1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Linux system calls.
6// This file is compiled as ordinary Go code,
7// but it is also input to mksyscall,
8// which parses the //sys lines and generates system call stubs.
9// Note that sometimes we use a lowercase //sys name and
10// wrap it in our own nicer implementation.
11
12package unix
13
14import (
15	"syscall"
16	"unsafe"
17)
18
19/*
20 * Wrapped
21 */
22
23func Access(path string, mode uint32) (err error) {
24	return Faccessat(AT_FDCWD, path, mode, 0)
25}
26
27func Chmod(path string, mode uint32) (err error) {
28	return Fchmodat(AT_FDCWD, path, mode, 0)
29}
30
31func Chown(path string, uid int, gid int) (err error) {
32	return Fchownat(AT_FDCWD, path, uid, gid, 0)
33}
34
35func Creat(path string, mode uint32) (fd int, err error) {
36	return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
37}
38
39//sys	fchmodat(dirfd int, path string, mode uint32) (err error)
40
41func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
42	// Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
43	// and check the flags. Otherwise the mode would be applied to the symlink
44	// destination which is not what the user expects.
45	if flags&^AT_SYMLINK_NOFOLLOW != 0 {
46		return EINVAL
47	} else if flags&AT_SYMLINK_NOFOLLOW != 0 {
48		return EOPNOTSUPP
49	}
50	return fchmodat(dirfd, path, mode)
51}
52
53//sys	ioctl(fd int, req uint, arg uintptr) (err error)
54
55// ioctl itself should not be exposed directly, but additional get/set
56// functions for specific types are permissible.
57
58// IoctlSetInt performs an ioctl operation which sets an integer value
59// on fd, using the specified request number.
60func IoctlSetInt(fd int, req uint, value int) error {
61	return ioctl(fd, req, uintptr(value))
62}
63
64func IoctlSetWinsize(fd int, req uint, value *Winsize) error {
65	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
66}
67
68func IoctlSetTermios(fd int, req uint, value *Termios) error {
69	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
70}
71
72// IoctlGetInt performs an ioctl operation which gets an integer value
73// from fd, using the specified request number.
74func IoctlGetInt(fd int, req uint) (int, error) {
75	var value int
76	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
77	return value, err
78}
79
80func IoctlGetWinsize(fd int, req uint) (*Winsize, error) {
81	var value Winsize
82	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
83	return &value, err
84}
85
86func IoctlGetTermios(fd int, req uint) (*Termios, error) {
87	var value Termios
88	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
89	return &value, err
90}
91
92//sys	Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
93
94func Link(oldpath string, newpath string) (err error) {
95	return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
96}
97
98func Mkdir(path string, mode uint32) (err error) {
99	return Mkdirat(AT_FDCWD, path, mode)
100}
101
102func Mknod(path string, mode uint32, dev int) (err error) {
103	return Mknodat(AT_FDCWD, path, mode, dev)
104}
105
106func Open(path string, mode int, perm uint32) (fd int, err error) {
107	return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
108}
109
110//sys	openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
111
112func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
113	return openat(dirfd, path, flags|O_LARGEFILE, mode)
114}
115
116//sys	ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
117
118func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
119	if len(fds) == 0 {
120		return ppoll(nil, 0, timeout, sigmask)
121	}
122	return ppoll(&fds[0], len(fds), timeout, sigmask)
123}
124
125//sys	Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
126
127func Readlink(path string, buf []byte) (n int, err error) {
128	return Readlinkat(AT_FDCWD, path, buf)
129}
130
131func Rename(oldpath string, newpath string) (err error) {
132	return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
133}
134
135func Rmdir(path string) error {
136	return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
137}
138
139//sys	Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
140
141func Symlink(oldpath string, newpath string) (err error) {
142	return Symlinkat(oldpath, AT_FDCWD, newpath)
143}
144
145func Unlink(path string) error {
146	return Unlinkat(AT_FDCWD, path, 0)
147}
148
149//sys	Unlinkat(dirfd int, path string, flags int) (err error)
150
151//sys	utimes(path string, times *[2]Timeval) (err error)
152
153func Utimes(path string, tv []Timeval) error {
154	if tv == nil {
155		err := utimensat(AT_FDCWD, path, nil, 0)
156		if err != ENOSYS {
157			return err
158		}
159		return utimes(path, nil)
160	}
161	if len(tv) != 2 {
162		return EINVAL
163	}
164	var ts [2]Timespec
165	ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
166	ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
167	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
168	if err != ENOSYS {
169		return err
170	}
171	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
172}
173
174//sys	utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
175
176func UtimesNano(path string, ts []Timespec) error {
177	if ts == nil {
178		err := utimensat(AT_FDCWD, path, nil, 0)
179		if err != ENOSYS {
180			return err
181		}
182		return utimes(path, nil)
183	}
184	if len(ts) != 2 {
185		return EINVAL
186	}
187	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
188	if err != ENOSYS {
189		return err
190	}
191	// If the utimensat syscall isn't available (utimensat was added to Linux
192	// in 2.6.22, Released, 8 July 2007) then fall back to utimes
193	var tv [2]Timeval
194	for i := 0; i < 2; i++ {
195		tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
196	}
197	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
198}
199
200func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
201	if ts == nil {
202		return utimensat(dirfd, path, nil, flags)
203	}
204	if len(ts) != 2 {
205		return EINVAL
206	}
207	return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
208}
209
210//sys	futimesat(dirfd int, path *byte, times *[2]Timeval) (err error)
211
212func Futimesat(dirfd int, path string, tv []Timeval) error {
213	pathp, err := BytePtrFromString(path)
214	if err != nil {
215		return err
216	}
217	if tv == nil {
218		return futimesat(dirfd, pathp, nil)
219	}
220	if len(tv) != 2 {
221		return EINVAL
222	}
223	return futimesat(dirfd, pathp, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
224}
225
226func Futimes(fd int, tv []Timeval) (err error) {
227	// Believe it or not, this is the best we can do on Linux
228	// (and is what glibc does).
229	return Utimes("/proc/self/fd/"+itoa(fd), tv)
230}
231
232const ImplementsGetwd = true
233
234//sys	Getcwd(buf []byte) (n int, err error)
235
236func Getwd() (wd string, err error) {
237	var buf [PathMax]byte
238	n, err := Getcwd(buf[0:])
239	if err != nil {
240		return "", err
241	}
242	// Getcwd returns the number of bytes written to buf, including the NUL.
243	if n < 1 || n > len(buf) || buf[n-1] != 0 {
244		return "", EINVAL
245	}
246	return string(buf[0 : n-1]), nil
247}
248
249func Getgroups() (gids []int, err error) {
250	n, err := getgroups(0, nil)
251	if err != nil {
252		return nil, err
253	}
254	if n == 0 {
255		return nil, nil
256	}
257
258	// Sanity check group count. Max is 1<<16 on Linux.
259	if n < 0 || n > 1<<20 {
260		return nil, EINVAL
261	}
262
263	a := make([]_Gid_t, n)
264	n, err = getgroups(n, &a[0])
265	if err != nil {
266		return nil, err
267	}
268	gids = make([]int, n)
269	for i, v := range a[0:n] {
270		gids[i] = int(v)
271	}
272	return
273}
274
275func Setgroups(gids []int) (err error) {
276	if len(gids) == 0 {
277		return setgroups(0, nil)
278	}
279
280	a := make([]_Gid_t, len(gids))
281	for i, v := range gids {
282		a[i] = _Gid_t(v)
283	}
284	return setgroups(len(a), &a[0])
285}
286
287type WaitStatus uint32
288
289// Wait status is 7 bits at bottom, either 0 (exited),
290// 0x7F (stopped), or a signal number that caused an exit.
291// The 0x80 bit is whether there was a core dump.
292// An extra number (exit code, signal causing a stop)
293// is in the high bits. At least that's the idea.
294// There are various irregularities. For example, the
295// "continued" status is 0xFFFF, distinguishing itself
296// from stopped via the core dump bit.
297
298const (
299	mask    = 0x7F
300	core    = 0x80
301	exited  = 0x00
302	stopped = 0x7F
303	shift   = 8
304)
305
306func (w WaitStatus) Exited() bool { return w&mask == exited }
307
308func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
309
310func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
311
312func (w WaitStatus) Continued() bool { return w == 0xFFFF }
313
314func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
315
316func (w WaitStatus) ExitStatus() int {
317	if !w.Exited() {
318		return -1
319	}
320	return int(w>>shift) & 0xFF
321}
322
323func (w WaitStatus) Signal() syscall.Signal {
324	if !w.Signaled() {
325		return -1
326	}
327	return syscall.Signal(w & mask)
328}
329
330func (w WaitStatus) StopSignal() syscall.Signal {
331	if !w.Stopped() {
332		return -1
333	}
334	return syscall.Signal(w>>shift) & 0xFF
335}
336
337func (w WaitStatus) TrapCause() int {
338	if w.StopSignal() != SIGTRAP {
339		return -1
340	}
341	return int(w>>shift) >> 8
342}
343
344//sys	wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
345
346func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
347	var status _C_int
348	wpid, err = wait4(pid, &status, options, rusage)
349	if wstatus != nil {
350		*wstatus = WaitStatus(status)
351	}
352	return
353}
354
355func Mkfifo(path string, mode uint32) error {
356	return Mknod(path, mode|S_IFIFO, 0)
357}
358
359func Mkfifoat(dirfd int, path string, mode uint32) error {
360	return Mknodat(dirfd, path, mode|S_IFIFO, 0)
361}
362
363func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
364	if sa.Port < 0 || sa.Port > 0xFFFF {
365		return nil, 0, EINVAL
366	}
367	sa.raw.Family = AF_INET
368	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
369	p[0] = byte(sa.Port >> 8)
370	p[1] = byte(sa.Port)
371	for i := 0; i < len(sa.Addr); i++ {
372		sa.raw.Addr[i] = sa.Addr[i]
373	}
374	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
375}
376
377func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
378	if sa.Port < 0 || sa.Port > 0xFFFF {
379		return nil, 0, EINVAL
380	}
381	sa.raw.Family = AF_INET6
382	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
383	p[0] = byte(sa.Port >> 8)
384	p[1] = byte(sa.Port)
385	sa.raw.Scope_id = sa.ZoneId
386	for i := 0; i < len(sa.Addr); i++ {
387		sa.raw.Addr[i] = sa.Addr[i]
388	}
389	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
390}
391
392func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
393	name := sa.Name
394	n := len(name)
395	if n >= len(sa.raw.Path) {
396		return nil, 0, EINVAL
397	}
398	sa.raw.Family = AF_UNIX
399	for i := 0; i < n; i++ {
400		sa.raw.Path[i] = int8(name[i])
401	}
402	// length is family (uint16), name, NUL.
403	sl := _Socklen(2)
404	if n > 0 {
405		sl += _Socklen(n) + 1
406	}
407	if sa.raw.Path[0] == '@' {
408		sa.raw.Path[0] = 0
409		// Don't count trailing NUL for abstract address.
410		sl--
411	}
412
413	return unsafe.Pointer(&sa.raw), sl, nil
414}
415
416type SockaddrLinklayer struct {
417	Protocol uint16
418	Ifindex  int
419	Hatype   uint16
420	Pkttype  uint8
421	Halen    uint8
422	Addr     [8]byte
423	raw      RawSockaddrLinklayer
424}
425
426func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
427	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
428		return nil, 0, EINVAL
429	}
430	sa.raw.Family = AF_PACKET
431	sa.raw.Protocol = sa.Protocol
432	sa.raw.Ifindex = int32(sa.Ifindex)
433	sa.raw.Hatype = sa.Hatype
434	sa.raw.Pkttype = sa.Pkttype
435	sa.raw.Halen = sa.Halen
436	for i := 0; i < len(sa.Addr); i++ {
437		sa.raw.Addr[i] = sa.Addr[i]
438	}
439	return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
440}
441
442type SockaddrNetlink struct {
443	Family uint16
444	Pad    uint16
445	Pid    uint32
446	Groups uint32
447	raw    RawSockaddrNetlink
448}
449
450func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
451	sa.raw.Family = AF_NETLINK
452	sa.raw.Pad = sa.Pad
453	sa.raw.Pid = sa.Pid
454	sa.raw.Groups = sa.Groups
455	return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
456}
457
458type SockaddrHCI struct {
459	Dev     uint16
460	Channel uint16
461	raw     RawSockaddrHCI
462}
463
464func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
465	sa.raw.Family = AF_BLUETOOTH
466	sa.raw.Dev = sa.Dev
467	sa.raw.Channel = sa.Channel
468	return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
469}
470
471// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
472// The RxID and TxID fields are used for transport protocol addressing in
473// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
474// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
475//
476// The SockaddrCAN struct must be bound to the socket file descriptor
477// using Bind before the CAN socket can be used.
478//
479//      // Read one raw CAN frame
480//      fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
481//      addr := &SockaddrCAN{Ifindex: index}
482//      Bind(fd, addr)
483//      frame := make([]byte, 16)
484//      Read(fd, frame)
485//
486// The full SocketCAN documentation can be found in the linux kernel
487// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
488type SockaddrCAN struct {
489	Ifindex int
490	RxID    uint32
491	TxID    uint32
492	raw     RawSockaddrCAN
493}
494
495func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
496	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
497		return nil, 0, EINVAL
498	}
499	sa.raw.Family = AF_CAN
500	sa.raw.Ifindex = int32(sa.Ifindex)
501	rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
502	for i := 0; i < 4; i++ {
503		sa.raw.Addr[i] = rx[i]
504	}
505	tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
506	for i := 0; i < 4; i++ {
507		sa.raw.Addr[i+4] = tx[i]
508	}
509	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
510}
511
512// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
513// SockaddrALG enables userspace access to the Linux kernel's cryptography
514// subsystem. The Type and Name fields specify which type of hash or cipher
515// should be used with a given socket.
516//
517// To create a file descriptor that provides access to a hash or cipher, both
518// Bind and Accept must be used. Once the setup process is complete, input
519// data can be written to the socket, processed by the kernel, and then read
520// back as hash output or ciphertext.
521//
522// Here is an example of using an AF_ALG socket with SHA1 hashing.
523// The initial socket setup process is as follows:
524//
525//      // Open a socket to perform SHA1 hashing.
526//      fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
527//      addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
528//      unix.Bind(fd, addr)
529//      // Note: unix.Accept does not work at this time; must invoke accept()
530//      // manually using unix.Syscall.
531//      hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
532//
533// Once a file descriptor has been returned from Accept, it may be used to
534// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
535// may be re-used repeatedly with subsequent Write and Read operations.
536//
537// When hashing a small byte slice or string, a single Write and Read may
538// be used:
539//
540//      // Assume hashfd is already configured using the setup process.
541//      hash := os.NewFile(hashfd, "sha1")
542//      // Hash an input string and read the results. Each Write discards
543//      // previous hash state. Read always reads the current state.
544//      b := make([]byte, 20)
545//      for i := 0; i < 2; i++ {
546//          io.WriteString(hash, "Hello, world.")
547//          hash.Read(b)
548//          fmt.Println(hex.EncodeToString(b))
549//      }
550//      // Output:
551//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
552//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
553//
554// For hashing larger byte slices, or byte streams such as those read from
555// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
556// the hash digest instead of creating a new one for a given chunk and finalizing it.
557//
558//      // Assume hashfd and addr are already configured using the setup process.
559//      hash := os.NewFile(hashfd, "sha1")
560//      // Hash the contents of a file.
561//      f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
562//      b := make([]byte, 4096)
563//      for {
564//          n, err := f.Read(b)
565//          if err == io.EOF {
566//              break
567//          }
568//          unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
569//      }
570//      hash.Read(b)
571//      fmt.Println(hex.EncodeToString(b))
572//      // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
573//
574// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
575type SockaddrALG struct {
576	Type    string
577	Name    string
578	Feature uint32
579	Mask    uint32
580	raw     RawSockaddrALG
581}
582
583func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
584	// Leave room for NUL byte terminator.
585	if len(sa.Type) > 13 {
586		return nil, 0, EINVAL
587	}
588	if len(sa.Name) > 63 {
589		return nil, 0, EINVAL
590	}
591
592	sa.raw.Family = AF_ALG
593	sa.raw.Feat = sa.Feature
594	sa.raw.Mask = sa.Mask
595
596	typ, err := ByteSliceFromString(sa.Type)
597	if err != nil {
598		return nil, 0, err
599	}
600	name, err := ByteSliceFromString(sa.Name)
601	if err != nil {
602		return nil, 0, err
603	}
604
605	copy(sa.raw.Type[:], typ)
606	copy(sa.raw.Name[:], name)
607
608	return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
609}
610
611// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
612// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
613// bidirectional communication between a hypervisor and its guest virtual
614// machines.
615type SockaddrVM struct {
616	// CID and Port specify a context ID and port address for a VM socket.
617	// Guests have a unique CID, and hosts may have a well-known CID of:
618	//  - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
619	//  - VMADDR_CID_HOST: refers to other processes on the host.
620	CID  uint32
621	Port uint32
622	raw  RawSockaddrVM
623}
624
625func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
626	sa.raw.Family = AF_VSOCK
627	sa.raw.Port = sa.Port
628	sa.raw.Cid = sa.CID
629
630	return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
631}
632
633func anyToSockaddr(rsa *RawSockaddrAny) (Sockaddr, error) {
634	switch rsa.Addr.Family {
635	case AF_NETLINK:
636		pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
637		sa := new(SockaddrNetlink)
638		sa.Family = pp.Family
639		sa.Pad = pp.Pad
640		sa.Pid = pp.Pid
641		sa.Groups = pp.Groups
642		return sa, nil
643
644	case AF_PACKET:
645		pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
646		sa := new(SockaddrLinklayer)
647		sa.Protocol = pp.Protocol
648		sa.Ifindex = int(pp.Ifindex)
649		sa.Hatype = pp.Hatype
650		sa.Pkttype = pp.Pkttype
651		sa.Halen = pp.Halen
652		for i := 0; i < len(sa.Addr); i++ {
653			sa.Addr[i] = pp.Addr[i]
654		}
655		return sa, nil
656
657	case AF_UNIX:
658		pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
659		sa := new(SockaddrUnix)
660		if pp.Path[0] == 0 {
661			// "Abstract" Unix domain socket.
662			// Rewrite leading NUL as @ for textual display.
663			// (This is the standard convention.)
664			// Not friendly to overwrite in place,
665			// but the callers below don't care.
666			pp.Path[0] = '@'
667		}
668
669		// Assume path ends at NUL.
670		// This is not technically the Linux semantics for
671		// abstract Unix domain sockets--they are supposed
672		// to be uninterpreted fixed-size binary blobs--but
673		// everyone uses this convention.
674		n := 0
675		for n < len(pp.Path) && pp.Path[n] != 0 {
676			n++
677		}
678		bytes := (*[10000]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
679		sa.Name = string(bytes)
680		return sa, nil
681
682	case AF_INET:
683		pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
684		sa := new(SockaddrInet4)
685		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
686		sa.Port = int(p[0])<<8 + int(p[1])
687		for i := 0; i < len(sa.Addr); i++ {
688			sa.Addr[i] = pp.Addr[i]
689		}
690		return sa, nil
691
692	case AF_INET6:
693		pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
694		sa := new(SockaddrInet6)
695		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
696		sa.Port = int(p[0])<<8 + int(p[1])
697		sa.ZoneId = pp.Scope_id
698		for i := 0; i < len(sa.Addr); i++ {
699			sa.Addr[i] = pp.Addr[i]
700		}
701		return sa, nil
702
703	case AF_VSOCK:
704		pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
705		sa := &SockaddrVM{
706			CID:  pp.Cid,
707			Port: pp.Port,
708		}
709		return sa, nil
710	}
711	return nil, EAFNOSUPPORT
712}
713
714func Accept(fd int) (nfd int, sa Sockaddr, err error) {
715	var rsa RawSockaddrAny
716	var len _Socklen = SizeofSockaddrAny
717	nfd, err = accept(fd, &rsa, &len)
718	if err != nil {
719		return
720	}
721	sa, err = anyToSockaddr(&rsa)
722	if err != nil {
723		Close(nfd)
724		nfd = 0
725	}
726	return
727}
728
729func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
730	var rsa RawSockaddrAny
731	var len _Socklen = SizeofSockaddrAny
732	nfd, err = accept4(fd, &rsa, &len, flags)
733	if err != nil {
734		return
735	}
736	if len > SizeofSockaddrAny {
737		panic("RawSockaddrAny too small")
738	}
739	sa, err = anyToSockaddr(&rsa)
740	if err != nil {
741		Close(nfd)
742		nfd = 0
743	}
744	return
745}
746
747func Getsockname(fd int) (sa Sockaddr, err error) {
748	var rsa RawSockaddrAny
749	var len _Socklen = SizeofSockaddrAny
750	if err = getsockname(fd, &rsa, &len); err != nil {
751		return
752	}
753	return anyToSockaddr(&rsa)
754}
755
756func GetsockoptInet4Addr(fd, level, opt int) (value [4]byte, err error) {
757	vallen := _Socklen(4)
758	err = getsockopt(fd, level, opt, unsafe.Pointer(&value[0]), &vallen)
759	return value, err
760}
761
762func GetsockoptIPMreq(fd, level, opt int) (*IPMreq, error) {
763	var value IPMreq
764	vallen := _Socklen(SizeofIPMreq)
765	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
766	return &value, err
767}
768
769func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
770	var value IPMreqn
771	vallen := _Socklen(SizeofIPMreqn)
772	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
773	return &value, err
774}
775
776func GetsockoptIPv6Mreq(fd, level, opt int) (*IPv6Mreq, error) {
777	var value IPv6Mreq
778	vallen := _Socklen(SizeofIPv6Mreq)
779	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
780	return &value, err
781}
782
783func GetsockoptIPv6MTUInfo(fd, level, opt int) (*IPv6MTUInfo, error) {
784	var value IPv6MTUInfo
785	vallen := _Socklen(SizeofIPv6MTUInfo)
786	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
787	return &value, err
788}
789
790func GetsockoptICMPv6Filter(fd, level, opt int) (*ICMPv6Filter, error) {
791	var value ICMPv6Filter
792	vallen := _Socklen(SizeofICMPv6Filter)
793	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
794	return &value, err
795}
796
797func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
798	var value Ucred
799	vallen := _Socklen(SizeofUcred)
800	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
801	return &value, err
802}
803
804func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
805	var value TCPInfo
806	vallen := _Socklen(SizeofTCPInfo)
807	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
808	return &value, err
809}
810
811func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
812	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
813}
814
815// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
816
817// KeyctlInt calls keyctl commands in which each argument is an int.
818// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
819// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
820// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
821// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
822//sys	KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
823
824// KeyctlBuffer calls keyctl commands in which the third and fourth
825// arguments are a buffer and its length, respectively.
826// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
827//sys	KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
828
829// KeyctlString calls keyctl commands which return a string.
830// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
831func KeyctlString(cmd int, id int) (string, error) {
832	// We must loop as the string data may change in between the syscalls.
833	// We could allocate a large buffer here to reduce the chance that the
834	// syscall needs to be called twice; however, this is unnecessary as
835	// the performance loss is negligible.
836	var buffer []byte
837	for {
838		// Try to fill the buffer with data
839		length, err := KeyctlBuffer(cmd, id, buffer, 0)
840		if err != nil {
841			return "", err
842		}
843
844		// Check if the data was written
845		if length <= len(buffer) {
846			// Exclude the null terminator
847			return string(buffer[:length-1]), nil
848		}
849
850		// Make a bigger buffer if needed
851		buffer = make([]byte, length)
852	}
853}
854
855// Keyctl commands with special signatures.
856
857// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
858// See the full documentation at:
859// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
860func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
861	createInt := 0
862	if create {
863		createInt = 1
864	}
865	return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
866}
867
868// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
869// key handle permission mask as described in the "keyctl setperm" section of
870// http://man7.org/linux/man-pages/man1/keyctl.1.html.
871// See the full documentation at:
872// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
873func KeyctlSetperm(id int, perm uint32) error {
874	_, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
875	return err
876}
877
878//sys	keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
879
880// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
881// See the full documentation at:
882// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
883func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
884	return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
885}
886
887//sys	keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
888
889// KeyctlSearch implements the KEYCTL_SEARCH command.
890// See the full documentation at:
891// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
892func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
893	return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
894}
895
896//sys	keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
897
898// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
899// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
900// of Iovec (each of which represents a buffer) instead of a single buffer.
901// See the full documentation at:
902// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
903func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
904	return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
905}
906
907//sys	keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
908
909// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
910// computes a Diffie-Hellman shared secret based on the provide params. The
911// secret is written to the provided buffer and the returned size is the number
912// of bytes written (returning an error if there is insufficient space in the
913// buffer). If a nil buffer is passed in, this function returns the minimum
914// buffer length needed to store the appropriate data. Note that this differs
915// from KEYCTL_READ's behavior which always returns the requested payload size.
916// See the full documentation at:
917// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
918func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
919	return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
920}
921
922func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
923	var msg Msghdr
924	var rsa RawSockaddrAny
925	msg.Name = (*byte)(unsafe.Pointer(&rsa))
926	msg.Namelen = uint32(SizeofSockaddrAny)
927	var iov Iovec
928	if len(p) > 0 {
929		iov.Base = &p[0]
930		iov.SetLen(len(p))
931	}
932	var dummy byte
933	if len(oob) > 0 {
934		var sockType int
935		sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
936		if err != nil {
937			return
938		}
939		// receive at least one normal byte
940		if sockType != SOCK_DGRAM && len(p) == 0 {
941			iov.Base = &dummy
942			iov.SetLen(1)
943		}
944		msg.Control = &oob[0]
945		msg.SetControllen(len(oob))
946	}
947	msg.Iov = &iov
948	msg.Iovlen = 1
949	if n, err = recvmsg(fd, &msg, flags); err != nil {
950		return
951	}
952	oobn = int(msg.Controllen)
953	recvflags = int(msg.Flags)
954	// source address is only specified if the socket is unconnected
955	if rsa.Addr.Family != AF_UNSPEC {
956		from, err = anyToSockaddr(&rsa)
957	}
958	return
959}
960
961func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
962	_, err = SendmsgN(fd, p, oob, to, flags)
963	return
964}
965
966func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
967	var ptr unsafe.Pointer
968	var salen _Socklen
969	if to != nil {
970		var err error
971		ptr, salen, err = to.sockaddr()
972		if err != nil {
973			return 0, err
974		}
975	}
976	var msg Msghdr
977	msg.Name = (*byte)(ptr)
978	msg.Namelen = uint32(salen)
979	var iov Iovec
980	if len(p) > 0 {
981		iov.Base = &p[0]
982		iov.SetLen(len(p))
983	}
984	var dummy byte
985	if len(oob) > 0 {
986		var sockType int
987		sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
988		if err != nil {
989			return 0, err
990		}
991		// send at least one normal byte
992		if sockType != SOCK_DGRAM && len(p) == 0 {
993			iov.Base = &dummy
994			iov.SetLen(1)
995		}
996		msg.Control = &oob[0]
997		msg.SetControllen(len(oob))
998	}
999	msg.Iov = &iov
1000	msg.Iovlen = 1
1001	if n, err = sendmsg(fd, &msg, flags); err != nil {
1002		return 0, err
1003	}
1004	if len(oob) > 0 && len(p) == 0 {
1005		n = 0
1006	}
1007	return n, nil
1008}
1009
1010// BindToDevice binds the socket associated with fd to device.
1011func BindToDevice(fd int, device string) (err error) {
1012	return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1013}
1014
1015//sys	ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1016
1017func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1018	// The peek requests are machine-size oriented, so we wrap it
1019	// to retrieve arbitrary-length data.
1020
1021	// The ptrace syscall differs from glibc's ptrace.
1022	// Peeks returns the word in *data, not as the return value.
1023
1024	var buf [sizeofPtr]byte
1025
1026	// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1027	// access (PEEKUSER warns that it might), but if we don't
1028	// align our reads, we might straddle an unmapped page
1029	// boundary and not get the bytes leading up to the page
1030	// boundary.
1031	n := 0
1032	if addr%sizeofPtr != 0 {
1033		err = ptrace(req, pid, addr-addr%sizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1034		if err != nil {
1035			return 0, err
1036		}
1037		n += copy(out, buf[addr%sizeofPtr:])
1038		out = out[n:]
1039	}
1040
1041	// Remainder.
1042	for len(out) > 0 {
1043		// We use an internal buffer to guarantee alignment.
1044		// It's not documented if this is necessary, but we're paranoid.
1045		err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1046		if err != nil {
1047			return n, err
1048		}
1049		copied := copy(out, buf[0:])
1050		n += copied
1051		out = out[copied:]
1052	}
1053
1054	return n, nil
1055}
1056
1057func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1058	return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1059}
1060
1061func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1062	return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1063}
1064
1065func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1066	return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1067}
1068
1069func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1070	// As for ptracePeek, we need to align our accesses to deal
1071	// with the possibility of straddling an invalid page.
1072
1073	// Leading edge.
1074	n := 0
1075	if addr%sizeofPtr != 0 {
1076		var buf [sizeofPtr]byte
1077		err = ptrace(peekReq, pid, addr-addr%sizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1078		if err != nil {
1079			return 0, err
1080		}
1081		n += copy(buf[addr%sizeofPtr:], data)
1082		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1083		err = ptrace(pokeReq, pid, addr-addr%sizeofPtr, word)
1084		if err != nil {
1085			return 0, err
1086		}
1087		data = data[n:]
1088	}
1089
1090	// Interior.
1091	for len(data) > sizeofPtr {
1092		word := *((*uintptr)(unsafe.Pointer(&data[0])))
1093		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1094		if err != nil {
1095			return n, err
1096		}
1097		n += sizeofPtr
1098		data = data[sizeofPtr:]
1099	}
1100
1101	// Trailing edge.
1102	if len(data) > 0 {
1103		var buf [sizeofPtr]byte
1104		err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1105		if err != nil {
1106			return n, err
1107		}
1108		copy(buf[0:], data)
1109		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1110		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1111		if err != nil {
1112			return n, err
1113		}
1114		n += len(data)
1115	}
1116
1117	return n, nil
1118}
1119
1120func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1121	return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1122}
1123
1124func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1125	return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1126}
1127
1128func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1129	return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1130}
1131
1132func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1133	return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
1134}
1135
1136func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1137	return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
1138}
1139
1140func PtraceSetOptions(pid int, options int) (err error) {
1141	return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1142}
1143
1144func PtraceGetEventMsg(pid int) (msg uint, err error) {
1145	var data _C_long
1146	err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
1147	msg = uint(data)
1148	return
1149}
1150
1151func PtraceCont(pid int, signal int) (err error) {
1152	return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1153}
1154
1155func PtraceSyscall(pid int, signal int) (err error) {
1156	return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1157}
1158
1159func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1160
1161func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1162
1163func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1164
1165//sys	reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1166
1167func Reboot(cmd int) (err error) {
1168	return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1169}
1170
1171func ReadDirent(fd int, buf []byte) (n int, err error) {
1172	return Getdents(fd, buf)
1173}
1174
1175func direntIno(buf []byte) (uint64, bool) {
1176	return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino))
1177}
1178
1179func direntReclen(buf []byte) (uint64, bool) {
1180	return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen))
1181}
1182
1183func direntNamlen(buf []byte) (uint64, bool) {
1184	reclen, ok := direntReclen(buf)
1185	if !ok {
1186		return 0, false
1187	}
1188	return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true
1189}
1190
1191//sys	mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1192
1193func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1194	// Certain file systems get rather angry and EINVAL if you give
1195	// them an empty string of data, rather than NULL.
1196	if data == "" {
1197		return mount(source, target, fstype, flags, nil)
1198	}
1199	datap, err := BytePtrFromString(data)
1200	if err != nil {
1201		return err
1202	}
1203	return mount(source, target, fstype, flags, datap)
1204}
1205
1206// Sendto
1207// Recvfrom
1208// Socketpair
1209
1210/*
1211 * Direct access
1212 */
1213//sys	Acct(path string) (err error)
1214//sys	AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1215//sys	Adjtimex(buf *Timex) (state int, err error)
1216//sys	Chdir(path string) (err error)
1217//sys	Chroot(path string) (err error)
1218//sys	ClockGettime(clockid int32, time *Timespec) (err error)
1219//sys	Close(fd int) (err error)
1220//sys	CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1221//sys	Dup(oldfd int) (fd int, err error)
1222//sys	Dup3(oldfd int, newfd int, flags int) (err error)
1223//sysnb	EpollCreate(size int) (fd int, err error)
1224//sysnb	EpollCreate1(flag int) (fd int, err error)
1225//sysnb	EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1226//sys	Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1227//sys	Exit(code int) = SYS_EXIT_GROUP
1228//sys	Faccessat(dirfd int, path string, mode uint32, flags int) (err error)
1229//sys	Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1230//sys	Fchdir(fd int) (err error)
1231//sys	Fchmod(fd int, mode uint32) (err error)
1232//sys	Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
1233//sys	fcntl(fd int, cmd int, arg int) (val int, err error)
1234//sys	Fdatasync(fd int) (err error)
1235//sys	Flock(fd int, how int) (err error)
1236//sys	Fsync(fd int) (err error)
1237//sys	Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1238//sysnb	Getpgid(pid int) (pgid int, err error)
1239
1240func Getpgrp() (pid int) {
1241	pid, _ = Getpgid(0)
1242	return
1243}
1244
1245//sysnb	Getpid() (pid int)
1246//sysnb	Getppid() (ppid int)
1247//sys	Getpriority(which int, who int) (prio int, err error)
1248//sys	Getrandom(buf []byte, flags int) (n int, err error)
1249//sysnb	Getrusage(who int, rusage *Rusage) (err error)
1250//sysnb	Getsid(pid int) (sid int, err error)
1251//sysnb	Gettid() (tid int)
1252//sys	Getxattr(path string, attr string, dest []byte) (sz int, err error)
1253//sys	InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1254//sysnb	InotifyInit1(flags int) (fd int, err error)
1255//sysnb	InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1256//sysnb	Kill(pid int, sig syscall.Signal) (err error)
1257//sys	Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1258//sys	Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1259//sys	Listxattr(path string, dest []byte) (sz int, err error)
1260//sys	Llistxattr(path string, dest []byte) (sz int, err error)
1261//sys	Lremovexattr(path string, attr string) (err error)
1262//sys	Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1263//sys	Mkdirat(dirfd int, path string, mode uint32) (err error)
1264//sys	Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1265//sys	Nanosleep(time *Timespec, leftover *Timespec) (err error)
1266//sys	PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
1267//sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
1268//sys   Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
1269//sys	Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
1270//sys	read(fd int, p []byte) (n int, err error)
1271//sys	Removexattr(path string, attr string) (err error)
1272//sys	Renameat(olddirfd int, oldpath string, newdirfd int, newpath string) (err error)
1273//sys	RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1274//sys	Setdomainname(p []byte) (err error)
1275//sys	Sethostname(p []byte) (err error)
1276//sysnb	Setpgid(pid int, pgid int) (err error)
1277//sysnb	Setsid() (pid int, err error)
1278//sysnb	Settimeofday(tv *Timeval) (err error)
1279//sys	Setns(fd int, nstype int) (err error)
1280
1281// issue 1435.
1282// On linux Setuid and Setgid only affects the current thread, not the process.
1283// This does not match what most callers expect so we must return an error
1284// here rather than letting the caller think that the call succeeded.
1285
1286func Setuid(uid int) (err error) {
1287	return EOPNOTSUPP
1288}
1289
1290func Setgid(uid int) (err error) {
1291	return EOPNOTSUPP
1292}
1293
1294//sys	Setpriority(which int, who int, prio int) (err error)
1295//sys	Setxattr(path string, attr string, data []byte, flags int) (err error)
1296//sys	Sync()
1297//sys	Syncfs(fd int) (err error)
1298//sysnb	Sysinfo(info *Sysinfo_t) (err error)
1299//sys	Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
1300//sysnb	Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
1301//sysnb	Times(tms *Tms) (ticks uintptr, err error)
1302//sysnb	Umask(mask int) (oldmask int)
1303//sysnb	Uname(buf *Utsname) (err error)
1304//sys	Unmount(target string, flags int) (err error) = SYS_UMOUNT2
1305//sys	Unshare(flags int) (err error)
1306//sys	Ustat(dev int, ubuf *Ustat_t) (err error)
1307//sys	write(fd int, p []byte) (n int, err error)
1308//sys	exitThread(code int) (err error) = SYS_EXIT
1309//sys	readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
1310//sys	writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
1311
1312// mmap varies by architecture; see syscall_linux_*.go.
1313//sys	munmap(addr uintptr, length uintptr) (err error)
1314
1315var mapper = &mmapper{
1316	active: make(map[*byte][]byte),
1317	mmap:   mmap,
1318	munmap: munmap,
1319}
1320
1321func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
1322	return mapper.Mmap(fd, offset, length, prot, flags)
1323}
1324
1325func Munmap(b []byte) (err error) {
1326	return mapper.Munmap(b)
1327}
1328
1329//sys	Madvise(b []byte, advice int) (err error)
1330//sys	Mprotect(b []byte, prot int) (err error)
1331//sys	Mlock(b []byte) (err error)
1332//sys	Mlockall(flags int) (err error)
1333//sys	Msync(b []byte, flags int) (err error)
1334//sys	Munlock(b []byte) (err error)
1335//sys	Munlockall() (err error)
1336
1337// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
1338// using the specified flags.
1339func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
1340	n, _, errno := Syscall6(
1341		SYS_VMSPLICE,
1342		uintptr(fd),
1343		uintptr(unsafe.Pointer(&iovs[0])),
1344		uintptr(len(iovs)),
1345		uintptr(flags),
1346		0,
1347		0,
1348	)
1349	if errno != 0 {
1350		return 0, syscall.Errno(errno)
1351	}
1352
1353	return int(n), nil
1354}
1355
1356/*
1357 * Unimplemented
1358 */
1359// AfsSyscall
1360// Alarm
1361// ArchPrctl
1362// Brk
1363// Capget
1364// Capset
1365// ClockGetres
1366// ClockNanosleep
1367// ClockSettime
1368// Clone
1369// CreateModule
1370// DeleteModule
1371// EpollCtlOld
1372// EpollPwait
1373// EpollWaitOld
1374// Execve
1375// Fgetxattr
1376// Flistxattr
1377// Fork
1378// Fremovexattr
1379// Fsetxattr
1380// Futex
1381// GetKernelSyms
1382// GetMempolicy
1383// GetRobustList
1384// GetThreadArea
1385// Getitimer
1386// Getpmsg
1387// IoCancel
1388// IoDestroy
1389// IoGetevents
1390// IoSetup
1391// IoSubmit
1392// IoprioGet
1393// IoprioSet
1394// KexecLoad
1395// LookupDcookie
1396// Mbind
1397// MigratePages
1398// Mincore
1399// ModifyLdt
1400// Mount
1401// MovePages
1402// MqGetsetattr
1403// MqNotify
1404// MqOpen
1405// MqTimedreceive
1406// MqTimedsend
1407// MqUnlink
1408// Mremap
1409// Msgctl
1410// Msgget
1411// Msgrcv
1412// Msgsnd
1413// Newfstatat
1414// Nfsservctl
1415// Personality
1416// Pselect6
1417// Ptrace
1418// Putpmsg
1419// QueryModule
1420// Quotactl
1421// Readahead
1422// Readv
1423// RemapFilePages
1424// RestartSyscall
1425// RtSigaction
1426// RtSigpending
1427// RtSigprocmask
1428// RtSigqueueinfo
1429// RtSigreturn
1430// RtSigsuspend
1431// RtSigtimedwait
1432// SchedGetPriorityMax
1433// SchedGetPriorityMin
1434// SchedGetaffinity
1435// SchedGetparam
1436// SchedGetscheduler
1437// SchedRrGetInterval
1438// SchedSetaffinity
1439// SchedSetparam
1440// SchedYield
1441// Security
1442// Semctl
1443// Semget
1444// Semop
1445// Semtimedop
1446// SetMempolicy
1447// SetRobustList
1448// SetThreadArea
1449// SetTidAddress
1450// Shmat
1451// Shmctl
1452// Shmdt
1453// Shmget
1454// Sigaltstack
1455// Signalfd
1456// Swapoff
1457// Swapon
1458// Sysfs
1459// TimerCreate
1460// TimerDelete
1461// TimerGetoverrun
1462// TimerGettime
1463// TimerSettime
1464// Timerfd
1465// Tkill (obsolete)
1466// Tuxcall
1467// Umount2
1468// Uselib
1469// Utimensat
1470// Vfork
1471// Vhangup
1472// Vserver
1473// Waitid
1474// _Sysctl
1475