1*> \brief \b ZBDSQR
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZBDSQR + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zbdsqr.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zbdsqr.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zbdsqr.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
22*                          LDU, C, LDC, RWORK, INFO )
23*
24*       .. Scalar Arguments ..
25*       CHARACTER          UPLO
26*       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
27*       ..
28*       .. Array Arguments ..
29*       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
30*       COMPLEX*16         C( LDC, * ), U( LDU, * ), VT( LDVT, * )
31*       ..
32*
33*
34*> \par Purpose:
35*  =============
36*>
37*> \verbatim
38*>
39*> ZBDSQR computes the singular values and, optionally, the right and/or
40*> left singular vectors from the singular value decomposition (SVD) of
41*> a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
42*> zero-shift QR algorithm.  The SVD of B has the form
43*>
44*>    B = Q * S * P**H
45*>
46*> where S is the diagonal matrix of singular values, Q is an orthogonal
47*> matrix of left singular vectors, and P is an orthogonal matrix of
48*> right singular vectors.  If left singular vectors are requested, this
49*> subroutine actually returns U*Q instead of Q, and, if right singular
50*> vectors are requested, this subroutine returns P**H*VT instead of
51*> P**H, for given complex input matrices U and VT.  When U and VT are
52*> the unitary matrices that reduce a general matrix A to bidiagonal
53*> form: A = U*B*VT, as computed by ZGEBRD, then
54*>
55*>    A = (U*Q) * S * (P**H*VT)
56*>
57*> is the SVD of A.  Optionally, the subroutine may also compute Q**H*C
58*> for a given complex input matrix C.
59*>
60*> See "Computing  Small Singular Values of Bidiagonal Matrices With
61*> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
62*> LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
63*> no. 5, pp. 873-912, Sept 1990) and
64*> "Accurate singular values and differential qd algorithms," by
65*> B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
66*> Department, University of California at Berkeley, July 1992
67*> for a detailed description of the algorithm.
68*> \endverbatim
69*
70*  Arguments:
71*  ==========
72*
73*> \param[in] UPLO
74*> \verbatim
75*>          UPLO is CHARACTER*1
76*>          = 'U':  B is upper bidiagonal;
77*>          = 'L':  B is lower bidiagonal.
78*> \endverbatim
79*>
80*> \param[in] N
81*> \verbatim
82*>          N is INTEGER
83*>          The order of the matrix B.  N >= 0.
84*> \endverbatim
85*>
86*> \param[in] NCVT
87*> \verbatim
88*>          NCVT is INTEGER
89*>          The number of columns of the matrix VT. NCVT >= 0.
90*> \endverbatim
91*>
92*> \param[in] NRU
93*> \verbatim
94*>          NRU is INTEGER
95*>          The number of rows of the matrix U. NRU >= 0.
96*> \endverbatim
97*>
98*> \param[in] NCC
99*> \verbatim
100*>          NCC is INTEGER
101*>          The number of columns of the matrix C. NCC >= 0.
102*> \endverbatim
103*>
104*> \param[in,out] D
105*> \verbatim
106*>          D is DOUBLE PRECISION array, dimension (N)
107*>          On entry, the n diagonal elements of the bidiagonal matrix B.
108*>          On exit, if INFO=0, the singular values of B in decreasing
109*>          order.
110*> \endverbatim
111*>
112*> \param[in,out] E
113*> \verbatim
114*>          E is DOUBLE PRECISION array, dimension (N-1)
115*>          On entry, the N-1 offdiagonal elements of the bidiagonal
116*>          matrix B.
117*>          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
118*>          will contain the diagonal and superdiagonal elements of a
119*>          bidiagonal matrix orthogonally equivalent to the one given
120*>          as input.
121*> \endverbatim
122*>
123*> \param[in,out] VT
124*> \verbatim
125*>          VT is COMPLEX*16 array, dimension (LDVT, NCVT)
126*>          On entry, an N-by-NCVT matrix VT.
127*>          On exit, VT is overwritten by P**H * VT.
128*>          Not referenced if NCVT = 0.
129*> \endverbatim
130*>
131*> \param[in] LDVT
132*> \verbatim
133*>          LDVT is INTEGER
134*>          The leading dimension of the array VT.
135*>          LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
136*> \endverbatim
137*>
138*> \param[in,out] U
139*> \verbatim
140*>          U is COMPLEX*16 array, dimension (LDU, N)
141*>          On entry, an NRU-by-N matrix U.
142*>          On exit, U is overwritten by U * Q.
143*>          Not referenced if NRU = 0.
144*> \endverbatim
145*>
146*> \param[in] LDU
147*> \verbatim
148*>          LDU is INTEGER
149*>          The leading dimension of the array U.  LDU >= max(1,NRU).
150*> \endverbatim
151*>
152*> \param[in,out] C
153*> \verbatim
154*>          C is COMPLEX*16 array, dimension (LDC, NCC)
155*>          On entry, an N-by-NCC matrix C.
156*>          On exit, C is overwritten by Q**H * C.
157*>          Not referenced if NCC = 0.
158*> \endverbatim
159*>
160*> \param[in] LDC
161*> \verbatim
162*>          LDC is INTEGER
163*>          The leading dimension of the array C.
164*>          LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
165*> \endverbatim
166*>
167*> \param[out] RWORK
168*> \verbatim
169*>          RWORK is DOUBLE PRECISION array, dimension (2*N)
170*>          if NCVT = NRU = NCC = 0, (max(1, 4*N-4)) otherwise
171*> \endverbatim
172*>
173*> \param[out] INFO
174*> \verbatim
175*>          INFO is INTEGER
176*>          = 0:  successful exit
177*>          < 0:  If INFO = -i, the i-th argument had an illegal value
178*>          > 0:  the algorithm did not converge; D and E contain the
179*>                elements of a bidiagonal matrix which is orthogonally
180*>                similar to the input matrix B;  if INFO = i, i
181*>                elements of E have not converged to zero.
182*> \endverbatim
183*
184*> \par Internal Parameters:
185*  =========================
186*>
187*> \verbatim
188*>  TOLMUL  DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
189*>          TOLMUL controls the convergence criterion of the QR loop.
190*>          If it is positive, TOLMUL*EPS is the desired relative
191*>             precision in the computed singular values.
192*>          If it is negative, abs(TOLMUL*EPS*sigma_max) is the
193*>             desired absolute accuracy in the computed singular
194*>             values (corresponds to relative accuracy
195*>             abs(TOLMUL*EPS) in the largest singular value.
196*>          abs(TOLMUL) should be between 1 and 1/EPS, and preferably
197*>             between 10 (for fast convergence) and .1/EPS
198*>             (for there to be some accuracy in the results).
199*>          Default is to lose at either one eighth or 2 of the
200*>             available decimal digits in each computed singular value
201*>             (whichever is smaller).
202*>
203*>  MAXITR  INTEGER, default = 6
204*>          MAXITR controls the maximum number of passes of the
205*>          algorithm through its inner loop. The algorithms stops
206*>          (and so fails to converge) if the number of passes
207*>          through the inner loop exceeds MAXITR*N**2.
208*> \endverbatim
209*
210*  Authors:
211*  ========
212*
213*> \author Univ. of Tennessee
214*> \author Univ. of California Berkeley
215*> \author Univ. of Colorado Denver
216*> \author NAG Ltd.
217*
218*> \date November 2011
219*
220*> \ingroup complex16OTHERcomputational
221*
222*  =====================================================================
223      SUBROUTINE ZBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
224     $                   LDU, C, LDC, RWORK, INFO )
225*
226*  -- LAPACK computational routine (version 3.4.0) --
227*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
228*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
229*     November 2011
230*
231*     .. Scalar Arguments ..
232      CHARACTER          UPLO
233      INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
234*     ..
235*     .. Array Arguments ..
236      DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
237      COMPLEX*16         C( LDC, * ), U( LDU, * ), VT( LDVT, * )
238*     ..
239*
240*  =====================================================================
241*
242*     .. Parameters ..
243      DOUBLE PRECISION   ZERO
244      PARAMETER          ( ZERO = 0.0D0 )
245      DOUBLE PRECISION   ONE
246      PARAMETER          ( ONE = 1.0D0 )
247      DOUBLE PRECISION   NEGONE
248      PARAMETER          ( NEGONE = -1.0D0 )
249      DOUBLE PRECISION   HNDRTH
250      PARAMETER          ( HNDRTH = 0.01D0 )
251      DOUBLE PRECISION   TEN
252      PARAMETER          ( TEN = 10.0D0 )
253      DOUBLE PRECISION   HNDRD
254      PARAMETER          ( HNDRD = 100.0D0 )
255      DOUBLE PRECISION   MEIGTH
256      PARAMETER          ( MEIGTH = -0.125D0 )
257      INTEGER            MAXITR
258      PARAMETER          ( MAXITR = 6 )
259*     ..
260*     .. Local Scalars ..
261      LOGICAL            LOWER, ROTATE
262      INTEGER            I, IDIR, ISUB, ITER, J, LL, LLL, M, MAXIT, NM1,
263     $                   NM12, NM13, OLDLL, OLDM
264      DOUBLE PRECISION   ABSE, ABSS, COSL, COSR, CS, EPS, F, G, H, MU,
265     $                   OLDCS, OLDSN, R, SHIFT, SIGMN, SIGMX, SINL,
266     $                   SINR, SLL, SMAX, SMIN, SMINL, SMINOA,
267     $                   SN, THRESH, TOL, TOLMUL, UNFL
268*     ..
269*     .. External Functions ..
270      LOGICAL            LSAME
271      DOUBLE PRECISION   DLAMCH
272      EXTERNAL           LSAME, DLAMCH
273*     ..
274*     .. External Subroutines ..
275      EXTERNAL           DLARTG, DLAS2, DLASQ1, DLASV2, XERBLA, ZDROT,
276     $                   ZDSCAL, ZLASR, ZSWAP
277*     ..
278*     .. Intrinsic Functions ..
279      INTRINSIC          ABS, DBLE, MAX, MIN, SIGN, SQRT
280*     ..
281*     .. Executable Statements ..
282*
283*     Test the input parameters.
284*
285      INFO = 0
286      LOWER = LSAME( UPLO, 'L' )
287      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
288         INFO = -1
289      ELSE IF( N.LT.0 ) THEN
290         INFO = -2
291      ELSE IF( NCVT.LT.0 ) THEN
292         INFO = -3
293      ELSE IF( NRU.LT.0 ) THEN
294         INFO = -4
295      ELSE IF( NCC.LT.0 ) THEN
296         INFO = -5
297      ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
298     $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
299         INFO = -9
300      ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
301         INFO = -11
302      ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
303     $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
304         INFO = -13
305      END IF
306      IF( INFO.NE.0 ) THEN
307         CALL XERBLA( 'ZBDSQR', -INFO )
308         RETURN
309      END IF
310      IF( N.EQ.0 )
311     $   RETURN
312      IF( N.EQ.1 )
313     $   GO TO 160
314*
315*     ROTATE is true if any singular vectors desired, false otherwise
316*
317      ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
318*
319*     If no singular vectors desired, use qd algorithm
320*
321      IF( .NOT.ROTATE ) THEN
322         CALL DLASQ1( N, D, E, RWORK, INFO )
323*
324*     If INFO equals 2, dqds didn't finish, try to finish
325*
326         IF( INFO .NE. 2 ) RETURN
327         INFO = 0
328      END IF
329*
330      NM1 = N - 1
331      NM12 = NM1 + NM1
332      NM13 = NM12 + NM1
333      IDIR = 0
334*
335*     Get machine constants
336*
337      EPS = DLAMCH( 'Epsilon' )
338      UNFL = DLAMCH( 'Safe minimum' )
339*
340*     If matrix lower bidiagonal, rotate to be upper bidiagonal
341*     by applying Givens rotations on the left
342*
343      IF( LOWER ) THEN
344         DO 10 I = 1, N - 1
345            CALL DLARTG( D( I ), E( I ), CS, SN, R )
346            D( I ) = R
347            E( I ) = SN*D( I+1 )
348            D( I+1 ) = CS*D( I+1 )
349            RWORK( I ) = CS
350            RWORK( NM1+I ) = SN
351   10    CONTINUE
352*
353*        Update singular vectors if desired
354*
355         IF( NRU.GT.0 )
356     $      CALL ZLASR( 'R', 'V', 'F', NRU, N, RWORK( 1 ), RWORK( N ),
357     $                  U, LDU )
358         IF( NCC.GT.0 )
359     $      CALL ZLASR( 'L', 'V', 'F', N, NCC, RWORK( 1 ), RWORK( N ),
360     $                  C, LDC )
361      END IF
362*
363*     Compute singular values to relative accuracy TOL
364*     (By setting TOL to be negative, algorithm will compute
365*     singular values to absolute accuracy ABS(TOL)*norm(input matrix))
366*
367      TOLMUL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )
368      TOL = TOLMUL*EPS
369*
370*     Compute approximate maximum, minimum singular values
371*
372      SMAX = ZERO
373      DO 20 I = 1, N
374         SMAX = MAX( SMAX, ABS( D( I ) ) )
375   20 CONTINUE
376      DO 30 I = 1, N - 1
377         SMAX = MAX( SMAX, ABS( E( I ) ) )
378   30 CONTINUE
379      SMINL = ZERO
380      IF( TOL.GE.ZERO ) THEN
381*
382*        Relative accuracy desired
383*
384         SMINOA = ABS( D( 1 ) )
385         IF( SMINOA.EQ.ZERO )
386     $      GO TO 50
387         MU = SMINOA
388         DO 40 I = 2, N
389            MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
390            SMINOA = MIN( SMINOA, MU )
391            IF( SMINOA.EQ.ZERO )
392     $         GO TO 50
393   40    CONTINUE
394   50    CONTINUE
395         SMINOA = SMINOA / SQRT( DBLE( N ) )
396         THRESH = MAX( TOL*SMINOA, MAXITR*N*N*UNFL )
397      ELSE
398*
399*        Absolute accuracy desired
400*
401         THRESH = MAX( ABS( TOL )*SMAX, MAXITR*N*N*UNFL )
402      END IF
403*
404*     Prepare for main iteration loop for the singular values
405*     (MAXIT is the maximum number of passes through the inner
406*     loop permitted before nonconvergence signalled.)
407*
408      MAXIT = MAXITR*N*N
409      ITER = 0
410      OLDLL = -1
411      OLDM = -1
412*
413*     M points to last element of unconverged part of matrix
414*
415      M = N
416*
417*     Begin main iteration loop
418*
419   60 CONTINUE
420*
421*     Check for convergence or exceeding iteration count
422*
423      IF( M.LE.1 )
424     $   GO TO 160
425      IF( ITER.GT.MAXIT )
426     $   GO TO 200
427*
428*     Find diagonal block of matrix to work on
429*
430      IF( TOL.LT.ZERO .AND. ABS( D( M ) ).LE.THRESH )
431     $   D( M ) = ZERO
432      SMAX = ABS( D( M ) )
433      SMIN = SMAX
434      DO 70 LLL = 1, M - 1
435         LL = M - LLL
436         ABSS = ABS( D( LL ) )
437         ABSE = ABS( E( LL ) )
438         IF( TOL.LT.ZERO .AND. ABSS.LE.THRESH )
439     $      D( LL ) = ZERO
440         IF( ABSE.LE.THRESH )
441     $      GO TO 80
442         SMIN = MIN( SMIN, ABSS )
443         SMAX = MAX( SMAX, ABSS, ABSE )
444   70 CONTINUE
445      LL = 0
446      GO TO 90
447   80 CONTINUE
448      E( LL ) = ZERO
449*
450*     Matrix splits since E(LL) = 0
451*
452      IF( LL.EQ.M-1 ) THEN
453*
454*        Convergence of bottom singular value, return to top of loop
455*
456         M = M - 1
457         GO TO 60
458      END IF
459   90 CONTINUE
460      LL = LL + 1
461*
462*     E(LL) through E(M-1) are nonzero, E(LL-1) is zero
463*
464      IF( LL.EQ.M-1 ) THEN
465*
466*        2 by 2 block, handle separately
467*
468         CALL DLASV2( D( M-1 ), E( M-1 ), D( M ), SIGMN, SIGMX, SINR,
469     $                COSR, SINL, COSL )
470         D( M-1 ) = SIGMX
471         E( M-1 ) = ZERO
472         D( M ) = SIGMN
473*
474*        Compute singular vectors, if desired
475*
476         IF( NCVT.GT.0 )
477     $      CALL ZDROT( NCVT, VT( M-1, 1 ), LDVT, VT( M, 1 ), LDVT,
478     $                  COSR, SINR )
479         IF( NRU.GT.0 )
480     $      CALL ZDROT( NRU, U( 1, M-1 ), 1, U( 1, M ), 1, COSL, SINL )
481         IF( NCC.GT.0 )
482     $      CALL ZDROT( NCC, C( M-1, 1 ), LDC, C( M, 1 ), LDC, COSL,
483     $                  SINL )
484         M = M - 2
485         GO TO 60
486      END IF
487*
488*     If working on new submatrix, choose shift direction
489*     (from larger end diagonal element towards smaller)
490*
491      IF( LL.GT.OLDM .OR. M.LT.OLDLL ) THEN
492         IF( ABS( D( LL ) ).GE.ABS( D( M ) ) ) THEN
493*
494*           Chase bulge from top (big end) to bottom (small end)
495*
496            IDIR = 1
497         ELSE
498*
499*           Chase bulge from bottom (big end) to top (small end)
500*
501            IDIR = 2
502         END IF
503      END IF
504*
505*     Apply convergence tests
506*
507      IF( IDIR.EQ.1 ) THEN
508*
509*        Run convergence test in forward direction
510*        First apply standard test to bottom of matrix
511*
512         IF( ABS( E( M-1 ) ).LE.ABS( TOL )*ABS( D( M ) ) .OR.
513     $       ( TOL.LT.ZERO .AND. ABS( E( M-1 ) ).LE.THRESH ) ) THEN
514            E( M-1 ) = ZERO
515            GO TO 60
516         END IF
517*
518         IF( TOL.GE.ZERO ) THEN
519*
520*           If relative accuracy desired,
521*           apply convergence criterion forward
522*
523            MU = ABS( D( LL ) )
524            SMINL = MU
525            DO 100 LLL = LL, M - 1
526               IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
527                  E( LLL ) = ZERO
528                  GO TO 60
529               END IF
530               MU = ABS( D( LLL+1 ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
531               SMINL = MIN( SMINL, MU )
532  100       CONTINUE
533         END IF
534*
535      ELSE
536*
537*        Run convergence test in backward direction
538*        First apply standard test to top of matrix
539*
540         IF( ABS( E( LL ) ).LE.ABS( TOL )*ABS( D( LL ) ) .OR.
541     $       ( TOL.LT.ZERO .AND. ABS( E( LL ) ).LE.THRESH ) ) THEN
542            E( LL ) = ZERO
543            GO TO 60
544         END IF
545*
546         IF( TOL.GE.ZERO ) THEN
547*
548*           If relative accuracy desired,
549*           apply convergence criterion backward
550*
551            MU = ABS( D( M ) )
552            SMINL = MU
553            DO 110 LLL = M - 1, LL, -1
554               IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
555                  E( LLL ) = ZERO
556                  GO TO 60
557               END IF
558               MU = ABS( D( LLL ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
559               SMINL = MIN( SMINL, MU )
560  110       CONTINUE
561         END IF
562      END IF
563      OLDLL = LL
564      OLDM = M
565*
566*     Compute shift.  First, test if shifting would ruin relative
567*     accuracy, and if so set the shift to zero.
568*
569      IF( TOL.GE.ZERO .AND. N*TOL*( SMINL / SMAX ).LE.
570     $    MAX( EPS, HNDRTH*TOL ) ) THEN
571*
572*        Use a zero shift to avoid loss of relative accuracy
573*
574         SHIFT = ZERO
575      ELSE
576*
577*        Compute the shift from 2-by-2 block at end of matrix
578*
579         IF( IDIR.EQ.1 ) THEN
580            SLL = ABS( D( LL ) )
581            CALL DLAS2( D( M-1 ), E( M-1 ), D( M ), SHIFT, R )
582         ELSE
583            SLL = ABS( D( M ) )
584            CALL DLAS2( D( LL ), E( LL ), D( LL+1 ), SHIFT, R )
585         END IF
586*
587*        Test if shift negligible, and if so set to zero
588*
589         IF( SLL.GT.ZERO ) THEN
590            IF( ( SHIFT / SLL )**2.LT.EPS )
591     $         SHIFT = ZERO
592         END IF
593      END IF
594*
595*     Increment iteration count
596*
597      ITER = ITER + M - LL
598*
599*     If SHIFT = 0, do simplified QR iteration
600*
601      IF( SHIFT.EQ.ZERO ) THEN
602         IF( IDIR.EQ.1 ) THEN
603*
604*           Chase bulge from top to bottom
605*           Save cosines and sines for later singular vector updates
606*
607            CS = ONE
608            OLDCS = ONE
609            DO 120 I = LL, M - 1
610               CALL DLARTG( D( I )*CS, E( I ), CS, SN, R )
611               IF( I.GT.LL )
612     $            E( I-1 ) = OLDSN*R
613               CALL DLARTG( OLDCS*R, D( I+1 )*SN, OLDCS, OLDSN, D( I ) )
614               RWORK( I-LL+1 ) = CS
615               RWORK( I-LL+1+NM1 ) = SN
616               RWORK( I-LL+1+NM12 ) = OLDCS
617               RWORK( I-LL+1+NM13 ) = OLDSN
618  120       CONTINUE
619            H = D( M )*CS
620            D( M ) = H*OLDCS
621            E( M-1 ) = H*OLDSN
622*
623*           Update singular vectors
624*
625            IF( NCVT.GT.0 )
626     $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ),
627     $                     RWORK( N ), VT( LL, 1 ), LDVT )
628            IF( NRU.GT.0 )
629     $         CALL ZLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ),
630     $                     RWORK( NM13+1 ), U( 1, LL ), LDU )
631            IF( NCC.GT.0 )
632     $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ),
633     $                     RWORK( NM13+1 ), C( LL, 1 ), LDC )
634*
635*           Test convergence
636*
637            IF( ABS( E( M-1 ) ).LE.THRESH )
638     $         E( M-1 ) = ZERO
639*
640         ELSE
641*
642*           Chase bulge from bottom to top
643*           Save cosines and sines for later singular vector updates
644*
645            CS = ONE
646            OLDCS = ONE
647            DO 130 I = M, LL + 1, -1
648               CALL DLARTG( D( I )*CS, E( I-1 ), CS, SN, R )
649               IF( I.LT.M )
650     $            E( I ) = OLDSN*R
651               CALL DLARTG( OLDCS*R, D( I-1 )*SN, OLDCS, OLDSN, D( I ) )
652               RWORK( I-LL ) = CS
653               RWORK( I-LL+NM1 ) = -SN
654               RWORK( I-LL+NM12 ) = OLDCS
655               RWORK( I-LL+NM13 ) = -OLDSN
656  130       CONTINUE
657            H = D( LL )*CS
658            D( LL ) = H*OLDCS
659            E( LL ) = H*OLDSN
660*
661*           Update singular vectors
662*
663            IF( NCVT.GT.0 )
664     $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ),
665     $                     RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
666            IF( NRU.GT.0 )
667     $         CALL ZLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ),
668     $                     RWORK( N ), U( 1, LL ), LDU )
669            IF( NCC.GT.0 )
670     $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ),
671     $                     RWORK( N ), C( LL, 1 ), LDC )
672*
673*           Test convergence
674*
675            IF( ABS( E( LL ) ).LE.THRESH )
676     $         E( LL ) = ZERO
677         END IF
678      ELSE
679*
680*        Use nonzero shift
681*
682         IF( IDIR.EQ.1 ) THEN
683*
684*           Chase bulge from top to bottom
685*           Save cosines and sines for later singular vector updates
686*
687            F = ( ABS( D( LL ) )-SHIFT )*
688     $          ( SIGN( ONE, D( LL ) )+SHIFT / D( LL ) )
689            G = E( LL )
690            DO 140 I = LL, M - 1
691               CALL DLARTG( F, G, COSR, SINR, R )
692               IF( I.GT.LL )
693     $            E( I-1 ) = R
694               F = COSR*D( I ) + SINR*E( I )
695               E( I ) = COSR*E( I ) - SINR*D( I )
696               G = SINR*D( I+1 )
697               D( I+1 ) = COSR*D( I+1 )
698               CALL DLARTG( F, G, COSL, SINL, R )
699               D( I ) = R
700               F = COSL*E( I ) + SINL*D( I+1 )
701               D( I+1 ) = COSL*D( I+1 ) - SINL*E( I )
702               IF( I.LT.M-1 ) THEN
703                  G = SINL*E( I+1 )
704                  E( I+1 ) = COSL*E( I+1 )
705               END IF
706               RWORK( I-LL+1 ) = COSR
707               RWORK( I-LL+1+NM1 ) = SINR
708               RWORK( I-LL+1+NM12 ) = COSL
709               RWORK( I-LL+1+NM13 ) = SINL
710  140       CONTINUE
711            E( M-1 ) = F
712*
713*           Update singular vectors
714*
715            IF( NCVT.GT.0 )
716     $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ),
717     $                     RWORK( N ), VT( LL, 1 ), LDVT )
718            IF( NRU.GT.0 )
719     $         CALL ZLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ),
720     $                     RWORK( NM13+1 ), U( 1, LL ), LDU )
721            IF( NCC.GT.0 )
722     $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ),
723     $                     RWORK( NM13+1 ), C( LL, 1 ), LDC )
724*
725*           Test convergence
726*
727            IF( ABS( E( M-1 ) ).LE.THRESH )
728     $         E( M-1 ) = ZERO
729*
730         ELSE
731*
732*           Chase bulge from bottom to top
733*           Save cosines and sines for later singular vector updates
734*
735            F = ( ABS( D( M ) )-SHIFT )*( SIGN( ONE, D( M ) )+SHIFT /
736     $          D( M ) )
737            G = E( M-1 )
738            DO 150 I = M, LL + 1, -1
739               CALL DLARTG( F, G, COSR, SINR, R )
740               IF( I.LT.M )
741     $            E( I ) = R
742               F = COSR*D( I ) + SINR*E( I-1 )
743               E( I-1 ) = COSR*E( I-1 ) - SINR*D( I )
744               G = SINR*D( I-1 )
745               D( I-1 ) = COSR*D( I-1 )
746               CALL DLARTG( F, G, COSL, SINL, R )
747               D( I ) = R
748               F = COSL*E( I-1 ) + SINL*D( I-1 )
749               D( I-1 ) = COSL*D( I-1 ) - SINL*E( I-1 )
750               IF( I.GT.LL+1 ) THEN
751                  G = SINL*E( I-2 )
752                  E( I-2 ) = COSL*E( I-2 )
753               END IF
754               RWORK( I-LL ) = COSR
755               RWORK( I-LL+NM1 ) = -SINR
756               RWORK( I-LL+NM12 ) = COSL
757               RWORK( I-LL+NM13 ) = -SINL
758  150       CONTINUE
759            E( LL ) = F
760*
761*           Test convergence
762*
763            IF( ABS( E( LL ) ).LE.THRESH )
764     $         E( LL ) = ZERO
765*
766*           Update singular vectors if desired
767*
768            IF( NCVT.GT.0 )
769     $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ),
770     $                     RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
771            IF( NRU.GT.0 )
772     $         CALL ZLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ),
773     $                     RWORK( N ), U( 1, LL ), LDU )
774            IF( NCC.GT.0 )
775     $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ),
776     $                     RWORK( N ), C( LL, 1 ), LDC )
777         END IF
778      END IF
779*
780*     QR iteration finished, go back and check convergence
781*
782      GO TO 60
783*
784*     All singular values converged, so make them positive
785*
786  160 CONTINUE
787      DO 170 I = 1, N
788         IF( D( I ).LT.ZERO ) THEN
789            D( I ) = -D( I )
790*
791*           Change sign of singular vectors, if desired
792*
793            IF( NCVT.GT.0 )
794     $         CALL ZDSCAL( NCVT, NEGONE, VT( I, 1 ), LDVT )
795         END IF
796  170 CONTINUE
797*
798*     Sort the singular values into decreasing order (insertion sort on
799*     singular values, but only one transposition per singular vector)
800*
801      DO 190 I = 1, N - 1
802*
803*        Scan for smallest D(I)
804*
805         ISUB = 1
806         SMIN = D( 1 )
807         DO 180 J = 2, N + 1 - I
808            IF( D( J ).LE.SMIN ) THEN
809               ISUB = J
810               SMIN = D( J )
811            END IF
812  180    CONTINUE
813         IF( ISUB.NE.N+1-I ) THEN
814*
815*           Swap singular values and vectors
816*
817            D( ISUB ) = D( N+1-I )
818            D( N+1-I ) = SMIN
819            IF( NCVT.GT.0 )
820     $         CALL ZSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( N+1-I, 1 ),
821     $                     LDVT )
822            IF( NRU.GT.0 )
823     $         CALL ZSWAP( NRU, U( 1, ISUB ), 1, U( 1, N+1-I ), 1 )
824            IF( NCC.GT.0 )
825     $         CALL ZSWAP( NCC, C( ISUB, 1 ), LDC, C( N+1-I, 1 ), LDC )
826         END IF
827  190 CONTINUE
828      GO TO 220
829*
830*     Maximum number of iterations exceeded, failure to converge
831*
832  200 CONTINUE
833      INFO = 0
834      DO 210 I = 1, N - 1
835         IF( E( I ).NE.ZERO )
836     $      INFO = INFO + 1
837  210 CONTINUE
838  220 CONTINUE
839      RETURN
840*
841*     End of ZBDSQR
842*
843      END
844c $Id$
845