1      SUBROUTINE SGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
2     $                   DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
3     $                   WORK, IWORK, INFO )
4*
5*  -- LAPACK routine (version 3.0) --
6*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
7*     Courant Institute, Argonne National Lab, and Rice University
8*     June 30, 1999
9*
10*     .. Scalar Arguments ..
11      CHARACTER          FACT, TRANS
12      INTEGER            INFO, LDB, LDX, N, NRHS
13      REAL               RCOND
14*     ..
15*     .. Array Arguments ..
16      INTEGER            IPIV( * ), IWORK( * )
17      REAL               B( LDB, * ), BERR( * ), D( * ), DF( * ),
18     $                   DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
19     $                   FERR( * ), WORK( * ), X( LDX, * )
20*     ..
21*
22*  Purpose
23*  =======
24*
25*  SGTSVX uses the LU factorization to compute the solution to a real
26*  system of linear equations A * X = B or A**T * X = B,
27*  where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
28*  matrices.
29*
30*  Error bounds on the solution and a condition estimate are also
31*  provided.
32*
33*  Description
34*  ===========
35*
36*  The following steps are performed:
37*
38*  1. If FACT = 'N', the LU decomposition is used to factor the matrix A
39*     as A = L * U, where L is a product of permutation and unit lower
40*     bidiagonal matrices and U is upper triangular with nonzeros in
41*     only the main diagonal and first two superdiagonals.
42*
43*  2. If some U(i,i)=0, so that U is exactly singular, then the routine
44*     returns with INFO = i. Otherwise, the factored form of A is used
45*     to estimate the condition number of the matrix A.  If the
46*     reciprocal of the condition number is less than machine precision,
47*     INFO = N+1 is returned as a warning, but the routine still goes on
48*     to solve for X and compute error bounds as described below.
49*
50*  3. The system of equations is solved for X using the factored form
51*     of A.
52*
53*  4. Iterative refinement is applied to improve the computed solution
54*     matrix and calculate error bounds and backward error estimates
55*     for it.
56*
57*  Arguments
58*  =========
59*
60*  FACT    (input) CHARACTER*1
61*          Specifies whether or not the factored form of A has been
62*          supplied on entry.
63*          = 'F':  DLF, DF, DUF, DU2, and IPIV contain the factored
64*                  form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV
65*                  will not be modified.
66*          = 'N':  The matrix will be copied to DLF, DF, and DUF
67*                  and factored.
68*
69*  TRANS   (input) CHARACTER*1
70*          Specifies the form of the system of equations:
71*          = 'N':  A * X = B     (No transpose)
72*          = 'T':  A**T * X = B  (Transpose)
73*          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
74*
75*  N       (input) INTEGER
76*          The order of the matrix A.  N >= 0.
77*
78*  NRHS    (input) INTEGER
79*          The number of right hand sides, i.e., the number of columns
80*          of the matrix B.  NRHS >= 0.
81*
82*  DL      (input) REAL array, dimension (N-1)
83*          The (n-1) subdiagonal elements of A.
84*
85*  D       (input) REAL array, dimension (N)
86*          The n diagonal elements of A.
87*
88*  DU      (input) REAL array, dimension (N-1)
89*          The (n-1) superdiagonal elements of A.
90*
91*  DLF     (input or output) REAL array, dimension (N-1)
92*          If FACT = 'F', then DLF is an input argument and on entry
93*          contains the (n-1) multipliers that define the matrix L from
94*          the LU factorization of A as computed by SGTTRF.
95*
96*          If FACT = 'N', then DLF is an output argument and on exit
97*          contains the (n-1) multipliers that define the matrix L from
98*          the LU factorization of A.
99*
100*  DF      (input or output) REAL array, dimension (N)
101*          If FACT = 'F', then DF is an input argument and on entry
102*          contains the n diagonal elements of the upper triangular
103*          matrix U from the LU factorization of A.
104*
105*          If FACT = 'N', then DF is an output argument and on exit
106*          contains the n diagonal elements of the upper triangular
107*          matrix U from the LU factorization of A.
108*
109*  DUF     (input or output) REAL array, dimension (N-1)
110*          If FACT = 'F', then DUF is an input argument and on entry
111*          contains the (n-1) elements of the first superdiagonal of U.
112*
113*          If FACT = 'N', then DUF is an output argument and on exit
114*          contains the (n-1) elements of the first superdiagonal of U.
115*
116*  DU2     (input or output) REAL array, dimension (N-2)
117*          If FACT = 'F', then DU2 is an input argument and on entry
118*          contains the (n-2) elements of the second superdiagonal of
119*          U.
120*
121*          If FACT = 'N', then DU2 is an output argument and on exit
122*          contains the (n-2) elements of the second superdiagonal of
123*          U.
124*
125*  IPIV    (input or output) INTEGER array, dimension (N)
126*          If FACT = 'F', then IPIV is an input argument and on entry
127*          contains the pivot indices from the LU factorization of A as
128*          computed by SGTTRF.
129*
130*          If FACT = 'N', then IPIV is an output argument and on exit
131*          contains the pivot indices from the LU factorization of A;
132*          row i of the matrix was interchanged with row IPIV(i).
133*          IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
134*          a row interchange was not required.
135*
136*  B       (input) REAL array, dimension (LDB,NRHS)
137*          The N-by-NRHS right hand side matrix B.
138*
139*  LDB     (input) INTEGER
140*          The leading dimension of the array B.  LDB >= max(1,N).
141*
142*  X       (output) REAL array, dimension (LDX,NRHS)
143*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
144*
145*  LDX     (input) INTEGER
146*          The leading dimension of the array X.  LDX >= max(1,N).
147*
148*  RCOND   (output) REAL
149*          The estimate of the reciprocal condition number of the matrix
150*          A.  If RCOND is less than the machine precision (in
151*          particular, if RCOND = 0), the matrix is singular to working
152*          precision.  This condition is indicated by a return code of
153*          INFO > 0.
154*
155*  FERR    (output) REAL array, dimension (NRHS)
156*          The estimated forward error bound for each solution vector
157*          X(j) (the j-th column of the solution matrix X).
158*          If XTRUE is the true solution corresponding to X(j), FERR(j)
159*          is an estimated upper bound for the magnitude of the largest
160*          element in (X(j) - XTRUE) divided by the magnitude of the
161*          largest element in X(j).  The estimate is as reliable as
162*          the estimate for RCOND, and is almost always a slight
163*          overestimate of the true error.
164*
165*  BERR    (output) REAL array, dimension (NRHS)
166*          The componentwise relative backward error of each solution
167*          vector X(j) (i.e., the smallest relative change in
168*          any element of A or B that makes X(j) an exact solution).
169*
170*  WORK    (workspace) REAL array, dimension (3*N)
171*
172*  IWORK   (workspace) INTEGER array, dimension (N)
173*
174*  INFO    (output) INTEGER
175*          = 0:  successful exit
176*          < 0:  if INFO = -i, the i-th argument had an illegal value
177*          > 0:  if INFO = i, and i is
178*                <= N:  U(i,i) is exactly zero.  The factorization
179*                       has not been completed unless i = N, but the
180*                       factor U is exactly singular, so the solution
181*                       and error bounds could not be computed.
182*                       RCOND = 0 is returned.
183*                = N+1: U is nonsingular, but RCOND is less than machine
184*                       precision, meaning that the matrix is singular
185*                       to working precision.  Nevertheless, the
186*                       solution and error bounds are computed because
187*                       there are a number of situations where the
188*                       computed solution can be more accurate than the
189*                       value of RCOND would suggest.
190*
191*  =====================================================================
192*
193*     .. Parameters ..
194      REAL               ZERO
195      PARAMETER          ( ZERO = 0.0E+0 )
196*     ..
197*     .. Local Scalars ..
198      LOGICAL            NOFACT, NOTRAN
199      CHARACTER          NORM
200      REAL               ANORM
201*     ..
202*     .. External Functions ..
203      LOGICAL            LSAME
204      REAL               SLAMCH, SLANGT
205      EXTERNAL           LSAME, SLAMCH, SLANGT
206*     ..
207*     .. External Subroutines ..
208      EXTERNAL           SCOPY, SGTCON, SGTRFS, SGTTRF, SGTTRS, SLACPY,
209     $                   XERBLA
210*     ..
211*     .. Intrinsic Functions ..
212      INTRINSIC          MAX
213*     ..
214*     .. Executable Statements ..
215*
216      INFO = 0
217      NOFACT = LSAME( FACT, 'N' )
218      NOTRAN = LSAME( TRANS, 'N' )
219      IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
220         INFO = -1
221      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
222     $         LSAME( TRANS, 'C' ) ) THEN
223         INFO = -2
224      ELSE IF( N.LT.0 ) THEN
225         INFO = -3
226      ELSE IF( NRHS.LT.0 ) THEN
227         INFO = -4
228      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
229         INFO = -14
230      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
231         INFO = -16
232      END IF
233      IF( INFO.NE.0 ) THEN
234         CALL XERBLA( 'SGTSVX', -INFO )
235         RETURN
236      END IF
237*
238      IF( NOFACT ) THEN
239*
240*        Compute the LU factorization of A.
241*
242         CALL SCOPY( N, D, 1, DF, 1 )
243         IF( N.GT.1 ) THEN
244            CALL SCOPY( N-1, DL, 1, DLF, 1 )
245            CALL SCOPY( N-1, DU, 1, DUF, 1 )
246         END IF
247         CALL SGTTRF( N, DLF, DF, DUF, DU2, IPIV, INFO )
248*
249*        Return if INFO is non-zero.
250*
251         IF( INFO.NE.0 ) THEN
252            IF( INFO.GT.0 )
253     $         RCOND = ZERO
254            RETURN
255         END IF
256      END IF
257*
258*     Compute the norm of the matrix A.
259*
260      IF( NOTRAN ) THEN
261         NORM = '1'
262      ELSE
263         NORM = 'I'
264      END IF
265      ANORM = SLANGT( NORM, N, DL, D, DU )
266*
267*     Compute the reciprocal of the condition number of A.
268*
269      CALL SGTCON( NORM, N, DLF, DF, DUF, DU2, IPIV, ANORM, RCOND, WORK,
270     $             IWORK, INFO )
271*
272*     Set INFO = N+1 if the matrix is singular to working precision.
273*
274      IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
275     $   INFO = N + 1
276*
277*     Compute the solution vectors X.
278*
279      CALL SLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
280      CALL SGTTRS( TRANS, N, NRHS, DLF, DF, DUF, DU2, IPIV, X, LDX,
281     $             INFO )
282*
283*     Use iterative refinement to improve the computed solutions and
284*     compute error bounds and backward error estimates for them.
285*
286      CALL SGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
287     $             B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
288*
289      RETURN
290*
291*     End of SGTSVX
292*
293      END
294