1 /* ./src_f77/dlaev2.f -- translated by f2c (version 20030320).
2    You must link the resulting object file with the libraries:
3 	-lf2c -lm   (in that order)
4 */
5 
6 #include <punc/vf2c.h>
7 
dlaev2_(doublereal * a,doublereal * b,doublereal * c__,doublereal * rt1,doublereal * rt2,doublereal * cs1,doublereal * sn1)8 /* Subroutine */ int dlaev2_(doublereal *a, doublereal *b, doublereal *c__,
9 	doublereal *rt1, doublereal *rt2, doublereal *cs1, doublereal *sn1)
10 {
11     /* System generated locals */
12     doublereal d__1;
13 
14     /* Builtin functions */
15     double sqrt(doublereal);
16 
17     /* Local variables */
18     static doublereal ab, df, cs, ct, tb, sm, tn, rt, adf, acs;
19     static integer sgn1, sgn2;
20     static doublereal acmn, acmx;
21 
22 
23 /*  -- LAPACK auxiliary routine (version 3.0) -- */
24 /*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
25 /*     Courant Institute, Argonne National Lab, and Rice University */
26 /*     October 31, 1992 */
27 
28 /*     .. Scalar Arguments .. */
29 /*     .. */
30 
31 /*  Purpose */
32 /*  ======= */
33 
34 /*  DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix */
35 /*     [  A   B  ] */
36 /*     [  B   C  ]. */
37 /*  On return, RT1 is the eigenvalue of larger absolute value, RT2 is the */
38 /*  eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right */
39 /*  eigenvector for RT1, giving the decomposition */
40 
41 /*     [ CS1  SN1 ] [  A   B  ] [ CS1 -SN1 ]  =  [ RT1  0  ] */
42 /*     [-SN1  CS1 ] [  B   C  ] [ SN1  CS1 ]     [  0  RT2 ]. */
43 
44 /*  Arguments */
45 /*  ========= */
46 
47 /*  A       (input) DOUBLE PRECISION */
48 /*          The (1,1) element of the 2-by-2 matrix. */
49 
50 /*  B       (input) DOUBLE PRECISION */
51 /*          The (1,2) element and the conjugate of the (2,1) element of */
52 /*          the 2-by-2 matrix. */
53 
54 /*  C       (input) DOUBLE PRECISION */
55 /*          The (2,2) element of the 2-by-2 matrix. */
56 
57 /*  RT1     (output) DOUBLE PRECISION */
58 /*          The eigenvalue of larger absolute value. */
59 
60 /*  RT2     (output) DOUBLE PRECISION */
61 /*          The eigenvalue of smaller absolute value. */
62 
63 /*  CS1     (output) DOUBLE PRECISION */
64 /*  SN1     (output) DOUBLE PRECISION */
65 /*          The vector (CS1, SN1) is a unit right eigenvector for RT1. */
66 
67 /*  Further Details */
68 /*  =============== */
69 
70 /*  RT1 is accurate to a few ulps barring over/underflow. */
71 
72 /*  RT2 may be inaccurate if there is massive cancellation in the */
73 /*  determinant A*C-B*B; higher precision or correctly rounded or */
74 /*  correctly truncated arithmetic would be needed to compute RT2 */
75 /*  accurately in all cases. */
76 
77 /*  CS1 and SN1 are accurate to a few ulps barring over/underflow. */
78 
79 /*  Overflow is possible only if RT1 is within a factor of 5 of overflow. */
80 /*  Underflow is harmless if the input data is 0 or exceeds */
81 /*     underflow_threshold / macheps. */
82 
83 /* ===================================================================== */
84 
85 /*     .. Parameters .. */
86 /*     .. */
87 /*     .. Local Scalars .. */
88 /*     .. */
89 /*     .. Intrinsic Functions .. */
90 /*     .. */
91 /*     .. Executable Statements .. */
92 
93 /*     Compute the eigenvalues */
94 
95     sm = *a + *c__;
96     df = *a - *c__;
97     adf = abs(df);
98     tb = *b + *b;
99     ab = abs(tb);
100     if (abs(*a) > abs(*c__)) {
101 	acmx = *a;
102 	acmn = *c__;
103     } else {
104 	acmx = *c__;
105 	acmn = *a;
106     }
107     if (adf > ab) {
108 /* Computing 2nd power */
109 	d__1 = ab / adf;
110 	rt = adf * sqrt(d__1 * d__1 + 1.);
111     } else if (adf < ab) {
112 /* Computing 2nd power */
113 	d__1 = adf / ab;
114 	rt = ab * sqrt(d__1 * d__1 + 1.);
115     } else {
116 
117 /*        Includes case AB=ADF=0 */
118 
119 	rt = ab * sqrt(2.);
120     }
121     if (sm < 0.) {
122 	*rt1 = (sm - rt) * .5;
123 	sgn1 = -1;
124 
125 /*        Order of execution important. */
126 /*        To get fully accurate smaller eigenvalue, */
127 /*        next line needs to be executed in higher precision. */
128 
129 	*rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
130     } else if (sm > 0.) {
131 	*rt1 = (sm + rt) * .5;
132 	sgn1 = 1;
133 
134 /*        Order of execution important. */
135 /*        To get fully accurate smaller eigenvalue, */
136 /*        next line needs to be executed in higher precision. */
137 
138 	*rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
139     } else {
140 
141 /*        Includes case RT1 = RT2 = 0 */
142 
143 	*rt1 = rt * .5;
144 	*rt2 = rt * -.5;
145 	sgn1 = 1;
146     }
147 
148 /*     Compute the eigenvector */
149 
150     if (df >= 0.) {
151 	cs = df + rt;
152 	sgn2 = 1;
153     } else {
154 	cs = df - rt;
155 	sgn2 = -1;
156     }
157     acs = abs(cs);
158     if (acs > ab) {
159 	ct = -tb / cs;
160 	*sn1 = 1. / sqrt(ct * ct + 1.);
161 	*cs1 = ct * *sn1;
162     } else {
163 	if (ab == 0.) {
164 	    *cs1 = 1.;
165 	    *sn1 = 0.;
166 	} else {
167 	    tn = -cs / tb;
168 	    *cs1 = 1. / sqrt(tn * tn + 1.);
169 	    *sn1 = tn * *cs1;
170 	}
171     }
172     if (sgn1 == sgn2) {
173 	tn = *cs1;
174 	*cs1 = -(*sn1);
175 	*sn1 = tn;
176     }
177     return 0;
178 
179 /*     End of DLAEV2 */
180 
181 } /* dlaev2_ */
182 
183