1 //=======================================================================
2 // Copyright (c) 2018 Yi Ji
3 //
4 // Distributed under the Boost Software License, Version 1.0.
5 // (See accompanying file LICENSE_1_0.txt or copy at
6 // http://www.boost.org/LICENSE_1_0.txt)
7 //
8 //=======================================================================
9 
10 #ifndef BOOST_GRAPH_MAXIMUM_WEIGHTED_MATCHING_HPP
11 #define BOOST_GRAPH_MAXIMUM_WEIGHTED_MATCHING_HPP
12 
13 #include <algorithm> // for std::iter_swap
14 #include <boost/shared_ptr.hpp>
15 #include <boost/make_shared.hpp>
16 #include <boost/graph/max_cardinality_matching.hpp>
17 
18 namespace boost
19 {
20 template < typename Graph, typename MateMap, typename VertexIndexMap >
21 typename property_traits<
22     typename property_map< Graph, edge_weight_t >::type >::value_type
matching_weight_sum(const Graph & g,MateMap mate,VertexIndexMap vm)23 matching_weight_sum(const Graph& g, MateMap mate, VertexIndexMap vm)
24 {
25     typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
26     typedef
27         typename graph_traits< Graph >::vertex_descriptor vertex_descriptor_t;
28     typedef typename property_traits< typename property_map< Graph,
29         edge_weight_t >::type >::value_type edge_property_t;
30 
31     edge_property_t weight_sum = 0;
32     vertex_iterator_t vi, vi_end;
33 
34     for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
35     {
36         vertex_descriptor_t v = *vi;
37         if (get(mate, v) != graph_traits< Graph >::null_vertex()
38             && get(vm, v) < get(vm, get(mate, v)))
39             weight_sum += get(edge_weight, g, edge(v, mate[v], g).first);
40     }
41     return weight_sum;
42 }
43 
44 template < typename Graph, typename MateMap >
45 inline typename property_traits<
46     typename property_map< Graph, edge_weight_t >::type >::value_type
matching_weight_sum(const Graph & g,MateMap mate)47 matching_weight_sum(const Graph& g, MateMap mate)
48 {
49     return matching_weight_sum(g, mate, get(vertex_index, g));
50 }
51 
52 template < typename Graph, typename MateMap, typename VertexIndexMap >
53 class weighted_augmenting_path_finder
54 {
55 public:
56     template < typename T > struct map_vertex_to_
57     {
58         typedef boost::iterator_property_map<
59             typename std::vector< T >::iterator, VertexIndexMap >
60             type;
61     };
62     typedef typename graph::detail::VERTEX_STATE vertex_state_t;
63     typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
64     typedef
65         typename graph_traits< Graph >::vertex_descriptor vertex_descriptor_t;
66     typedef typename std::vector< vertex_descriptor_t >::const_iterator
67         vertex_vec_iter_t;
68     typedef
69         typename graph_traits< Graph >::out_edge_iterator out_edge_iterator_t;
70     typedef typename graph_traits< Graph >::edge_descriptor edge_descriptor_t;
71     typedef typename graph_traits< Graph >::edge_iterator edge_iterator_t;
72     typedef typename property_traits< typename property_map< Graph,
73         edge_weight_t >::type >::value_type edge_property_t;
74     typedef std::deque< vertex_descriptor_t > vertex_list_t;
75     typedef std::vector< edge_descriptor_t > edge_list_t;
76     typedef typename map_vertex_to_< vertex_descriptor_t >::type
77         vertex_to_vertex_map_t;
78     typedef
79         typename map_vertex_to_< edge_property_t >::type vertex_to_weight_map_t;
80     typedef typename map_vertex_to_< bool >::type vertex_to_bool_map_t;
81     typedef typename map_vertex_to_< std::pair< vertex_descriptor_t,
82         vertex_descriptor_t > >::type vertex_to_pair_map_t;
83     typedef
84         typename map_vertex_to_< std::pair< edge_descriptor_t, bool > >::type
85             vertex_to_edge_map_t;
86     typedef typename map_vertex_to_< vertex_to_edge_map_t >::type
87         vertex_pair_to_edge_map_t;
88 
89     class blossom
90     {
91     public:
92         typedef boost::shared_ptr< blossom > blossom_ptr_t;
93         std::vector< blossom_ptr_t > sub_blossoms;
94         edge_property_t dual_var;
95         blossom_ptr_t father;
96 
blossom()97         blossom() : dual_var(0), father(blossom_ptr_t()) {}
98 
99         // get the base vertex of a blossom by recursively getting
100         // its base sub-blossom, which is always the first one in
101         // sub_blossoms because of how we create and maintain blossoms
get_base() const102         virtual vertex_descriptor_t get_base() const
103         {
104             const blossom* b = this;
105             while (!b->sub_blossoms.empty())
106                 b = b->sub_blossoms[0].get();
107             return b->get_base();
108         }
109 
110         // set a sub-blossom as a blossom's base by exchanging it
111         // with its first sub-blossom
set_base(const blossom_ptr_t & sub)112         void set_base(const blossom_ptr_t& sub)
113         {
114             for (blossom_iterator_t bi = sub_blossoms.begin();
115                  bi != sub_blossoms.end(); ++bi)
116             {
117                 if (sub.get() == bi->get())
118                 {
119                     std::iter_swap(sub_blossoms.begin(), bi);
120                     break;
121                 }
122             }
123         }
124 
125         // get all vertices inside recursively
vertices() const126         virtual std::vector< vertex_descriptor_t > vertices() const
127         {
128             std::vector< vertex_descriptor_t > all_vertices;
129             for (typename std::vector< blossom_ptr_t >::const_iterator bi
130                  = sub_blossoms.begin();
131                  bi != sub_blossoms.end(); ++bi)
132             {
133                 std::vector< vertex_descriptor_t > some_vertices
134                     = (*bi)->vertices();
135                 all_vertices.insert(all_vertices.end(), some_vertices.begin(),
136                     some_vertices.end());
137             }
138             return all_vertices;
139         }
140     };
141 
142     // a trivial_blossom only has one vertex and no sub-blossom;
143     // for each vertex v, in_blossom[v] is the trivial_blossom that contains it
144     // directly
145     class trivial_blossom : public blossom
146     {
147     public:
trivial_blossom(vertex_descriptor_t v)148         trivial_blossom(vertex_descriptor_t v) : trivial_vertex(v) {}
get_base() const149         virtual vertex_descriptor_t get_base() const { return trivial_vertex; }
150 
vertices() const151         virtual std::vector< vertex_descriptor_t > vertices() const
152         {
153             std::vector< vertex_descriptor_t > all_vertices;
154             all_vertices.push_back(trivial_vertex);
155             return all_vertices;
156         }
157 
158     private:
159         vertex_descriptor_t trivial_vertex;
160     };
161 
162     typedef boost::shared_ptr< blossom > blossom_ptr_t;
163     typedef typename std::vector< blossom_ptr_t >::iterator blossom_iterator_t;
164     typedef
165         typename map_vertex_to_< blossom_ptr_t >::type vertex_to_blossom_map_t;
166 
weighted_augmenting_path_finder(const Graph & arg_g,MateMap arg_mate,VertexIndexMap arg_vm)167     weighted_augmenting_path_finder(
168         const Graph& arg_g, MateMap arg_mate, VertexIndexMap arg_vm)
169     : g(arg_g)
170     , vm(arg_vm)
171     , null_edge(std::pair< edge_descriptor_t, bool >(
172           num_edges(g) == 0 ? edge_descriptor_t() : *edges(g).first, false))
173     , mate_vector(num_vertices(g))
174     , label_S_vector(num_vertices(g), graph_traits< Graph >::null_vertex())
175     , label_T_vector(num_vertices(g), graph_traits< Graph >::null_vertex())
176     , outlet_vector(num_vertices(g), graph_traits< Graph >::null_vertex())
177     , tau_idx_vector(num_vertices(g), graph_traits< Graph >::null_vertex())
178     , dual_var_vector(std::vector< edge_property_t >(
179           num_vertices(g), std::numeric_limits< edge_property_t >::min()))
180     , pi_vector(std::vector< edge_property_t >(
181           num_vertices(g), std::numeric_limits< edge_property_t >::max()))
182     , gamma_vector(std::vector< edge_property_t >(
183           num_vertices(g), std::numeric_limits< edge_property_t >::max()))
184     , tau_vector(std::vector< edge_property_t >(
185           num_vertices(g), std::numeric_limits< edge_property_t >::max()))
186     , in_blossom_vector(num_vertices(g))
187     , old_label_vector(num_vertices(g))
188     , critical_edge_vectors(num_vertices(g),
189           std::vector< std::pair< edge_descriptor_t, bool > >(
190               num_vertices(g), null_edge))
191     ,
192 
193         mate(mate_vector.begin(), vm)
194     , label_S(label_S_vector.begin(), vm)
195     , label_T(label_T_vector.begin(), vm)
196     , outlet(outlet_vector.begin(), vm)
197     , tau_idx(tau_idx_vector.begin(), vm)
198     , dual_var(dual_var_vector.begin(), vm)
199     , pi(pi_vector.begin(), vm)
200     , gamma(gamma_vector.begin(), vm)
201     , tau(tau_vector.begin(), vm)
202     , in_blossom(in_blossom_vector.begin(), vm)
203     , old_label(old_label_vector.begin(), vm)
204     {
205         vertex_iterator_t vi, vi_end;
206         edge_iterator_t ei, ei_end;
207 
208         edge_property_t max_weight
209             = std::numeric_limits< edge_property_t >::min();
210         for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
211             max_weight = std::max(max_weight, get(edge_weight, g, *ei));
212 
213         typename std::vector<
214             std::vector< std::pair< edge_descriptor_t, bool > > >::iterator vei;
215 
216         for (boost::tie(vi, vi_end) = vertices(g),
217                             vei = critical_edge_vectors.begin();
218              vi != vi_end; ++vi, ++vei)
219         {
220             vertex_descriptor_t u = *vi;
221             mate[u] = get(arg_mate, u);
222             dual_var[u] = 2 * max_weight;
223             in_blossom[u] = boost::make_shared< trivial_blossom >(u);
224             outlet[u] = u;
225             critical_edge_vector.push_back(
226                 vertex_to_edge_map_t(vei->begin(), vm));
227         }
228 
229         critical_edge
230             = vertex_pair_to_edge_map_t(critical_edge_vector.begin(), vm);
231 
232         init();
233     }
234 
235     // return the top blossom where v is contained inside
in_top_blossom(vertex_descriptor_t v) const236     blossom_ptr_t in_top_blossom(vertex_descriptor_t v) const
237     {
238         blossom_ptr_t b = in_blossom[v];
239         while (b->father != blossom_ptr_t())
240             b = b->father;
241         return b;
242     }
243 
244     // check if vertex v is in blossom b
is_in_blossom(blossom_ptr_t b,vertex_descriptor_t v) const245     bool is_in_blossom(blossom_ptr_t b, vertex_descriptor_t v) const
246     {
247         if (v == graph_traits< Graph >::null_vertex())
248             return false;
249         blossom_ptr_t vb = in_blossom[v]->father;
250         while (vb != blossom_ptr_t())
251         {
252             if (vb.get() == b.get())
253                 return true;
254             vb = vb->father;
255         }
256         return false;
257     }
258 
259     // return the base vertex of the top blossom that contains v
base_vertex(vertex_descriptor_t v) const260     inline vertex_descriptor_t base_vertex(vertex_descriptor_t v) const
261     {
262         return in_top_blossom(v)->get_base();
263     }
264 
265     // add an existed top blossom of base vertex v into new top
266     // blossom b as its sub-blossom
add_sub_blossom(blossom_ptr_t b,vertex_descriptor_t v)267     void add_sub_blossom(blossom_ptr_t b, vertex_descriptor_t v)
268     {
269         blossom_ptr_t sub = in_top_blossom(v);
270         sub->father = b;
271         b->sub_blossoms.push_back(sub);
272         if (sub->sub_blossoms.empty())
273             return;
274         for (blossom_iterator_t bi = top_blossoms.begin();
275              bi != top_blossoms.end(); ++bi)
276         {
277             if (bi->get() == sub.get())
278             {
279                 top_blossoms.erase(bi);
280                 break;
281             }
282         }
283     }
284 
285     // when a top blossom is created or its base vertex getting an S-label,
286     // add all edges incident to this blossom into even_edges
bloom(blossom_ptr_t b)287     void bloom(blossom_ptr_t b)
288     {
289         std::vector< vertex_descriptor_t > vertices_of_b = b->vertices();
290         vertex_vec_iter_t vi;
291         for (vi = vertices_of_b.begin(); vi != vertices_of_b.end(); ++vi)
292         {
293             out_edge_iterator_t oei, oei_end;
294             for (boost::tie(oei, oei_end) = out_edges(*vi, g); oei != oei_end;
295                  ++oei)
296             {
297                 if (target(*oei, g) != *vi && mate[*vi] != target(*oei, g))
298                     even_edges.push_back(*oei);
299             }
300         }
301     }
302 
303     // assigning a T-label to a non S-vertex, along with outlet and updating pi
304     // value if updated pi[v] equals zero, augment the matching from its mate
305     // vertex
put_T_label(vertex_descriptor_t v,vertex_descriptor_t T_label,vertex_descriptor_t outlet_v,edge_property_t pi_v)306     void put_T_label(vertex_descriptor_t v, vertex_descriptor_t T_label,
307         vertex_descriptor_t outlet_v, edge_property_t pi_v)
308     {
309         if (label_S[v] != graph_traits< Graph >::null_vertex())
310             return;
311 
312         label_T[v] = T_label;
313         outlet[v] = outlet_v;
314         pi[v] = pi_v;
315 
316         vertex_descriptor_t v_mate = mate[v];
317         if (pi[v] == 0)
318         {
319             label_T[v_mate] = graph_traits< Graph >::null_vertex();
320             label_S[v_mate] = v;
321             bloom(in_top_blossom(v_mate));
322         }
323     }
324 
325     // get the missing T-label for a to-be-expanded base vertex
326     // the missing T-label is the last vertex of the path from outlet[v] to v
missing_label(vertex_descriptor_t b_base)327     std::pair< vertex_descriptor_t, vertex_descriptor_t > missing_label(
328         vertex_descriptor_t b_base)
329     {
330         vertex_descriptor_t missing_outlet = outlet[b_base];
331 
332         if (outlet[b_base] == b_base)
333             return std::make_pair(
334                 graph_traits< Graph >::null_vertex(), missing_outlet);
335 
336         vertex_iterator_t vi, vi_end;
337         for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
338             old_label[*vi] = std::make_pair(label_T[*vi], outlet[*vi]);
339 
340         std::pair< vertex_descriptor_t, vertex_state_t > child(
341             outlet[b_base], graph::detail::V_EVEN);
342         blossom_ptr_t b = in_blossom[child.first];
343         for (; b->father->father != blossom_ptr_t(); b = b->father)
344             ;
345         child.first = b->get_base();
346 
347         if (child.first == b_base)
348             return std::make_pair(
349                 graph_traits< Graph >::null_vertex(), missing_outlet);
350 
351         while (true)
352         {
353             std::pair< vertex_descriptor_t, vertex_state_t > child_parent
354                 = parent(child, true);
355 
356             for (b = in_blossom[child_parent.first];
357                  b->father->father != blossom_ptr_t(); b = b->father)
358                 ;
359             missing_outlet = child_parent.first;
360             child_parent.first = b->get_base();
361 
362             if (child_parent.first == b_base)
363                 break;
364             else
365                 child = child_parent;
366         }
367         return std::make_pair(child.first, missing_outlet);
368     }
369 
370     // expand a top blossom, put all its non-trivial sub-blossoms into
371     // top_blossoms
expand_blossom(blossom_iterator_t bi,std::vector<blossom_ptr_t> & new_ones)372     blossom_iterator_t expand_blossom(
373         blossom_iterator_t bi, std::vector< blossom_ptr_t >& new_ones)
374     {
375         blossom_ptr_t b = *bi;
376         for (blossom_iterator_t i = b->sub_blossoms.begin();
377              i != b->sub_blossoms.end(); ++i)
378         {
379             blossom_ptr_t sub_blossom = *i;
380             vertex_descriptor_t sub_base = sub_blossom->get_base();
381             label_S[sub_base] = label_T[sub_base]
382                 = graph_traits< Graph >::null_vertex();
383             outlet[sub_base] = sub_base;
384             sub_blossom->father = blossom_ptr_t();
385             // new top blossoms cannot be pushed back into top_blossoms
386             // immediately, because push_back() may cause reallocation and then
387             // invalid iterators
388             if (!sub_blossom->sub_blossoms.empty())
389                 new_ones.push_back(sub_blossom);
390         }
391         return top_blossoms.erase(bi);
392     }
393 
394     // when expanding a T-blossom with base v, it requires more operations:
395     // supply the missing T-labels for new base vertices by picking the minimum
396     // tau from vertices of each corresponding new top-blossoms; when label_T[v]
397     // is null or we have a smaller tau from missing_label(v), replace T-label
398     // and outlet of v (but don't bloom v)
expand_T_blossom(blossom_iterator_t bi,std::vector<blossom_ptr_t> & new_ones)399     blossom_iterator_t expand_T_blossom(
400         blossom_iterator_t bi, std::vector< blossom_ptr_t >& new_ones)
401     {
402         blossom_ptr_t b = *bi;
403 
404         vertex_descriptor_t b_base = b->get_base();
405         std::pair< vertex_descriptor_t, vertex_descriptor_t > T_and_outlet
406             = missing_label(b_base);
407 
408         blossom_iterator_t next_bi = expand_blossom(bi, new_ones);
409 
410         for (blossom_iterator_t i = b->sub_blossoms.begin();
411              i != b->sub_blossoms.end(); ++i)
412         {
413             blossom_ptr_t sub_blossom = *i;
414             vertex_descriptor_t sub_base = sub_blossom->get_base();
415             vertex_descriptor_t min_tau_v
416                 = graph_traits< Graph >::null_vertex();
417             edge_property_t min_tau
418                 = std::numeric_limits< edge_property_t >::max();
419 
420             std::vector< vertex_descriptor_t > sub_vertices
421                 = sub_blossom->vertices();
422             for (vertex_vec_iter_t v = sub_vertices.begin();
423                  v != sub_vertices.end(); ++v)
424             {
425                 if (tau[*v] < min_tau)
426                 {
427                     min_tau = tau[*v];
428                     min_tau_v = *v;
429                 }
430             }
431 
432             if (min_tau < std::numeric_limits< edge_property_t >::max())
433                 put_T_label(
434                     sub_base, tau_idx[min_tau_v], min_tau_v, tau[min_tau_v]);
435         }
436 
437         if (label_T[b_base] == graph_traits< Graph >::null_vertex()
438             || tau[old_label[b_base].second] < pi[b_base])
439             boost::tie(label_T[b_base], outlet[b_base]) = T_and_outlet;
440 
441         return next_bi;
442     }
443 
444     // when vertices v and w are matched to each other by augmenting,
445     // we must set v/w as base vertex of any blossom who contains v/w and
446     // is a sub-blossom of their lowest (smallest) common blossom
adjust_blossom(vertex_descriptor_t v,vertex_descriptor_t w)447     void adjust_blossom(vertex_descriptor_t v, vertex_descriptor_t w)
448     {
449         blossom_ptr_t vb = in_blossom[v], wb = in_blossom[w],
450                       lowest_common_blossom;
451         std::vector< blossom_ptr_t > v_ancestors, w_ancestors;
452 
453         while (vb->father != blossom_ptr_t())
454         {
455             v_ancestors.push_back(vb->father);
456             vb = vb->father;
457         }
458         while (wb->father != blossom_ptr_t())
459         {
460             w_ancestors.push_back(wb->father);
461             wb = wb->father;
462         }
463 
464         typename std::vector< blossom_ptr_t >::reverse_iterator i, j;
465         i = v_ancestors.rbegin();
466         j = w_ancestors.rbegin();
467         while (i != v_ancestors.rend() && j != w_ancestors.rend()
468             && i->get() == j->get())
469         {
470             lowest_common_blossom = *i;
471             ++i;
472             ++j;
473         }
474 
475         vb = in_blossom[v];
476         wb = in_blossom[w];
477         while (vb->father != lowest_common_blossom)
478         {
479             vb->father->set_base(vb);
480             vb = vb->father;
481         }
482         while (wb->father != lowest_common_blossom)
483         {
484             wb->father->set_base(wb);
485             wb = wb->father;
486         }
487     }
488 
489     // every edge weight is multiplied by 4 to ensure integer weights
490     // throughout the algorithm if all input weights are integers
slack(const edge_descriptor_t & e) const491     inline edge_property_t slack(const edge_descriptor_t& e) const
492     {
493         vertex_descriptor_t v, w;
494         v = source(e, g);
495         w = target(e, g);
496         return dual_var[v] + dual_var[w] - 4 * get(edge_weight, g, e);
497     }
498 
499     // backtrace one step on vertex v along the augmenting path
500     // by its labels and its vertex state;
501     // boolean parameter "use_old" means whether we are updating labels,
502     // if we are, then we use old labels to backtrace and also we
503     // don't jump to its base vertex when we reach an odd vertex
parent(std::pair<vertex_descriptor_t,vertex_state_t> v,bool use_old=false) const504     std::pair< vertex_descriptor_t, vertex_state_t > parent(
505         std::pair< vertex_descriptor_t, vertex_state_t > v,
506         bool use_old = false) const
507     {
508         if (v.second == graph::detail::V_EVEN)
509         {
510             // a paranoid check: label_S shoule be the same as mate in
511             // backtracing
512             if (label_S[v.first] == graph_traits< Graph >::null_vertex())
513                 label_S[v.first] = mate[v.first];
514             return std::make_pair(label_S[v.first], graph::detail::V_ODD);
515         }
516         else if (v.second == graph::detail::V_ODD)
517         {
518             vertex_descriptor_t w = use_old ? old_label[v.first].first
519                                             : base_vertex(label_T[v.first]);
520             return std::make_pair(w, graph::detail::V_EVEN);
521         }
522         return std::make_pair(v.first, graph::detail::V_UNREACHED);
523     }
524 
525     // backtrace from vertices v and w to their free (unmatched) ancesters,
526     // return the nearest common ancestor (null_vertex if none) of v and w
nearest_common_ancestor(vertex_descriptor_t v,vertex_descriptor_t w,vertex_descriptor_t & v_free_ancestor,vertex_descriptor_t & w_free_ancestor) const527     vertex_descriptor_t nearest_common_ancestor(vertex_descriptor_t v,
528         vertex_descriptor_t w, vertex_descriptor_t& v_free_ancestor,
529         vertex_descriptor_t& w_free_ancestor) const
530     {
531         std::pair< vertex_descriptor_t, vertex_state_t > v_up(
532             v, graph::detail::V_EVEN);
533         std::pair< vertex_descriptor_t, vertex_state_t > w_up(
534             w, graph::detail::V_EVEN);
535         vertex_descriptor_t nca;
536         nca = w_free_ancestor = v_free_ancestor
537             = graph_traits< Graph >::null_vertex();
538 
539         std::vector< bool > ancestor_of_w_vector(num_vertices(g), false);
540         std::vector< bool > ancestor_of_v_vector(num_vertices(g), false);
541         vertex_to_bool_map_t ancestor_of_w(ancestor_of_w_vector.begin(), vm);
542         vertex_to_bool_map_t ancestor_of_v(ancestor_of_v_vector.begin(), vm);
543 
544         while (nca == graph_traits< Graph >::null_vertex()
545             && (v_free_ancestor == graph_traits< Graph >::null_vertex()
546                 || w_free_ancestor == graph_traits< Graph >::null_vertex()))
547         {
548             ancestor_of_w[w_up.first] = true;
549             ancestor_of_v[v_up.first] = true;
550 
551             if (w_free_ancestor == graph_traits< Graph >::null_vertex())
552                 w_up = parent(w_up);
553             if (v_free_ancestor == graph_traits< Graph >::null_vertex())
554                 v_up = parent(v_up);
555 
556             if (mate[v_up.first] == graph_traits< Graph >::null_vertex())
557                 v_free_ancestor = v_up.first;
558             if (mate[w_up.first] == graph_traits< Graph >::null_vertex())
559                 w_free_ancestor = w_up.first;
560 
561             if (ancestor_of_w[v_up.first] == true || v_up.first == w_up.first)
562                 nca = v_up.first;
563             else if (ancestor_of_v[w_up.first] == true)
564                 nca = w_up.first;
565             else if (v_free_ancestor == w_free_ancestor
566                 && v_free_ancestor != graph_traits< Graph >::null_vertex())
567                 nca = v_up.first;
568         }
569 
570         return nca;
571     }
572 
573     // when a new top blossom b is created by connecting (v, w), we add
574     // sub-blossoms into b along backtracing from v_prime and w_prime to
575     // stop_vertex (the base vertex); also, we set labels and outlet for each
576     // base vertex we pass by
make_blossom(blossom_ptr_t b,vertex_descriptor_t w_prime,vertex_descriptor_t v_prime,vertex_descriptor_t stop_vertex)577     void make_blossom(blossom_ptr_t b, vertex_descriptor_t w_prime,
578         vertex_descriptor_t v_prime, vertex_descriptor_t stop_vertex)
579     {
580         std::pair< vertex_descriptor_t, vertex_state_t > u(
581             v_prime, graph::detail::V_ODD);
582         std::pair< vertex_descriptor_t, vertex_state_t > u_up(
583             w_prime, graph::detail::V_EVEN);
584 
585         for (; u_up.first != stop_vertex; u = u_up, u_up = parent(u))
586         {
587             if (u_up.second == graph::detail::V_EVEN)
588             {
589                 if (!in_top_blossom(u_up.first)->sub_blossoms.empty())
590                     outlet[u_up.first] = label_T[u.first];
591                 label_T[u_up.first] = outlet[u.first];
592             }
593             else if (u_up.second == graph::detail::V_ODD)
594                 label_S[u_up.first] = u.first;
595 
596             add_sub_blossom(b, u_up.first);
597         }
598     }
599 
600     // the design of recursively expanding augmenting path in
601     // (reversed_)retrieve_augmenting_path functions is inspired by same
602     // functions in max_cardinality_matching.hpp; except that in weighted
603     // matching, we use "outlet" vertices instead of "bridge" vertex pairs: if
604     // blossom b is the smallest non-trivial blossom that contains its base
605     // vertex v, then v and outlet[v] are where augmenting path enters and
606     // leaves b
retrieve_augmenting_path(vertex_descriptor_t v,vertex_descriptor_t w,vertex_state_t v_state)607     void retrieve_augmenting_path(
608         vertex_descriptor_t v, vertex_descriptor_t w, vertex_state_t v_state)
609     {
610         if (v == w)
611             aug_path.push_back(v);
612         else if (v_state == graph::detail::V_EVEN)
613         {
614             aug_path.push_back(v);
615             retrieve_augmenting_path(label_S[v], w, graph::detail::V_ODD);
616         }
617         else if (v_state == graph::detail::V_ODD)
618         {
619             if (outlet[v] == v)
620                 aug_path.push_back(v);
621             else
622                 reversed_retrieve_augmenting_path(
623                     outlet[v], v, graph::detail::V_EVEN);
624             retrieve_augmenting_path(label_T[v], w, graph::detail::V_EVEN);
625         }
626     }
627 
reversed_retrieve_augmenting_path(vertex_descriptor_t v,vertex_descriptor_t w,vertex_state_t v_state)628     void reversed_retrieve_augmenting_path(
629         vertex_descriptor_t v, vertex_descriptor_t w, vertex_state_t v_state)
630     {
631         if (v == w)
632             aug_path.push_back(v);
633         else if (v_state == graph::detail::V_EVEN)
634         {
635             reversed_retrieve_augmenting_path(
636                 label_S[v], w, graph::detail::V_ODD);
637             aug_path.push_back(v);
638         }
639         else if (v_state == graph::detail::V_ODD)
640         {
641             reversed_retrieve_augmenting_path(
642                 label_T[v], w, graph::detail::V_EVEN);
643             if (outlet[v] != v)
644                 retrieve_augmenting_path(outlet[v], v, graph::detail::V_EVEN);
645             else
646                 aug_path.push_back(v);
647         }
648     }
649 
650     // correct labels for vertices in the augmenting path
relabel(vertex_descriptor_t v)651     void relabel(vertex_descriptor_t v)
652     {
653         blossom_ptr_t b = in_blossom[v]->father;
654 
655         if (!is_in_blossom(b, mate[v]))
656         { // if v is a new base vertex
657             std::pair< vertex_descriptor_t, vertex_state_t > u(
658                 v, graph::detail::V_EVEN);
659             while (label_S[u.first] != u.first
660                 && is_in_blossom(b, label_S[u.first]))
661                 u = parent(u, true);
662 
663             vertex_descriptor_t old_base = u.first;
664             if (label_S[old_base] != old_base)
665             { // if old base is not exposed
666                 label_T[v] = label_S[old_base];
667                 outlet[v] = old_base;
668             }
669             else
670             { // if old base is exposed then new label_T[v] is not in b,
671                 // we must (i) make b2 the smallest blossom containing v but not
672                 // as base vertex (ii) backtrace from b2's new base vertex to b
673                 label_T[v] = graph_traits< Graph >::null_vertex();
674                 for (b = b->father; b != blossom_ptr_t() && b->get_base() == v;
675                      b = b->father)
676                     ;
677                 if (b != blossom_ptr_t())
678                 {
679                     u = std::make_pair(b->get_base(), graph::detail::V_ODD);
680                     while (!is_in_blossom(
681                         in_blossom[v]->father, old_label[u.first].first))
682                         u = parent(u, true);
683                     label_T[v] = u.first;
684                     outlet[v] = old_label[u.first].first;
685                 }
686             }
687         }
688         else if (label_S[v] == v || !is_in_blossom(b, label_S[v]))
689         { // if v is an old base vertex
690             // let u be the new base vertex; backtrace from u's old T-label
691             std::pair< vertex_descriptor_t, vertex_state_t > u(
692                 b->get_base(), graph::detail::V_ODD);
693             while (
694                 old_label[u.first].first != graph_traits< Graph >::null_vertex()
695                 && old_label[u.first].first != v)
696                 u = parent(u, true);
697             label_T[v] = old_label[u.first].second;
698             outlet[v] = v;
699         }
700         else // if v is neither a new nor an old base vertex
701             label_T[v] = label_S[v];
702     }
703 
augmenting(vertex_descriptor_t v,vertex_descriptor_t v_free_ancestor,vertex_descriptor_t w,vertex_descriptor_t w_free_ancestor)704     void augmenting(vertex_descriptor_t v, vertex_descriptor_t v_free_ancestor,
705         vertex_descriptor_t w, vertex_descriptor_t w_free_ancestor)
706     {
707         vertex_iterator_t vi, vi_end;
708 
709         // retrieve the augmenting path and put it in aug_path
710         reversed_retrieve_augmenting_path(
711             v, v_free_ancestor, graph::detail::V_EVEN);
712         retrieve_augmenting_path(w, w_free_ancestor, graph::detail::V_EVEN);
713 
714         // augment the matching along aug_path
715         vertex_descriptor_t a, b;
716         vertex_list_t reversed_aug_path;
717         while (!aug_path.empty())
718         {
719             a = aug_path.front();
720             aug_path.pop_front();
721             reversed_aug_path.push_back(a);
722             b = aug_path.front();
723             aug_path.pop_front();
724             reversed_aug_path.push_back(b);
725 
726             mate[a] = b;
727             mate[b] = a;
728 
729             // reset base vertex for every blossom in augment path
730             adjust_blossom(a, b);
731         }
732 
733         for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
734             old_label[*vi] = std::make_pair(label_T[*vi], outlet[*vi]);
735 
736         // correct labels for in-blossom vertices along aug_path
737         while (!reversed_aug_path.empty())
738         {
739             a = reversed_aug_path.front();
740             reversed_aug_path.pop_front();
741 
742             if (in_blossom[a]->father != blossom_ptr_t())
743                 relabel(a);
744         }
745 
746         for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
747         {
748             vertex_descriptor_t u = *vi;
749             if (mate[u] != graph_traits< Graph >::null_vertex())
750                 label_S[u] = mate[u];
751         }
752 
753         // expand blossoms with zero dual variables
754         std::vector< blossom_ptr_t > new_top_blossoms;
755         for (blossom_iterator_t bi = top_blossoms.begin();
756              bi != top_blossoms.end();)
757         {
758             if ((*bi)->dual_var <= 0)
759                 bi = expand_blossom(bi, new_top_blossoms);
760             else
761                 ++bi;
762         }
763         top_blossoms.insert(top_blossoms.end(), new_top_blossoms.begin(),
764             new_top_blossoms.end());
765         init();
766     }
767 
768     // create a new blossom and set labels for vertices inside
blossoming(vertex_descriptor_t v,vertex_descriptor_t v_prime,vertex_descriptor_t w,vertex_descriptor_t w_prime,vertex_descriptor_t nca)769     void blossoming(vertex_descriptor_t v, vertex_descriptor_t v_prime,
770         vertex_descriptor_t w, vertex_descriptor_t w_prime,
771         vertex_descriptor_t nca)
772     {
773         vertex_iterator_t vi, vi_end;
774 
775         std::vector< bool > is_old_base_vector(num_vertices(g));
776         vertex_to_bool_map_t is_old_base(is_old_base_vector.begin(), vm);
777         for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
778         {
779             if (*vi == base_vertex(*vi))
780                 is_old_base[*vi] = true;
781         }
782 
783         blossom_ptr_t b = boost::make_shared< blossom >();
784         add_sub_blossom(b, nca);
785 
786         label_T[w_prime] = v;
787         label_T[v_prime] = w;
788         outlet[w_prime] = w;
789         outlet[v_prime] = v;
790 
791         make_blossom(b, w_prime, v_prime, nca);
792         make_blossom(b, v_prime, w_prime, nca);
793 
794         label_T[nca] = graph_traits< Graph >::null_vertex();
795         outlet[nca] = nca;
796 
797         top_blossoms.push_back(b);
798         bloom(b);
799 
800         // set gamma[b_base] = min_slack{critical_edge(b_base, other_base)}
801         // where each critical edge is updated before, by
802         // argmin{slack(old_bases_in_b, other_base)};
803         vertex_vec_iter_t i, j;
804         std::vector< vertex_descriptor_t > b_vertices = b->vertices(),
805                                            old_base_in_b, other_base;
806         vertex_descriptor_t b_base = b->get_base();
807         for (i = b_vertices.begin(); i != b_vertices.end(); ++i)
808         {
809             if (is_old_base[*i])
810                 old_base_in_b.push_back(*i);
811         }
812         for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
813         {
814             if (*vi != b_base && *vi == base_vertex(*vi))
815                 other_base.push_back(*vi);
816         }
817         for (i = other_base.begin(); i != other_base.end(); ++i)
818         {
819             edge_property_t min_slack
820                 = std::numeric_limits< edge_property_t >::max();
821             std::pair< edge_descriptor_t, bool > b_vi = null_edge;
822             for (j = old_base_in_b.begin(); j != old_base_in_b.end(); ++j)
823             {
824                 if (critical_edge[*j][*i] != null_edge
825                     && min_slack > slack(critical_edge[*j][*i].first))
826                 {
827                     min_slack = slack(critical_edge[*j][*i].first);
828                     b_vi = critical_edge[*j][*i];
829                 }
830             }
831             critical_edge[b_base][*i] = critical_edge[*i][b_base] = b_vi;
832         }
833         gamma[b_base] = std::numeric_limits< edge_property_t >::max();
834         for (i = other_base.begin(); i != other_base.end(); ++i)
835         {
836             if (critical_edge[b_base][*i] != null_edge)
837                 gamma[b_base] = std::min(
838                     gamma[b_base], slack(critical_edge[b_base][*i].first));
839         }
840     }
841 
init()842     void init()
843     {
844         even_edges.clear();
845 
846         vertex_iterator_t vi, vi_end;
847         typename std::vector<
848             std::vector< std::pair< edge_descriptor_t, bool > > >::iterator vei;
849 
850         for (boost::tie(vi, vi_end) = vertices(g),
851                             vei = critical_edge_vectors.begin();
852              vi != vi_end; ++vi, ++vei)
853         {
854             vertex_descriptor_t u = *vi;
855             out_edge_iterator_t ei, ei_end;
856 
857             gamma[u] = tau[u] = pi[u]
858                 = std::numeric_limits< edge_property_t >::max();
859             std::fill(vei->begin(), vei->end(), null_edge);
860 
861             if (base_vertex(u) != u)
862                 continue;
863 
864             label_S[u] = label_T[u] = graph_traits< Graph >::null_vertex();
865             outlet[u] = u;
866 
867             if (mate[u] == graph_traits< Graph >::null_vertex())
868             {
869                 label_S[u] = u;
870                 bloom(in_top_blossom(u));
871             }
872         }
873     }
874 
augment_matching()875     bool augment_matching()
876     {
877         vertex_descriptor_t v, w, w_free_ancestor, v_free_ancestor;
878         v = w = w_free_ancestor = v_free_ancestor
879             = graph_traits< Graph >::null_vertex();
880         bool found_alternating_path = false;
881 
882         // note that we only use edges of zero slack value for augmenting
883         while (!even_edges.empty() && !found_alternating_path)
884         {
885             // search for augmenting paths depth-first
886             edge_descriptor_t current_edge = even_edges.back();
887             even_edges.pop_back();
888 
889             v = source(current_edge, g);
890             w = target(current_edge, g);
891 
892             vertex_descriptor_t v_prime = base_vertex(v);
893             vertex_descriptor_t w_prime = base_vertex(w);
894 
895             // w_prime == v_prime implies that we get an edge that has been
896             // shrunk into a blossom
897             if (v_prime == w_prime)
898                 continue;
899 
900             // a paranoid check
901             if (label_S[v_prime] == graph_traits< Graph >::null_vertex())
902             {
903                 std::swap(v_prime, w_prime);
904                 std::swap(v, w);
905             }
906 
907             // w_prime may be unlabeled or have a T-label; replace the existed
908             // T-label if the edge slack is smaller than current pi[w_prime] and
909             // update it. Note that a T-label is "deserved" only when pi equals
910             // zero. also update tau and tau_idx so that tau_idx becomes T-label
911             // when a T-blossom is expanded
912             if (label_S[w_prime] == graph_traits< Graph >::null_vertex())
913             {
914                 if (slack(current_edge) < pi[w_prime])
915                     put_T_label(w_prime, v, w, slack(current_edge));
916                 if (slack(current_edge) < tau[w])
917                 {
918                     if (in_blossom[w]->father == blossom_ptr_t()
919                         || label_T[w_prime] == v
920                         || label_T[w_prime]
921                             == graph_traits< Graph >::null_vertex()
922                         || nearest_common_ancestor(v_prime, label_T[w_prime],
923                                v_free_ancestor, w_free_ancestor)
924                             == graph_traits< Graph >::null_vertex())
925                     {
926                         tau[w] = slack(current_edge);
927                         tau_idx[w] = v;
928                     }
929                 }
930             }
931 
932             else
933             {
934                 if (slack(current_edge) > 0)
935                 {
936                     // update gamma and critical_edges when we have a smaller
937                     // edge slack
938                     gamma[v_prime]
939                         = std::min(gamma[v_prime], slack(current_edge));
940                     gamma[w_prime]
941                         = std::min(gamma[w_prime], slack(current_edge));
942                     if (critical_edge[v_prime][w_prime] == null_edge
943                         || slack(critical_edge[v_prime][w_prime].first)
944                             > slack(current_edge))
945                     {
946                         critical_edge[v_prime][w_prime]
947                             = std::pair< edge_descriptor_t, bool >(
948                                 current_edge, true);
949                         critical_edge[w_prime][v_prime]
950                             = std::pair< edge_descriptor_t, bool >(
951                                 current_edge, true);
952                     }
953                     continue;
954                 }
955                 else if (slack(current_edge) == 0)
956                 {
957                     // if nca is null_vertex then we have an augmenting path;
958                     // otherwise we have a new top blossom with nca as its base
959                     // vertex
960                     vertex_descriptor_t nca = nearest_common_ancestor(
961                         v_prime, w_prime, v_free_ancestor, w_free_ancestor);
962 
963                     if (nca == graph_traits< Graph >::null_vertex())
964                         found_alternating_path
965                             = true; // to break out of the loop
966                     else
967                         blossoming(v, v_prime, w, w_prime, nca);
968                 }
969             }
970         }
971 
972         if (!found_alternating_path)
973             return false;
974 
975         augmenting(v, v_free_ancestor, w, w_free_ancestor);
976         return true;
977     }
978 
979     // slack the vertex and blossom dual variables when there is no augmenting
980     // path found according to the primal-dual method
adjust_dual()981     bool adjust_dual()
982     {
983         edge_property_t delta1, delta2, delta3, delta4, delta;
984         delta1 = delta2 = delta3 = delta4
985             = std::numeric_limits< edge_property_t >::max();
986 
987         vertex_iterator_t vi, vi_end;
988 
989         for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
990         {
991             delta1 = std::min(delta1, dual_var[*vi]);
992             delta4 = pi[*vi] > 0 ? std::min(delta4, pi[*vi]) : delta4;
993             if (*vi == base_vertex(*vi))
994                 delta3 = std::min(delta3, gamma[*vi] / 2);
995         }
996 
997         for (blossom_iterator_t bi = top_blossoms.begin();
998              bi != top_blossoms.end(); ++bi)
999         {
1000             vertex_descriptor_t b_base = (*bi)->get_base();
1001             if (label_T[b_base] != graph_traits< Graph >::null_vertex()
1002                 && pi[b_base] == 0)
1003                 delta2 = std::min(delta2, (*bi)->dual_var / 2);
1004         }
1005 
1006         delta = std::min(std::min(delta1, delta2), std::min(delta3, delta4));
1007 
1008         // start updating dual variables, note that the order is important
1009 
1010         for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
1011         {
1012             vertex_descriptor_t v = *vi, v_prime = base_vertex(v);
1013 
1014             if (label_S[v_prime] != graph_traits< Graph >::null_vertex())
1015                 dual_var[v] -= delta;
1016             else if (label_T[v_prime] != graph_traits< Graph >::null_vertex()
1017                 && pi[v_prime] == 0)
1018                 dual_var[v] += delta;
1019 
1020             if (v == v_prime)
1021                 gamma[v] -= 2 * delta;
1022         }
1023 
1024         for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
1025         {
1026             vertex_descriptor_t v_prime = base_vertex(*vi);
1027             if (pi[v_prime] > 0)
1028                 tau[*vi] -= delta;
1029         }
1030 
1031         for (blossom_iterator_t bi = top_blossoms.begin();
1032              bi != top_blossoms.end(); ++bi)
1033         {
1034             vertex_descriptor_t b_base = (*bi)->get_base();
1035             if (label_T[b_base] != graph_traits< Graph >::null_vertex()
1036                 && pi[b_base] == 0)
1037                 (*bi)->dual_var -= 2 * delta;
1038             if (label_S[b_base] != graph_traits< Graph >::null_vertex())
1039                 (*bi)->dual_var += 2 * delta;
1040         }
1041 
1042         for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
1043         {
1044             vertex_descriptor_t v = *vi;
1045             if (pi[v] > 0)
1046                 pi[v] -= delta;
1047 
1048             // when some T-vertices have zero pi value, bloom their mates so
1049             // that matching can be further augmented
1050             if (label_T[v] != graph_traits< Graph >::null_vertex()
1051                 && pi[v] == 0)
1052                 put_T_label(v, label_T[v], outlet[v], pi[v]);
1053         }
1054 
1055         // optimal solution reached, halt
1056         if (delta == delta1)
1057             return false;
1058 
1059         // expand odd blossoms with zero dual variables and zero pi value of
1060         // their base vertices
1061         if (delta == delta2 && delta != delta3)
1062         {
1063             std::vector< blossom_ptr_t > new_top_blossoms;
1064             for (blossom_iterator_t bi = top_blossoms.begin();
1065                  bi != top_blossoms.end();)
1066             {
1067                 const blossom_ptr_t b = *bi;
1068                 vertex_descriptor_t b_base = b->get_base();
1069                 if (b->dual_var == 0
1070                     && label_T[b_base] != graph_traits< Graph >::null_vertex()
1071                     && pi[b_base] == 0)
1072                     bi = expand_T_blossom(bi, new_top_blossoms);
1073                 else
1074                     ++bi;
1075             }
1076             top_blossoms.insert(top_blossoms.end(), new_top_blossoms.begin(),
1077                 new_top_blossoms.end());
1078         }
1079 
1080         while (true)
1081         {
1082             // find a zero-slack critical edge (v, w) of zero gamma values
1083             std::pair< edge_descriptor_t, bool > best_edge = null_edge;
1084             std::vector< vertex_descriptor_t > base_nodes;
1085             for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
1086             {
1087                 if (*vi == base_vertex(*vi))
1088                     base_nodes.push_back(*vi);
1089             }
1090             for (vertex_vec_iter_t i = base_nodes.begin();
1091                  i != base_nodes.end(); ++i)
1092             {
1093                 if (gamma[*i] == 0)
1094                 {
1095                     for (vertex_vec_iter_t j = base_nodes.begin();
1096                          j != base_nodes.end(); ++j)
1097                     {
1098                         if (critical_edge[*i][*j] != null_edge
1099                             && slack(critical_edge[*i][*j].first) == 0)
1100                             best_edge = critical_edge[*i][*j];
1101                     }
1102                 }
1103             }
1104 
1105             // if not found, continue finding other augment matching
1106             if (best_edge == null_edge)
1107             {
1108                 bool augmented = augment_matching();
1109                 return augmented || delta != delta1;
1110             }
1111             // if found, determine either augmenting or blossoming
1112             vertex_descriptor_t v = source(best_edge.first, g),
1113                                 w = target(best_edge.first, g);
1114             vertex_descriptor_t v_prime = base_vertex(v),
1115                                 w_prime = base_vertex(w), v_free_ancestor,
1116                                 w_free_ancestor;
1117             vertex_descriptor_t nca = nearest_common_ancestor(
1118                 v_prime, w_prime, v_free_ancestor, w_free_ancestor);
1119             if (nca == graph_traits< Graph >::null_vertex())
1120             {
1121                 augmenting(v, v_free_ancestor, w, w_free_ancestor);
1122                 return true;
1123             }
1124             else
1125                 blossoming(v, v_prime, w, w_prime, nca);
1126         }
1127 
1128         return false;
1129     }
1130 
get_current_matching(PropertyMap pm)1131     template < typename PropertyMap > void get_current_matching(PropertyMap pm)
1132     {
1133         vertex_iterator_t vi, vi_end;
1134         for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
1135             put(pm, *vi, mate[*vi]);
1136     }
1137 
1138 private:
1139     const Graph& g;
1140     VertexIndexMap vm;
1141     const std::pair< edge_descriptor_t, bool > null_edge;
1142 
1143     // storage for the property maps below
1144     std::vector< vertex_descriptor_t > mate_vector;
1145     std::vector< vertex_descriptor_t > label_S_vector, label_T_vector;
1146     std::vector< vertex_descriptor_t > outlet_vector;
1147     std::vector< vertex_descriptor_t > tau_idx_vector;
1148     std::vector< edge_property_t > dual_var_vector;
1149     std::vector< edge_property_t > pi_vector, gamma_vector, tau_vector;
1150     std::vector< blossom_ptr_t > in_blossom_vector;
1151     std::vector< std::pair< vertex_descriptor_t, vertex_descriptor_t > >
1152         old_label_vector;
1153     std::vector< vertex_to_edge_map_t > critical_edge_vector;
1154     std::vector< std::vector< std::pair< edge_descriptor_t, bool > > >
1155         critical_edge_vectors;
1156 
1157     // iterator property maps
1158     vertex_to_vertex_map_t mate;
1159     vertex_to_vertex_map_t label_S; // v has an S-label -> v can be an even
1160                                     // vertex, label_S[v] is its mate
1161     vertex_to_vertex_map_t
1162         label_T; // v has a T-label -> v can be an odd vertex, label_T[v] is its
1163                  // predecessor in aug_path
1164     vertex_to_vertex_map_t outlet;
1165     vertex_to_vertex_map_t tau_idx;
1166     vertex_to_weight_map_t dual_var;
1167     vertex_to_weight_map_t pi, gamma, tau;
1168     vertex_to_blossom_map_t
1169         in_blossom; // map any vertex v to the trivial blossom containing v
1170     vertex_to_pair_map_t old_label; // <old T-label, old outlet> before
1171                                     // relabeling or expanding T-blossoms
1172     vertex_pair_to_edge_map_t
1173         critical_edge; // an not matched edge (v, w) is critical if v and w
1174                        // belongs to different S-blossoms
1175 
1176     vertex_list_t aug_path;
1177     edge_list_t even_edges;
1178     std::vector< blossom_ptr_t > top_blossoms;
1179 };
1180 
1181 template < typename Graph, typename MateMap, typename VertexIndexMap >
maximum_weighted_matching(const Graph & g,MateMap mate,VertexIndexMap vm)1182 void maximum_weighted_matching(const Graph& g, MateMap mate, VertexIndexMap vm)
1183 {
1184     empty_matching< Graph, MateMap >::find_matching(g, mate);
1185     weighted_augmenting_path_finder< Graph, MateMap, VertexIndexMap > augmentor(
1186         g, mate, vm);
1187 
1188     // can have |V| times augmenting at most
1189     for (std::size_t t = 0; t < num_vertices(g); ++t)
1190     {
1191         bool augmented = false;
1192         while (!augmented)
1193         {
1194             augmented = augmentor.augment_matching();
1195             if (!augmented)
1196             {
1197                 // halt if adjusting dual variables can't bring potential
1198                 // augment
1199                 if (!augmentor.adjust_dual())
1200                     break;
1201             }
1202         }
1203         if (!augmented)
1204             break;
1205     }
1206 
1207     augmentor.get_current_matching(mate);
1208 }
1209 
1210 template < typename Graph, typename MateMap >
maximum_weighted_matching(const Graph & g,MateMap mate)1211 inline void maximum_weighted_matching(const Graph& g, MateMap mate)
1212 {
1213     maximum_weighted_matching(g, mate, get(vertex_index, g));
1214 }
1215 
1216 // brute-force matcher searches all possible combinations of matched edges to
1217 // get the maximum weighted matching which can be used for testing on small
1218 // graphs (within dozens vertices)
1219 template < typename Graph, typename MateMap, typename VertexIndexMap >
1220 class brute_force_matching
1221 {
1222 public:
1223     typedef
1224         typename graph_traits< Graph >::vertex_descriptor vertex_descriptor_t;
1225     typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
1226     typedef
1227         typename std::vector< vertex_descriptor_t >::iterator vertex_vec_iter_t;
1228     typedef typename graph_traits< Graph >::edge_iterator edge_iterator_t;
1229     typedef boost::iterator_property_map< vertex_vec_iter_t, VertexIndexMap >
1230         vertex_to_vertex_map_t;
1231 
brute_force_matching(const Graph & arg_g,MateMap arg_mate,VertexIndexMap arg_vm)1232     brute_force_matching(
1233         const Graph& arg_g, MateMap arg_mate, VertexIndexMap arg_vm)
1234     : g(arg_g)
1235     , vm(arg_vm)
1236     , mate_vector(num_vertices(g))
1237     , best_mate_vector(num_vertices(g))
1238     , mate(mate_vector.begin(), vm)
1239     , best_mate(best_mate_vector.begin(), vm)
1240     {
1241         vertex_iterator_t vi, vi_end;
1242         for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
1243             best_mate[*vi] = mate[*vi] = get(arg_mate, *vi);
1244     }
1245 
find_matching(PropertyMap pm)1246     template < typename PropertyMap > void find_matching(PropertyMap pm)
1247     {
1248         edge_iterator_t ei;
1249         boost::tie(ei, ei_end) = edges(g);
1250         select_edge(ei);
1251 
1252         vertex_iterator_t vi, vi_end;
1253         for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
1254             put(pm, *vi, best_mate[*vi]);
1255     }
1256 
1257 private:
1258     const Graph& g;
1259     VertexIndexMap vm;
1260     std::vector< vertex_descriptor_t > mate_vector, best_mate_vector;
1261     vertex_to_vertex_map_t mate, best_mate;
1262     edge_iterator_t ei_end;
1263 
select_edge(edge_iterator_t ei)1264     void select_edge(edge_iterator_t ei)
1265     {
1266         if (ei == ei_end)
1267         {
1268             if (matching_weight_sum(g, mate)
1269                 > matching_weight_sum(g, best_mate))
1270             {
1271                 vertex_iterator_t vi, vi_end;
1272                 for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
1273                     best_mate[*vi] = mate[*vi];
1274             }
1275             return;
1276         }
1277 
1278         vertex_descriptor_t v, w;
1279         v = source(*ei, g);
1280         w = target(*ei, g);
1281 
1282         select_edge(++ei);
1283 
1284         if (mate[v] == graph_traits< Graph >::null_vertex()
1285             && mate[w] == graph_traits< Graph >::null_vertex())
1286         {
1287             mate[v] = w;
1288             mate[w] = v;
1289             select_edge(ei);
1290             mate[v] = mate[w] = graph_traits< Graph >::null_vertex();
1291         }
1292     }
1293 };
1294 
1295 template < typename Graph, typename MateMap, typename VertexIndexMap >
brute_force_maximum_weighted_matching(const Graph & g,MateMap mate,VertexIndexMap vm)1296 void brute_force_maximum_weighted_matching(
1297     const Graph& g, MateMap mate, VertexIndexMap vm)
1298 {
1299     empty_matching< Graph, MateMap >::find_matching(g, mate);
1300     brute_force_matching< Graph, MateMap, VertexIndexMap > brute_force_matcher(
1301         g, mate, vm);
1302     brute_force_matcher.find_matching(mate);
1303 }
1304 
1305 template < typename Graph, typename MateMap >
brute_force_maximum_weighted_matching(const Graph & g,MateMap mate)1306 inline void brute_force_maximum_weighted_matching(const Graph& g, MateMap mate)
1307 {
1308     brute_force_maximum_weighted_matching(g, mate, get(vertex_index, g));
1309 }
1310 
1311 }
1312 
1313 #endif
1314