1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/GlobalAlias.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/IntrinsicInst.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/ProfileInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Support/CFG.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/ValueHandle.h"
34 #include "llvm/Support/raw_ostream.h"
35 using namespace llvm;
36 
37 //===----------------------------------------------------------------------===//
38 //  Local constant propagation.
39 //
40 
41 // ConstantFoldTerminator - If a terminator instruction is predicated on a
42 // constant value, convert it into an unconditional branch to the constant
43 // destination.
44 //
ConstantFoldTerminator(BasicBlock * BB)45 bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
46   TerminatorInst *T = BB->getTerminator();
47 
48   // Branch - See if we are conditional jumping on constant
49   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
50     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
51     BasicBlock *Dest1 = BI->getSuccessor(0);
52     BasicBlock *Dest2 = BI->getSuccessor(1);
53 
54     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
55       // Are we branching on constant?
56       // YES.  Change to unconditional branch...
57       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
58       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
59 
60       //cerr << "Function: " << T->getParent()->getParent()
61       //     << "\nRemoving branch from " << T->getParent()
62       //     << "\n\nTo: " << OldDest << endl;
63 
64       // Let the basic block know that we are letting go of it.  Based on this,
65       // it will adjust it's PHI nodes.
66       assert(BI->getParent() && "Terminator not inserted in block!");
67       OldDest->removePredecessor(BI->getParent());
68 
69       // Set the unconditional destination, and change the insn to be an
70       // unconditional branch.
71       BI->setUnconditionalDest(Destination);
72       return true;
73     }
74 
75     if (Dest2 == Dest1) {       // Conditional branch to same location?
76       // This branch matches something like this:
77       //     br bool %cond, label %Dest, label %Dest
78       // and changes it into:  br label %Dest
79 
80       // Let the basic block know that we are letting go of one copy of it.
81       assert(BI->getParent() && "Terminator not inserted in block!");
82       Dest1->removePredecessor(BI->getParent());
83 
84       // Change a conditional branch to unconditional.
85       BI->setUnconditionalDest(Dest1);
86       return true;
87     }
88     return false;
89   }
90 
91   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
92     // If we are switching on a constant, we can convert the switch into a
93     // single branch instruction!
94     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
95     BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
96     BasicBlock *DefaultDest = TheOnlyDest;
97     assert(TheOnlyDest == SI->getDefaultDest() &&
98            "Default destination is not successor #0?");
99 
100     // Figure out which case it goes to.
101     for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
102       // Found case matching a constant operand?
103       if (SI->getSuccessorValue(i) == CI) {
104         TheOnlyDest = SI->getSuccessor(i);
105         break;
106       }
107 
108       // Check to see if this branch is going to the same place as the default
109       // dest.  If so, eliminate it as an explicit compare.
110       if (SI->getSuccessor(i) == DefaultDest) {
111         // Remove this entry.
112         DefaultDest->removePredecessor(SI->getParent());
113         SI->removeCase(i);
114         --i; --e;  // Don't skip an entry...
115         continue;
116       }
117 
118       // Otherwise, check to see if the switch only branches to one destination.
119       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
120       // destinations.
121       if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
122     }
123 
124     if (CI && !TheOnlyDest) {
125       // Branching on a constant, but not any of the cases, go to the default
126       // successor.
127       TheOnlyDest = SI->getDefaultDest();
128     }
129 
130     // If we found a single destination that we can fold the switch into, do so
131     // now.
132     if (TheOnlyDest) {
133       // Insert the new branch.
134       BranchInst::Create(TheOnlyDest, SI);
135       BasicBlock *BB = SI->getParent();
136 
137       // Remove entries from PHI nodes which we no longer branch to...
138       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
139         // Found case matching a constant operand?
140         BasicBlock *Succ = SI->getSuccessor(i);
141         if (Succ == TheOnlyDest)
142           TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
143         else
144           Succ->removePredecessor(BB);
145       }
146 
147       // Delete the old switch.
148       BB->getInstList().erase(SI);
149       return true;
150     }
151 
152     if (SI->getNumSuccessors() == 2) {
153       // Otherwise, we can fold this switch into a conditional branch
154       // instruction if it has only one non-default destination.
155       Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
156                                  SI->getSuccessorValue(1), "cond");
157       // Insert the new branch.
158       BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
159 
160       // Delete the old switch.
161       SI->eraseFromParent();
162       return true;
163     }
164     return false;
165   }
166 
167   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
168     // indirectbr blockaddress(@F, @BB) -> br label @BB
169     if (BlockAddress *BA =
170           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
171       BasicBlock *TheOnlyDest = BA->getBasicBlock();
172       // Insert the new branch.
173       BranchInst::Create(TheOnlyDest, IBI);
174 
175       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
176         if (IBI->getDestination(i) == TheOnlyDest)
177           TheOnlyDest = 0;
178         else
179           IBI->getDestination(i)->removePredecessor(IBI->getParent());
180       }
181       IBI->eraseFromParent();
182 
183       // If we didn't find our destination in the IBI successor list, then we
184       // have undefined behavior.  Replace the unconditional branch with an
185       // 'unreachable' instruction.
186       if (TheOnlyDest) {
187         BB->getTerminator()->eraseFromParent();
188         new UnreachableInst(BB->getContext(), BB);
189       }
190 
191       return true;
192     }
193   }
194 
195   return false;
196 }
197 
198 
199 //===----------------------------------------------------------------------===//
200 //  Local dead code elimination.
201 //
202 
203 /// isInstructionTriviallyDead - Return true if the result produced by the
204 /// instruction is not used, and the instruction has no side effects.
205 ///
isInstructionTriviallyDead(Instruction * I)206 bool llvm::isInstructionTriviallyDead(Instruction *I) {
207   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
208 
209   // We don't want debug info removed by anything this general.
210   if (isa<DbgInfoIntrinsic>(I)) return false;
211 
212   // Likewise for memory use markers.
213   if (isa<MemoryUseIntrinsic>(I)) return false;
214 
215   if (!I->mayHaveSideEffects()) return true;
216 
217   // Special case intrinsics that "may have side effects" but can be deleted
218   // when dead.
219   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
220     // Safe to delete llvm.stacksave if dead.
221     if (II->getIntrinsicID() == Intrinsic::stacksave)
222       return true;
223   return false;
224 }
225 
226 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
227 /// trivially dead instruction, delete it.  If that makes any of its operands
228 /// trivially dead, delete them too, recursively.  Return true if any
229 /// instructions were deleted.
RecursivelyDeleteTriviallyDeadInstructions(Value * V)230 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
231   Instruction *I = dyn_cast<Instruction>(V);
232   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
233     return false;
234 
235   SmallVector<Instruction*, 16> DeadInsts;
236   DeadInsts.push_back(I);
237 
238   do {
239     I = DeadInsts.pop_back_val();
240 
241     // Null out all of the instruction's operands to see if any operand becomes
242     // dead as we go.
243     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
244       Value *OpV = I->getOperand(i);
245       I->setOperand(i, 0);
246 
247       if (!OpV->use_empty()) continue;
248 
249       // If the operand is an instruction that became dead as we nulled out the
250       // operand, and if it is 'trivially' dead, delete it in a future loop
251       // iteration.
252       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
253         if (isInstructionTriviallyDead(OpI))
254           DeadInsts.push_back(OpI);
255     }
256 
257     I->eraseFromParent();
258   } while (!DeadInsts.empty());
259 
260   return true;
261 }
262 
263 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
264 /// dead PHI node, due to being a def-use chain of single-use nodes that
265 /// either forms a cycle or is terminated by a trivially dead instruction,
266 /// delete it.  If that makes any of its operands trivially dead, delete them
267 /// too, recursively.  Return true if the PHI node is actually deleted.
268 bool
RecursivelyDeleteDeadPHINode(PHINode * PN)269 llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
270   // We can remove a PHI if it is on a cycle in the def-use graph
271   // where each node in the cycle has degree one, i.e. only one use,
272   // and is an instruction with no side effects.
273   if (!PN->hasOneUse())
274     return false;
275 
276   bool Changed = false;
277   SmallPtrSet<PHINode *, 4> PHIs;
278   PHIs.insert(PN);
279   for (Instruction *J = cast<Instruction>(*PN->use_begin());
280        J->hasOneUse() && !J->mayHaveSideEffects();
281        J = cast<Instruction>(*J->use_begin()))
282     // If we find a PHI more than once, we're on a cycle that
283     // won't prove fruitful.
284     if (PHINode *JP = dyn_cast<PHINode>(J))
285       if (!PHIs.insert(cast<PHINode>(JP))) {
286         // Break the cycle and delete the PHI and its operands.
287         JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
288         (void)RecursivelyDeleteTriviallyDeadInstructions(JP);
289         Changed = true;
290         break;
291       }
292   return Changed;
293 }
294 
295 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
296 /// simplify any instructions in it and recursively delete dead instructions.
297 ///
298 /// This returns true if it changed the code, note that it can delete
299 /// instructions in other blocks as well in this block.
SimplifyInstructionsInBlock(BasicBlock * BB,const TargetData * TD)300 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
301   bool MadeChange = false;
302   for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
303     Instruction *Inst = BI++;
304 
305     if (Value *V = SimplifyInstruction(Inst, TD)) {
306       WeakVH BIHandle(BI);
307       ReplaceAndSimplifyAllUses(Inst, V, TD);
308       MadeChange = true;
309       if (BIHandle != BI)
310         BI = BB->begin();
311       continue;
312     }
313 
314     MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
315   }
316   return MadeChange;
317 }
318 
319 //===----------------------------------------------------------------------===//
320 //  Control Flow Graph Restructuring.
321 //
322 
323 
324 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
325 /// method is called when we're about to delete Pred as a predecessor of BB.  If
326 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
327 ///
328 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
329 /// nodes that collapse into identity values.  For example, if we have:
330 ///   x = phi(1, 0, 0, 0)
331 ///   y = and x, z
332 ///
333 /// .. and delete the predecessor corresponding to the '1', this will attempt to
334 /// recursively fold the and to 0.
RemovePredecessorAndSimplify(BasicBlock * BB,BasicBlock * Pred,TargetData * TD)335 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
336                                         TargetData *TD) {
337   // This only adjusts blocks with PHI nodes.
338   if (!isa<PHINode>(BB->begin()))
339     return;
340 
341   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
342   // them down.  This will leave us with single entry phi nodes and other phis
343   // that can be removed.
344   BB->removePredecessor(Pred, true);
345 
346   WeakVH PhiIt = &BB->front();
347   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
348     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
349 
350     Value *PNV = PN->hasConstantValue();
351     if (PNV == 0) continue;
352 
353     // If we're able to simplify the phi to a single value, substitute the new
354     // value into all of its uses.
355     assert(PNV != PN && "hasConstantValue broken");
356 
357     Value *OldPhiIt = PhiIt;
358     ReplaceAndSimplifyAllUses(PN, PNV, TD);
359 
360     // If recursive simplification ended up deleting the next PHI node we would
361     // iterate to, then our iterator is invalid, restart scanning from the top
362     // of the block.
363     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
364   }
365 }
366 
367 
368 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
369 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
370 /// between them, moving the instructions in the predecessor into DestBB and
371 /// deleting the predecessor block.
372 ///
MergeBasicBlockIntoOnlyPred(BasicBlock * DestBB,Pass * P)373 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
374   // If BB has single-entry PHI nodes, fold them.
375   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
376     Value *NewVal = PN->getIncomingValue(0);
377     // Replace self referencing PHI with undef, it must be dead.
378     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
379     PN->replaceAllUsesWith(NewVal);
380     PN->eraseFromParent();
381   }
382 
383   BasicBlock *PredBB = DestBB->getSinglePredecessor();
384   assert(PredBB && "Block doesn't have a single predecessor!");
385 
386   // Splice all the instructions from PredBB to DestBB.
387   PredBB->getTerminator()->eraseFromParent();
388   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
389 
390   // Zap anything that took the address of DestBB.  Not doing this will give the
391   // address an invalid value.
392   if (DestBB->hasAddressTaken()) {
393     BlockAddress *BA = BlockAddress::get(DestBB);
394     Constant *Replacement =
395       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
396     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
397                                                      BA->getType()));
398     BA->destroyConstant();
399   }
400 
401   // Anything that branched to PredBB now branches to DestBB.
402   PredBB->replaceAllUsesWith(DestBB);
403 
404   if (P) {
405     ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
406     if (PI) {
407       PI->replaceAllUses(PredBB, DestBB);
408       PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
409     }
410   }
411   // Nuke BB.
412   PredBB->eraseFromParent();
413 }
414 
415 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
416 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
417 ///
418 /// Assumption: Succ is the single successor for BB.
419 ///
CanPropagatePredecessorsForPHIs(BasicBlock * BB,BasicBlock * Succ)420 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
421   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
422 
423   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
424         << Succ->getName() << "\n");
425   // Shortcut, if there is only a single predecessor it must be BB and merging
426   // is always safe
427   if (Succ->getSinglePredecessor()) return true;
428 
429   // Make a list of the predecessors of BB
430   typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
431   BlockSet BBPreds(pred_begin(BB), pred_end(BB));
432 
433   // Use that list to make another list of common predecessors of BB and Succ
434   BlockSet CommonPreds;
435   for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
436        PI != PE; ++PI) {
437     BasicBlock *P = *PI;
438     if (BBPreds.count(P))
439       CommonPreds.insert(P);
440   }
441 
442   // Shortcut, if there are no common predecessors, merging is always safe
443   if (CommonPreds.empty())
444     return true;
445 
446   // Look at all the phi nodes in Succ, to see if they present a conflict when
447   // merging these blocks
448   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
449     PHINode *PN = cast<PHINode>(I);
450 
451     // If the incoming value from BB is again a PHINode in
452     // BB which has the same incoming value for *PI as PN does, we can
453     // merge the phi nodes and then the blocks can still be merged
454     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
455     if (BBPN && BBPN->getParent() == BB) {
456       for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
457             PI != PE; PI++) {
458         if (BBPN->getIncomingValueForBlock(*PI)
459               != PN->getIncomingValueForBlock(*PI)) {
460           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
461                 << Succ->getName() << " is conflicting with "
462                 << BBPN->getName() << " with regard to common predecessor "
463                 << (*PI)->getName() << "\n");
464           return false;
465         }
466       }
467     } else {
468       Value* Val = PN->getIncomingValueForBlock(BB);
469       for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
470             PI != PE; PI++) {
471         // See if the incoming value for the common predecessor is equal to the
472         // one for BB, in which case this phi node will not prevent the merging
473         // of the block.
474         if (Val != PN->getIncomingValueForBlock(*PI)) {
475           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
476                 << Succ->getName() << " is conflicting with regard to common "
477                 << "predecessor " << (*PI)->getName() << "\n");
478           return false;
479         }
480       }
481     }
482   }
483 
484   return true;
485 }
486 
487 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
488 /// unconditional branch, and contains no instructions other than PHI nodes,
489 /// potential debug intrinsics and the branch.  If possible, eliminate BB by
490 /// rewriting all the predecessors to branch to the successor block and return
491 /// true.  If we can't transform, return false.
TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock * BB)492 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
493   assert(BB != &BB->getParent()->getEntryBlock() &&
494          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
495 
496   // We can't eliminate infinite loops.
497   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
498   if (BB == Succ) return false;
499 
500   // Check to see if merging these blocks would cause conflicts for any of the
501   // phi nodes in BB or Succ. If not, we can safely merge.
502   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
503 
504   // Check for cases where Succ has multiple predecessors and a PHI node in BB
505   // has uses which will not disappear when the PHI nodes are merged.  It is
506   // possible to handle such cases, but difficult: it requires checking whether
507   // BB dominates Succ, which is non-trivial to calculate in the case where
508   // Succ has multiple predecessors.  Also, it requires checking whether
509   // constructing the necessary self-referential PHI node doesn't intoduce any
510   // conflicts; this isn't too difficult, but the previous code for doing this
511   // was incorrect.
512   //
513   // Note that if this check finds a live use, BB dominates Succ, so BB is
514   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
515   // folding the branch isn't profitable in that case anyway.
516   if (!Succ->getSinglePredecessor()) {
517     BasicBlock::iterator BBI = BB->begin();
518     while (isa<PHINode>(*BBI)) {
519       for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
520            UI != E; ++UI) {
521         if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
522           if (PN->getIncomingBlock(UI) != BB)
523             return false;
524         } else {
525           return false;
526         }
527       }
528       ++BBI;
529     }
530   }
531 
532   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
533 
534   if (isa<PHINode>(Succ->begin())) {
535     // If there is more than one pred of succ, and there are PHI nodes in
536     // the successor, then we need to add incoming edges for the PHI nodes
537     //
538     const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
539 
540     // Loop over all of the PHI nodes in the successor of BB.
541     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
542       PHINode *PN = cast<PHINode>(I);
543       Value *OldVal = PN->removeIncomingValue(BB, false);
544       assert(OldVal && "No entry in PHI for Pred BB!");
545 
546       // If this incoming value is one of the PHI nodes in BB, the new entries
547       // in the PHI node are the entries from the old PHI.
548       if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
549         PHINode *OldValPN = cast<PHINode>(OldVal);
550         for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
551           // Note that, since we are merging phi nodes and BB and Succ might
552           // have common predecessors, we could end up with a phi node with
553           // identical incoming branches. This will be cleaned up later (and
554           // will trigger asserts if we try to clean it up now, without also
555           // simplifying the corresponding conditional branch).
556           PN->addIncoming(OldValPN->getIncomingValue(i),
557                           OldValPN->getIncomingBlock(i));
558       } else {
559         // Add an incoming value for each of the new incoming values.
560         for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
561           PN->addIncoming(OldVal, BBPreds[i]);
562       }
563     }
564   }
565 
566   while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
567     if (Succ->getSinglePredecessor()) {
568       // BB is the only predecessor of Succ, so Succ will end up with exactly
569       // the same predecessors BB had.
570       Succ->getInstList().splice(Succ->begin(),
571                                  BB->getInstList(), BB->begin());
572     } else {
573       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
574       assert(PN->use_empty() && "There shouldn't be any uses here!");
575       PN->eraseFromParent();
576     }
577   }
578 
579   // Everything that jumped to BB now goes to Succ.
580   BB->replaceAllUsesWith(Succ);
581   if (!Succ->hasName()) Succ->takeName(BB);
582   BB->eraseFromParent();              // Delete the old basic block.
583   return true;
584 }
585 
586 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
587 /// nodes in this block. This doesn't try to be clever about PHI nodes
588 /// which differ only in the order of the incoming values, but instcombine
589 /// orders them so it usually won't matter.
590 ///
EliminateDuplicatePHINodes(BasicBlock * BB)591 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
592   bool Changed = false;
593 
594   // This implementation doesn't currently consider undef operands
595   // specially. Theroetically, two phis which are identical except for
596   // one having an undef where the other doesn't could be collapsed.
597 
598   // Map from PHI hash values to PHI nodes. If multiple PHIs have
599   // the same hash value, the element is the first PHI in the
600   // linked list in CollisionMap.
601   DenseMap<uintptr_t, PHINode *> HashMap;
602 
603   // Maintain linked lists of PHI nodes with common hash values.
604   DenseMap<PHINode *, PHINode *> CollisionMap;
605 
606   // Examine each PHI.
607   for (BasicBlock::iterator I = BB->begin();
608        PHINode *PN = dyn_cast<PHINode>(I++); ) {
609     // Compute a hash value on the operands. Instcombine will likely have sorted
610     // them, which helps expose duplicates, but we have to check all the
611     // operands to be safe in case instcombine hasn't run.
612     uintptr_t Hash = 0;
613     for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
614       // This hash algorithm is quite weak as hash functions go, but it seems
615       // to do a good enough job for this particular purpose, and is very quick.
616       Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
617       Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
618     }
619     // If we've never seen this hash value before, it's a unique PHI.
620     std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
621       HashMap.insert(std::make_pair(Hash, PN));
622     if (Pair.second) continue;
623     // Otherwise it's either a duplicate or a hash collision.
624     for (PHINode *OtherPN = Pair.first->second; ; ) {
625       if (OtherPN->isIdenticalTo(PN)) {
626         // A duplicate. Replace this PHI with its duplicate.
627         PN->replaceAllUsesWith(OtherPN);
628         PN->eraseFromParent();
629         Changed = true;
630         break;
631       }
632       // A non-duplicate hash collision.
633       DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
634       if (I == CollisionMap.end()) {
635         // Set this PHI to be the head of the linked list of colliding PHIs.
636         PHINode *Old = Pair.first->second;
637         Pair.first->second = PN;
638         CollisionMap[PN] = Old;
639         break;
640       }
641       // Procede to the next PHI in the list.
642       OtherPN = I->second;
643     }
644   }
645 
646   return Changed;
647 }
648