1 // @HEADER
2 // ************************************************************************
3 //
4 //               Rapid Optimization Library (ROL) Package
5 //                 Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 //              Drew Kouri   (dpkouri@sandia.gov) and
39 //              Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 /*! \file  example_01.cpp
45     \brief Shows how to solve the mother problem of PDE-constrained optimization:
46 */
47 
48 #include "Teuchos_Comm.hpp"
49 #include "ROL_Stream.hpp"
50 #include "Teuchos_GlobalMPISession.hpp"
51 #include "Teuchos_XMLParameterListHelpers.hpp"
52 
53 #include "Tpetra_Core.hpp"
54 #include "Tpetra_Version.hpp"
55 
56 #include "ROL_Algorithm.hpp"
57 #include "ROL_AugmentedLagrangianStep.hpp"
58 //#include "ROL_MoreauYosidaPenaltyStep.hpp"
59 #include "ROL_TrustRegionStep.hpp"
60 #include "ROL_CompositeStep.hpp"
61 #include "ROL_Reduced_Objective_SimOpt.hpp"
62 #include "ROL_ScaledTpetraMultiVector.hpp"
63 
64 #include "ROL_ScaledStdVector.hpp"
65 
66 #include "ROL_Bounds.hpp"
67 #include "ROL_AugmentedLagrangian.hpp"
68 #include "ROL_Algorithm.hpp"
69 
70 #include <iostream>
71 #include <algorithm>
72 
73 #include "data.hpp"
74 #include "filter.hpp"
75 #include "objective.hpp"
76 #include "constraint.hpp"
77 #include "volume_constraint.hpp"
78 
79 //#include <fenv.h>
80 
81 typedef double RealT;
82 
createTpetraVector(const ROL::Ptr<const Tpetra::Map<>> & map)83 ROL::Ptr<Tpetra::MultiVector<> > createTpetraVector(const ROL::Ptr<const Tpetra::Map<> > &map) {
84   return ROL::makePtr<Tpetra::MultiVector<>>(map, 1, true);
85 }
86 
main(int argc,char * argv[])87 int main(int argc, char *argv[]) {
88   //feenableexcept(FE_ALL_EXCEPT & ~FE_INEXACT);
89 
90   // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided.
91   int iprint = argc - 1;
92   ROL::Ptr<std::ostream> outStream;
93   ROL::nullstream bhs; // outputs nothing
94 
95   /*** Initialize communicator. ***/
96   Teuchos::GlobalMPISession mpiSession (&argc, &argv, &bhs);
97   ROL::Ptr<const Teuchos::Comm<int> > comm = Tpetra::getDefaultComm();
98   const int myRank = comm->getRank();
99   if ((iprint > 0) && (myRank == 0)) {
100     outStream = ROL::makePtrFromRef(std::cout);
101   }
102   else {
103     outStream = ROL::makePtrFromRef(bhs);
104   }
105 
106   int errorFlag  = 0;
107 
108   // *** Example body.
109   try {
110 
111     /*** Read in XML input ***/
112     std::string filename = "input.xml";
113     Teuchos::RCP<Teuchos::ParameterList> parlist = Teuchos::rcp( new Teuchos::ParameterList() );
114     Teuchos::updateParametersFromXmlFile( filename, parlist.ptr() );
115 
116     /*** Initialize main data structure. ***/
117     ROL::Ptr<ElasticitySIMPOperators<RealT> > data
118       = ROL::makePtr<ElasticitySIMPOperators<RealT>>(comm, parlist, outStream);
119     /*** Initialize density filter. ***/
120     ROL::Ptr<DensityFilter<RealT> > filter
121       = ROL::makePtr<DensityFilter<RealT>>(comm, parlist, outStream);
122     /*** Build vectors and dress them up as ROL vectors. ***/
123     ROL::Ptr<const Tpetra::Map<> > vecmap_u = data->getDomainMapA();
124     ROL::Ptr<const Tpetra::Map<> > vecmap_z = data->getCellMap();
125     ROL::Ptr<Tpetra::MultiVector<> > u_ptr      = createTpetraVector(vecmap_u);
126     ROL::Ptr<Tpetra::MultiVector<> > z_ptr      = createTpetraVector(vecmap_z);
127     ROL::Ptr<Tpetra::MultiVector<> > du_ptr     = createTpetraVector(vecmap_u);
128     ROL::Ptr<Tpetra::MultiVector<> > dw_ptr     = createTpetraVector(vecmap_u);
129     ROL::Ptr<Tpetra::MultiVector<> > dz_ptr     = createTpetraVector(vecmap_z);
130     ROL::Ptr<Tpetra::MultiVector<> > dz2_ptr    = createTpetraVector(vecmap_z);
131     ROL::Ptr<std::vector<RealT> >    vc_ptr     = ROL::makePtr<std::vector<RealT>>(1, 0);
132     ROL::Ptr<std::vector<RealT> >    vc_lam_ptr = ROL::makePtr<std::vector<RealT>>(1, 0);
133     ROL::Ptr<std::vector<RealT> >    vscale_ptr = ROL::makePtr<std::vector<RealT>>(1, 0);
134     // Set all values to 1 in u, z.
135     u_ptr->putScalar(1.0);
136     // Set z to gray solution.
137     RealT volFrac = parlist->sublist("ElasticityTopoOpt").get<RealT>("Volume Fraction");
138     z_ptr->putScalar(volFrac);
139     // Set scaling vector for constraint
140     RealT W = parlist->sublist("Geometry").get<RealT>("Width");
141     RealT H = parlist->sublist("Geometry").get<RealT>("Height");
142     RealT one(1), two(2);
143     (*vscale_ptr)[0] = one/std::pow(W*H*(one-volFrac),two);
144     // Set Scaling vector for density
145     bool  useZscale = parlist->sublist("Problem").get<bool>("Use Scaled Density Vectors");
146     RealT densityScaling = parlist->sublist("Problem").get<RealT>("Density Scaling");
147     ROL::Ptr<Tpetra::MultiVector<> > scaleVec = createTpetraVector(vecmap_z);
148     scaleVec->putScalar(densityScaling);
149     if ( !useZscale ) {
150       scaleVec->putScalar(one);
151     }
152     ROL::Ptr<const Tpetra::Vector<> > zscale_ptr = scaleVec->getVector(0);
153 
154    //test
155    /*data->updateMaterialDensity (z_ptr);
156     ROL::Ptr<Tpetra::MultiVector<RealT> > rhs
157       = ROL::makePtr<Tpetra::MultiVector<>> (data->getVecF()->getMap(), 1, true);
158     data->ApplyMatAToVec(rhs, u_ptr);
159     data->outputTpetraVector(rhs, "KU0.txt");
160     data->ApplyInverseJacobian1ToVec(u_ptr, rhs, false);
161     data->outputTpetraVector(u_ptr, "KKU0.txt");
162 
163     data->ApplyJacobian1ToVec(rhs, u_ptr);
164     data->outputTpetraVector(rhs, "KU1.txt");
165     data->ApplyInverseJacobian1ToVec(u_ptr, rhs, false);
166     data->outputTpetraVector(u_ptr, "KKU1.txt");
167   */
168     //u_ptr->putScalar(1.0);
169     //z_ptr->putScalar(1.0);
170     // Randomize d vectors.
171     du_ptr->randomize(); //du_ptr->scale(0);
172     dw_ptr->randomize();
173     dz_ptr->randomize(); //dz_ptr->scale(0);
174     dz2_ptr->randomize();
175     // Create ROL::TpetraMultiVectors.
176     ROL::Ptr<ROL::Vector<RealT> > up   = ROL::makePtr<ROL::TpetraMultiVector<RealT>>(u_ptr);
177     ROL::Ptr<ROL::Vector<RealT> > dup  = ROL::makePtr<ROL::TpetraMultiVector<RealT>>(du_ptr);
178     ROL::Ptr<ROL::Vector<RealT> > dwp  = ROL::makePtr<ROL::TpetraMultiVector<RealT>>(dw_ptr);
179     ROL::Ptr<ROL::Vector<RealT> > zp
180       = ROL::makePtr<ROL::PrimalScaledTpetraMultiVector<RealT>>(z_ptr,zscale_ptr);
181     ROL::Ptr<ROL::Vector<RealT> > dzp
182       = ROL::makePtr<ROL::PrimalScaledTpetraMultiVector<RealT>>(dz_ptr,zscale_ptr);
183     ROL::Ptr<ROL::Vector<RealT> > dz2p
184       = ROL::makePtr<ROL::PrimalScaledTpetraMultiVector<RealT>>(dz2_ptr,zscale_ptr);
185     ROL::Ptr<ROL::Vector<RealT> > vcp
186       = ROL::makePtr<ROL::PrimalScaledStdVector<RealT>>(vc_ptr,vscale_ptr);
187     ROL::Ptr<ROL::Vector<RealT> > vc_lamp
188       = ROL::makePtr<ROL::DualScaledStdVector<RealT>>(vc_lam_ptr,vscale_ptr);
189     // Create ROL SimOpt vectors.
190     ROL::Vector_SimOpt<RealT> x(up,zp);
191     ROL::Vector_SimOpt<RealT> d(dup,dzp);
192     ROL::Vector_SimOpt<RealT> d2(dwp,dz2p);
193 
194     /*** Build objective function, constraint and reduced objective function. ***/
195     ROL::Ptr<ROL::Objective_SimOpt<RealT> > obj
196        = ROL::makePtr<Objective_PDEOPT_ElasticitySIMP<RealT>>(data, filter, parlist);
197     ROL::Ptr<ROL::Constraint_SimOpt<RealT> > con
198        = ROL::makePtr<EqualityConstraint_PDEOPT_ElasticitySIMP<RealT>>(data, filter, parlist);
199     ROL::Ptr<ROL::Reduced_Objective_SimOpt<RealT> > objReduced
200        = ROL::makePtr<ROL::Reduced_Objective_SimOpt<RealT>>(obj, con, up, zp, dwp);
201     ROL::Ptr<ROL::Constraint<RealT> > volcon
202        = ROL::makePtr<EqualityConstraint_PDEOPT_ElasticitySIMP_Volume<RealT>>(data, parlist);
203 
204     /*** Build bound constraint ***/
205     ROL::Ptr<Tpetra::MultiVector<> > lo_ptr = ROL::makePtr<Tpetra::MultiVector<>>(vecmap_z, 1, true);
206     ROL::Ptr<Tpetra::MultiVector<> > hi_ptr = ROL::makePtr<Tpetra::MultiVector<>>(vecmap_z, 1, true);
207     lo_ptr->putScalar(0.0); hi_ptr->putScalar(1.0);
208     ROL::Ptr<ROL::Vector<RealT> > lop
209       = ROL::makePtr<ROL::PrimalScaledTpetraMultiVector<RealT>>(lo_ptr, zscale_ptr);
210     ROL::Ptr<ROL::Vector<RealT> > hip
211       = ROL::makePtr<ROL::PrimalScaledTpetraMultiVector<RealT>>(hi_ptr, zscale_ptr);
212     ROL::Ptr<ROL::BoundConstraint<RealT> > bnd = ROL::makePtr<ROL::Bounds<RealT>>(lop,hip);
213 
214     /*** Check functional interface. ***/
215     *outStream << "Checking Objective:" << "\n";
216     obj->checkGradient(x,d,true,*outStream);
217     obj->checkHessVec(x,d,true,*outStream);
218     obj->checkHessSym(x,d,d2,true,*outStream);
219     *outStream << "Checking Constraint:" << "\n";
220     con->checkAdjointConsistencyJacobian(*dup,d,x,true,*outStream);
221     con->checkAdjointConsistencyJacobian_1(*dwp, *dup, *up, *zp, true, *outStream);
222     con->checkAdjointConsistencyJacobian_2(*dwp, *dzp, *up, *zp, true, *outStream);
223     con->checkInverseJacobian_1(*up,*up,*up,*zp,true,*outStream);
224     con->checkInverseAdjointJacobian_1(*up,*up,*up,*zp,true,*outStream);
225     con->checkApplyJacobian(x,d,*up,true,*outStream);
226     con->checkApplyAdjointHessian(x,*dup,d,x,true,*outStream);
227     *outStream << "Checking Reduced Objective:" << "\n";
228     objReduced->checkGradient(*zp,*dzp,true,*outStream);
229     objReduced->checkHessVec(*zp,*dzp,true,*outStream);
230     *outStream << "Checking Volume Constraint:" << "\n";
231     volcon->checkAdjointConsistencyJacobian(*vcp,*dzp,*zp,true,*outStream);
232     volcon->checkApplyJacobian(*zp,*dzp,*vcp,true,*outStream);
233     volcon->checkApplyAdjointHessian(*zp,*vcp,*dzp,*zp,true,*outStream);
234 
235     /*** Run optimization ***/
236     ROL::Ptr<ROL::Step<RealT>>
237       step = ROL::makePtr<ROL::AugmentedLagrangianStep<RealT>>(*parlist);
238     ROL::Ptr<ROL::StatusTest<RealT>>
239       status = ROL::makePtr<ROL::ConstraintStatusTest<RealT>>(*parlist);
240     ROL::Algorithm<RealT> algo(step,status,false);
241     ROL::AugmentedLagrangian<RealT> augLag(objReduced,volcon,*vc_lamp,1.0,*zp,*vcp,*parlist);
242     algo.run(*zp,*vc_lamp,augLag,*volcon,*bnd,true,*outStream);
243     //ROL::Ptr<ROL::Step<RealT>>
244     //  step = ROL::makePtr<ROL::MoreauYosidaPenaltyStep<RealT>>(*parlist);
245     //ROL::Ptr<ROL::StatusTest<RealT>>
246     //  status = ROL::makePtr<ROL::ConstraintStatusTest<RealT>>(*parlist);
247     //ROL::MoreauYosidaPenalty<RealT> MYpen(objReduced,bnd,*zp,*parlist);
248     //ROL::Algorithm<RealT> algo(step,status,false);
249     //algo.run(*zp,*vc_lamp,MYpen,*volcon,*bnd,true,*outStream);
250 
251     // new filter, for testing
252     /*parlist->sublist("Density Filter").set("Enable", true);
253     ROL::Ptr<DensityFilter<RealT> > testfilter
254       = ROL::makePtr<DensityFilter<RealT>>(comm, parlist, outStream);
255     ROL::Ptr<Tpetra::MultiVector<> > z_filtered_ptr = ROL::makePtr<Tpetra::MultiVector<>>(*z_ptr, Teuchos::Copy);
256     testfilter->apply(z_filtered_ptr, z_ptr);
257     ROL::Ptr<Tpetra::MultiVector<> > cm_ptr = data->getCellAreas();
258     ROL::Ptr<Tpetra::MultiVector<> > icm_ptr = ROL::makePtr<Tpetra::MultiVector<>>(*cm_ptr, Teuchos::Copy);
259     ROL::Ptr<Tpetra::MultiVector<> > zf_scaled_ptr = ROL::makePtr<Tpetra::MultiVector<>>(*z_ptr, Teuchos::Copy);
260     icm_ptr->reciprocal(*cm_ptr);
261     zf_scaled_ptr->elementWiseMultiply(1.0, *(icm_ptr->getVector(0)), *z_filtered_ptr, 0.0);
262     data->outputTpetraVector(zf_scaled_ptr, "density_filtered_scaled.txt");
263     data->outputTpetraVector(z_filtered_ptr, "density_filtered.txt");*/
264 
265     data->outputTpetraVector(z_ptr, "density.txt");
266     data->outputTpetraVector(u_ptr, "state.txt");
267     data->outputTpetraVector(zscale_ptr, "weights.txt");
268 
269     // Get a summary from the time monitor.
270     Teuchos::TimeMonitor::summarize();
271   }
272   catch (std::logic_error& err) {
273     *outStream << err.what() << "\n";
274     errorFlag = -1000;
275   }; // end try
276 
277   if (errorFlag != 0)
278     std::cout << "End Result: TEST FAILED\n";
279   else
280     std::cout << "End Result: TEST PASSED\n";
281 
282   return 0;
283 }
284