1 /*
2 * Camellia
3 * (C) 2012 Jack Lloyd
4 *
5 * Distributed under the terms of the Botan license
6 */
7 
8 #include <botan/camellia.h>
9 #include <botan/internal/camellia_sbox.h>
10 #include <botan/loadstor.h>
11 
12 namespace Botan {
13 
14 namespace Camellia_F {
15 
16 namespace {
17 
18 /*
19 * We use the slow byte-wise version of F in the first and last rounds
20 * to help protect against timing attacks
21 */
F_SLOW(u64bit v,u64bit K)22 u64bit F_SLOW(u64bit v, u64bit K)
23    {
24    static const byte SBOX[256] = {
25       0x70, 0x82, 0x2C, 0xEC, 0xB3, 0x27, 0xC0, 0xE5, 0xE4, 0x85, 0x57,
26       0x35, 0xEA, 0x0C, 0xAE, 0x41, 0x23, 0xEF, 0x6B, 0x93, 0x45, 0x19,
27       0xA5, 0x21, 0xED, 0x0E, 0x4F, 0x4E, 0x1D, 0x65, 0x92, 0xBD, 0x86,
28       0xB8, 0xAF, 0x8F, 0x7C, 0xEB, 0x1F, 0xCE, 0x3E, 0x30, 0xDC, 0x5F,
29       0x5E, 0xC5, 0x0B, 0x1A, 0xA6, 0xE1, 0x39, 0xCA, 0xD5, 0x47, 0x5D,
30       0x3D, 0xD9, 0x01, 0x5A, 0xD6, 0x51, 0x56, 0x6C, 0x4D, 0x8B, 0x0D,
31       0x9A, 0x66, 0xFB, 0xCC, 0xB0, 0x2D, 0x74, 0x12, 0x2B, 0x20, 0xF0,
32       0xB1, 0x84, 0x99, 0xDF, 0x4C, 0xCB, 0xC2, 0x34, 0x7E, 0x76, 0x05,
33       0x6D, 0xB7, 0xA9, 0x31, 0xD1, 0x17, 0x04, 0xD7, 0x14, 0x58, 0x3A,
34       0x61, 0xDE, 0x1B, 0x11, 0x1C, 0x32, 0x0F, 0x9C, 0x16, 0x53, 0x18,
35       0xF2, 0x22, 0xFE, 0x44, 0xCF, 0xB2, 0xC3, 0xB5, 0x7A, 0x91, 0x24,
36       0x08, 0xE8, 0xA8, 0x60, 0xFC, 0x69, 0x50, 0xAA, 0xD0, 0xA0, 0x7D,
37       0xA1, 0x89, 0x62, 0x97, 0x54, 0x5B, 0x1E, 0x95, 0xE0, 0xFF, 0x64,
38       0xD2, 0x10, 0xC4, 0x00, 0x48, 0xA3, 0xF7, 0x75, 0xDB, 0x8A, 0x03,
39       0xE6, 0xDA, 0x09, 0x3F, 0xDD, 0x94, 0x87, 0x5C, 0x83, 0x02, 0xCD,
40       0x4A, 0x90, 0x33, 0x73, 0x67, 0xF6, 0xF3, 0x9D, 0x7F, 0xBF, 0xE2,
41       0x52, 0x9B, 0xD8, 0x26, 0xC8, 0x37, 0xC6, 0x3B, 0x81, 0x96, 0x6F,
42       0x4B, 0x13, 0xBE, 0x63, 0x2E, 0xE9, 0x79, 0xA7, 0x8C, 0x9F, 0x6E,
43       0xBC, 0x8E, 0x29, 0xF5, 0xF9, 0xB6, 0x2F, 0xFD, 0xB4, 0x59, 0x78,
44       0x98, 0x06, 0x6A, 0xE7, 0x46, 0x71, 0xBA, 0xD4, 0x25, 0xAB, 0x42,
45       0x88, 0xA2, 0x8D, 0xFA, 0x72, 0x07, 0xB9, 0x55, 0xF8, 0xEE, 0xAC,
46       0x0A, 0x36, 0x49, 0x2A, 0x68, 0x3C, 0x38, 0xF1, 0xA4, 0x40, 0x28,
47       0xD3, 0x7B, 0xBB, 0xC9, 0x43, 0xC1, 0x15, 0xE3, 0xAD, 0xF4, 0x77,
48       0xC7, 0x80, 0x9E };
49 
50    const u64bit x = v ^ K;
51 
52    const byte t1 = SBOX[get_byte(0, x)];
53    const byte t2 = rotate_left(SBOX[get_byte(1, x)], 1);
54    const byte t3 = rotate_left(SBOX[get_byte(2, x)], 7);
55    const byte t4 = SBOX[rotate_left(get_byte(3, x), 1)];
56    const byte t5 = rotate_left(SBOX[get_byte(4, x)], 1);
57    const byte t6 = rotate_left(SBOX[get_byte(5, x)], 7);
58    const byte t7 = SBOX[rotate_left(get_byte(6, x), 1)];
59    const byte t8 = SBOX[get_byte(7, x)];
60 
61    const byte y1 = t1 ^ t3 ^ t4 ^ t6 ^ t7 ^ t8;
62    const byte y2 = t1 ^ t2 ^ t4 ^ t5 ^ t7 ^ t8;
63    const byte y3 = t1 ^ t2 ^ t3 ^ t5 ^ t6 ^ t8;
64    const byte y4 = t2 ^ t3 ^ t4 ^ t5 ^ t6 ^ t7;
65    const byte y5 = t1 ^ t2 ^ t6 ^ t7 ^ t8;
66    const byte y6 = t2 ^ t3 ^ t5 ^ t7 ^ t8;
67    const byte y7 = t3 ^ t4 ^ t5 ^ t6 ^ t8;
68    const byte y8 = t1 ^ t4 ^ t5 ^ t6 ^ t7;
69 
70    return make_u64bit(y1, y2, y3, y4, y5, y6, y7, y8);
71    }
72 
F(u64bit v,u64bit K)73 inline u64bit F(u64bit v, u64bit K)
74    {
75    const u64bit x = v ^ K;
76 
77    return Camellia_SBOX1[get_byte(0, x)] ^
78           Camellia_SBOX2[get_byte(1, x)] ^
79           Camellia_SBOX3[get_byte(2, x)] ^
80           Camellia_SBOX4[get_byte(3, x)] ^
81           Camellia_SBOX5[get_byte(4, x)] ^
82           Camellia_SBOX6[get_byte(5, x)] ^
83           Camellia_SBOX7[get_byte(6, x)] ^
84           Camellia_SBOX8[get_byte(7, x)];
85    }
86 
FL(u64bit v,u64bit K)87 inline u64bit FL(u64bit v, u64bit K)
88    {
89    u32bit x1 = (v >> 32);
90    u32bit x2 = (v & 0xFFFFFFFF);
91 
92    const u32bit k1 = (K >> 32);
93    const u32bit k2 = (K & 0xFFFFFFFF);
94 
95    x2 ^= rotate_left(x1 & k1, 1);
96    x1 ^= (x2 | k2);
97 
98    return ((static_cast<u64bit>(x1) << 32) | x2);
99    }
100 
FLINV(u64bit v,u64bit K)101 inline u64bit FLINV(u64bit v, u64bit K)
102    {
103    u32bit x1 = (v >> 32);
104    u32bit x2 = (v & 0xFFFFFFFF);
105 
106    const u32bit k1 = (K >> 32);
107    const u32bit k2 = (K & 0xFFFFFFFF);
108 
109    x1 ^= (x2 | k2);
110    x2 ^= rotate_left(x1 & k1, 1);
111 
112    return ((static_cast<u64bit>(x1) << 32) | x2);
113    }
114 
115 /*
116 * Camellia Encryption
117 */
encrypt(const byte in[],byte out[],size_t blocks,const SecureVector<u64bit> & SK,const size_t rounds)118 void encrypt(const byte in[], byte out[], size_t blocks,
119              const SecureVector<u64bit>& SK, const size_t rounds)
120    {
121    for(size_t i = 0; i != blocks; ++i)
122       {
123       u64bit D1 = load_be<u64bit>(in, 0);
124       u64bit D2 = load_be<u64bit>(in, 1);
125 
126       const u64bit* K = &SK[0];
127 
128       D1 ^= *K++;
129       D2 ^= *K++;
130 
131       D2 ^= F_SLOW(D1, *K++);
132       D1 ^= F_SLOW(D2, *K++);
133 
134       for(size_t r = 1; r != rounds - 1; ++r)
135          {
136          if(r % 3 == 0)
137             {
138             D1 = FL   (D1, *K++);
139             D2 = FLINV(D2, *K++);
140             }
141 
142          D2 ^= F(D1, *K++);
143          D1 ^= F(D2, *K++);
144          }
145 
146       D2 ^= F_SLOW(D1, *K++);
147       D1 ^= F_SLOW(D2, *K++);
148 
149       D2 ^= *K++;
150       D1 ^= *K++;
151 
152       store_be(out, D2, D1);
153 
154       in += 16;
155       out += 16;
156       }
157    }
158 
159 /*
160 * Camellia Decryption
161 */
decrypt(const byte in[],byte out[],size_t blocks,const SecureVector<u64bit> & SK,const size_t rounds)162 void decrypt(const byte in[], byte out[], size_t blocks,
163              const SecureVector<u64bit>& SK, const size_t rounds)
164    {
165    for(size_t i = 0; i != blocks; ++i)
166       {
167       u64bit D1 = load_be<u64bit>(in, 0);
168       u64bit D2 = load_be<u64bit>(in, 1);
169 
170       const u64bit* K = &SK[SK.size()-1];
171 
172       D2 ^= *K--;
173       D1 ^= *K--;
174 
175       D2 ^= F_SLOW(D1, *K--);
176       D1 ^= F_SLOW(D2, *K--);
177 
178       for(size_t r = 1; r != rounds - 1; ++r)
179          {
180          if(r % 3 == 0)
181             {
182             D1 = FL   (D1, *K--);
183             D2 = FLINV(D2, *K--);
184             }
185 
186          D2 ^= F(D1, *K--);
187          D1 ^= F(D2, *K--);
188          }
189 
190       D2 ^= F_SLOW(D1, *K--);
191       D1 ^= F_SLOW(D2, *K--);
192 
193       D1 ^= *K--;
194       D2 ^= *K;
195 
196       store_be(out, D2, D1);
197 
198       in += 16;
199       out += 16;
200       }
201    }
202 
left_rot_hi(u64bit h,u64bit l,size_t shift)203 u64bit left_rot_hi(u64bit h, u64bit l, size_t shift)
204    {
205    return (h << shift) | ((l >> (64-shift)));
206    }
207 
left_rot_lo(u64bit h,u64bit l,size_t shift)208 u64bit left_rot_lo(u64bit h, u64bit l, size_t shift)
209    {
210    return (h >> (64-shift)) | (l << shift);
211    }
212 
213 /*
214 * Camellia Key Schedule
215 */
key_schedule(SecureVector<u64bit> & SK,const byte key[],size_t length)216 void key_schedule(SecureVector<u64bit>& SK, const byte key[], size_t length)
217    {
218    const u64bit Sigma1 = 0xA09E667F3BCC908B;
219    const u64bit Sigma2 = 0xB67AE8584CAA73B2;
220    const u64bit Sigma3 = 0xC6EF372FE94F82BE;
221    const u64bit Sigma4 = 0x54FF53A5F1D36F1C;
222    const u64bit Sigma5 = 0x10E527FADE682D1D;
223    const u64bit Sigma6 = 0xB05688C2B3E6C1FD;
224 
225    const u64bit KL_H = load_be<u64bit>(key, 0);
226    const u64bit KL_L = load_be<u64bit>(key, 1);
227 
228    const u64bit KR_H = (length >= 24) ? load_be<u64bit>(key, 2) : 0;
229    const u64bit KR_L =
230       (length == 32) ? load_be<u64bit>(key, 3) : ((length == 24) ? ~KR_H : 0);
231 
232    u64bit D1 = KL_H ^ KR_H;
233    u64bit D2 = KL_L ^ KR_L;
234    D2 ^= F(D1, Sigma1);
235    D1 ^= F(D2, Sigma2);
236    D1 ^= KL_H;
237    D2 ^= KL_L;
238    D2 ^= F(D1, Sigma3);
239    D1 ^= F(D2, Sigma4);
240 
241    const u64bit KA_H = D1;
242    const u64bit KA_L = D2;
243 
244    D1 = KA_H ^ KR_H;
245    D2 = KA_L ^ KR_L;
246    D2 ^= F(D1, Sigma5);
247    D1 ^= F(D2, Sigma6);
248 
249    const u64bit KB_H = D1;
250    const u64bit KB_L = D2;
251 
252    if(length == 16)
253       {
254       SK.resize(26);
255 
256       SK[ 0] = KL_H;
257       SK[ 1] = KL_L;
258       SK[ 2] = KA_H;
259       SK[ 3] = KA_L;
260       SK[ 4] = left_rot_hi(KL_H, KL_L, 15);
261       SK[ 5] = left_rot_lo(KL_H, KL_L, 15);
262       SK[ 6] = left_rot_hi(KA_H, KA_L, 15);
263       SK[ 7] = left_rot_lo(KA_H, KA_L, 15);
264       SK[ 8] = left_rot_hi(KA_H, KA_L, 30);
265       SK[ 9] = left_rot_lo(KA_H, KA_L, 30);
266       SK[10] = left_rot_hi(KL_H, KL_L, 45);
267       SK[11] = left_rot_lo(KL_H, KL_L, 45);
268       SK[12] = left_rot_hi(KA_H, KA_L,  45);
269       SK[13] = left_rot_lo(KL_H, KL_L,  60);
270       SK[14] = left_rot_hi(KA_H, KA_L,  60);
271       SK[15] = left_rot_lo(KA_H, KA_L,  60);
272       SK[16] = left_rot_lo(KL_H, KL_L,  77-64);
273       SK[17] = left_rot_hi(KL_H, KL_L,  77-64);
274       SK[18] = left_rot_lo(KL_H, KL_L,  94-64);
275       SK[19] = left_rot_hi(KL_H, KL_L,  94-64);
276       SK[20] = left_rot_lo(KA_H, KA_L,  94-64);
277       SK[21] = left_rot_hi(KA_H, KA_L,  94-64);
278       SK[22] = left_rot_lo(KL_H, KL_L, 111-64);
279       SK[23] = left_rot_hi(KL_H, KL_L, 111-64);
280       SK[24] = left_rot_lo(KA_H, KA_L, 111-64);
281       SK[25] = left_rot_hi(KA_H, KA_L, 111-64);
282       }
283    else
284       {
285       SK.resize(34);
286 
287       SK[ 0] = KL_H;
288       SK[ 1] = KL_L;
289       SK[ 2] = KB_H;
290       SK[ 3] = KB_L;
291 
292       SK[ 4] = left_rot_hi(KR_H, KR_L, 15);
293       SK[ 5] = left_rot_lo(KR_H, KR_L, 15);
294       SK[ 6] = left_rot_hi(KA_H, KA_L, 15);
295       SK[ 7] = left_rot_lo(KA_H, KA_L, 15);
296 
297       SK[ 8] = left_rot_hi(KR_H, KR_L, 30);
298       SK[ 9] = left_rot_lo(KR_H, KR_L, 30);
299       SK[10] = left_rot_hi(KB_H, KB_L, 30);
300       SK[11] = left_rot_lo(KB_H, KB_L, 30);
301 
302       SK[12] = left_rot_hi(KL_H, KL_L, 45);
303       SK[13] = left_rot_lo(KL_H, KL_L, 45);
304       SK[14] = left_rot_hi(KA_H, KA_L, 45);
305       SK[15] = left_rot_lo(KA_H, KA_L, 45);
306 
307       SK[16] = left_rot_hi(KL_H, KL_L, 60);
308       SK[17] = left_rot_lo(KL_H, KL_L, 60);
309       SK[18] = left_rot_hi(KR_H, KR_L, 60);
310       SK[19] = left_rot_lo(KR_H, KR_L, 60);
311       SK[20] = left_rot_hi(KB_H, KB_L, 60);
312       SK[21] = left_rot_lo(KB_H, KB_L, 60);
313 
314       SK[22] = left_rot_lo(KL_H, KL_L,  77-64);
315       SK[23] = left_rot_hi(KL_H, KL_L,  77-64);
316       SK[24] = left_rot_lo(KA_H, KA_L,  77-64);
317       SK[25] = left_rot_hi(KA_H, KA_L,  77-64);
318 
319       SK[26] = left_rot_lo(KR_H, KR_L,  94-64);
320       SK[27] = left_rot_hi(KR_H, KR_L,  94-64);
321       SK[28] = left_rot_lo(KA_H, KA_L,  94-64);
322       SK[29] = left_rot_hi(KA_H, KA_L,  94-64);
323       SK[30] = left_rot_lo(KL_H, KL_L, 111-64);
324       SK[31] = left_rot_hi(KL_H, KL_L, 111-64);
325       SK[32] = left_rot_lo(KB_H, KB_L, 111-64);
326       SK[33] = left_rot_hi(KB_H, KB_L, 111-64);
327       }
328    }
329 
330 }
331 
332 }
333 
encrypt_n(const byte in[],byte out[],size_t blocks) const334 void Camellia_128::encrypt_n(const byte in[], byte out[], size_t blocks) const
335    {
336    Camellia_F::encrypt(in, out, blocks, SK, 9);
337    }
338 
encrypt_n(const byte in[],byte out[],size_t blocks) const339 void Camellia_192::encrypt_n(const byte in[], byte out[], size_t blocks) const
340    {
341    Camellia_F::encrypt(in, out, blocks, SK, 12);
342    }
343 
encrypt_n(const byte in[],byte out[],size_t blocks) const344 void Camellia_256::encrypt_n(const byte in[], byte out[], size_t blocks) const
345    {
346    Camellia_F::encrypt(in, out, blocks, SK, 12);
347    }
348 
decrypt_n(const byte in[],byte out[],size_t blocks) const349 void Camellia_128::decrypt_n(const byte in[], byte out[], size_t blocks) const
350    {
351    Camellia_F::decrypt(in, out, blocks, SK, 9);
352    }
353 
decrypt_n(const byte in[],byte out[],size_t blocks) const354 void Camellia_192::decrypt_n(const byte in[], byte out[], size_t blocks) const
355    {
356    Camellia_F::decrypt(in, out, blocks, SK, 12);
357    }
358 
decrypt_n(const byte in[],byte out[],size_t blocks) const359 void Camellia_256::decrypt_n(const byte in[], byte out[], size_t blocks) const
360    {
361    Camellia_F::decrypt(in, out, blocks, SK, 12);
362    }
363 
key_schedule(const byte key[],size_t length)364 void Camellia_128::key_schedule(const byte key[], size_t length)
365    {
366    Camellia_F::key_schedule(SK, key, length);
367    }
368 
key_schedule(const byte key[],size_t length)369 void Camellia_192::key_schedule(const byte key[], size_t length)
370    {
371    Camellia_F::key_schedule(SK, key, length);
372    }
373 
key_schedule(const byte key[],size_t length)374 void Camellia_256::key_schedule(const byte key[], size_t length)
375    {
376    Camellia_F::key_schedule(SK, key, length);
377    }
378 
379 }
380