1 /* ./src_f77/ssbevd.f -- translated by f2c (version 20030320).
2    You must link the resulting object file with the libraries:
3 	-lf2c -lm   (in that order)
4 */
5 
6 #include <punc/vf2c.h>
7 
8 /* Table of constant values */
9 
10 static real c_b11 = 1.f;
11 static real c_b18 = 0.f;
12 static integer c__1 = 1;
13 
ssbevd_(char * jobz,char * uplo,integer * n,integer * kd,real * ab,integer * ldab,real * w,real * z__,integer * ldz,real * work,integer * lwork,integer * iwork,integer * liwork,integer * info,ftnlen jobz_len,ftnlen uplo_len)14 /* Subroutine */ int ssbevd_(char *jobz, char *uplo, integer *n, integer *kd,
15 	real *ab, integer *ldab, real *w, real *z__, integer *ldz, real *work,
16 	 integer *lwork, integer *iwork, integer *liwork, integer *info,
17 	ftnlen jobz_len, ftnlen uplo_len)
18 {
19     /* System generated locals */
20     integer ab_dim1, ab_offset, z_dim1, z_offset, i__1;
21     real r__1;
22 
23     /* Builtin functions */
24     double sqrt(doublereal);
25 
26     /* Local variables */
27     static real eps;
28     static integer inde;
29     static real anrm, rmin, rmax, sigma;
30     extern logical lsame_(char *, char *, ftnlen, ftnlen);
31     static integer iinfo;
32     extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *),
33 	    sgemm_(char *, char *, integer *, integer *, integer *, real *,
34 	    real *, integer *, real *, integer *, real *, real *, integer *,
35 	    ftnlen, ftnlen);
36     static integer lwmin;
37     static logical lower, wantz;
38     static integer indwk2, llwrk2, iscale;
39     extern doublereal slamch_(char *, ftnlen);
40     static real safmin;
41     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
42     static real bignum;
43     extern doublereal slansb_(char *, char *, integer *, integer *, real *,
44 	    integer *, real *, ftnlen, ftnlen);
45     extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
46 	    real *, integer *, integer *, real *, integer *, integer *,
47 	    ftnlen), sstedc_(char *, integer *, real *, real *, real *,
48 	    integer *, real *, integer *, integer *, integer *, integer *,
49 	    ftnlen), slacpy_(char *, integer *, integer *, real *, integer *,
50 	    real *, integer *, ftnlen);
51     static integer indwrk, liwmin;
52     extern /* Subroutine */ int ssbtrd_(char *, char *, integer *, integer *,
53 	    real *, integer *, real *, real *, real *, integer *, real *,
54 	    integer *, ftnlen, ftnlen), ssterf_(integer *, real *, real *,
55 	    integer *);
56     static real smlnum;
57     static logical lquery;
58 
59 
60 /*  -- LAPACK driver routine (version 3.0) -- */
61 /*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
62 /*     Courant Institute, Argonne National Lab, and Rice University */
63 /*     June 30, 1999 */
64 
65 /*     .. Scalar Arguments .. */
66 /*     .. */
67 /*     .. Array Arguments .. */
68 /*     .. */
69 
70 /*  Purpose */
71 /*  ======= */
72 
73 /*  SSBEVD computes all the eigenvalues and, optionally, eigenvectors of */
74 /*  a real symmetric band matrix A. If eigenvectors are desired, it uses */
75 /*  a divide and conquer algorithm. */
76 
77 /*  The divide and conquer algorithm makes very mild assumptions about */
78 /*  floating point arithmetic. It will work on machines with a guard */
79 /*  digit in add/subtract, or on those binary machines without guard */
80 /*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
81 /*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
82 /*  without guard digits, but we know of none. */
83 
84 /*  Arguments */
85 /*  ========= */
86 
87 /*  JOBZ    (input) CHARACTER*1 */
88 /*          = 'N':  Compute eigenvalues only; */
89 /*          = 'V':  Compute eigenvalues and eigenvectors. */
90 
91 /*  UPLO    (input) CHARACTER*1 */
92 /*          = 'U':  Upper triangle of A is stored; */
93 /*          = 'L':  Lower triangle of A is stored. */
94 
95 /*  N       (input) INTEGER */
96 /*          The order of the matrix A.  N >= 0. */
97 
98 /*  KD      (input) INTEGER */
99 /*          The number of superdiagonals of the matrix A if UPLO = 'U', */
100 /*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */
101 
102 /*  AB      (input/output) REAL array, dimension (LDAB, N) */
103 /*          On entry, the upper or lower triangle of the symmetric band */
104 /*          matrix A, stored in the first KD+1 rows of the array.  The */
105 /*          j-th column of A is stored in the j-th column of the array AB */
106 /*          as follows: */
107 /*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
108 /*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */
109 
110 /*          On exit, AB is overwritten by values generated during the */
111 /*          reduction to tridiagonal form.  If UPLO = 'U', the first */
112 /*          superdiagonal and the diagonal of the tridiagonal matrix T */
113 /*          are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */
114 /*          the diagonal and first subdiagonal of T are returned in the */
115 /*          first two rows of AB. */
116 
117 /*  LDAB    (input) INTEGER */
118 /*          The leading dimension of the array AB.  LDAB >= KD + 1. */
119 
120 /*  W       (output) REAL array, dimension (N) */
121 /*          If INFO = 0, the eigenvalues in ascending order. */
122 
123 /*  Z       (output) REAL array, dimension (LDZ, N) */
124 /*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
125 /*          eigenvectors of the matrix A, with the i-th column of Z */
126 /*          holding the eigenvector associated with W(i). */
127 /*          If JOBZ = 'N', then Z is not referenced. */
128 
129 /*  LDZ     (input) INTEGER */
130 /*          The leading dimension of the array Z.  LDZ >= 1, and if */
131 /*          JOBZ = 'V', LDZ >= max(1,N). */
132 
133 /*  WORK    (workspace/output) REAL array, */
134 /*                                         dimension (LWORK) */
135 /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
136 
137 /*  LWORK   (input) INTEGER */
138 /*          The dimension of the array WORK. */
139 /*          IF N <= 1,                LWORK must be at least 1. */
140 /*          If JOBZ  = 'N' and N > 2, LWORK must be at least 2*N. */
141 /*          If JOBZ  = 'V' and N > 2, LWORK must be at least */
142 /*                         ( 1 + 5*N + 2*N**2 ). */
143 
144 /*          If LWORK = -1, then a workspace query is assumed; the routine */
145 /*          only calculates the optimal size of the WORK array, returns */
146 /*          this value as the first entry of the WORK array, and no error */
147 /*          message related to LWORK is issued by XERBLA. */
148 
149 /*  IWORK   (workspace/output) INTEGER array, dimension (LIWORK) */
150 /*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
151 
152 /*  LIWORK  (input) INTEGER */
153 /*          The dimension of the array LIWORK. */
154 /*          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1. */
155 /*          If JOBZ  = 'V' and N > 2, LIWORK must be at least 3 + 5*N. */
156 
157 /*          If LIWORK = -1, then a workspace query is assumed; the */
158 /*          routine only calculates the optimal size of the IWORK array, */
159 /*          returns this value as the first entry of the IWORK array, and */
160 /*          no error message related to LIWORK is issued by XERBLA. */
161 
162 /*  INFO    (output) INTEGER */
163 /*          = 0:  successful exit */
164 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
165 /*          > 0:  if INFO = i, the algorithm failed to converge; i */
166 /*                off-diagonal elements of an intermediate tridiagonal */
167 /*                form did not converge to zero. */
168 
169 /*  ===================================================================== */
170 
171 /*     .. Parameters .. */
172 /*     .. */
173 /*     .. Local Scalars .. */
174 /*     .. */
175 /*     .. External Functions .. */
176 /*     .. */
177 /*     .. External Subroutines .. */
178 /*     .. */
179 /*     .. Intrinsic Functions .. */
180 /*     .. */
181 /*     .. Executable Statements .. */
182 
183 /*     Test the input parameters. */
184 
185     /* Parameter adjustments */
186     ab_dim1 = *ldab;
187     ab_offset = 1 + ab_dim1;
188     ab -= ab_offset;
189     --w;
190     z_dim1 = *ldz;
191     z_offset = 1 + z_dim1;
192     z__ -= z_offset;
193     --work;
194     --iwork;
195 
196     /* Function Body */
197     wantz = lsame_(jobz, "V", (ftnlen)1, (ftnlen)1);
198     lower = lsame_(uplo, "L", (ftnlen)1, (ftnlen)1);
199     lquery = *lwork == -1 || *liwork == -1;
200 
201     *info = 0;
202     if (*n <= 1) {
203 	liwmin = 1;
204 	lwmin = 1;
205     } else {
206 	if (wantz) {
207 	    liwmin = *n * 5 + 3;
208 /* Computing 2nd power */
209 	    i__1 = *n;
210 	    lwmin = *n * 5 + 1 + (i__1 * i__1 << 1);
211 	} else {
212 	    liwmin = 1;
213 	    lwmin = *n << 1;
214 	}
215     }
216     if (! (wantz || lsame_(jobz, "N", (ftnlen)1, (ftnlen)1))) {
217 	*info = -1;
218     } else if (! (lower || lsame_(uplo, "U", (ftnlen)1, (ftnlen)1))) {
219 	*info = -2;
220     } else if (*n < 0) {
221 	*info = -3;
222     } else if (*kd < 0) {
223 	*info = -4;
224     } else if (*ldab < *kd + 1) {
225 	*info = -6;
226     } else if (*ldz < 1 || wantz && *ldz < *n) {
227 	*info = -9;
228     } else if (*lwork < lwmin && ! lquery) {
229 	*info = -11;
230     } else if (*liwork < liwmin && ! lquery) {
231 	*info = -13;
232     }
233 
234     if (*info == 0) {
235 	work[1] = (real) lwmin;
236 	iwork[1] = liwmin;
237     }
238 
239     if (*info != 0) {
240 	i__1 = -(*info);
241 	xerbla_("SSBEVD", &i__1, (ftnlen)6);
242 	return 0;
243     } else if (lquery) {
244 	return 0;
245     }
246 
247 /*     Quick return if possible */
248 
249     if (*n == 0) {
250 	return 0;
251     }
252 
253     if (*n == 1) {
254 	w[1] = ab[ab_dim1 + 1];
255 	if (wantz) {
256 	    z__[z_dim1 + 1] = 1.f;
257 	}
258 	return 0;
259     }
260 
261 /*     Get machine constants. */
262 
263     safmin = slamch_("Safe minimum", (ftnlen)12);
264     eps = slamch_("Precision", (ftnlen)9);
265     smlnum = safmin / eps;
266     bignum = 1.f / smlnum;
267     rmin = sqrt(smlnum);
268     rmax = sqrt(bignum);
269 
270 /*     Scale matrix to allowable range, if necessary. */
271 
272     anrm = slansb_("M", uplo, n, kd, &ab[ab_offset], ldab, &work[1], (ftnlen)
273 	    1, (ftnlen)1);
274     iscale = 0;
275     if (anrm > 0.f && anrm < rmin) {
276 	iscale = 1;
277 	sigma = rmin / anrm;
278     } else if (anrm > rmax) {
279 	iscale = 1;
280 	sigma = rmax / anrm;
281     }
282     if (iscale == 1) {
283 	if (lower) {
284 	    slascl_("B", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab,
285 		    info, (ftnlen)1);
286 	} else {
287 	    slascl_("Q", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab,
288 		    info, (ftnlen)1);
289 	}
290     }
291 
292 /*     Call SSBTRD to reduce symmetric band matrix to tridiagonal form. */
293 
294     inde = 1;
295     indwrk = inde + *n;
296     indwk2 = indwrk + *n * *n;
297     llwrk2 = *lwork - indwk2 + 1;
298     ssbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[
299 	    z_offset], ldz, &work[indwrk], &iinfo, (ftnlen)1, (ftnlen)1);
300 
301 /*     For eigenvalues only, call SSTERF.  For eigenvectors, call SSTEDC. */
302 
303     if (! wantz) {
304 	ssterf_(n, &w[1], &work[inde], info);
305     } else {
306 	sstedc_("I", n, &w[1], &work[inde], &work[indwrk], n, &work[indwk2], &
307 		llwrk2, &iwork[1], liwork, info, (ftnlen)1);
308 	sgemm_("N", "N", n, n, n, &c_b11, &z__[z_offset], ldz, &work[indwrk],
309 		n, &c_b18, &work[indwk2], n, (ftnlen)1, (ftnlen)1);
310 	slacpy_("A", n, n, &work[indwk2], n, &z__[z_offset], ldz, (ftnlen)1);
311     }
312 
313 /*     If matrix was scaled, then rescale eigenvalues appropriately. */
314 
315     if (iscale == 1) {
316 	r__1 = 1.f / sigma;
317 	sscal_(n, &r__1, &w[1], &c__1);
318     }
319 
320     work[1] = (real) lwmin;
321     iwork[1] = liwmin;
322     return 0;
323 
324 /*     End of SSBEVD */
325 
326 } /* ssbevd_ */
327 
328