1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 /*
12  * Contains the API functions for the AEC.
13  */
14 #include "webrtc/modules/audio_processing/aec/include/echo_cancellation.h"
15 
16 #include <math.h>
17 #ifdef WEBRTC_AEC_DEBUG_DUMP
18 #include <stdio.h>
19 #endif
20 #include <stdlib.h>
21 #include <string.h>
22 
23 #include "webrtc/common_audio/ring_buffer.h"
24 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
25 #include "webrtc/modules/audio_processing/aec/aec_core.h"
26 #include "webrtc/modules/audio_processing/aec/aec_resampler.h"
27 #include "webrtc/modules/audio_processing/aec/echo_cancellation_internal.h"
28 #include "webrtc/typedefs.h"
29 
30 // Measured delays [ms]
31 // Device                Chrome  GTP
32 // MacBook Air           10
33 // MacBook Retina        10      100
34 // MacPro                30?
35 //
36 // Win7 Desktop          70      80?
37 // Win7 T430s            110
38 // Win8 T420s            70
39 //
40 // Daisy                 50
41 // Pixel (w/ preproc?)           240
42 // Pixel (w/o preproc?)  110     110
43 
44 // The extended filter mode gives us the flexibility to ignore the system's
45 // reported delays. We do this for platforms which we believe provide results
46 // which are incompatible with the AEC's expectations. Based on measurements
47 // (some provided above) we set a conservative (i.e. lower than measured)
48 // fixed delay.
49 //
50 // WEBRTC_UNTRUSTED_DELAY will only have an impact when |extended_filter_mode|
51 // is enabled. See the note along with |DelayCorrection| in
52 // echo_cancellation_impl.h for more details on the mode.
53 //
54 // Justification:
55 // Chromium/Mac: Here, the true latency is so low (~10-20 ms), that it plays
56 // havoc with the AEC's buffering. To avoid this, we set a fixed delay of 20 ms
57 // and then compensate by rewinding by 10 ms (in wideband) through
58 // kDelayDiffOffsetSamples. This trick does not seem to work for larger rewind
59 // values, but fortunately this is sufficient.
60 //
61 // Chromium/Linux(ChromeOS): The values we get on this platform don't correspond
62 // well to reality. The variance doesn't match the AEC's buffer changes, and the
63 // bulk values tend to be too low. However, the range across different hardware
64 // appears to be too large to choose a single value.
65 //
66 // GTP/Linux(ChromeOS): TBD, but for the moment we will trust the values.
67 #if defined(WEBRTC_CHROMIUM_BUILD) && defined(WEBRTC_MAC)
68 #define WEBRTC_UNTRUSTED_DELAY
69 #endif
70 
71 #if defined(WEBRTC_UNTRUSTED_DELAY) && defined(WEBRTC_MAC)
72 static const int kDelayDiffOffsetSamples = -160;
73 #else
74 // Not enabled for now.
75 static const int kDelayDiffOffsetSamples = 0;
76 #endif
77 
78 #if defined(WEBRTC_MAC)
79 static const int kFixedDelayMs = 20;
80 #else
81 static const int kFixedDelayMs = 50;
82 #endif
83 #if !defined(WEBRTC_UNTRUSTED_DELAY)
84 static const int kMinTrustedDelayMs = 20;
85 #endif
86 static const int kMaxTrustedDelayMs = 500;
87 
88 // Maximum length of resampled signal. Must be an integer multiple of frames
89 // (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN
90 // The factor of 2 handles wb, and the + 1 is as a safety margin
91 // TODO(bjornv): Replace with kResamplerBufferSize
92 #define MAX_RESAMP_LEN (5 * FRAME_LEN)
93 
94 static const int kMaxBufSizeStart = 62;  // In partitions
95 static const int sampMsNb = 8;           // samples per ms in nb
96 static const int initCheck = 42;
97 
98 #ifdef WEBRTC_AEC_DEBUG_DUMP
99 int webrtc_aec_instance_count = 0;
100 #endif
101 
102 // Estimates delay to set the position of the far-end buffer read pointer
103 // (controlled by knownDelay)
104 static void EstBufDelayNormal(Aec* aecInst);
105 static void EstBufDelayExtended(Aec* aecInst);
106 static int ProcessNormal(Aec* self,
107                          const float* const* near,
108                          size_t num_bands,
109                          float* const* out,
110                          size_t num_samples,
111                          int16_t reported_delay_ms,
112                          int32_t skew);
113 static void ProcessExtended(Aec* self,
114                             const float* const* near,
115                             size_t num_bands,
116                             float* const* out,
117                             size_t num_samples,
118                             int16_t reported_delay_ms,
119                             int32_t skew);
120 
WebRtcAec_Create()121 void* WebRtcAec_Create() {
122   Aec* aecpc = malloc(sizeof(Aec));
123 
124   if (!aecpc) {
125     return NULL;
126   }
127 
128   aecpc->aec = WebRtcAec_CreateAec();
129   if (!aecpc->aec) {
130     WebRtcAec_Free(aecpc);
131     return NULL;
132   }
133   aecpc->resampler = WebRtcAec_CreateResampler();
134   if (!aecpc->resampler) {
135     WebRtcAec_Free(aecpc);
136     return NULL;
137   }
138   // Create far-end pre-buffer. The buffer size has to be large enough for
139   // largest possible drift compensation (kResamplerBufferSize) + "almost" an
140   // FFT buffer (PART_LEN2 - 1).
141   aecpc->far_pre_buf =
142       WebRtc_CreateBuffer(PART_LEN2 + kResamplerBufferSize, sizeof(float));
143   if (!aecpc->far_pre_buf) {
144     WebRtcAec_Free(aecpc);
145     return NULL;
146   }
147 
148   aecpc->initFlag = 0;
149   aecpc->lastError = 0;
150 
151 #ifdef WEBRTC_AEC_DEBUG_DUMP
152   {
153     char filename[64];
154     sprintf(filename, "aec_buf%d.dat", webrtc_aec_instance_count);
155     aecpc->bufFile = fopen(filename, "wb");
156     sprintf(filename, "aec_skew%d.dat", webrtc_aec_instance_count);
157     aecpc->skewFile = fopen(filename, "wb");
158     sprintf(filename, "aec_delay%d.dat", webrtc_aec_instance_count);
159     aecpc->delayFile = fopen(filename, "wb");
160     webrtc_aec_instance_count++;
161   }
162 #endif
163 
164   return aecpc;
165 }
166 
WebRtcAec_Free(void * aecInst)167 void WebRtcAec_Free(void* aecInst) {
168   Aec* aecpc = aecInst;
169 
170   if (aecpc == NULL) {
171     return;
172   }
173 
174   WebRtc_FreeBuffer(aecpc->far_pre_buf);
175 
176 #ifdef WEBRTC_AEC_DEBUG_DUMP
177   fclose(aecpc->bufFile);
178   fclose(aecpc->skewFile);
179   fclose(aecpc->delayFile);
180 #endif
181 
182   WebRtcAec_FreeAec(aecpc->aec);
183   WebRtcAec_FreeResampler(aecpc->resampler);
184   free(aecpc);
185 }
186 
WebRtcAec_Init(void * aecInst,int32_t sampFreq,int32_t scSampFreq)187 int32_t WebRtcAec_Init(void* aecInst, int32_t sampFreq, int32_t scSampFreq) {
188   Aec* aecpc = aecInst;
189   AecConfig aecConfig;
190 
191   if (sampFreq != 8000 &&
192       sampFreq != 16000 &&
193       sampFreq != 32000 &&
194       sampFreq != 48000) {
195     aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
196     return -1;
197   }
198   aecpc->sampFreq = sampFreq;
199 
200   if (scSampFreq < 1 || scSampFreq > 96000) {
201     aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
202     return -1;
203   }
204   aecpc->scSampFreq = scSampFreq;
205 
206   // Initialize echo canceller core
207   if (WebRtcAec_InitAec(aecpc->aec, aecpc->sampFreq) == -1) {
208     aecpc->lastError = AEC_UNSPECIFIED_ERROR;
209     return -1;
210   }
211 
212   if (WebRtcAec_InitResampler(aecpc->resampler, aecpc->scSampFreq) == -1) {
213     aecpc->lastError = AEC_UNSPECIFIED_ERROR;
214     return -1;
215   }
216 
217   WebRtc_InitBuffer(aecpc->far_pre_buf);
218   WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN);  // Start overlap.
219 
220   aecpc->initFlag = initCheck;  // indicates that initialization has been done
221 
222   if (aecpc->sampFreq == 32000 || aecpc->sampFreq == 48000) {
223     aecpc->splitSampFreq = 16000;
224   } else {
225     aecpc->splitSampFreq = sampFreq;
226   }
227 
228   aecpc->delayCtr = 0;
229   aecpc->sampFactor = (aecpc->scSampFreq * 1.0f) / aecpc->splitSampFreq;
230   // Sampling frequency multiplier (SWB is processed as 160 frame size).
231   aecpc->rate_factor = aecpc->splitSampFreq / 8000;
232 
233   aecpc->sum = 0;
234   aecpc->counter = 0;
235   aecpc->checkBuffSize = 1;
236   aecpc->firstVal = 0;
237 
238   // We skip the startup_phase completely (setting to 0) if DA-AEC is enabled,
239   // but not extended_filter mode.
240   aecpc->startup_phase = WebRtcAec_extended_filter_enabled(aecpc->aec) ||
241       !WebRtcAec_delay_agnostic_enabled(aecpc->aec);
242   aecpc->bufSizeStart = 0;
243   aecpc->checkBufSizeCtr = 0;
244   aecpc->msInSndCardBuf = 0;
245   aecpc->filtDelay = -1;  // -1 indicates an initialized state.
246   aecpc->timeForDelayChange = 0;
247   aecpc->knownDelay = 0;
248   aecpc->lastDelayDiff = 0;
249 
250   aecpc->skewFrCtr = 0;
251   aecpc->resample = kAecFalse;
252   aecpc->highSkewCtr = 0;
253   aecpc->skew = 0;
254 
255   aecpc->farend_started = 0;
256 
257   // Default settings.
258   aecConfig.nlpMode = kAecNlpModerate;
259   aecConfig.skewMode = kAecFalse;
260   aecConfig.metricsMode = kAecFalse;
261   aecConfig.delay_logging = kAecFalse;
262 
263   if (WebRtcAec_set_config(aecpc, aecConfig) == -1) {
264     aecpc->lastError = AEC_UNSPECIFIED_ERROR;
265     return -1;
266   }
267 
268   return 0;
269 }
270 
271 // only buffer L band for farend
WebRtcAec_BufferFarend(void * aecInst,const float * farend,size_t nrOfSamples)272 int32_t WebRtcAec_BufferFarend(void* aecInst,
273                                const float* farend,
274                                size_t nrOfSamples) {
275   Aec* aecpc = aecInst;
276   size_t newNrOfSamples = nrOfSamples;
277   float new_farend[MAX_RESAMP_LEN];
278   const float* farend_ptr = farend;
279 
280   if (farend == NULL) {
281     aecpc->lastError = AEC_NULL_POINTER_ERROR;
282     return -1;
283   }
284 
285   if (aecpc->initFlag != initCheck) {
286     aecpc->lastError = AEC_UNINITIALIZED_ERROR;
287     return -1;
288   }
289 
290   // number of samples == 160 for SWB input
291   if (nrOfSamples != 80 && nrOfSamples != 160) {
292     aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
293     return -1;
294   }
295 
296   if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
297     // Resample and get a new number of samples
298     WebRtcAec_ResampleLinear(aecpc->resampler,
299                              farend,
300                              nrOfSamples,
301                              aecpc->skew,
302                              new_farend,
303                              &newNrOfSamples);
304     farend_ptr = new_farend;
305   }
306 
307   aecpc->farend_started = 1;
308   WebRtcAec_SetSystemDelay(
309       aecpc->aec, WebRtcAec_system_delay(aecpc->aec) + (int)newNrOfSamples);
310 
311   // Write the time-domain data to |far_pre_buf|.
312   WebRtc_WriteBuffer(aecpc->far_pre_buf, farend_ptr, newNrOfSamples);
313 
314   // Transform to frequency domain if we have enough data.
315   while (WebRtc_available_read(aecpc->far_pre_buf) >= PART_LEN2) {
316     // We have enough data to pass to the FFT, hence read PART_LEN2 samples.
317     {
318       float* ptmp = NULL;
319       float tmp[PART_LEN2];
320       WebRtc_ReadBuffer(aecpc->far_pre_buf, (void**)&ptmp, tmp, PART_LEN2);
321       WebRtcAec_BufferFarendPartition(aecpc->aec, ptmp);
322 #ifdef WEBRTC_AEC_DEBUG_DUMP
323       WebRtc_WriteBuffer(
324           WebRtcAec_far_time_buf(aecpc->aec), &ptmp[PART_LEN], 1);
325 #endif
326     }
327 
328     // Rewind |far_pre_buf| PART_LEN samples for overlap before continuing.
329     WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN);
330   }
331 
332   return 0;
333 }
334 
WebRtcAec_Process(void * aecInst,const float * const * nearend,size_t num_bands,float * const * out,size_t nrOfSamples,int16_t msInSndCardBuf,int32_t skew)335 int32_t WebRtcAec_Process(void* aecInst,
336                           const float* const* nearend,
337                           size_t num_bands,
338                           float* const* out,
339                           size_t nrOfSamples,
340                           int16_t msInSndCardBuf,
341                           int32_t skew) {
342   Aec* aecpc = aecInst;
343   int32_t retVal = 0;
344 
345   if (out == NULL) {
346     aecpc->lastError = AEC_NULL_POINTER_ERROR;
347     return -1;
348   }
349 
350   if (aecpc->initFlag != initCheck) {
351     aecpc->lastError = AEC_UNINITIALIZED_ERROR;
352     return -1;
353   }
354 
355   // number of samples == 160 for SWB input
356   if (nrOfSamples != 80 && nrOfSamples != 160) {
357     aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
358     return -1;
359   }
360 
361   if (msInSndCardBuf < 0) {
362     msInSndCardBuf = 0;
363     aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
364     retVal = -1;
365   } else if (msInSndCardBuf > kMaxTrustedDelayMs) {
366     // The clamping is now done in ProcessExtended/Normal().
367     aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
368     retVal = -1;
369   }
370 
371   // This returns the value of aec->extended_filter_enabled.
372   if (WebRtcAec_extended_filter_enabled(aecpc->aec)) {
373     ProcessExtended(aecpc,
374                     nearend,
375                     num_bands,
376                     out,
377                     nrOfSamples,
378                     msInSndCardBuf,
379                     skew);
380   } else {
381     if (ProcessNormal(aecpc,
382                       nearend,
383                       num_bands,
384                       out,
385                       nrOfSamples,
386                       msInSndCardBuf,
387                       skew) != 0) {
388       retVal = -1;
389     }
390   }
391 
392 #ifdef WEBRTC_AEC_DEBUG_DUMP
393   {
394     int16_t far_buf_size_ms = (int16_t)(WebRtcAec_system_delay(aecpc->aec) /
395                                         (sampMsNb * aecpc->rate_factor));
396     (void)fwrite(&far_buf_size_ms, 2, 1, aecpc->bufFile);
397     (void)fwrite(
398         &aecpc->knownDelay, sizeof(aecpc->knownDelay), 1, aecpc->delayFile);
399   }
400 #endif
401 
402   return retVal;
403 }
404 
WebRtcAec_set_config(void * handle,AecConfig config)405 int WebRtcAec_set_config(void* handle, AecConfig config) {
406   Aec* self = (Aec*)handle;
407   if (self->initFlag != initCheck) {
408     self->lastError = AEC_UNINITIALIZED_ERROR;
409     return -1;
410   }
411 
412   if (config.skewMode != kAecFalse && config.skewMode != kAecTrue) {
413     self->lastError = AEC_BAD_PARAMETER_ERROR;
414     return -1;
415   }
416   self->skewMode = config.skewMode;
417 
418   if (config.nlpMode != kAecNlpConservative &&
419       config.nlpMode != kAecNlpModerate &&
420       config.nlpMode != kAecNlpAggressive) {
421     self->lastError = AEC_BAD_PARAMETER_ERROR;
422     return -1;
423   }
424 
425   if (config.metricsMode != kAecFalse && config.metricsMode != kAecTrue) {
426     self->lastError = AEC_BAD_PARAMETER_ERROR;
427     return -1;
428   }
429 
430   if (config.delay_logging != kAecFalse && config.delay_logging != kAecTrue) {
431     self->lastError = AEC_BAD_PARAMETER_ERROR;
432     return -1;
433   }
434 
435   WebRtcAec_SetConfigCore(
436       self->aec, config.nlpMode, config.metricsMode, config.delay_logging);
437   return 0;
438 }
439 
WebRtcAec_get_echo_status(void * handle,int * status)440 int WebRtcAec_get_echo_status(void* handle, int* status) {
441   Aec* self = (Aec*)handle;
442   if (status == NULL) {
443     self->lastError = AEC_NULL_POINTER_ERROR;
444     return -1;
445   }
446   if (self->initFlag != initCheck) {
447     self->lastError = AEC_UNINITIALIZED_ERROR;
448     return -1;
449   }
450 
451   *status = WebRtcAec_echo_state(self->aec);
452 
453   return 0;
454 }
455 
WebRtcAec_GetMetrics(void * handle,AecMetrics * metrics)456 int WebRtcAec_GetMetrics(void* handle, AecMetrics* metrics) {
457   const float kUpWeight = 0.7f;
458   float dtmp;
459   int stmp;
460   Aec* self = (Aec*)handle;
461   Stats erl;
462   Stats erle;
463   Stats a_nlp;
464 
465   if (handle == NULL) {
466     return -1;
467   }
468   if (metrics == NULL) {
469     self->lastError = AEC_NULL_POINTER_ERROR;
470     return -1;
471   }
472   if (self->initFlag != initCheck) {
473     self->lastError = AEC_UNINITIALIZED_ERROR;
474     return -1;
475   }
476 
477   WebRtcAec_GetEchoStats(self->aec, &erl, &erle, &a_nlp);
478 
479   // ERL
480   metrics->erl.instant = (int)erl.instant;
481 
482   if ((erl.himean > kOffsetLevel) && (erl.average > kOffsetLevel)) {
483     // Use a mix between regular average and upper part average.
484     dtmp = kUpWeight * erl.himean + (1 - kUpWeight) * erl.average;
485     metrics->erl.average = (int)dtmp;
486   } else {
487     metrics->erl.average = kOffsetLevel;
488   }
489 
490   metrics->erl.max = (int)erl.max;
491 
492   if (erl.min < (kOffsetLevel * (-1))) {
493     metrics->erl.min = (int)erl.min;
494   } else {
495     metrics->erl.min = kOffsetLevel;
496   }
497 
498   // ERLE
499   metrics->erle.instant = (int)erle.instant;
500 
501   if ((erle.himean > kOffsetLevel) && (erle.average > kOffsetLevel)) {
502     // Use a mix between regular average and upper part average.
503     dtmp = kUpWeight * erle.himean + (1 - kUpWeight) * erle.average;
504     metrics->erle.average = (int)dtmp;
505   } else {
506     metrics->erle.average = kOffsetLevel;
507   }
508 
509   metrics->erle.max = (int)erle.max;
510 
511   if (erle.min < (kOffsetLevel * (-1))) {
512     metrics->erle.min = (int)erle.min;
513   } else {
514     metrics->erle.min = kOffsetLevel;
515   }
516 
517   // RERL
518   if ((metrics->erl.average > kOffsetLevel) &&
519       (metrics->erle.average > kOffsetLevel)) {
520     stmp = metrics->erl.average + metrics->erle.average;
521   } else {
522     stmp = kOffsetLevel;
523   }
524   metrics->rerl.average = stmp;
525 
526   // No other statistics needed, but returned for completeness.
527   metrics->rerl.instant = stmp;
528   metrics->rerl.max = stmp;
529   metrics->rerl.min = stmp;
530 
531   // A_NLP
532   metrics->aNlp.instant = (int)a_nlp.instant;
533 
534   if ((a_nlp.himean > kOffsetLevel) && (a_nlp.average > kOffsetLevel)) {
535     // Use a mix between regular average and upper part average.
536     dtmp = kUpWeight * a_nlp.himean + (1 - kUpWeight) * a_nlp.average;
537     metrics->aNlp.average = (int)dtmp;
538   } else {
539     metrics->aNlp.average = kOffsetLevel;
540   }
541 
542   metrics->aNlp.max = (int)a_nlp.max;
543 
544   if (a_nlp.min < (kOffsetLevel * (-1))) {
545     metrics->aNlp.min = (int)a_nlp.min;
546   } else {
547     metrics->aNlp.min = kOffsetLevel;
548   }
549 
550   return 0;
551 }
552 
WebRtcAec_GetDelayMetrics(void * handle,int * median,int * std,float * fraction_poor_delays)553 int WebRtcAec_GetDelayMetrics(void* handle,
554                               int* median,
555                               int* std,
556                               float* fraction_poor_delays) {
557   Aec* self = handle;
558   if (median == NULL) {
559     self->lastError = AEC_NULL_POINTER_ERROR;
560     return -1;
561   }
562   if (std == NULL) {
563     self->lastError = AEC_NULL_POINTER_ERROR;
564     return -1;
565   }
566   if (self->initFlag != initCheck) {
567     self->lastError = AEC_UNINITIALIZED_ERROR;
568     return -1;
569   }
570   if (WebRtcAec_GetDelayMetricsCore(self->aec, median, std,
571                                     fraction_poor_delays) ==
572       -1) {
573     // Logging disabled.
574     self->lastError = AEC_UNSUPPORTED_FUNCTION_ERROR;
575     return -1;
576   }
577 
578   return 0;
579 }
580 
WebRtcAec_get_error_code(void * aecInst)581 int32_t WebRtcAec_get_error_code(void* aecInst) {
582   Aec* aecpc = aecInst;
583   return aecpc->lastError;
584 }
585 
WebRtcAec_aec_core(void * handle)586 AecCore* WebRtcAec_aec_core(void* handle) {
587   if (!handle) {
588     return NULL;
589   }
590   return ((Aec*)handle)->aec;
591 }
592 
ProcessNormal(Aec * aecpc,const float * const * nearend,size_t num_bands,float * const * out,size_t nrOfSamples,int16_t msInSndCardBuf,int32_t skew)593 static int ProcessNormal(Aec* aecpc,
594                          const float* const* nearend,
595                          size_t num_bands,
596                          float* const* out,
597                          size_t nrOfSamples,
598                          int16_t msInSndCardBuf,
599                          int32_t skew) {
600   int retVal = 0;
601   size_t i;
602   size_t nBlocks10ms;
603   // Limit resampling to doubling/halving of signal
604   const float minSkewEst = -0.5f;
605   const float maxSkewEst = 1.0f;
606 
607   msInSndCardBuf =
608       msInSndCardBuf > kMaxTrustedDelayMs ? kMaxTrustedDelayMs : msInSndCardBuf;
609   // TODO(andrew): we need to investigate if this +10 is really wanted.
610   msInSndCardBuf += 10;
611   aecpc->msInSndCardBuf = msInSndCardBuf;
612 
613   if (aecpc->skewMode == kAecTrue) {
614     if (aecpc->skewFrCtr < 25) {
615       aecpc->skewFrCtr++;
616     } else {
617       retVal = WebRtcAec_GetSkew(aecpc->resampler, skew, &aecpc->skew);
618       if (retVal == -1) {
619         aecpc->skew = 0;
620         aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
621       }
622 
623       aecpc->skew /= aecpc->sampFactor * nrOfSamples;
624 
625       if (aecpc->skew < 1.0e-3 && aecpc->skew > -1.0e-3) {
626         aecpc->resample = kAecFalse;
627       } else {
628         aecpc->resample = kAecTrue;
629       }
630 
631       if (aecpc->skew < minSkewEst) {
632         aecpc->skew = minSkewEst;
633       } else if (aecpc->skew > maxSkewEst) {
634         aecpc->skew = maxSkewEst;
635       }
636 
637 #ifdef WEBRTC_AEC_DEBUG_DUMP
638       (void)fwrite(&aecpc->skew, sizeof(aecpc->skew), 1, aecpc->skewFile);
639 #endif
640     }
641   }
642 
643   nBlocks10ms = nrOfSamples / (FRAME_LEN * aecpc->rate_factor);
644 
645   if (aecpc->startup_phase) {
646     for (i = 0; i < num_bands; ++i) {
647       // Only needed if they don't already point to the same place.
648       if (nearend[i] != out[i]) {
649         memcpy(out[i], nearend[i], sizeof(nearend[i][0]) * nrOfSamples);
650       }
651     }
652 
653     // The AEC is in the start up mode
654     // AEC is disabled until the system delay is OK
655 
656     // Mechanism to ensure that the system delay is reasonably stable.
657     if (aecpc->checkBuffSize) {
658       aecpc->checkBufSizeCtr++;
659       // Before we fill up the far-end buffer we require the system delay
660       // to be stable (+/-8 ms) compared to the first value. This
661       // comparison is made during the following 6 consecutive 10 ms
662       // blocks. If it seems to be stable then we start to fill up the
663       // far-end buffer.
664       if (aecpc->counter == 0) {
665         aecpc->firstVal = aecpc->msInSndCardBuf;
666         aecpc->sum = 0;
667       }
668 
669       if (abs(aecpc->firstVal - aecpc->msInSndCardBuf) <
670           WEBRTC_SPL_MAX(0.2 * aecpc->msInSndCardBuf, sampMsNb)) {
671         aecpc->sum += aecpc->msInSndCardBuf;
672         aecpc->counter++;
673       } else {
674         aecpc->counter = 0;
675       }
676 
677       if (aecpc->counter * nBlocks10ms >= 6) {
678         // The far-end buffer size is determined in partitions of
679         // PART_LEN samples. Use 75% of the average value of the system
680         // delay as buffer size to start with.
681         aecpc->bufSizeStart =
682             WEBRTC_SPL_MIN((3 * aecpc->sum * aecpc->rate_factor * 8) /
683                                (4 * aecpc->counter * PART_LEN),
684                            kMaxBufSizeStart);
685         // Buffer size has now been determined.
686         aecpc->checkBuffSize = 0;
687       }
688 
689       if (aecpc->checkBufSizeCtr * nBlocks10ms > 50) {
690         // For really bad systems, don't disable the echo canceller for
691         // more than 0.5 sec.
692         aecpc->bufSizeStart = WEBRTC_SPL_MIN(
693             (aecpc->msInSndCardBuf * aecpc->rate_factor * 3) / 40,
694             kMaxBufSizeStart);
695         aecpc->checkBuffSize = 0;
696       }
697     }
698 
699     // If |checkBuffSize| changed in the if-statement above.
700     if (!aecpc->checkBuffSize) {
701       // The system delay is now reasonably stable (or has been unstable
702       // for too long). When the far-end buffer is filled with
703       // approximately the same amount of data as reported by the system
704       // we end the startup phase.
705       int overhead_elements =
706           WebRtcAec_system_delay(aecpc->aec) / PART_LEN - aecpc->bufSizeStart;
707       if (overhead_elements == 0) {
708         // Enable the AEC
709         aecpc->startup_phase = 0;
710       } else if (overhead_elements > 0) {
711         // TODO(bjornv): Do we need a check on how much we actually
712         // moved the read pointer? It should always be possible to move
713         // the pointer |overhead_elements| since we have only added data
714         // to the buffer and no delay compensation nor AEC processing
715         // has been done.
716         WebRtcAec_MoveFarReadPtr(aecpc->aec, overhead_elements);
717 
718         // Enable the AEC
719         aecpc->startup_phase = 0;
720       }
721     }
722   } else {
723     // AEC is enabled.
724     EstBufDelayNormal(aecpc);
725 
726     // Call the AEC.
727     // TODO(bjornv): Re-structure such that we don't have to pass
728     // |aecpc->knownDelay| as input. Change name to something like
729     // |system_buffer_diff|.
730     WebRtcAec_ProcessFrames(aecpc->aec,
731                             nearend,
732                             num_bands,
733                             nrOfSamples,
734                             aecpc->knownDelay,
735                             out);
736   }
737 
738   return retVal;
739 }
740 
ProcessExtended(Aec * self,const float * const * near,size_t num_bands,float * const * out,size_t num_samples,int16_t reported_delay_ms,int32_t skew)741 static void ProcessExtended(Aec* self,
742                             const float* const* near,
743                             size_t num_bands,
744                             float* const* out,
745                             size_t num_samples,
746                             int16_t reported_delay_ms,
747                             int32_t skew) {
748   size_t i;
749   const int delay_diff_offset = kDelayDiffOffsetSamples;
750 #if defined(WEBRTC_UNTRUSTED_DELAY)
751   reported_delay_ms = kFixedDelayMs;
752 #else
753   // This is the usual mode where we trust the reported system delay values.
754   // Due to the longer filter, we no longer add 10 ms to the reported delay
755   // to reduce chance of non-causality. Instead we apply a minimum here to avoid
756   // issues with the read pointer jumping around needlessly.
757   reported_delay_ms = reported_delay_ms < kMinTrustedDelayMs
758                           ? kMinTrustedDelayMs
759                           : reported_delay_ms;
760   // If the reported delay appears to be bogus, we attempt to recover by using
761   // the measured fixed delay values. We use >= here because higher layers
762   // may already clamp to this maximum value, and we would otherwise not
763   // detect it here.
764   reported_delay_ms = reported_delay_ms >= kMaxTrustedDelayMs
765                           ? kFixedDelayMs
766                           : reported_delay_ms;
767 #endif
768   self->msInSndCardBuf = reported_delay_ms;
769 
770   if (!self->farend_started) {
771     for (i = 0; i < num_bands; ++i) {
772       // Only needed if they don't already point to the same place.
773       if (near[i] != out[i]) {
774         memcpy(out[i], near[i], sizeof(near[i][0]) * num_samples);
775       }
776     }
777     return;
778   }
779   if (self->startup_phase) {
780     // In the extended mode, there isn't a startup "phase", just a special
781     // action on the first frame. In the trusted delay case, we'll take the
782     // current reported delay, unless it's less then our conservative
783     // measurement.
784     int startup_size_ms =
785         reported_delay_ms < kFixedDelayMs ? kFixedDelayMs : reported_delay_ms;
786 #if defined(WEBRTC_ANDROID)
787     int target_delay = startup_size_ms * self->rate_factor * 8;
788 #else
789     // To avoid putting the AEC in a non-causal state we're being slightly
790     // conservative and scale by 2. On Android we use a fixed delay and
791     // therefore there is no need to scale the target_delay.
792     int target_delay = startup_size_ms * self->rate_factor * 8 / 2;
793 #endif
794     int overhead_elements =
795         (WebRtcAec_system_delay(self->aec) - target_delay) / PART_LEN;
796     WebRtcAec_MoveFarReadPtr(self->aec, overhead_elements);
797     self->startup_phase = 0;
798   }
799 
800   EstBufDelayExtended(self);
801 
802   {
803     // |delay_diff_offset| gives us the option to manually rewind the delay on
804     // very low delay platforms which can't be expressed purely through
805     // |reported_delay_ms|.
806     const int adjusted_known_delay =
807         WEBRTC_SPL_MAX(0, self->knownDelay + delay_diff_offset);
808 
809     WebRtcAec_ProcessFrames(self->aec,
810                             near,
811                             num_bands,
812                             num_samples,
813                             adjusted_known_delay,
814                             out);
815   }
816 }
817 
EstBufDelayNormal(Aec * aecpc)818 static void EstBufDelayNormal(Aec* aecpc) {
819   int nSampSndCard = aecpc->msInSndCardBuf * sampMsNb * aecpc->rate_factor;
820   int current_delay = nSampSndCard - WebRtcAec_system_delay(aecpc->aec);
821   int delay_difference = 0;
822 
823   // Before we proceed with the delay estimate filtering we:
824   // 1) Compensate for the frame that will be read.
825   // 2) Compensate for drift resampling.
826   // 3) Compensate for non-causality if needed, since the estimated delay can't
827   //    be negative.
828 
829   // 1) Compensating for the frame(s) that will be read/processed.
830   current_delay += FRAME_LEN * aecpc->rate_factor;
831 
832   // 2) Account for resampling frame delay.
833   if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
834     current_delay -= kResamplingDelay;
835   }
836 
837   // 3) Compensate for non-causality, if needed, by flushing one block.
838   if (current_delay < PART_LEN) {
839     current_delay += WebRtcAec_MoveFarReadPtr(aecpc->aec, 1) * PART_LEN;
840   }
841 
842   // We use -1 to signal an initialized state in the "extended" implementation;
843   // compensate for that.
844   aecpc->filtDelay = aecpc->filtDelay < 0 ? 0 : aecpc->filtDelay;
845   aecpc->filtDelay =
846       WEBRTC_SPL_MAX(0, (short)(0.8 * aecpc->filtDelay + 0.2 * current_delay));
847 
848   delay_difference = aecpc->filtDelay - aecpc->knownDelay;
849   if (delay_difference > 224) {
850     if (aecpc->lastDelayDiff < 96) {
851       aecpc->timeForDelayChange = 0;
852     } else {
853       aecpc->timeForDelayChange++;
854     }
855   } else if (delay_difference < 96 && aecpc->knownDelay > 0) {
856     if (aecpc->lastDelayDiff > 224) {
857       aecpc->timeForDelayChange = 0;
858     } else {
859       aecpc->timeForDelayChange++;
860     }
861   } else {
862     aecpc->timeForDelayChange = 0;
863   }
864   aecpc->lastDelayDiff = delay_difference;
865 
866   if (aecpc->timeForDelayChange > 25) {
867     aecpc->knownDelay = WEBRTC_SPL_MAX((int)aecpc->filtDelay - 160, 0);
868   }
869 }
870 
EstBufDelayExtended(Aec * self)871 static void EstBufDelayExtended(Aec* self) {
872   int reported_delay = self->msInSndCardBuf * sampMsNb * self->rate_factor;
873   int current_delay = reported_delay - WebRtcAec_system_delay(self->aec);
874   int delay_difference = 0;
875 
876   // Before we proceed with the delay estimate filtering we:
877   // 1) Compensate for the frame that will be read.
878   // 2) Compensate for drift resampling.
879   // 3) Compensate for non-causality if needed, since the estimated delay can't
880   //    be negative.
881 
882   // 1) Compensating for the frame(s) that will be read/processed.
883   current_delay += FRAME_LEN * self->rate_factor;
884 
885   // 2) Account for resampling frame delay.
886   if (self->skewMode == kAecTrue && self->resample == kAecTrue) {
887     current_delay -= kResamplingDelay;
888   }
889 
890   // 3) Compensate for non-causality, if needed, by flushing two blocks.
891   if (current_delay < PART_LEN) {
892     current_delay += WebRtcAec_MoveFarReadPtr(self->aec, 2) * PART_LEN;
893   }
894 
895   if (self->filtDelay == -1) {
896     self->filtDelay = WEBRTC_SPL_MAX(0, 0.5 * current_delay);
897   } else {
898     self->filtDelay = WEBRTC_SPL_MAX(
899         0, (short)(0.95 * self->filtDelay + 0.05 * current_delay));
900   }
901 
902   delay_difference = self->filtDelay - self->knownDelay;
903   if (delay_difference > 384) {
904     if (self->lastDelayDiff < 128) {
905       self->timeForDelayChange = 0;
906     } else {
907       self->timeForDelayChange++;
908     }
909   } else if (delay_difference < 128 && self->knownDelay > 0) {
910     if (self->lastDelayDiff > 384) {
911       self->timeForDelayChange = 0;
912     } else {
913       self->timeForDelayChange++;
914     }
915   } else {
916     self->timeForDelayChange = 0;
917   }
918   self->lastDelayDiff = delay_difference;
919 
920   if (self->timeForDelayChange > 25) {
921     self->knownDelay = WEBRTC_SPL_MAX((int)self->filtDelay - 256, 0);
922   }
923 }
924