1 /* Copyright (c) 2020, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 // An implementation of the NIST P-256 elliptic curve point multiplication.
16 // 256-bit Montgomery form for 64 and 32-bit. Field operations are generated by
17 // Fiat, which lives in //third_party/fiat.
18 
19 #include <openssl/base.h>
20 
21 #include <openssl/bn.h>
22 #include <openssl/ec.h>
23 #include <openssl/err.h>
24 #include <openssl/mem.h>
25 #include <openssl/type_check.h>
26 
27 #include <assert.h>
28 #include <string.h>
29 
30 #include "../../internal.h"
31 #include "../delocate.h"
32 #include "./internal.h"
33 
34 
35 // MSVC does not implement uint128_t, and crashes with intrinsics
36 #if defined(BORINGSSL_HAS_UINT128)
37 #define BORINGSSL_NISTP256_64BIT 1
38 #include "../../../third_party/fiat/p256_64.h"
39 #else
40 #include "../../../third_party/fiat/p256_32.h"
41 #endif
42 
43 
44 // utility functions, handwritten
45 
46 #if defined(BORINGSSL_NISTP256_64BIT)
47 
48 #define FIAT_P256_NLIMBS 4
49 typedef uint64_t fiat_p256_limb_t;
50 typedef uint64_t fiat_p256_felem[FIAT_P256_NLIMBS];
51 #else  // 64BIT; else 32BIT
52 
53 #define FIAT_P256_NLIMBS 8
54 typedef uint32_t fiat_p256_limb_t;
55 typedef uint32_t fiat_p256_felem[FIAT_P256_NLIMBS];
56 
57 #endif  // 64BIT
58 
59 
fiat_p256_nz(const fiat_p256_limb_t in1[FIAT_P256_NLIMBS])60 static fiat_p256_limb_t fiat_p256_nz(
61     const fiat_p256_limb_t in1[FIAT_P256_NLIMBS]) {
62   fiat_p256_limb_t ret;
63   fiat_p256_nonzero(&ret, in1);
64   return ret;
65 }
66 
fiat_p256_copy(fiat_p256_limb_t out[FIAT_P256_NLIMBS],const fiat_p256_limb_t in1[FIAT_P256_NLIMBS])67 static void fiat_p256_copy(fiat_p256_limb_t out[FIAT_P256_NLIMBS],
68                            const fiat_p256_limb_t in1[FIAT_P256_NLIMBS]) {
69   for (int i = 0; i < FIAT_P256_NLIMBS; i++) {
70     out[i] = in1[i];
71   }
72 }
73 
fiat_p256_cmovznz(fiat_p256_limb_t out[FIAT_P256_NLIMBS],fiat_p256_limb_t t,const fiat_p256_limb_t z[FIAT_P256_NLIMBS],const fiat_p256_limb_t nz[FIAT_P256_NLIMBS])74 static void fiat_p256_cmovznz(fiat_p256_limb_t out[FIAT_P256_NLIMBS],
75                               fiat_p256_limb_t t,
76                               const fiat_p256_limb_t z[FIAT_P256_NLIMBS],
77                               const fiat_p256_limb_t nz[FIAT_P256_NLIMBS]) {
78   fiat_p256_selectznz(out, !!t, z, nz);
79 }
80 
fiat_p256_from_generic(fiat_p256_felem out,const EC_FELEM * in)81 static void fiat_p256_from_generic(fiat_p256_felem out, const EC_FELEM *in) {
82   fiat_p256_from_bytes(out, in->bytes);
83 }
84 
fiat_p256_to_generic(EC_FELEM * out,const fiat_p256_felem in)85 static void fiat_p256_to_generic(EC_FELEM *out, const fiat_p256_felem in) {
86   // This works because 256 is a multiple of 64, so there are no excess bytes to
87   // zero when rounding up to |BN_ULONG|s.
88   OPENSSL_STATIC_ASSERT(
89       256 / 8 == sizeof(BN_ULONG) * ((256 + BN_BITS2 - 1) / BN_BITS2),
90       "fiat_p256_to_bytes leaves bytes uninitialized");
91   fiat_p256_to_bytes(out->bytes, in);
92 }
93 
94 // fiat_p256_inv_square calculates |out| = |in|^{-2}
95 //
96 // Based on Fermat's Little Theorem:
97 //   a^p = a (mod p)
98 //   a^{p-1} = 1 (mod p)
99 //   a^{p-3} = a^{-2} (mod p)
fiat_p256_inv_square(fiat_p256_felem out,const fiat_p256_felem in)100 static void fiat_p256_inv_square(fiat_p256_felem out,
101                                  const fiat_p256_felem in) {
102   // This implements the addition chain described in
103   // https://briansmith.org/ecc-inversion-addition-chains-01#p256_field_inversion
104   fiat_p256_felem x2, x3, x6, x12, x15, x30, x32;
105   fiat_p256_square(x2, in);   // 2^2 - 2^1
106   fiat_p256_mul(x2, x2, in);  // 2^2 - 2^0
107 
108   fiat_p256_square(x3, x2);   // 2^3 - 2^1
109   fiat_p256_mul(x3, x3, in);  // 2^3 - 2^0
110 
111   fiat_p256_square(x6, x3);
112   for (int i = 1; i < 3; i++) {
113     fiat_p256_square(x6, x6);
114   }                           // 2^6 - 2^3
115   fiat_p256_mul(x6, x6, x3);  // 2^6 - 2^0
116 
117   fiat_p256_square(x12, x6);
118   for (int i = 1; i < 6; i++) {
119     fiat_p256_square(x12, x12);
120   }                             // 2^12 - 2^6
121   fiat_p256_mul(x12, x12, x6);  // 2^12 - 2^0
122 
123   fiat_p256_square(x15, x12);
124   for (int i = 1; i < 3; i++) {
125     fiat_p256_square(x15, x15);
126   }                             // 2^15 - 2^3
127   fiat_p256_mul(x15, x15, x3);  // 2^15 - 2^0
128 
129   fiat_p256_square(x30, x15);
130   for (int i = 1; i < 15; i++) {
131     fiat_p256_square(x30, x30);
132   }                              // 2^30 - 2^15
133   fiat_p256_mul(x30, x30, x15);  // 2^30 - 2^0
134 
135   fiat_p256_square(x32, x30);
136   fiat_p256_square(x32, x32);   // 2^32 - 2^2
137   fiat_p256_mul(x32, x32, x2);  // 2^32 - 2^0
138 
139   fiat_p256_felem ret;
140   fiat_p256_square(ret, x32);
141   for (int i = 1; i < 31 + 1; i++) {
142     fiat_p256_square(ret, ret);
143   }                             // 2^64 - 2^32
144   fiat_p256_mul(ret, ret, in);  // 2^64 - 2^32 + 2^0
145 
146   for (int i = 0; i < 96 + 32; i++) {
147     fiat_p256_square(ret, ret);
148   }                              // 2^192 - 2^160 + 2^128
149   fiat_p256_mul(ret, ret, x32);  // 2^192 - 2^160 + 2^128 + 2^32 - 2^0
150 
151   for (int i = 0; i < 32; i++) {
152     fiat_p256_square(ret, ret);
153   }                              // 2^224 - 2^192 + 2^160 + 2^64 - 2^32
154   fiat_p256_mul(ret, ret, x32);  // 2^224 - 2^192 + 2^160 + 2^64 - 2^0
155 
156   for (int i = 0; i < 30; i++) {
157     fiat_p256_square(ret, ret);
158   }                              // 2^254 - 2^222 + 2^190 + 2^94 - 2^30
159   fiat_p256_mul(ret, ret, x30);  // 2^254 - 2^222 + 2^190 + 2^94 - 2^0
160 
161   fiat_p256_square(ret, ret);
162   fiat_p256_square(out, ret);  // 2^256 - 2^224 + 2^192 + 2^96 - 2^2
163 }
164 
165 // Group operations
166 // ----------------
167 //
168 // Building on top of the field operations we have the operations on the
169 // elliptic curve group itself. Points on the curve are represented in Jacobian
170 // coordinates.
171 //
172 // Both operations were transcribed to Coq and proven to correspond to naive
173 // implementations using Affine coordinates, for all suitable fields.  In the
174 // Coq proofs, issues of constant-time execution and memory layout (aliasing)
175 // conventions were not considered. Specification of affine coordinates:
176 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Spec/WeierstrassCurve.v#L28>
177 // As a sanity check, a proof that these points form a commutative group:
178 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/AffineProofs.v#L33>
179 
180 // fiat_p256_point_double calculates 2*(x_in, y_in, z_in)
181 //
182 // The method is taken from:
183 //   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
184 //
185 // Coq transcription and correctness proof:
186 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
187 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
188 //
189 // Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
190 // while x_out == y_in is not (maybe this works, but it's not tested).
fiat_p256_point_double(fiat_p256_felem x_out,fiat_p256_felem y_out,fiat_p256_felem z_out,const fiat_p256_felem x_in,const fiat_p256_felem y_in,const fiat_p256_felem z_in)191 static void fiat_p256_point_double(fiat_p256_felem x_out, fiat_p256_felem y_out,
192                                    fiat_p256_felem z_out,
193                                    const fiat_p256_felem x_in,
194                                    const fiat_p256_felem y_in,
195                                    const fiat_p256_felem z_in) {
196   fiat_p256_felem delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
197   // delta = z^2
198   fiat_p256_square(delta, z_in);
199   // gamma = y^2
200   fiat_p256_square(gamma, y_in);
201   // beta = x*gamma
202   fiat_p256_mul(beta, x_in, gamma);
203 
204   // alpha = 3*(x-delta)*(x+delta)
205   fiat_p256_sub(ftmp, x_in, delta);
206   fiat_p256_add(ftmp2, x_in, delta);
207 
208   fiat_p256_add(tmptmp, ftmp2, ftmp2);
209   fiat_p256_add(ftmp2, ftmp2, tmptmp);
210   fiat_p256_mul(alpha, ftmp, ftmp2);
211 
212   // x' = alpha^2 - 8*beta
213   fiat_p256_square(x_out, alpha);
214   fiat_p256_add(fourbeta, beta, beta);
215   fiat_p256_add(fourbeta, fourbeta, fourbeta);
216   fiat_p256_add(tmptmp, fourbeta, fourbeta);
217   fiat_p256_sub(x_out, x_out, tmptmp);
218 
219   // z' = (y + z)^2 - gamma - delta
220   fiat_p256_add(delta, gamma, delta);
221   fiat_p256_add(ftmp, y_in, z_in);
222   fiat_p256_square(z_out, ftmp);
223   fiat_p256_sub(z_out, z_out, delta);
224 
225   // y' = alpha*(4*beta - x') - 8*gamma^2
226   fiat_p256_sub(y_out, fourbeta, x_out);
227   fiat_p256_add(gamma, gamma, gamma);
228   fiat_p256_square(gamma, gamma);
229   fiat_p256_mul(y_out, alpha, y_out);
230   fiat_p256_add(gamma, gamma, gamma);
231   fiat_p256_sub(y_out, y_out, gamma);
232 }
233 
234 // fiat_p256_point_add calculates (x1, y1, z1) + (x2, y2, z2)
235 //
236 // The method is taken from:
237 //   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
238 // adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
239 //
240 // Coq transcription and correctness proof:
241 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L135>
242 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L205>
243 //
244 // This function includes a branch for checking whether the two input points
245 // are equal, (while not equal to the point at infinity). This case never
246 // happens during single point multiplication, so there is no timing leak for
247 // ECDH or ECDSA signing.
fiat_p256_point_add(fiat_p256_felem x3,fiat_p256_felem y3,fiat_p256_felem z3,const fiat_p256_felem x1,const fiat_p256_felem y1,const fiat_p256_felem z1,const int mixed,const fiat_p256_felem x2,const fiat_p256_felem y2,const fiat_p256_felem z2)248 static void fiat_p256_point_add(fiat_p256_felem x3, fiat_p256_felem y3,
249                                 fiat_p256_felem z3, const fiat_p256_felem x1,
250                                 const fiat_p256_felem y1,
251                                 const fiat_p256_felem z1, const int mixed,
252                                 const fiat_p256_felem x2,
253                                 const fiat_p256_felem y2,
254                                 const fiat_p256_felem z2) {
255   fiat_p256_felem x_out, y_out, z_out;
256   fiat_p256_limb_t z1nz = fiat_p256_nz(z1);
257   fiat_p256_limb_t z2nz = fiat_p256_nz(z2);
258 
259   // z1z1 = z1z1 = z1**2
260   fiat_p256_felem z1z1;
261   fiat_p256_square(z1z1, z1);
262 
263   fiat_p256_felem u1, s1, two_z1z2;
264   if (!mixed) {
265     // z2z2 = z2**2
266     fiat_p256_felem z2z2;
267     fiat_p256_square(z2z2, z2);
268 
269     // u1 = x1*z2z2
270     fiat_p256_mul(u1, x1, z2z2);
271 
272     // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
273     fiat_p256_add(two_z1z2, z1, z2);
274     fiat_p256_square(two_z1z2, two_z1z2);
275     fiat_p256_sub(two_z1z2, two_z1z2, z1z1);
276     fiat_p256_sub(two_z1z2, two_z1z2, z2z2);
277 
278     // s1 = y1 * z2**3
279     fiat_p256_mul(s1, z2, z2z2);
280     fiat_p256_mul(s1, s1, y1);
281   } else {
282     // We'll assume z2 = 1 (special case z2 = 0 is handled later).
283 
284     // u1 = x1*z2z2
285     fiat_p256_copy(u1, x1);
286     // two_z1z2 = 2z1z2
287     fiat_p256_add(two_z1z2, z1, z1);
288     // s1 = y1 * z2**3
289     fiat_p256_copy(s1, y1);
290   }
291 
292   // u2 = x2*z1z1
293   fiat_p256_felem u2;
294   fiat_p256_mul(u2, x2, z1z1);
295 
296   // h = u2 - u1
297   fiat_p256_felem h;
298   fiat_p256_sub(h, u2, u1);
299 
300   fiat_p256_limb_t xneq = fiat_p256_nz(h);
301 
302   // z_out = two_z1z2 * h
303   fiat_p256_mul(z_out, h, two_z1z2);
304 
305   // z1z1z1 = z1 * z1z1
306   fiat_p256_felem z1z1z1;
307   fiat_p256_mul(z1z1z1, z1, z1z1);
308 
309   // s2 = y2 * z1**3
310   fiat_p256_felem s2;
311   fiat_p256_mul(s2, y2, z1z1z1);
312 
313   // r = (s2 - s1)*2
314   fiat_p256_felem r;
315   fiat_p256_sub(r, s2, s1);
316   fiat_p256_add(r, r, r);
317 
318   fiat_p256_limb_t yneq = fiat_p256_nz(r);
319 
320   fiat_p256_limb_t is_nontrivial_double = constant_time_is_zero_w(xneq | yneq) &
321                                           ~constant_time_is_zero_w(z1nz) &
322                                           ~constant_time_is_zero_w(z2nz);
323   if (is_nontrivial_double) {
324     fiat_p256_point_double(x3, y3, z3, x1, y1, z1);
325     return;
326   }
327 
328   // I = (2h)**2
329   fiat_p256_felem i;
330   fiat_p256_add(i, h, h);
331   fiat_p256_square(i, i);
332 
333   // J = h * I
334   fiat_p256_felem j;
335   fiat_p256_mul(j, h, i);
336 
337   // V = U1 * I
338   fiat_p256_felem v;
339   fiat_p256_mul(v, u1, i);
340 
341   // x_out = r**2 - J - 2V
342   fiat_p256_square(x_out, r);
343   fiat_p256_sub(x_out, x_out, j);
344   fiat_p256_sub(x_out, x_out, v);
345   fiat_p256_sub(x_out, x_out, v);
346 
347   // y_out = r(V-x_out) - 2 * s1 * J
348   fiat_p256_sub(y_out, v, x_out);
349   fiat_p256_mul(y_out, y_out, r);
350   fiat_p256_felem s1j;
351   fiat_p256_mul(s1j, s1, j);
352   fiat_p256_sub(y_out, y_out, s1j);
353   fiat_p256_sub(y_out, y_out, s1j);
354 
355   fiat_p256_cmovznz(x_out, z1nz, x2, x_out);
356   fiat_p256_cmovznz(x3, z2nz, x1, x_out);
357   fiat_p256_cmovznz(y_out, z1nz, y2, y_out);
358   fiat_p256_cmovznz(y3, z2nz, y1, y_out);
359   fiat_p256_cmovznz(z_out, z1nz, z2, z_out);
360   fiat_p256_cmovznz(z3, z2nz, z1, z_out);
361 }
362 
363 // Base point pre computation
364 // --------------------------
365 //
366 // Two different sorts of precomputed tables are used in the following code.
367 // Each contain various points on the curve, where each point is three field
368 // elements (x, y, z).
369 //
370 // For the base point table, z is usually 1 (0 for the point at infinity).
371 // This table has 2 * 16 elements, starting with the following:
372 // index | bits    | point
373 // ------+---------+------------------------------
374 //     0 | 0 0 0 0 | 0G
375 //     1 | 0 0 0 1 | 1G
376 //     2 | 0 0 1 0 | 2^64G
377 //     3 | 0 0 1 1 | (2^64 + 1)G
378 //     4 | 0 1 0 0 | 2^128G
379 //     5 | 0 1 0 1 | (2^128 + 1)G
380 //     6 | 0 1 1 0 | (2^128 + 2^64)G
381 //     7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
382 //     8 | 1 0 0 0 | 2^192G
383 //     9 | 1 0 0 1 | (2^192 + 1)G
384 //    10 | 1 0 1 0 | (2^192 + 2^64)G
385 //    11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
386 //    12 | 1 1 0 0 | (2^192 + 2^128)G
387 //    13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
388 //    14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
389 //    15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
390 // followed by a copy of this with each element multiplied by 2^32.
391 //
392 // The reason for this is so that we can clock bits into four different
393 // locations when doing simple scalar multiplies against the base point,
394 // and then another four locations using the second 16 elements.
395 //
396 // Tables for other points have table[i] = iG for i in 0 .. 16.
397 
398 // fiat_p256_g_pre_comp is the table of precomputed base points
399 #if defined(BORINGSSL_NISTP256_64BIT)
400 static const fiat_p256_felem fiat_p256_g_pre_comp[2][16][3] = {
401     {{{0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}},
402      {{0x79e730d418a9143c, 0x75ba95fc5fedb601, 0x79fb732b77622510,
403        0x18905f76a53755c6},
404       {0xddf25357ce95560a, 0x8b4ab8e4ba19e45c, 0xd2e88688dd21f325,
405        0x8571ff1825885d85},
406       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
407      {{0x4f922fc516a0d2bb, 0xd5cc16c1a623499, 0x9241cf3a57c62c8b,
408        0x2f5e6961fd1b667f},
409       {0x5c15c70bf5a01797, 0x3d20b44d60956192, 0x4911b37071fdb52,
410        0xf648f9168d6f0f7b},
411       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
412      {{0x9e566847e137bbbc, 0xe434469e8a6a0bec, 0xb1c4276179d73463,
413        0x5abe0285133d0015},
414       {0x92aa837cc04c7dab, 0x573d9f4c43260c07, 0xc93156278e6cc37,
415        0x94bb725b6b6f7383},
416       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
417      {{0x62a8c244bfe20925, 0x91c19ac38fdce867, 0x5a96a5d5dd387063,
418        0x61d587d421d324f6},
419       {0xe87673a2a37173ea, 0x2384800853778b65, 0x10f8441e05bab43e,
420        0xfa11fe124621efbe},
421       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
422      {{0x1c891f2b2cb19ffd, 0x1ba8d5bb1923c23, 0xb6d03d678ac5ca8e,
423        0x586eb04c1f13bedc},
424       {0xc35c6e527e8ed09, 0x1e81a33c1819ede2, 0x278fd6c056c652fa,
425        0x19d5ac0870864f11},
426       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
427      {{0x62577734d2b533d5, 0x673b8af6a1bdddc0, 0x577e7c9aa79ec293,
428        0xbb6de651c3b266b1},
429       {0xe7e9303ab65259b3, 0xd6a0afd3d03a7480, 0xc5ac83d19b3cfc27,
430        0x60b4619a5d18b99b},
431       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
432      {{0xbd6a38e11ae5aa1c, 0xb8b7652b49e73658, 0xb130014ee5f87ed,
433        0x9d0f27b2aeebffcd},
434       {0xca9246317a730a55, 0x9c955b2fddbbc83a, 0x7c1dfe0ac019a71,
435        0x244a566d356ec48d},
436       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
437      {{0x56f8410ef4f8b16a, 0x97241afec47b266a, 0xa406b8e6d9c87c1,
438        0x803f3e02cd42ab1b},
439       {0x7f0309a804dbec69, 0xa83b85f73bbad05f, 0xc6097273ad8e197f,
440        0xc097440e5067adc1},
441       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
442      {{0x846a56f2c379ab34, 0xa8ee068b841df8d1, 0x20314459176c68ef,
443        0xf1af32d5915f1f30},
444       {0x99c375315d75bd50, 0x837cffbaf72f67bc, 0x613a41848d7723f,
445        0x23d0f130e2d41c8b},
446       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
447      {{0xed93e225d5be5a2b, 0x6fe799835934f3c6, 0x4314092622626ffc,
448        0x50bbb4d97990216a},
449       {0x378191c6e57ec63e, 0x65422c40181dcdb2, 0x41a8099b0236e0f6,
450        0x2b10011801fe49c3},
451       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
452      {{0xfc68b5c59b391593, 0xc385f5a2598270fc, 0x7144f3aad19adcbb,
453        0xdd55899983fbae0c},
454       {0x93b88b8e74b82ff4, 0xd2e03c4071e734c9, 0x9a7a9eaf43c0322a,
455        0xe6e4c551149d6041},
456       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
457      {{0x5fe14bfe80ec21fe, 0xf6ce116ac255be82, 0x98bc5a072f4a5d67,
458        0xfad27148db7e63af},
459       {0x90c0b6ac29ab05b3, 0x37a9a83c4e251ae6, 0xa7dc875c2aade7d,
460        0x77387de39f0e1a84},
461       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
462      {{0x1e9ecc49a56c0dd7, 0xa5cffcd846086c74, 0x8f7a1408f505aece,
463        0xb37b85c0bef0c47e},
464       {0x3596b6e4cc0e6a8f, 0xfd6d4bbf6b388f23, 0xaba453fac39cef4e,
465        0x9c135ac8f9f628d5},
466       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
467      {{0xa1c729495c8f8be, 0x2961c4803bf362bf, 0x9e418403df63d4ac,
468        0xc109f9cb91ece900},
469       {0xc2d095d058945705, 0xb9083d96ddeb85c0, 0x84692b8d7a40449b,
470        0x9bc3344f2eee1ee1},
471       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
472      {{0xd5ae35642913074, 0x55491b2748a542b1, 0x469ca665b310732a,
473        0x29591d525f1a4cc1},
474       {0xe76f5b6bb84f983f, 0xbe7eef419f5f84e1, 0x1200d49680baa189,
475        0x6376551f18ef332c},
476       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}}},
477     {{{0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}, {0x0, 0x0, 0x0, 0x0}},
478      {{0x202886024147519a, 0xd0981eac26b372f0, 0xa9d4a7caa785ebc8,
479        0xd953c50ddbdf58e9},
480       {0x9d6361ccfd590f8f, 0x72e9626b44e6c917, 0x7fd9611022eb64cf,
481        0x863ebb7e9eb288f3},
482       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
483      {{0x4fe7ee31b0e63d34, 0xf4600572a9e54fab, 0xc0493334d5e7b5a4,
484        0x8589fb9206d54831},
485       {0xaa70f5cc6583553a, 0x879094ae25649e5, 0xcc90450710044652,
486        0xebb0696d02541c4f},
487       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
488      {{0xabbaa0c03b89da99, 0xa6f2d79eb8284022, 0x27847862b81c05e8,
489        0x337a4b5905e54d63},
490       {0x3c67500d21f7794a, 0x207005b77d6d7f61, 0xa5a378104cfd6e8,
491        0xd65e0d5f4c2fbd6},
492       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
493      {{0xd433e50f6d3549cf, 0x6f33696ffacd665e, 0x695bfdacce11fcb4,
494        0x810ee252af7c9860},
495       {0x65450fe17159bb2c, 0xf7dfbebe758b357b, 0x2b057e74d69fea72,
496        0xd485717a92731745},
497       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
498      {{0xce1f69bbe83f7669, 0x9f8ae8272877d6b, 0x9548ae543244278d,
499        0x207755dee3c2c19c},
500       {0x87bd61d96fef1945, 0x18813cefb12d28c3, 0x9fbcd1d672df64aa,
501        0x48dc5ee57154b00d},
502       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
503      {{0xef0f469ef49a3154, 0x3e85a5956e2b2e9a, 0x45aaec1eaa924a9c,
504        0xaa12dfc8a09e4719},
505       {0x26f272274df69f1d, 0xe0e4c82ca2ff5e73, 0xb9d8ce73b7a9dd44,
506        0x6c036e73e48ca901},
507       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
508      {{0xe1e421e1a47153f0, 0xb86c3b79920418c9, 0x93bdce87705d7672,
509        0xf25ae793cab79a77},
510       {0x1f3194a36d869d0c, 0x9d55c8824986c264, 0x49fb5ea3096e945e,
511        0x39b8e65313db0a3e},
512       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
513      {{0xe3417bc035d0b34a, 0x440b386b8327c0a7, 0x8fb7262dac0362d1,
514        0x2c41114ce0cdf943},
515       {0x2ba5cef1ad95a0b1, 0xc09b37a867d54362, 0x26d6cdd201e486c9,
516        0x20477abf42ff9297},
517       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
518      {{0xf121b41bc0a67d2, 0x62d4760a444d248a, 0xe044f1d659b4737,
519        0x8fde365250bb4a8},
520       {0xaceec3da848bf287, 0xc2a62182d3369d6e, 0x3582dfdc92449482,
521        0x2f7e2fd2565d6cd7},
522       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
523      {{0xa0122b5178a876b, 0x51ff96ff085104b4, 0x50b31ab14f29f76,
524        0x84abb28b5f87d4e6},
525       {0xd5ed439f8270790a, 0x2d6cb59d85e3f46b, 0x75f55c1b6c1e2212,
526        0xe5436f6717655640},
527       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
528      {{0xc2965ecc9aeb596d, 0x1ea03e7023c92b4, 0x4704b4b62e013961,
529        0xca8fd3f905ea367},
530       {0x92523a42551b2b61, 0x1eb7a89c390fcd06, 0xe7f1d2be0392a63e,
531        0x96dca2644ddb0c33},
532       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
533      {{0x231c210e15339848, 0xe87a28e870778c8d, 0x9d1de6616956e170,
534        0x4ac3c9382bb09c0b},
535       {0x19be05516998987d, 0x8b2376c4ae09f4d6, 0x1de0b7651a3f933d,
536        0x380d94c7e39705f4},
537       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
538      {{0x3685954b8c31c31d, 0x68533d005bf21a0c, 0xbd7626e75c79ec9,
539        0xca17754742c69d54},
540       {0xcc6edafff6d2dbb2, 0xfd0d8cbd174a9d18, 0x875e8793aa4578e8,
541        0xa976a7139cab2ce6},
542       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
543      {{0xce37ab11b43ea1db, 0xa7ff1a95259d292, 0x851b02218f84f186,
544        0xa7222beadefaad13},
545       {0xa2ac78ec2b0a9144, 0x5a024051f2fa59c5, 0x91d1eca56147ce38,
546        0xbe94d523bc2ac690},
547       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}},
548      {{0x2d8daefd79ec1a0f, 0x3bbcd6fdceb39c97, 0xf5575ffc58f61a95,
549        0xdbd986c4adf7b420},
550       {0x81aa881415f39eb7, 0x6ee2fcf5b98d976c, 0x5465475dcf2f717d,
551        0x8e24d3c46860bbd0},
552       {0x1, 0xffffffff00000000, 0xffffffffffffffff, 0xfffffffe}}}};
553 #else
554 static const fiat_p256_felem fiat_p256_g_pre_comp[2][16][3] = {
555     {{{0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0},
556       {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0},
557       {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}},
558      {{0x18a9143c, 0x79e730d4, 0x5fedb601, 0x75ba95fc, 0x77622510, 0x79fb732b,
559        0xa53755c6, 0x18905f76},
560       {0xce95560a, 0xddf25357, 0xba19e45c, 0x8b4ab8e4, 0xdd21f325, 0xd2e88688,
561        0x25885d85, 0x8571ff18},
562       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
563      {{0x16a0d2bb, 0x4f922fc5, 0x1a623499, 0xd5cc16c, 0x57c62c8b, 0x9241cf3a,
564        0xfd1b667f, 0x2f5e6961},
565       {0xf5a01797, 0x5c15c70b, 0x60956192, 0x3d20b44d, 0x71fdb52, 0x4911b37,
566        0x8d6f0f7b, 0xf648f916},
567       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
568      {{0xe137bbbc, 0x9e566847, 0x8a6a0bec, 0xe434469e, 0x79d73463, 0xb1c42761,
569        0x133d0015, 0x5abe0285},
570       {0xc04c7dab, 0x92aa837c, 0x43260c07, 0x573d9f4c, 0x78e6cc37, 0xc931562,
571        0x6b6f7383, 0x94bb725b},
572       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
573      {{0xbfe20925, 0x62a8c244, 0x8fdce867, 0x91c19ac3, 0xdd387063, 0x5a96a5d5,
574        0x21d324f6, 0x61d587d4},
575       {0xa37173ea, 0xe87673a2, 0x53778b65, 0x23848008, 0x5bab43e, 0x10f8441e,
576        0x4621efbe, 0xfa11fe12},
577       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
578      {{0x2cb19ffd, 0x1c891f2b, 0xb1923c23, 0x1ba8d5b, 0x8ac5ca8e, 0xb6d03d67,
579        0x1f13bedc, 0x586eb04c},
580       {0x27e8ed09, 0xc35c6e5, 0x1819ede2, 0x1e81a33c, 0x56c652fa, 0x278fd6c0,
581        0x70864f11, 0x19d5ac08},
582       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
583      {{0xd2b533d5, 0x62577734, 0xa1bdddc0, 0x673b8af6, 0xa79ec293, 0x577e7c9a,
584        0xc3b266b1, 0xbb6de651},
585       {0xb65259b3, 0xe7e9303a, 0xd03a7480, 0xd6a0afd3, 0x9b3cfc27, 0xc5ac83d1,
586        0x5d18b99b, 0x60b4619a},
587       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
588      {{0x1ae5aa1c, 0xbd6a38e1, 0x49e73658, 0xb8b7652b, 0xee5f87ed, 0xb130014,
589        0xaeebffcd, 0x9d0f27b2},
590       {0x7a730a55, 0xca924631, 0xddbbc83a, 0x9c955b2f, 0xac019a71, 0x7c1dfe0,
591        0x356ec48d, 0x244a566d},
592       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
593      {{0xf4f8b16a, 0x56f8410e, 0xc47b266a, 0x97241afe, 0x6d9c87c1, 0xa406b8e,
594        0xcd42ab1b, 0x803f3e02},
595       {0x4dbec69, 0x7f0309a8, 0x3bbad05f, 0xa83b85f7, 0xad8e197f, 0xc6097273,
596        0x5067adc1, 0xc097440e},
597       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
598      {{0xc379ab34, 0x846a56f2, 0x841df8d1, 0xa8ee068b, 0x176c68ef, 0x20314459,
599        0x915f1f30, 0xf1af32d5},
600       {0x5d75bd50, 0x99c37531, 0xf72f67bc, 0x837cffba, 0x48d7723f, 0x613a418,
601        0xe2d41c8b, 0x23d0f130},
602       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
603      {{0xd5be5a2b, 0xed93e225, 0x5934f3c6, 0x6fe79983, 0x22626ffc, 0x43140926,
604        0x7990216a, 0x50bbb4d9},
605       {0xe57ec63e, 0x378191c6, 0x181dcdb2, 0x65422c40, 0x236e0f6, 0x41a8099b,
606        0x1fe49c3, 0x2b100118},
607       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
608      {{0x9b391593, 0xfc68b5c5, 0x598270fc, 0xc385f5a2, 0xd19adcbb, 0x7144f3aa,
609        0x83fbae0c, 0xdd558999},
610       {0x74b82ff4, 0x93b88b8e, 0x71e734c9, 0xd2e03c40, 0x43c0322a, 0x9a7a9eaf,
611        0x149d6041, 0xe6e4c551},
612       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
613      {{0x80ec21fe, 0x5fe14bfe, 0xc255be82, 0xf6ce116a, 0x2f4a5d67, 0x98bc5a07,
614        0xdb7e63af, 0xfad27148},
615       {0x29ab05b3, 0x90c0b6ac, 0x4e251ae6, 0x37a9a83c, 0xc2aade7d, 0xa7dc875,
616        0x9f0e1a84, 0x77387de3},
617       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
618      {{0xa56c0dd7, 0x1e9ecc49, 0x46086c74, 0xa5cffcd8, 0xf505aece, 0x8f7a1408,
619        0xbef0c47e, 0xb37b85c0},
620       {0xcc0e6a8f, 0x3596b6e4, 0x6b388f23, 0xfd6d4bbf, 0xc39cef4e, 0xaba453fa,
621        0xf9f628d5, 0x9c135ac8},
622       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
623      {{0x95c8f8be, 0xa1c7294, 0x3bf362bf, 0x2961c480, 0xdf63d4ac, 0x9e418403,
624        0x91ece900, 0xc109f9cb},
625       {0x58945705, 0xc2d095d0, 0xddeb85c0, 0xb9083d96, 0x7a40449b, 0x84692b8d,
626        0x2eee1ee1, 0x9bc3344f},
627       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
628      {{0x42913074, 0xd5ae356, 0x48a542b1, 0x55491b27, 0xb310732a, 0x469ca665,
629        0x5f1a4cc1, 0x29591d52},
630       {0xb84f983f, 0xe76f5b6b, 0x9f5f84e1, 0xbe7eef41, 0x80baa189, 0x1200d496,
631        0x18ef332c, 0x6376551f},
632       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}}},
633     {{{0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0},
634       {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0},
635       {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}},
636      {{0x4147519a, 0x20288602, 0x26b372f0, 0xd0981eac, 0xa785ebc8, 0xa9d4a7ca,
637        0xdbdf58e9, 0xd953c50d},
638       {0xfd590f8f, 0x9d6361cc, 0x44e6c917, 0x72e9626b, 0x22eb64cf, 0x7fd96110,
639        0x9eb288f3, 0x863ebb7e},
640       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
641      {{0xb0e63d34, 0x4fe7ee31, 0xa9e54fab, 0xf4600572, 0xd5e7b5a4, 0xc0493334,
642        0x6d54831, 0x8589fb92},
643       {0x6583553a, 0xaa70f5cc, 0xe25649e5, 0x879094a, 0x10044652, 0xcc904507,
644        0x2541c4f, 0xebb0696d},
645       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
646      {{0x3b89da99, 0xabbaa0c0, 0xb8284022, 0xa6f2d79e, 0xb81c05e8, 0x27847862,
647        0x5e54d63, 0x337a4b59},
648       {0x21f7794a, 0x3c67500d, 0x7d6d7f61, 0x207005b7, 0x4cfd6e8, 0xa5a3781,
649        0xf4c2fbd6, 0xd65e0d5},
650       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
651      {{0x6d3549cf, 0xd433e50f, 0xfacd665e, 0x6f33696f, 0xce11fcb4, 0x695bfdac,
652        0xaf7c9860, 0x810ee252},
653       {0x7159bb2c, 0x65450fe1, 0x758b357b, 0xf7dfbebe, 0xd69fea72, 0x2b057e74,
654        0x92731745, 0xd485717a},
655       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
656      {{0xe83f7669, 0xce1f69bb, 0x72877d6b, 0x9f8ae82, 0x3244278d, 0x9548ae54,
657        0xe3c2c19c, 0x207755de},
658       {0x6fef1945, 0x87bd61d9, 0xb12d28c3, 0x18813cef, 0x72df64aa, 0x9fbcd1d6,
659        0x7154b00d, 0x48dc5ee5},
660       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
661      {{0xf49a3154, 0xef0f469e, 0x6e2b2e9a, 0x3e85a595, 0xaa924a9c, 0x45aaec1e,
662        0xa09e4719, 0xaa12dfc8},
663       {0x4df69f1d, 0x26f27227, 0xa2ff5e73, 0xe0e4c82c, 0xb7a9dd44, 0xb9d8ce73,
664        0xe48ca901, 0x6c036e73},
665       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
666      {{0xa47153f0, 0xe1e421e1, 0x920418c9, 0xb86c3b79, 0x705d7672, 0x93bdce87,
667        0xcab79a77, 0xf25ae793},
668       {0x6d869d0c, 0x1f3194a3, 0x4986c264, 0x9d55c882, 0x96e945e, 0x49fb5ea3,
669        0x13db0a3e, 0x39b8e653},
670       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
671      {{0x35d0b34a, 0xe3417bc0, 0x8327c0a7, 0x440b386b, 0xac0362d1, 0x8fb7262d,
672        0xe0cdf943, 0x2c41114c},
673       {0xad95a0b1, 0x2ba5cef1, 0x67d54362, 0xc09b37a8, 0x1e486c9, 0x26d6cdd2,
674        0x42ff9297, 0x20477abf},
675       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
676      {{0xbc0a67d2, 0xf121b41, 0x444d248a, 0x62d4760a, 0x659b4737, 0xe044f1d,
677        0x250bb4a8, 0x8fde365},
678       {0x848bf287, 0xaceec3da, 0xd3369d6e, 0xc2a62182, 0x92449482, 0x3582dfdc,
679        0x565d6cd7, 0x2f7e2fd2},
680       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
681      {{0x178a876b, 0xa0122b5, 0x85104b4, 0x51ff96ff, 0x14f29f76, 0x50b31ab,
682        0x5f87d4e6, 0x84abb28b},
683       {0x8270790a, 0xd5ed439f, 0x85e3f46b, 0x2d6cb59d, 0x6c1e2212, 0x75f55c1b,
684        0x17655640, 0xe5436f67},
685       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
686      {{0x9aeb596d, 0xc2965ecc, 0x23c92b4, 0x1ea03e7, 0x2e013961, 0x4704b4b6,
687        0x905ea367, 0xca8fd3f},
688       {0x551b2b61, 0x92523a42, 0x390fcd06, 0x1eb7a89c, 0x392a63e, 0xe7f1d2be,
689        0x4ddb0c33, 0x96dca264},
690       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
691      {{0x15339848, 0x231c210e, 0x70778c8d, 0xe87a28e8, 0x6956e170, 0x9d1de661,
692        0x2bb09c0b, 0x4ac3c938},
693       {0x6998987d, 0x19be0551, 0xae09f4d6, 0x8b2376c4, 0x1a3f933d, 0x1de0b765,
694        0xe39705f4, 0x380d94c7},
695       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
696      {{0x8c31c31d, 0x3685954b, 0x5bf21a0c, 0x68533d00, 0x75c79ec9, 0xbd7626e,
697        0x42c69d54, 0xca177547},
698       {0xf6d2dbb2, 0xcc6edaff, 0x174a9d18, 0xfd0d8cbd, 0xaa4578e8, 0x875e8793,
699        0x9cab2ce6, 0xa976a713},
700       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
701      {{0xb43ea1db, 0xce37ab11, 0x5259d292, 0xa7ff1a9, 0x8f84f186, 0x851b0221,
702        0xdefaad13, 0xa7222bea},
703       {0x2b0a9144, 0xa2ac78ec, 0xf2fa59c5, 0x5a024051, 0x6147ce38, 0x91d1eca5,
704        0xbc2ac690, 0xbe94d523},
705       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}},
706      {{0x79ec1a0f, 0x2d8daefd, 0xceb39c97, 0x3bbcd6fd, 0x58f61a95, 0xf5575ffc,
707        0xadf7b420, 0xdbd986c4},
708       {0x15f39eb7, 0x81aa8814, 0xb98d976c, 0x6ee2fcf5, 0xcf2f717d, 0x5465475d,
709        0x6860bbd0, 0x8e24d3c4},
710       {0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}}}};
711 #endif
712 
713 // fiat_p256_select_point selects the |idx|th point from a precomputation table
714 // and copies it to out.
fiat_p256_select_point(const fiat_p256_limb_t idx,size_t size,const fiat_p256_felem pre_comp[][3],fiat_p256_felem out[3])715 static void fiat_p256_select_point(const fiat_p256_limb_t idx, size_t size,
716                                    const fiat_p256_felem pre_comp[/*size*/][3],
717                                    fiat_p256_felem out[3]) {
718   OPENSSL_memset(out, 0, sizeof(fiat_p256_felem) * 3);
719   for (size_t i = 0; i < size; i++) {
720     fiat_p256_limb_t mismatch = i ^ idx;
721     fiat_p256_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]);
722     fiat_p256_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]);
723     fiat_p256_cmovznz(out[2], mismatch, pre_comp[i][2], out[2]);
724   }
725 }
726 
727 // fiat_p256_get_bit returns the |i|th bit in |in|
fiat_p256_get_bit(const uint8_t * in,int i)728 static char fiat_p256_get_bit(const uint8_t *in, int i) {
729   if (i < 0 || i >= 256) {
730     return 0;
731   }
732   return (in[i >> 3] >> (i & 7)) & 1;
733 }
734 
735 // OPENSSL EC_METHOD FUNCTIONS
736 
737 // Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
738 // (X/Z^2, Y/Z^3).
ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP * group,const EC_RAW_POINT * point,EC_FELEM * x_out,EC_FELEM * y_out)739 static int ec_GFp_nistp256_point_get_affine_coordinates(
740     const EC_GROUP *group, const EC_RAW_POINT *point, EC_FELEM *x_out,
741     EC_FELEM *y_out) {
742   if (ec_GFp_simple_is_at_infinity(group, point)) {
743     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
744     return 0;
745   }
746 
747   fiat_p256_felem z1, z2;
748   fiat_p256_from_generic(z1, &point->Z);
749   fiat_p256_inv_square(z2, z1);
750 
751   if (x_out != NULL) {
752     fiat_p256_felem x;
753     fiat_p256_from_generic(x, &point->X);
754     fiat_p256_mul(x, x, z2);
755     fiat_p256_from_montgomery(x, x);
756     fiat_p256_to_generic(x_out, x);
757   }
758 
759   if (y_out != NULL) {
760     fiat_p256_felem y;
761     fiat_p256_from_generic(y, &point->Y);
762     fiat_p256_square(z2, z2);  // z^-4
763     fiat_p256_mul(y, y, z1);   // y * z
764     fiat_p256_mul(y, y, z2);   // y * z^-3
765     fiat_p256_from_montgomery(y, y);
766     fiat_p256_to_generic(y_out, y);
767   }
768 
769   return 1;
770 }
771 
ec_GFp_nistp256_add(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * a,const EC_RAW_POINT * b)772 static void ec_GFp_nistp256_add(const EC_GROUP *group, EC_RAW_POINT *r,
773                                 const EC_RAW_POINT *a, const EC_RAW_POINT *b) {
774   fiat_p256_felem x1, y1, z1, x2, y2, z2;
775   fiat_p256_from_generic(x1, &a->X);
776   fiat_p256_from_generic(y1, &a->Y);
777   fiat_p256_from_generic(z1, &a->Z);
778   fiat_p256_from_generic(x2, &b->X);
779   fiat_p256_from_generic(y2, &b->Y);
780   fiat_p256_from_generic(z2, &b->Z);
781   fiat_p256_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2,
782                       z2);
783   fiat_p256_to_generic(&r->X, x1);
784   fiat_p256_to_generic(&r->Y, y1);
785   fiat_p256_to_generic(&r->Z, z1);
786 }
787 
ec_GFp_nistp256_dbl(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * a)788 static void ec_GFp_nistp256_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
789                                 const EC_RAW_POINT *a) {
790   fiat_p256_felem x, y, z;
791   fiat_p256_from_generic(x, &a->X);
792   fiat_p256_from_generic(y, &a->Y);
793   fiat_p256_from_generic(z, &a->Z);
794   fiat_p256_point_double(x, y, z, x, y, z);
795   fiat_p256_to_generic(&r->X, x);
796   fiat_p256_to_generic(&r->Y, y);
797   fiat_p256_to_generic(&r->Z, z);
798 }
799 
ec_GFp_nistp256_point_mul(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * p,const EC_SCALAR * scalar)800 static void ec_GFp_nistp256_point_mul(const EC_GROUP *group, EC_RAW_POINT *r,
801                                       const EC_RAW_POINT *p,
802                                       const EC_SCALAR *scalar) {
803   fiat_p256_felem p_pre_comp[17][3];
804   OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp));
805   // Precompute multiples.
806   fiat_p256_from_generic(p_pre_comp[1][0], &p->X);
807   fiat_p256_from_generic(p_pre_comp[1][1], &p->Y);
808   fiat_p256_from_generic(p_pre_comp[1][2], &p->Z);
809   for (size_t j = 2; j <= 16; ++j) {
810     if (j & 1) {
811       fiat_p256_point_add(p_pre_comp[j][0], p_pre_comp[j][1], p_pre_comp[j][2],
812                           p_pre_comp[1][0], p_pre_comp[1][1], p_pre_comp[1][2],
813                           0, p_pre_comp[j - 1][0], p_pre_comp[j - 1][1],
814                           p_pre_comp[j - 1][2]);
815     } else {
816       fiat_p256_point_double(p_pre_comp[j][0], p_pre_comp[j][1],
817                              p_pre_comp[j][2], p_pre_comp[j / 2][0],
818                              p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]);
819     }
820   }
821 
822   // Set nq to the point at infinity.
823   fiat_p256_felem nq[3] = {{0}, {0}, {0}}, ftmp, tmp[3];
824 
825   // Loop over |scalar| msb-to-lsb, incorporating |p_pre_comp| every 5th round.
826   int skip = 1;  // Save two point operations in the first round.
827   for (size_t i = 255; i < 256; i--) {
828     // double
829     if (!skip) {
830       fiat_p256_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
831     }
832 
833     // do other additions every 5 doublings
834     if (i % 5 == 0) {
835       uint64_t bits = fiat_p256_get_bit(scalar->bytes, i + 4) << 5;
836       bits |= fiat_p256_get_bit(scalar->bytes, i + 3) << 4;
837       bits |= fiat_p256_get_bit(scalar->bytes, i + 2) << 3;
838       bits |= fiat_p256_get_bit(scalar->bytes, i + 1) << 2;
839       bits |= fiat_p256_get_bit(scalar->bytes, i) << 1;
840       bits |= fiat_p256_get_bit(scalar->bytes, i - 1);
841       uint8_t sign, digit;
842       ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
843 
844       // select the point to add or subtract, in constant time.
845       fiat_p256_select_point(digit, 17, (const fiat_p256_felem(*)[3])p_pre_comp,
846                              tmp);
847       fiat_p256_opp(ftmp, tmp[1]);  // (X, -Y, Z) is the negative point.
848       fiat_p256_cmovznz(tmp[1], sign, tmp[1], ftmp);
849 
850       if (!skip) {
851         fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2],
852                             0 /* mixed */, tmp[0], tmp[1], tmp[2]);
853       } else {
854         fiat_p256_copy(nq[0], tmp[0]);
855         fiat_p256_copy(nq[1], tmp[1]);
856         fiat_p256_copy(nq[2], tmp[2]);
857         skip = 0;
858       }
859     }
860   }
861 
862   fiat_p256_to_generic(&r->X, nq[0]);
863   fiat_p256_to_generic(&r->Y, nq[1]);
864   fiat_p256_to_generic(&r->Z, nq[2]);
865 }
866 
ec_GFp_nistp256_point_mul_base(const EC_GROUP * group,EC_RAW_POINT * r,const EC_SCALAR * scalar)867 static void ec_GFp_nistp256_point_mul_base(const EC_GROUP *group,
868                                            EC_RAW_POINT *r,
869                                            const EC_SCALAR *scalar) {
870   // Set nq to the point at infinity.
871   fiat_p256_felem nq[3] = {{0}, {0}, {0}}, tmp[3];
872 
873   int skip = 1;  // Save two point operations in the first round.
874   for (size_t i = 31; i < 32; i--) {
875     if (!skip) {
876       fiat_p256_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
877     }
878 
879     // First, look 32 bits upwards.
880     uint64_t bits = fiat_p256_get_bit(scalar->bytes, i + 224) << 3;
881     bits |= fiat_p256_get_bit(scalar->bytes, i + 160) << 2;
882     bits |= fiat_p256_get_bit(scalar->bytes, i + 96) << 1;
883     bits |= fiat_p256_get_bit(scalar->bytes, i + 32);
884     // Select the point to add, in constant time.
885     fiat_p256_select_point(bits, 16, fiat_p256_g_pre_comp[1], tmp);
886 
887     if (!skip) {
888       fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2],
889                           1 /* mixed */, tmp[0], tmp[1], tmp[2]);
890     } else {
891       fiat_p256_copy(nq[0], tmp[0]);
892       fiat_p256_copy(nq[1], tmp[1]);
893       fiat_p256_copy(nq[2], tmp[2]);
894       skip = 0;
895     }
896 
897     // Second, look at the current position.
898     bits = fiat_p256_get_bit(scalar->bytes, i + 192) << 3;
899     bits |= fiat_p256_get_bit(scalar->bytes, i + 128) << 2;
900     bits |= fiat_p256_get_bit(scalar->bytes, i + 64) << 1;
901     bits |= fiat_p256_get_bit(scalar->bytes, i);
902     // Select the point to add, in constant time.
903     fiat_p256_select_point(bits, 16, fiat_p256_g_pre_comp[0], tmp);
904     fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
905                         tmp[0], tmp[1], tmp[2]);
906   }
907 
908   fiat_p256_to_generic(&r->X, nq[0]);
909   fiat_p256_to_generic(&r->Y, nq[1]);
910   fiat_p256_to_generic(&r->Z, nq[2]);
911 }
912 
ec_GFp_nistp256_point_mul_public(const EC_GROUP * group,EC_RAW_POINT * r,const EC_SCALAR * g_scalar,const EC_RAW_POINT * p,const EC_SCALAR * p_scalar)913 static void ec_GFp_nistp256_point_mul_public(const EC_GROUP *group,
914                                              EC_RAW_POINT *r,
915                                              const EC_SCALAR *g_scalar,
916                                              const EC_RAW_POINT *p,
917                                              const EC_SCALAR *p_scalar) {
918 #define P256_WSIZE_PUBLIC 4
919   // Precompute multiples of |p|. p_pre_comp[i] is (2*i+1) * |p|.
920   fiat_p256_felem p_pre_comp[1 << (P256_WSIZE_PUBLIC - 1)][3];
921   fiat_p256_from_generic(p_pre_comp[0][0], &p->X);
922   fiat_p256_from_generic(p_pre_comp[0][1], &p->Y);
923   fiat_p256_from_generic(p_pre_comp[0][2], &p->Z);
924   fiat_p256_felem p2[3];
925   fiat_p256_point_double(p2[0], p2[1], p2[2], p_pre_comp[0][0],
926                          p_pre_comp[0][1], p_pre_comp[0][2]);
927   for (size_t i = 1; i < OPENSSL_ARRAY_SIZE(p_pre_comp); i++) {
928     fiat_p256_point_add(p_pre_comp[i][0], p_pre_comp[i][1], p_pre_comp[i][2],
929                         p_pre_comp[i - 1][0], p_pre_comp[i - 1][1],
930                         p_pre_comp[i - 1][2], 0 /* not mixed */, p2[0], p2[1],
931                         p2[2]);
932   }
933 
934   // Set up the coefficients for |p_scalar|.
935   int8_t p_wNAF[257];
936   ec_compute_wNAF(group, p_wNAF, p_scalar, 256, P256_WSIZE_PUBLIC);
937 
938   // Set |ret| to the point at infinity.
939   int skip = 1;  // Save some point operations.
940   fiat_p256_felem ret[3] = {{0}, {0}, {0}};
941   for (int i = 256; i >= 0; i--) {
942     if (!skip) {
943       fiat_p256_point_double(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2]);
944     }
945 
946     // For the |g_scalar|, we use the precomputed table without the
947     // constant-time lookup.
948     if (i <= 31) {
949       // First, look 32 bits upwards.
950       uint64_t bits = fiat_p256_get_bit(g_scalar->bytes, i + 224) << 3;
951       bits |= fiat_p256_get_bit(g_scalar->bytes, i + 160) << 2;
952       bits |= fiat_p256_get_bit(g_scalar->bytes, i + 96) << 1;
953       bits |= fiat_p256_get_bit(g_scalar->bytes, i + 32);
954       fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
955                           1 /* mixed */, fiat_p256_g_pre_comp[1][bits][0],
956                           fiat_p256_g_pre_comp[1][bits][1],
957                           fiat_p256_g_pre_comp[1][bits][2]);
958       skip = 0;
959 
960       // Second, look at the current position.
961       bits = fiat_p256_get_bit(g_scalar->bytes, i + 192) << 3;
962       bits |= fiat_p256_get_bit(g_scalar->bytes, i + 128) << 2;
963       bits |= fiat_p256_get_bit(g_scalar->bytes, i + 64) << 1;
964       bits |= fiat_p256_get_bit(g_scalar->bytes, i);
965       fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
966                           1 /* mixed */, fiat_p256_g_pre_comp[0][bits][0],
967                           fiat_p256_g_pre_comp[0][bits][1],
968                           fiat_p256_g_pre_comp[0][bits][2]);
969     }
970 
971     int digit = p_wNAF[i];
972     if (digit != 0) {
973       assert(digit & 1);
974       int idx = digit < 0 ? (-digit) >> 1 : digit >> 1;
975       fiat_p256_felem *y = &p_pre_comp[idx][1], tmp;
976       if (digit < 0) {
977         fiat_p256_opp(tmp, p_pre_comp[idx][1]);
978         y = &tmp;
979       }
980       if (!skip) {
981         fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
982                             0 /* not mixed */, p_pre_comp[idx][0], *y,
983                             p_pre_comp[idx][2]);
984       } else {
985         fiat_p256_copy(ret[0], p_pre_comp[idx][0]);
986         fiat_p256_copy(ret[1], *y);
987         fiat_p256_copy(ret[2], p_pre_comp[idx][2]);
988         skip = 0;
989       }
990     }
991   }
992 
993   fiat_p256_to_generic(&r->X, ret[0]);
994   fiat_p256_to_generic(&r->Y, ret[1]);
995   fiat_p256_to_generic(&r->Z, ret[2]);
996 }
997 
ec_GFp_nistp256_cmp_x_coordinate(const EC_GROUP * group,const EC_RAW_POINT * p,const EC_SCALAR * r)998 static int ec_GFp_nistp256_cmp_x_coordinate(const EC_GROUP *group,
999                                             const EC_RAW_POINT *p,
1000                                             const EC_SCALAR *r) {
1001   if (ec_GFp_simple_is_at_infinity(group, p)) {
1002     return 0;
1003   }
1004 
1005   // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
1006   // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
1007   // not.
1008   fiat_p256_felem Z2_mont;
1009   fiat_p256_from_generic(Z2_mont, &p->Z);
1010   fiat_p256_mul(Z2_mont, Z2_mont, Z2_mont);
1011 
1012   fiat_p256_felem r_Z2;
1013   fiat_p256_from_bytes(r_Z2, r->bytes);  // r < order < p, so this is valid.
1014   fiat_p256_mul(r_Z2, r_Z2, Z2_mont);
1015 
1016   fiat_p256_felem X;
1017   fiat_p256_from_generic(X, &p->X);
1018   fiat_p256_from_montgomery(X, X);
1019 
1020   if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) {
1021     return 1;
1022   }
1023 
1024   // During signing the x coefficient is reduced modulo the group order.
1025   // Therefore there is a small possibility, less than 1/2^128, that group_order
1026   // < p.x < P. in that case we need not only to compare against |r| but also to
1027   // compare against r+group_order.
1028   assert(group->field.width == group->order.width);
1029   if (bn_less_than_words(r->words, group->field_minus_order.words,
1030                          group->field.width)) {
1031     // We can ignore the carry because: r + group_order < p < 2^256.
1032     EC_FELEM tmp;
1033     bn_add_words(tmp.words, r->words, group->order.d, group->order.width);
1034     fiat_p256_from_generic(r_Z2, &tmp);
1035     fiat_p256_mul(r_Z2, r_Z2, Z2_mont);
1036     if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) {
1037       return 1;
1038     }
1039   }
1040 
1041   return 0;
1042 }
1043 
DEFINE_METHOD_FUNCTION(EC_METHOD,EC_GFp_nistp256_method)1044 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp256_method) {
1045   out->group_init = ec_GFp_mont_group_init;
1046   out->group_finish = ec_GFp_mont_group_finish;
1047   out->group_set_curve = ec_GFp_mont_group_set_curve;
1048   out->point_get_affine_coordinates =
1049       ec_GFp_nistp256_point_get_affine_coordinates;
1050   out->add = ec_GFp_nistp256_add;
1051   out->dbl = ec_GFp_nistp256_dbl;
1052   out->mul = ec_GFp_nistp256_point_mul;
1053   out->mul_base = ec_GFp_nistp256_point_mul_base;
1054   out->mul_public = ec_GFp_nistp256_point_mul_public;
1055   out->felem_mul = ec_GFp_mont_felem_mul;
1056   out->felem_sqr = ec_GFp_mont_felem_sqr;
1057   out->felem_to_bytes = ec_GFp_mont_felem_to_bytes;
1058   out->felem_from_bytes = ec_GFp_mont_felem_from_bytes;
1059   out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
1060   out->scalar_to_montgomery_inv_vartime =
1061       ec_simple_scalar_to_montgomery_inv_vartime;
1062   out->cmp_x_coordinate = ec_GFp_nistp256_cmp_x_coordinate;
1063 }
1064 
1065 #undef BORINGSSL_NISTP256_64BIT
1066