1      SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
2     $                  WORK, LWORK, RWORK, INFO )
3*
4*  -- LAPACK driver routine (version 3.0) --
5*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
6*     Courant Institute, Argonne National Lab, and Rice University
7*     June 30, 1999
8*
9*     .. Scalar Arguments ..
10      CHARACTER          JOBVL, JOBVR
11      INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
12*     ..
13*     .. Array Arguments ..
14      DOUBLE PRECISION   RWORK( * )
15      COMPLEX*16         A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
16     $                   W( * ), WORK( * )
17*     ..
18*
19*  Purpose
20*  =======
21*
22*  ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the
23*  eigenvalues and, optionally, the left and/or right eigenvectors.
24*
25*  The right eigenvector v(j) of A satisfies
26*                   A * v(j) = lambda(j) * v(j)
27*  where lambda(j) is its eigenvalue.
28*  The left eigenvector u(j) of A satisfies
29*                u(j)**H * A = lambda(j) * u(j)**H
30*  where u(j)**H denotes the conjugate transpose of u(j).
31*
32*  The computed eigenvectors are normalized to have Euclidean norm
33*  equal to 1 and largest component real.
34*
35*  Arguments
36*  =========
37*
38*  JOBVL   (input) CHARACTER*1
39*          = 'N': left eigenvectors of A are not computed;
40*          = 'V': left eigenvectors of are computed.
41*
42*  JOBVR   (input) CHARACTER*1
43*          = 'N': right eigenvectors of A are not computed;
44*          = 'V': right eigenvectors of A are computed.
45*
46*  N       (input) INTEGER
47*          The order of the matrix A. N >= 0.
48*
49*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
50*          On entry, the N-by-N matrix A.
51*          On exit, A has been overwritten.
52*
53*  LDA     (input) INTEGER
54*          The leading dimension of the array A.  LDA >= max(1,N).
55*
56*  W       (output) COMPLEX*16 array, dimension (N)
57*          W contains the computed eigenvalues.
58*
59*  VL      (output) COMPLEX*16 array, dimension (LDVL,N)
60*          If JOBVL = 'V', the left eigenvectors u(j) are stored one
61*          after another in the columns of VL, in the same order
62*          as their eigenvalues.
63*          If JOBVL = 'N', VL is not referenced.
64*          u(j) = VL(:,j), the j-th column of VL.
65*
66*  LDVL    (input) INTEGER
67*          The leading dimension of the array VL.  LDVL >= 1; if
68*          JOBVL = 'V', LDVL >= N.
69*
70*  VR      (output) COMPLEX*16 array, dimension (LDVR,N)
71*          If JOBVR = 'V', the right eigenvectors v(j) are stored one
72*          after another in the columns of VR, in the same order
73*          as their eigenvalues.
74*          If JOBVR = 'N', VR is not referenced.
75*          v(j) = VR(:,j), the j-th column of VR.
76*
77*  LDVR    (input) INTEGER
78*          The leading dimension of the array VR.  LDVR >= 1; if
79*          JOBVR = 'V', LDVR >= N.
80*
81*  WORK    (workspace/output) COMPLEX*16 array, dimension (LWORK)
82*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
83*
84*  LWORK   (input) INTEGER
85*          The dimension of the array WORK.  LWORK >= max(1,2*N).
86*          For good performance, LWORK must generally be larger.
87*
88*          If LWORK = -1, then a workspace query is assumed; the routine
89*          only calculates the optimal size of the WORK array, returns
90*          this value as the first entry of the WORK array, and no error
91*          message related to LWORK is issued by XERBLA.
92*
93*  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
94*
95*  INFO    (output) INTEGER
96*          = 0:  successful exit
97*          < 0:  if INFO = -i, the i-th argument had an illegal value.
98*          > 0:  if INFO = i, the QR algorithm failed to compute all the
99*                eigenvalues, and no eigenvectors have been computed;
100*                elements and i+1:N of W contain eigenvalues which have
101*                converged.
102*
103*  =====================================================================
104*
105*     .. Parameters ..
106      DOUBLE PRECISION   ZERO, ONE
107      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
108*     ..
109*     .. Local Scalars ..
110      LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR
111      CHARACTER          SIDE
112      INTEGER            HSWORK, I, IBAL, IERR, IHI, ILO, IRWORK, ITAU,
113     $                   IWRK, K, MAXB, MAXWRK, MINWRK, NOUT
114      DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
115      COMPLEX*16         TMP
116*     ..
117*     .. Local Arrays ..
118      LOGICAL            SELECT( 1 )
119      DOUBLE PRECISION   DUM( 1 )
120*     ..
121*     .. External Subroutines ..
122      EXTERNAL           XERBLA, ZDSCAL, ZGEBAK, ZGEBAL, ZGEHRD, ZHSEQR,
123     $                   ZLACPY, ZLASCL, ZSCAL, ZTREVC, ZUNGHR
124*     ..
125*     .. External Functions ..
126      LOGICAL            LSAME
127      INTEGER            IDAMAX, ILAENV
128      DOUBLE PRECISION   DLAMCH, DZNRM2, ZLANGE
129      EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DZNRM2, ZLANGE
130*     ..
131*     .. Intrinsic Functions ..
132      INTRINSIC          DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN, SQRT
133*     ..
134*     .. Executable Statements ..
135*
136*     Test the input arguments
137*
138      INFO = 0
139      LQUERY = ( LWORK.EQ.-1 )
140      WANTVL = LSAME( JOBVL, 'V' )
141      WANTVR = LSAME( JOBVR, 'V' )
142      IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
143         INFO = -1
144      ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
145         INFO = -2
146      ELSE IF( N.LT.0 ) THEN
147         INFO = -3
148      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
149         INFO = -5
150      ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
151         INFO = -8
152      ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
153         INFO = -10
154      END IF
155*
156*     Compute workspace
157*      (Note: Comments in the code beginning "Workspace:" describe the
158*       minimal amount of workspace needed at that point in the code,
159*       as well as the preferred amount for good performance.
160*       CWorkspace refers to complex workspace, and RWorkspace to real
161*       workspace. NB refers to the optimal block size for the
162*       immediately following subroutine, as returned by ILAENV.
163*       HSWORK refers to the workspace preferred by ZHSEQR, as
164*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
165*       the worst case.)
166*
167      MINWRK = 1
168      IF( INFO.EQ.0 .AND. ( LWORK.GE.1 .OR. LQUERY ) ) THEN
169         MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
170         IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
171            MINWRK = MAX( 1, 2*N )
172            MAXB = MAX( ILAENV( 8, 'ZHSEQR', 'EN', N, 1, N, -1 ), 2 )
173            K = MIN( MAXB, N, MAX( 2, ILAENV( 4, 'ZHSEQR', 'EN', N, 1,
174     $          N, -1 ) ) )
175            HSWORK = MAX( K*( K+2 ), 2*N )
176            MAXWRK = MAX( MAXWRK, HSWORK )
177         ELSE
178            MINWRK = MAX( 1, 2*N )
179            MAXWRK = MAX( MAXWRK, N+( N-1 )*
180     $               ILAENV( 1, 'ZUNGHR', ' ', N, 1, N, -1 ) )
181            MAXB = MAX( ILAENV( 8, 'ZHSEQR', 'SV', N, 1, N, -1 ), 2 )
182            K = MIN( MAXB, N, MAX( 2, ILAENV( 4, 'ZHSEQR', 'SV', N, 1,
183     $          N, -1 ) ) )
184            HSWORK = MAX( K*( K+2 ), 2*N )
185            MAXWRK = MAX( MAXWRK, HSWORK, 2*N )
186         END IF
187         WORK( 1 ) = MAXWRK
188      END IF
189      IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
190         INFO = -12
191      END IF
192      IF( INFO.NE.0 ) THEN
193         CALL XERBLA( 'ZGEEV ', -INFO )
194         RETURN
195      ELSE IF( LQUERY ) THEN
196         RETURN
197      END IF
198*
199*     Quick return if possible
200*
201      IF( N.EQ.0 )
202     $   RETURN
203*
204*     Get machine constants
205*
206      EPS = DLAMCH( 'P' )
207      SMLNUM = DLAMCH( 'S' )
208      BIGNUM = ONE / SMLNUM
209      CALL DLABAD( SMLNUM, BIGNUM )
210      SMLNUM = SQRT( SMLNUM ) / EPS
211      BIGNUM = ONE / SMLNUM
212*
213*     Scale A if max element outside range [SMLNUM,BIGNUM]
214*
215      ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
216      SCALEA = .FALSE.
217      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
218         SCALEA = .TRUE.
219         CSCALE = SMLNUM
220      ELSE IF( ANRM.GT.BIGNUM ) THEN
221         SCALEA = .TRUE.
222         CSCALE = BIGNUM
223      END IF
224      IF( SCALEA )
225     $   CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
226*
227*     Balance the matrix
228*     (CWorkspace: none)
229*     (RWorkspace: need N)
230*
231      IBAL = 1
232      CALL ZGEBAL( 'B', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
233*
234*     Reduce to upper Hessenberg form
235*     (CWorkspace: need 2*N, prefer N+N*NB)
236*     (RWorkspace: none)
237*
238      ITAU = 1
239      IWRK = ITAU + N
240      CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
241     $             LWORK-IWRK+1, IERR )
242*
243      IF( WANTVL ) THEN
244*
245*        Want left eigenvectors
246*        Copy Householder vectors to VL
247*
248         SIDE = 'L'
249         CALL ZLACPY( 'L', N, N, A, LDA, VL, LDVL )
250*
251*        Generate unitary matrix in VL
252*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
253*        (RWorkspace: none)
254*
255         CALL ZUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
256     $                LWORK-IWRK+1, IERR )
257*
258*        Perform QR iteration, accumulating Schur vectors in VL
259*        (CWorkspace: need 1, prefer HSWORK (see comments) )
260*        (RWorkspace: none)
261*
262         IWRK = ITAU
263         CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL,
264     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
265*
266         IF( WANTVR ) THEN
267*
268*           Want left and right eigenvectors
269*           Copy Schur vectors to VR
270*
271            SIDE = 'B'
272            CALL ZLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
273         END IF
274*
275      ELSE IF( WANTVR ) THEN
276*
277*        Want right eigenvectors
278*        Copy Householder vectors to VR
279*
280         SIDE = 'R'
281         CALL ZLACPY( 'L', N, N, A, LDA, VR, LDVR )
282*
283*        Generate unitary matrix in VR
284*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
285*        (RWorkspace: none)
286*
287         CALL ZUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
288     $                LWORK-IWRK+1, IERR )
289*
290*        Perform QR iteration, accumulating Schur vectors in VR
291*        (CWorkspace: need 1, prefer HSWORK (see comments) )
292*        (RWorkspace: none)
293*
294         IWRK = ITAU
295         CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR,
296     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
297*
298      ELSE
299*
300*        Compute eigenvalues only
301*        (CWorkspace: need 1, prefer HSWORK (see comments) )
302*        (RWorkspace: none)
303*
304         IWRK = ITAU
305         CALL ZHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
306     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
307      END IF
308*
309*     If INFO > 0 from ZHSEQR, then quit
310*
311      IF( INFO.GT.0 )
312     $   GO TO 50
313*
314      IF( WANTVL .OR. WANTVR ) THEN
315*
316*        Compute left and/or right eigenvectors
317*        (CWorkspace: need 2*N)
318*        (RWorkspace: need 2*N)
319*
320         IRWORK = IBAL + N
321         CALL ZTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
322     $                N, NOUT, WORK( IWRK ), RWORK( IRWORK ), IERR )
323      END IF
324*
325      IF( WANTVL ) THEN
326*
327*        Undo balancing of left eigenvectors
328*        (CWorkspace: none)
329*        (RWorkspace: need N)
330*
331         CALL ZGEBAK( 'B', 'L', N, ILO, IHI, RWORK( IBAL ), N, VL, LDVL,
332     $                IERR )
333*
334*        Normalize left eigenvectors and make largest component real
335*
336         DO 20 I = 1, N
337            SCL = ONE / DZNRM2( N, VL( 1, I ), 1 )
338            CALL ZDSCAL( N, SCL, VL( 1, I ), 1 )
339            DO 10 K = 1, N
340               RWORK( IRWORK+K-1 ) = DBLE( VL( K, I ) )**2 +
341     $                               DIMAG( VL( K, I ) )**2
342   10       CONTINUE
343            K = IDAMAX( N, RWORK( IRWORK ), 1 )
344            TMP = DCONJG( VL( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
345            CALL ZSCAL( N, TMP, VL( 1, I ), 1 )
346            VL( K, I ) = DCMPLX( DBLE( VL( K, I ) ), ZERO )
347   20    CONTINUE
348      END IF
349*
350      IF( WANTVR ) THEN
351*
352*        Undo balancing of right eigenvectors
353*        (CWorkspace: none)
354*        (RWorkspace: need N)
355*
356         CALL ZGEBAK( 'B', 'R', N, ILO, IHI, RWORK( IBAL ), N, VR, LDVR,
357     $                IERR )
358*
359*        Normalize right eigenvectors and make largest component real
360*
361         DO 40 I = 1, N
362            SCL = ONE / DZNRM2( N, VR( 1, I ), 1 )
363            CALL ZDSCAL( N, SCL, VR( 1, I ), 1 )
364            DO 30 K = 1, N
365               RWORK( IRWORK+K-1 ) = DBLE( VR( K, I ) )**2 +
366     $                               DIMAG( VR( K, I ) )**2
367   30       CONTINUE
368            K = IDAMAX( N, RWORK( IRWORK ), 1 )
369            TMP = DCONJG( VR( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
370            CALL ZSCAL( N, TMP, VR( 1, I ), 1 )
371            VR( K, I ) = DCMPLX( DBLE( VR( K, I ) ), ZERO )
372   40    CONTINUE
373      END IF
374*
375*     Undo scaling if necessary
376*
377   50 CONTINUE
378      IF( SCALEA ) THEN
379         CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
380     $                MAX( N-INFO, 1 ), IERR )
381         IF( INFO.GT.0 ) THEN
382            CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR )
383         END IF
384      END IF
385*
386      WORK( 1 ) = MAXWRK
387      RETURN
388*
389*     End of ZGEEV
390*
391      END
392