1      SUBROUTINE CUNGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO )
2*
3*  -- LAPACK routine (version 3.0) --
4*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
5*     Courant Institute, Argonne National Lab, and Rice University
6*     June 30, 1999
7*
8*     .. Scalar Arguments ..
9      CHARACTER          UPLO
10      INTEGER            INFO, LDA, LWORK, N
11*     ..
12*     .. Array Arguments ..
13      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
14*     ..
15*
16*  Purpose
17*  =======
18*
19*  CUNGTR generates a complex unitary matrix Q which is defined as the
20*  product of n-1 elementary reflectors of order N, as returned by
21*  CHETRD:
22*
23*  if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
24*
25*  if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
26*
27*  Arguments
28*  =========
29*
30*  UPLO    (input) CHARACTER*1
31*          = 'U': Upper triangle of A contains elementary reflectors
32*                 from CHETRD;
33*          = 'L': Lower triangle of A contains elementary reflectors
34*                 from CHETRD.
35*
36*  N       (input) INTEGER
37*          The order of the matrix Q. N >= 0.
38*
39*  A       (input/output) COMPLEX array, dimension (LDA,N)
40*          On entry, the vectors which define the elementary reflectors,
41*          as returned by CHETRD.
42*          On exit, the N-by-N unitary matrix Q.
43*
44*  LDA     (input) INTEGER
45*          The leading dimension of the array A. LDA >= N.
46*
47*  TAU     (input) COMPLEX array, dimension (N-1)
48*          TAU(i) must contain the scalar factor of the elementary
49*          reflector H(i), as returned by CHETRD.
50*
51*  WORK    (workspace/output) COMPLEX array, dimension (LWORK)
52*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
53*
54*  LWORK   (input) INTEGER
55*          The dimension of the array WORK. LWORK >= N-1.
56*          For optimum performance LWORK >= (N-1)*NB, where NB is
57*          the optimal blocksize.
58*
59*          If LWORK = -1, then a workspace query is assumed; the routine
60*          only calculates the optimal size of the WORK array, returns
61*          this value as the first entry of the WORK array, and no error
62*          message related to LWORK is issued by XERBLA.
63*
64*  INFO    (output) INTEGER
65*          = 0:  successful exit
66*          < 0:  if INFO = -i, the i-th argument had an illegal value
67*
68*  =====================================================================
69*
70*     .. Parameters ..
71      COMPLEX            ZERO, ONE
72      PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ),
73     $                   ONE = ( 1.0E+0, 0.0E+0 ) )
74*     ..
75*     .. Local Scalars ..
76      LOGICAL            LQUERY, UPPER
77      INTEGER            I, IINFO, J, LWKOPT, NB
78*     ..
79*     .. External Functions ..
80      LOGICAL            LSAME
81      INTEGER            ILAENV
82      EXTERNAL           ILAENV, LSAME
83*     ..
84*     .. External Subroutines ..
85      EXTERNAL           CUNGQL, CUNGQR, XERBLA
86*     ..
87*     .. Intrinsic Functions ..
88      INTRINSIC          MAX
89*     ..
90*     .. Executable Statements ..
91*
92*     Test the input arguments
93*
94      INFO = 0
95      LQUERY = ( LWORK.EQ.-1 )
96      UPPER = LSAME( UPLO, 'U' )
97      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
98         INFO = -1
99      ELSE IF( N.LT.0 ) THEN
100         INFO = -2
101      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
102         INFO = -4
103      ELSE IF( LWORK.LT.MAX( 1, N-1 ) .AND. .NOT.LQUERY ) THEN
104         INFO = -7
105      END IF
106*
107      IF( INFO.EQ.0 ) THEN
108         IF ( UPPER ) THEN
109           NB = ILAENV( 1, 'CUNGQL', ' ', N-1, N-1, N-1, -1 )
110         ELSE
111           NB = ILAENV( 1, 'CUNGQR', ' ', N-1, N-1, N-1, -1 )
112         END IF
113         LWKOPT = MAX( 1, N-1 )*NB
114         WORK( 1 ) = LWKOPT
115      END IF
116*
117      IF( INFO.NE.0 ) THEN
118         CALL XERBLA( 'CUNGTR', -INFO )
119         RETURN
120      ELSE IF( LQUERY ) THEN
121         RETURN
122      END IF
123*
124*     Quick return if possible
125*
126      IF( N.EQ.0 ) THEN
127         WORK( 1 ) = 1
128         RETURN
129      END IF
130*
131      IF( UPPER ) THEN
132*
133*        Q was determined by a call to CHETRD with UPLO = 'U'
134*
135*        Shift the vectors which define the elementary reflectors one
136*        column to the left, and set the last row and column of Q to
137*        those of the unit matrix
138*
139         DO 20 J = 1, N - 1
140            DO 10 I = 1, J - 1
141               A( I, J ) = A( I, J+1 )
142   10       CONTINUE
143            A( N, J ) = ZERO
144   20    CONTINUE
145         DO 30 I = 1, N - 1
146            A( I, N ) = ZERO
147   30    CONTINUE
148         A( N, N ) = ONE
149*
150*        Generate Q(1:n-1,1:n-1)
151*
152         CALL CUNGQL( N-1, N-1, N-1, A, LDA, TAU, WORK, LWORK, IINFO )
153*
154      ELSE
155*
156*        Q was determined by a call to CHETRD with UPLO = 'L'.
157*
158*        Shift the vectors which define the elementary reflectors one
159*        column to the right, and set the first row and column of Q to
160*        those of the unit matrix
161*
162         DO 50 J = N, 2, -1
163            A( 1, J ) = ZERO
164            DO 40 I = J + 1, N
165               A( I, J ) = A( I, J-1 )
166   40       CONTINUE
167   50    CONTINUE
168         A( 1, 1 ) = ONE
169         DO 60 I = 2, N
170            A( I, 1 ) = ZERO
171   60    CONTINUE
172         IF( N.GT.1 ) THEN
173*
174*           Generate Q(2:n,2:n)
175*
176            CALL CUNGQR( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
177     $                   LWORK, IINFO )
178         END IF
179      END IF
180      WORK( 1 ) = LWKOPT
181      RETURN
182*
183*     End of CUNGTR
184*
185      END
186