set the result to <tv>, then
116  * return 1, otherwise return 0. It is meant to be used in if conditions.
117  */
_tv_add_ifset(struct timeval * tv,const struct timeval * from,const struct timeval * inc)118 REGPRM3 int _tv_add_ifset(struct timeval *tv, const struct timeval *from, const struct timeval *inc)
119 {
120 	return __tv_add_ifset(tv, from, inc);
121 }
122 
123 /*
124  * Computes the remaining time between tv1=now and event=tv2. if tv2 is passed,
125  * 0 is returned. The result is stored into tv.
126  */
_tv_remain(const struct timeval * tv1,const struct timeval * tv2,struct timeval * tv)127 REGPRM3 struct timeval *_tv_remain(const struct timeval *tv1, const struct timeval *tv2, struct timeval *tv)
128 {
129 	return __tv_remain(tv1, tv2, tv);
130 }
131 
132 /*
133  * Computes the remaining time between tv1=now and event=tv2. if tv2 is passed,
134  * 0 is returned. The result is stored into tv. Returns ETERNITY if tv2 is
135  * eternity.
136  */
_tv_remain2(const struct timeval * tv1,const struct timeval * tv2,struct timeval * tv)137 REGPRM3 struct timeval *_tv_remain2(const struct timeval *tv1, const struct timeval *tv2, struct timeval *tv)
138 {
139 	return __tv_remain2(tv1, tv2, tv);
140 }
141 
142 /* tv_isle: compares <tv1> and <tv2> : returns 1 if tv1 <= tv2, otherwise 0 */
_tv_isle(const struct timeval * tv1,const struct timeval * tv2)143 REGPRM2 int _tv_isle(const struct timeval *tv1, const struct timeval *tv2)
144 {
145 	return __tv_isle(tv1, tv2);
146 }
147 
148 /* tv_isgt: compares <tv1> and <tv2> : returns 1 if tv1 > tv2, otherwise 0 */
_tv_isgt(const struct timeval * tv1,const struct timeval * tv2)149 REGPRM2 int _tv_isgt(const struct timeval *tv1, const struct timeval *tv2)
150 {
151 	return __tv_isgt(tv1, tv2);
152 }
153 
154 /* tv_udpate_date: sets <date> to system time, and sets <now> to something as
155  * close as possible to real time, following a monotonic function. The main
156  * principle consists in detecting backwards and forwards time jumps and adjust
157  * an offset to correct them. This function should be called once after each
158  * poll, and never farther apart than MAX_DELAY_MS*2. The poll's timeout should
159  * be passed in <max_wait>, and the return value in <interrupted> (a non-zero
160  * value means that we have not expired the timeout). Calling it with (-1,*)
161  * sets both <date> and <now> to current date, and calling it with (0,1) simply
162  * updates the values.
163  */
tv_update_date(int max_wait,int interrupted)164 REGPRM2 void tv_update_date(int max_wait, int interrupted)
165 {
166 	static struct timeval tv_offset; /* warning: signed offset! */
167 	struct timeval adjusted, deadline;
168 
169 	gettimeofday(&date, NULL);
170 	if (unlikely(max_wait < 0)) {
171 		tv_zero(&tv_offset);
172 		adjusted = date;
173 		after_poll = date;
174 		samp_time = idle_time = 0;
175 		idle_pct = 100;
176 		goto to_ms;
177 	}
178 	__tv_add(&adjusted, &date, &tv_offset);
179 	if (unlikely(__tv_islt(&adjusted, &now))) {
180 		goto fixup; /* jump in the past */
181 	}
182 
183 	/* OK we did not jump backwards, let's see if we have jumped too far
184 	 * forwards. The poll value was in <max_wait>, we accept that plus
185 	 * MAX_DELAY_MS to cover additional time.
186 	 */
187 	_tv_ms_add(&deadline, &now, max_wait + MAX_DELAY_MS);
188 	if (likely(__tv_islt(&adjusted, &deadline)))
189 		goto to_ms; /* OK time is within expected range */
190  fixup:
191 	/* Large jump. If the poll was interrupted, we consider that the date
192 	 * has not changed (immediate wake-up), otherwise we add the poll
193 	 * time-out to the previous date. The new offset is recomputed.
194 	 */
195 	_tv_ms_add(&adjusted, &now, interrupted ? 0 : max_wait);
196 
197 	tv_offset.tv_sec  = adjusted.tv_sec  - date.tv_sec;
198 	tv_offset.tv_usec = adjusted.tv_usec - date.tv_usec;
199 	if (tv_offset.tv_usec < 0) {
200 		tv_offset.tv_usec += 1000000;
201 		tv_offset.tv_sec--;
202 	}
203  to_ms:
204 	now = adjusted;
205 	curr_sec_ms = now.tv_usec / 1000;            /* ms of current second */
206 
207 	/* For frequency counters, we'll need to know the ratio of the previous
208 	 * value to add to current value depending on the current millisecond.
209 	 * The principle is that during the first millisecond, we use 999/1000
210 	 * of the past value and that during the last millisecond we use 0/1000
211 	 * of the past value. In summary, we only use the past value during the
212 	 * first 999 ms of a second, and the last ms is used to complete the
213 	 * current measure. The value is scaled to (2^32-1) so that a simple
214 	 * multiply followed by a shift gives us the final value.
215 	 */
216 	ms_left_scaled = (999U - curr_sec_ms) * 4294967U;
217 	now_ms = now.tv_sec * 1000 + curr_sec_ms;
218 	return;
219 }
220 
221 /*
222  * Local variables:
223  *  c-indent-level: 8
224  *  c-basic-offset: 8
225  * End:
226  */
227