1      SUBROUTINE SSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
2*
3*  -- LAPACK driver routine (version 3.0) --
4*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
5*     Courant Institute, Argonne National Lab, and Rice University
6*     June 30, 1999
7*
8*     .. Scalar Arguments ..
9      CHARACTER          JOBZ, UPLO
10      INTEGER            INFO, LDA, LWORK, N
11*     ..
12*     .. Array Arguments ..
13      REAL               A( LDA, * ), W( * ), WORK( * )
14*     ..
15*
16*  Purpose
17*  =======
18*
19*  SSYEV computes all eigenvalues and, optionally, eigenvectors of a
20*  real symmetric matrix A.
21*
22*  Arguments
23*  =========
24*
25*  JOBZ    (input) CHARACTER*1
26*          = 'N':  Compute eigenvalues only;
27*          = 'V':  Compute eigenvalues and eigenvectors.
28*
29*  UPLO    (input) CHARACTER*1
30*          = 'U':  Upper triangle of A is stored;
31*          = 'L':  Lower triangle of A is stored.
32*
33*  N       (input) INTEGER
34*          The order of the matrix A.  N >= 0.
35*
36*  A       (input/output) REAL array, dimension (LDA, N)
37*          On entry, the symmetric matrix A.  If UPLO = 'U', the
38*          leading N-by-N upper triangular part of A contains the
39*          upper triangular part of the matrix A.  If UPLO = 'L',
40*          the leading N-by-N lower triangular part of A contains
41*          the lower triangular part of the matrix A.
42*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
43*          orthonormal eigenvectors of the matrix A.
44*          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
45*          or the upper triangle (if UPLO='U') of A, including the
46*          diagonal, is destroyed.
47*
48*  LDA     (input) INTEGER
49*          The leading dimension of the array A.  LDA >= max(1,N).
50*
51*  W       (output) REAL array, dimension (N)
52*          If INFO = 0, the eigenvalues in ascending order.
53*
54*  WORK    (workspace/output) REAL array, dimension (LWORK)
55*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
56*
57*  LWORK   (input) INTEGER
58*          The length of the array WORK.  LWORK >= max(1,3*N-1).
59*          For optimal efficiency, LWORK >= (NB+2)*N,
60*          where NB is the blocksize for SSYTRD returned by ILAENV.
61*
62*          If LWORK = -1, then a workspace query is assumed; the routine
63*          only calculates the optimal size of the WORK array, returns
64*          this value as the first entry of the WORK array, and no error
65*          message related to LWORK is issued by XERBLA.
66*
67*  INFO    (output) INTEGER
68*          = 0:  successful exit
69*          < 0:  if INFO = -i, the i-th argument had an illegal value
70*          > 0:  if INFO = i, the algorithm failed to converge; i
71*                off-diagonal elements of an intermediate tridiagonal
72*                form did not converge to zero.
73*
74*  =====================================================================
75*
76*     .. Parameters ..
77      REAL               ZERO, ONE
78      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
79*     ..
80*     .. Local Scalars ..
81      LOGICAL            LOWER, LQUERY, WANTZ
82      INTEGER            IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE,
83     $                   LLWORK, LOPT, LWKOPT, NB
84      REAL               ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
85     $                   SMLNUM
86*     ..
87*     .. External Functions ..
88      LOGICAL            LSAME
89      INTEGER            ILAENV
90      REAL               SLAMCH, SLANSY
91      EXTERNAL           ILAENV, LSAME, SLAMCH, SLANSY
92*     ..
93*     .. External Subroutines ..
94      EXTERNAL           SLASCL, SORGTR, SSCAL, SSTEQR, SSTERF, SSYTRD,
95     $                   XERBLA
96*     ..
97*     .. Intrinsic Functions ..
98      INTRINSIC          MAX, SQRT
99*     ..
100*     .. Executable Statements ..
101*
102*     Test the input parameters.
103*
104      WANTZ = LSAME( JOBZ, 'V' )
105      LOWER = LSAME( UPLO, 'L' )
106      LQUERY = ( LWORK.EQ.-1 )
107*
108      INFO = 0
109      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
110         INFO = -1
111      ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
112         INFO = -2
113      ELSE IF( N.LT.0 ) THEN
114         INFO = -3
115      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
116         INFO = -5
117      ELSE IF( LWORK.LT.MAX( 1, 3*N-1 ) .AND. .NOT.LQUERY ) THEN
118         INFO = -8
119      END IF
120*
121      IF( INFO.EQ.0 ) THEN
122         NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
123         LWKOPT = MAX( 1, ( NB+2 )*N )
124         WORK( 1 ) = LWKOPT
125      END IF
126*
127      IF( INFO.NE.0 ) THEN
128         CALL XERBLA( 'SSYEV ', -INFO )
129         RETURN
130      ELSE IF( LQUERY ) THEN
131         RETURN
132      END IF
133*
134*     Quick return if possible
135*
136      IF( N.EQ.0 ) THEN
137         WORK( 1 ) = 1
138         RETURN
139      END IF
140*
141      IF( N.EQ.1 ) THEN
142         W( 1 ) = A( 1, 1 )
143         WORK( 1 ) = 3
144         IF( WANTZ )
145     $      A( 1, 1 ) = ONE
146         RETURN
147      END IF
148*
149*     Get machine constants.
150*
151      SAFMIN = SLAMCH( 'Safe minimum' )
152      EPS = SLAMCH( 'Precision' )
153      SMLNUM = SAFMIN / EPS
154      BIGNUM = ONE / SMLNUM
155      RMIN = SQRT( SMLNUM )
156      RMAX = SQRT( BIGNUM )
157*
158*     Scale matrix to allowable range, if necessary.
159*
160      ANRM = SLANSY( 'M', UPLO, N, A, LDA, WORK )
161      ISCALE = 0
162      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
163         ISCALE = 1
164         SIGMA = RMIN / ANRM
165      ELSE IF( ANRM.GT.RMAX ) THEN
166         ISCALE = 1
167         SIGMA = RMAX / ANRM
168      END IF
169      IF( ISCALE.EQ.1 )
170     $   CALL SLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
171*
172*     Call SSYTRD to reduce symmetric matrix to tridiagonal form.
173*
174      INDE = 1
175      INDTAU = INDE + N
176      INDWRK = INDTAU + N
177      LLWORK = LWORK - INDWRK + 1
178      CALL SSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
179     $             WORK( INDWRK ), LLWORK, IINFO )
180      LOPT = 2*N + WORK( INDWRK )
181*
182*     For eigenvalues only, call SSTERF.  For eigenvectors, first call
183*     SORGTR to generate the orthogonal matrix, then call SSTEQR.
184*
185      IF( .NOT.WANTZ ) THEN
186         CALL SSTERF( N, W, WORK( INDE ), INFO )
187      ELSE
188         CALL SORGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
189     $                LLWORK, IINFO )
190         CALL SSTEQR( JOBZ, N, W, WORK( INDE ), A, LDA, WORK( INDTAU ),
191     $                INFO )
192      END IF
193*
194*     If matrix was scaled, then rescale eigenvalues appropriately.
195*
196      IF( ISCALE.EQ.1 ) THEN
197         IF( INFO.EQ.0 ) THEN
198            IMAX = N
199         ELSE
200            IMAX = INFO - 1
201         END IF
202         CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
203      END IF
204*
205*     Set WORK(1) to optimal workspace size.
206*
207      WORK( 1 ) = LWKOPT
208*
209      RETURN
210*
211*     End of SSYEV
212*
213      END
214