1 subroutine parder(tx,nx,ty,ny,c,kx,ky,nux,nuy,x,mx,y,my,z, 2 * wrk,lwrk,iwrk,kwrk,ier) 3c subroutine parder evaluates on a grid (x(i),y(j)),i=1,...,mx; j=1,... 4c ,my the partial derivative ( order nux,nuy) of a bivariate spline 5c s(x,y) of degrees kx and ky, given in the b-spline representation. 6c 7c calling sequence: 8c call parder(tx,nx,ty,ny,c,kx,ky,nux,nuy,x,mx,y,my,z,wrk,lwrk, 9c * iwrk,kwrk,ier) 10c 11c input parameters: 12c tx : real array, length nx, which contains the position of the 13c knots in the x-direction. 14c nx : integer, giving the total number of knots in the x-direction 15c ty : real array, length ny, which contains the position of the 16c knots in the y-direction. 17c ny : integer, giving the total number of knots in the y-direction 18c c : real array, length (nx-kx-1)*(ny-ky-1), which contains the 19c b-spline coefficients. 20c kx,ky : integer values, giving the degrees of the spline. 21c nux : integer values, specifying the order of the partial 22c nuy derivative. 0<=nux<kx, 0<=nuy<ky. 23c x : real array of dimension (mx). 24c before entry x(i) must be set to the x co-ordinate of the 25c i-th grid point along the x-axis. 26c tx(kx+1)<=x(i-1)<=x(i)<=tx(nx-kx), i=2,...,mx. 27c mx : on entry mx must specify the number of grid points along 28c the x-axis. mx >=1. 29c y : real array of dimension (my). 30c before entry y(j) must be set to the y co-ordinate of the 31c j-th grid point along the y-axis. 32c ty(ky+1)<=y(j-1)<=y(j)<=ty(ny-ky), j=2,...,my. 33c my : on entry my must specify the number of grid points along 34c the y-axis. my >=1. 35c wrk : real array of dimension lwrk. used as workspace. 36c lwrk : integer, specifying the dimension of wrk. 37c lwrk >= mx*(kx+1-nux)+my*(ky+1-nuy)+(nx-kx-1)*(ny-ky-1) 38c iwrk : integer array of dimension kwrk. used as workspace. 39c kwrk : integer, specifying the dimension of iwrk. kwrk >= mx+my. 40c 41c output parameters: 42c z : real array of dimension (mx*my). 43c on successful exit z(my*(i-1)+j) contains the value of the 44c specified partial derivative of s(x,y) at the point 45c (x(i),y(j)),i=1,...,mx;j=1,...,my. 46c ier : integer error flag 47c ier=0 : normal return 48c ier=10: invalid input data (see restrictions) 49c 50c restrictions: 51c mx >=1, my >=1, 0 <= nux < kx, 0 <= nuy < ky, kwrk>=mx+my 52c lwrk>=mx*(kx+1-nux)+my*(ky+1-nuy)+(nx-kx-1)*(ny-ky-1), 53c tx(kx+1) <= x(i-1) <= x(i) <= tx(nx-kx), i=2,...,mx 54c ty(ky+1) <= y(j-1) <= y(j) <= ty(ny-ky), j=2,...,my 55c 56c other subroutines required: 57c fpbisp,fpbspl 58c 59c references : 60c de boor c : on calculating with b-splines, j. approximation theory 61c 6 (1972) 50-62. 62c dierckx p. : curve and surface fitting with splines, monographs on 63c numerical analysis, oxford university press, 1993. 64c 65c author : 66c p.dierckx 67c dept. computer science, k.u.leuven 68c celestijnenlaan 200a, b-3001 heverlee, belgium. 69c e-mail : Paul.Dierckx@cs.kuleuven.ac.be 70c 71c latest update : march 1989 72c 73c ..scalar arguments.. 74 integer nx,ny,kx,ky,nux,nuy,mx,my,lwrk,kwrk,ier 75c ..array arguments.. 76 integer iwrk(kwrk) 77 real*8 tx(nx),ty(ny),c((nx-kx-1)*(ny-ky-1)),x(mx),y(my),z(mx*my), 78 * wrk(lwrk) 79c ..local scalars.. 80 integer i,iwx,iwy,j,kkx,kky,kx1,ky1,lx,ly,lwest,l1,l2,m,m0,m1, 81 * nc,nkx1,nky1,nxx,nyy 82 real*8 ak,fac 83c .. 84c before starting computations a data check is made. if the input data 85c are invalid control is immediately repassed to the calling program. 86 ier = 10 87 kx1 = kx+1 88 ky1 = ky+1 89 nkx1 = nx-kx1 90 nky1 = ny-ky1 91 nc = nkx1*nky1 92 if(nux.lt.0 .or. nux.ge.kx) go to 400 93 if(nuy.lt.0 .or. nuy.ge.ky) go to 400 94 lwest = nc +(kx1-nux)*mx+(ky1-nuy)*my 95 if(lwrk.lt.lwest) go to 400 96 if(kwrk.lt.(mx+my)) go to 400 97 if (mx.lt.1) go to 400 98 if (mx.eq.1) go to 30 99 go to 10 100 10 do 20 i=2,mx 101 if(x(i).lt.x(i-1)) go to 400 102 20 continue 103 30 if (my.lt.1) go to 400 104 if (my.eq.1) go to 60 105 go to 40 106 40 do 50 i=2,my 107 if(y(i).lt.y(i-1)) go to 400 108 50 continue 109 60 ier = 0 110 nxx = nkx1 111 nyy = nky1 112 kkx = kx 113 kky = ky 114c the partial derivative of order (nux,nuy) of a bivariate spline of 115c degrees kx,ky is a bivariate spline of degrees kx-nux,ky-nuy. 116c we calculate the b-spline coefficients of this spline 117 do 70 i=1,nc 118 wrk(i) = c(i) 119 70 continue 120 if(nux.eq.0) go to 200 121 lx = 1 122 do 100 j=1,nux 123 ak = kkx 124 nxx = nxx-1 125 l1 = lx 126 m0 = 1 127 do 90 i=1,nxx 128 l1 = l1+1 129 l2 = l1+kkx 130 fac = tx(l2)-tx(l1) 131 if(fac.le.0.) go to 90 132 do 80 m=1,nyy 133 m1 = m0+nyy 134 wrk(m0) = (wrk(m1)-wrk(m0))*ak/fac 135 m0 = m0+1 136 80 continue 137 90 continue 138 lx = lx+1 139 kkx = kkx-1 140 100 continue 141 200 if(nuy.eq.0) go to 300 142 ly = 1 143 do 230 j=1,nuy 144 ak = kky 145 nyy = nyy-1 146 l1 = ly 147 do 220 i=1,nyy 148 l1 = l1+1 149 l2 = l1+kky 150 fac = ty(l2)-ty(l1) 151 if(fac.le.0.) go to 220 152 m0 = i 153 do 210 m=1,nxx 154 m1 = m0+1 155 wrk(m0) = (wrk(m1)-wrk(m0))*ak/fac 156 m0 = m0+nky1 157 210 continue 158 220 continue 159 ly = ly+1 160 kky = kky-1 161 230 continue 162 m0 = nyy 163 m1 = nky1 164 do 250 m=2,nxx 165 do 240 i=1,nyy 166 m0 = m0+1 167 m1 = m1+1 168 wrk(m0) = wrk(m1) 169 240 continue 170 m1 = m1+nuy 171 250 continue 172c we partition the working space and evaluate the partial derivative 173 300 iwx = 1+nxx*nyy 174 iwy = iwx+mx*(kx1-nux) 175 call fpbisp(tx(nux+1),nx-2*nux,ty(nuy+1),ny-2*nuy,wrk,kkx,kky, 176 * x,mx,y,my,z,wrk(iwx),wrk(iwy),iwrk(1),iwrk(mx+1)) 177 400 return 178 end 179 180