1 
2 //  Copyright John Maddock 2006-7, 2013-14.
3 //  Copyright Paul A. Bristow 2007, 2013-14.
4 //  Copyright Nikhar Agrawal 2013-14
5 //  Copyright Christopher Kormanyos 2013-14
6 
7 //  Use, modification and distribution are subject to the
8 //  Boost Software License, Version 1.0. (See accompanying file
9 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
10 
11 #ifndef BOOST_MATH_SF_GAMMA_HPP
12 #define BOOST_MATH_SF_GAMMA_HPP
13 
14 #ifdef _MSC_VER
15 #pragma once
16 #endif
17 
18 #include <boost/config.hpp>
19 #include <boost/math/tools/series.hpp>
20 #include <boost/math/tools/fraction.hpp>
21 #include <boost/math/tools/precision.hpp>
22 #include <boost/math/tools/promotion.hpp>
23 #include <boost/math/policies/error_handling.hpp>
24 #include <boost/math/constants/constants.hpp>
25 #include <boost/math/special_functions/math_fwd.hpp>
26 #include <boost/math/special_functions/log1p.hpp>
27 #include <boost/math/special_functions/trunc.hpp>
28 #include <boost/math/special_functions/powm1.hpp>
29 #include <boost/math/special_functions/sqrt1pm1.hpp>
30 #include <boost/math/special_functions/lanczos.hpp>
31 #include <boost/math/special_functions/fpclassify.hpp>
32 #include <boost/math/special_functions/detail/igamma_large.hpp>
33 #include <boost/math/special_functions/detail/unchecked_factorial.hpp>
34 #include <boost/math/special_functions/detail/lgamma_small.hpp>
35 #include <boost/math/special_functions/bernoulli.hpp>
36 #include <boost/math/special_functions/zeta.hpp>
37 #include <boost/type_traits/is_convertible.hpp>
38 #include <boost/assert.hpp>
39 #include <boost/mpl/greater.hpp>
40 #include <boost/mpl/equal_to.hpp>
41 #include <boost/mpl/greater.hpp>
42 
43 #include <boost/config/no_tr1/cmath.hpp>
44 #include <algorithm>
45 
46 #ifdef BOOST_MSVC
47 # pragma warning(push)
48 # pragma warning(disable: 4702) // unreachable code (return after domain_error throw).
49 # pragma warning(disable: 4127) // conditional expression is constant.
50 # pragma warning(disable: 4100) // unreferenced formal parameter.
51 // Several variables made comments,
52 // but some difficulty as whether referenced on not may depend on macro values.
53 // So to be safe, 4100 warnings suppressed.
54 // TODO - revisit this?
55 #endif
56 
57 namespace boost{ namespace math{
58 
59 namespace detail{
60 
61 template <class T>
is_odd(T v,const boost::true_type &)62 inline bool is_odd(T v, const boost::true_type&)
63 {
64    int i = static_cast<int>(v);
65    return i&1;
66 }
67 template <class T>
is_odd(T v,const boost::false_type &)68 inline bool is_odd(T v, const boost::false_type&)
69 {
70    // Oh dear can't cast T to int!
71    BOOST_MATH_STD_USING
72    T modulus = v - 2 * floor(v/2);
73    return static_cast<bool>(modulus != 0);
74 }
75 template <class T>
is_odd(T v)76 inline bool is_odd(T v)
77 {
78    return is_odd(v, ::boost::is_convertible<T, int>());
79 }
80 
81 template <class T>
sinpx(T z)82 T sinpx(T z)
83 {
84    // Ad hoc function calculates x * sin(pi * x),
85    // taking extra care near when x is near a whole number.
86    BOOST_MATH_STD_USING
87    int sign = 1;
88    if(z < 0)
89    {
90       z = -z;
91    }
92    T fl = floor(z);
93    T dist;
94    if(is_odd(fl))
95    {
96       fl += 1;
97       dist = fl - z;
98       sign = -sign;
99    }
100    else
101    {
102       dist = z - fl;
103    }
104    BOOST_ASSERT(fl >= 0);
105    if(dist > 0.5)
106       dist = 1 - dist;
107    T result = sin(dist*boost::math::constants::pi<T>());
108    return sign*z*result;
109 } // template <class T> T sinpx(T z)
110 //
111 // tgamma(z), with Lanczos support:
112 //
113 template <class T, class Policy, class Lanczos>
114 T gamma_imp(T z, const Policy& pol, const Lanczos& l)
115 {
116    BOOST_MATH_STD_USING
117 
118    T result = 1;
119 
120 #ifdef BOOST_MATH_INSTRUMENT
121    static bool b = false;
122    if(!b)
123    {
124       std::cout << "tgamma_imp called with " << typeid(z).name() << " " << typeid(l).name() << std::endl;
125       b = true;
126    }
127 #endif
128    static const char* function = "boost::math::tgamma<%1%>(%1%)";
129 
130    if(z <= 0)
131    {
132       if(floor(z) == z)
133          return policies::raise_pole_error<T>(function, "Evaluation of tgamma at a negative integer %1%.", z, pol);
134       if(z <= -20)
135       {
136          result = gamma_imp(T(-z), pol, l) * sinpx(z);
137          BOOST_MATH_INSTRUMENT_VARIABLE(result);
138          if((fabs(result) < 1) && (tools::max_value<T>() * fabs(result) < boost::math::constants::pi<T>()))
139             return -boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
140          result = -boost::math::constants::pi<T>() / result;
141          if(result == 0)
142             return policies::raise_underflow_error<T>(function, "Result of tgamma is too small to represent.", pol);
143          if((boost::math::fpclassify)(result) == (int)FP_SUBNORMAL)
144             return policies::raise_denorm_error<T>(function, "Result of tgamma is denormalized.", result, pol);
145          BOOST_MATH_INSTRUMENT_VARIABLE(result);
146          return result;
147       }
148 
149       // shift z to > 1:
150       while(z < 0)
151       {
152          result /= z;
153          z += 1;
154       }
155    }
156    BOOST_MATH_INSTRUMENT_VARIABLE(result);
157    if((floor(z) == z) && (z < max_factorial<T>::value))
158    {
159       result *= unchecked_factorial<T>(itrunc(z, pol) - 1);
160       BOOST_MATH_INSTRUMENT_VARIABLE(result);
161    }
162    else if (z < tools::root_epsilon<T>())
163    {
164       if (z < 1 / tools::max_value<T>())
165          result = policies::raise_overflow_error<T>(function, 0, pol);
166       result *= 1 / z - constants::euler<T>();
167    }
168    else
169    {
170       result *= Lanczos::lanczos_sum(z);
171       T zgh = (z + static_cast<T>(Lanczos::g()) - boost::math::constants::half<T>());
172       T lzgh = log(zgh);
173       BOOST_MATH_INSTRUMENT_VARIABLE(result);
174       BOOST_MATH_INSTRUMENT_VARIABLE(tools::log_max_value<T>());
175       if(z * lzgh > tools::log_max_value<T>())
176       {
177          // we're going to overflow unless this is done with care:
178          BOOST_MATH_INSTRUMENT_VARIABLE(zgh);
179          if(lzgh * z / 2 > tools::log_max_value<T>())
180             return boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
181          T hp = pow(zgh, (z / 2) - T(0.25));
182          BOOST_MATH_INSTRUMENT_VARIABLE(hp);
183          result *= hp / exp(zgh);
184          BOOST_MATH_INSTRUMENT_VARIABLE(result);
185          if(tools::max_value<T>() / hp < result)
186             return boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
187          result *= hp;
188          BOOST_MATH_INSTRUMENT_VARIABLE(result);
189       }
190       else
191       {
192          BOOST_MATH_INSTRUMENT_VARIABLE(zgh);
193          BOOST_MATH_INSTRUMENT_VARIABLE(pow(zgh, z - boost::math::constants::half<T>()));
194          BOOST_MATH_INSTRUMENT_VARIABLE(exp(zgh));
195          result *= pow(zgh, z - boost::math::constants::half<T>()) / exp(zgh);
196          BOOST_MATH_INSTRUMENT_VARIABLE(result);
197       }
198    }
199    return result;
200 }
201 //
202 // lgamma(z) with Lanczos support:
203 //
204 template <class T, class Policy, class Lanczos>
205 T lgamma_imp(T z, const Policy& pol, const Lanczos& l, int* sign = 0)
206 {
207 #ifdef BOOST_MATH_INSTRUMENT
208    static bool b = false;
209    if(!b)
210    {
211       std::cout << "lgamma_imp called with " << typeid(z).name() << " " << typeid(l).name() << std::endl;
212       b = true;
213    }
214 #endif
215 
216    BOOST_MATH_STD_USING
217 
218    static const char* function = "boost::math::lgamma<%1%>(%1%)";
219 
220    T result = 0;
221    int sresult = 1;
222    if(z <= -tools::root_epsilon<T>())
223    {
224       // reflection formula:
225       if(floor(z) == z)
226          return policies::raise_pole_error<T>(function, "Evaluation of lgamma at a negative integer %1%.", z, pol);
227 
228       T t = sinpx(z);
229       z = -z;
230       if(t < 0)
231       {
232          t = -t;
233       }
234       else
235       {
236          sresult = -sresult;
237       }
238       result = log(boost::math::constants::pi<T>()) - lgamma_imp(z, pol, l) - log(t);
239    }
240    else if (z < tools::root_epsilon<T>())
241    {
242       if (0 == z)
243          return policies::raise_pole_error<T>(function, "Evaluation of lgamma at %1%.", z, pol);
244       if (fabs(z) < 1 / tools::max_value<T>())
245          result = -log(fabs(z));
246       else
247          result = log(fabs(1 / z - constants::euler<T>()));
248       if (z < 0)
249          sresult = -1;
250    }
251    else if(z < 15)
252    {
253       typedef typename policies::precision<T, Policy>::type precision_type;
254       typedef typename mpl::if_<
255          mpl::and_<
256             mpl::less_equal<precision_type, mpl::int_<64> >,
257             mpl::greater<precision_type, mpl::int_<0> >
258          >,
259          mpl::int_<64>,
260          typename mpl::if_<
261             mpl::and_<
262                mpl::less_equal<precision_type, mpl::int_<113> >,
263                mpl::greater<precision_type, mpl::int_<0> >
264             >,
265             mpl::int_<113>, mpl::int_<0> >::type
266           >::type tag_type;
267       result = lgamma_small_imp<T>(z, T(z - 1), T(z - 2), tag_type(), pol, l);
268    }
269    else if((z >= 3) && (z < 100) && (std::numeric_limits<T>::max_exponent >= 1024))
270    {
271       // taking the log of tgamma reduces the error, no danger of overflow here:
272       result = log(gamma_imp(z, pol, l));
273    }
274    else
275    {
276       // regular evaluation:
277       T zgh = static_cast<T>(z + Lanczos::g() - boost::math::constants::half<T>());
278       result = log(zgh) - 1;
279       result *= z - 0.5f;
280       result += log(Lanczos::lanczos_sum_expG_scaled(z));
281    }
282 
283    if(sign)
284       *sign = sresult;
285    return result;
286 }
287 
288 //
289 // Incomplete gamma functions follow:
290 //
291 template <class T>
292 struct upper_incomplete_gamma_fract
293 {
294 private:
295    T z, a;
296    int k;
297 public:
298    typedef std::pair<T,T> result_type;
299 
upper_incomplete_gamma_fractboost::math::detail::upper_incomplete_gamma_fract300    upper_incomplete_gamma_fract(T a1, T z1)
301       : z(z1-a1+1), a(a1), k(0)
302    {
303    }
304 
operator ()boost::math::detail::upper_incomplete_gamma_fract305    result_type operator()()
306    {
307       ++k;
308       z += 2;
309       return result_type(k * (a - k), z);
310    }
311 };
312 
313 template <class T>
upper_gamma_fraction(T a,T z,T eps)314 inline T upper_gamma_fraction(T a, T z, T eps)
315 {
316    // Multiply result by z^a * e^-z to get the full
317    // upper incomplete integral.  Divide by tgamma(z)
318    // to normalise.
319    upper_incomplete_gamma_fract<T> f(a, z);
320    return 1 / (z - a + 1 + boost::math::tools::continued_fraction_a(f, eps));
321 }
322 
323 template <class T>
324 struct lower_incomplete_gamma_series
325 {
326 private:
327    T a, z, result;
328 public:
329    typedef T result_type;
lower_incomplete_gamma_seriesboost::math::detail::lower_incomplete_gamma_series330    lower_incomplete_gamma_series(T a1, T z1) : a(a1), z(z1), result(1){}
331 
operator ()boost::math::detail::lower_incomplete_gamma_series332    T operator()()
333    {
334       T r = result;
335       a += 1;
336       result *= z/a;
337       return r;
338    }
339 };
340 
341 template <class T, class Policy>
lower_gamma_series(T a,T z,const Policy & pol,T init_value=0)342 inline T lower_gamma_series(T a, T z, const Policy& pol, T init_value = 0)
343 {
344    // Multiply result by ((z^a) * (e^-z) / a) to get the full
345    // lower incomplete integral. Then divide by tgamma(a)
346    // to get the normalised value.
347    lower_incomplete_gamma_series<T> s(a, z);
348    boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
349    T factor = policies::get_epsilon<T, Policy>();
350    T result = boost::math::tools::sum_series(s, factor, max_iter, init_value);
351    policies::check_series_iterations<T>("boost::math::detail::lower_gamma_series<%1%>(%1%)", max_iter, pol);
352    return result;
353 }
354 
355 //
356 // Fully generic tgamma and lgamma use Stirling's approximation
357 // with Bernoulli numbers.
358 //
359 template<class T>
highest_bernoulli_index()360 std::size_t highest_bernoulli_index()
361 {
362    const float digits10_of_type = (std::numeric_limits<T>::is_specialized
363                                       ? static_cast<float>(std::numeric_limits<T>::digits10)
364                                       : static_cast<float>(boost::math::tools::digits<T>() * 0.301F));
365 
366    // Find the high index n for Bn to produce the desired precision in Stirling's calculation.
367    return static_cast<std::size_t>(18.0F + (0.6F * digits10_of_type));
368 }
369 
370 template<class T>
minimum_argument_for_bernoulli_recursion()371 T minimum_argument_for_bernoulli_recursion()
372 {
373    const float digits10_of_type = (std::numeric_limits<T>::is_specialized
374                                       ? static_cast<float>(std::numeric_limits<T>::digits10)
375                                       : static_cast<float>(boost::math::tools::digits<T>() * 0.301F));
376 
377    return T(digits10_of_type * 1.7F);
378 }
379 
380 // Forward declaration of the lgamma_imp template specialization.
381 template <class T, class Policy>
382 T lgamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&, int* sign = 0);
383 
384 template <class T, class Policy>
385 T gamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&)
386 {
387    BOOST_MATH_STD_USING
388 
389    static const char* function = "boost::math::tgamma<%1%>(%1%)";
390 
391    // Check if the argument of tgamma is identically zero.
392    const bool is_at_zero = (z == 0);
393 
394    if(is_at_zero)
395       return policies::raise_domain_error<T>(function, "Evaluation of tgamma at zero %1%.", z, pol);
396 
397    const bool b_neg = (z < 0);
398 
399    const bool floor_of_z_is_equal_to_z = (floor(z) == z);
400 
401    // Special case handling of small factorials:
402    if((!b_neg) && floor_of_z_is_equal_to_z && (z < boost::math::max_factorial<T>::value))
403    {
404       return boost::math::unchecked_factorial<T>(itrunc(z) - 1);
405    }
406 
407    // Make a local, unsigned copy of the input argument.
408    T zz((!b_neg) ? z : -z);
409 
410    // Special case for ultra-small z:
411    if(zz < tools::cbrt_epsilon<T>())
412    {
413       const T a0(1);
414       const T a1(boost::math::constants::euler<T>());
415       const T six_euler_squared((boost::math::constants::euler<T>() * boost::math::constants::euler<T>()) * 6);
416       const T a2((six_euler_squared -  boost::math::constants::pi_sqr<T>()) / 12);
417 
418       const T inverse_tgamma_series = z * ((a2 * z + a1) * z + a0);
419 
420       return 1 / inverse_tgamma_series;
421    }
422 
423    // Scale the argument up for the calculation of lgamma,
424    // and use downward recursion later for the final result.
425    const T min_arg_for_recursion = minimum_argument_for_bernoulli_recursion<T>();
426 
427    int n_recur;
428 
429    if(zz < min_arg_for_recursion)
430    {
431       n_recur = boost::math::itrunc(min_arg_for_recursion - zz) + 1;
432 
433       zz += n_recur;
434    }
435    else
436    {
437       n_recur = 0;
438    }
439 
440    const T log_gamma_value = lgamma_imp(zz, pol, lanczos::undefined_lanczos());
441 
442    if(log_gamma_value > tools::log_max_value<T>())
443       return policies::raise_overflow_error<T>(function, 0, pol);
444 
445    T gamma_value = exp(log_gamma_value);
446 
447    // Rescale the result using downward recursion if necessary.
448    if(n_recur)
449    {
450       // The order of divides is important, if we keep subtracting 1 from zz
451       // we DO NOT get back to z (cancellation error).  Further if z < epsilon
452       // we would end up dividing by zero.  Also in order to prevent spurious
453       // overflow with the first division, we must save dividing by |z| till last,
454       // so the optimal order of divides is z+1, z+2, z+3...z+n_recur-1,z.
455       zz = fabs(z) + 1;
456       for(int k = 1; k < n_recur; ++k)
457       {
458          gamma_value /= zz;
459          zz += 1;
460       }
461       gamma_value /= fabs(z);
462    }
463 
464    // Return the result, accounting for possible negative arguments.
465    if(b_neg)
466    {
467       // Provide special error analysis for:
468       // * arguments in the neighborhood of a negative integer
469       // * arguments exactly equal to a negative integer.
470 
471       // Check if the argument of tgamma is exactly equal to a negative integer.
472       if(floor_of_z_is_equal_to_z)
473          return policies::raise_pole_error<T>(function, "Evaluation of tgamma at a negative integer %1%.", z, pol);
474 
475       gamma_value *= sinpx(z);
476 
477       BOOST_MATH_INSTRUMENT_VARIABLE(gamma_value);
478 
479       const bool result_is_too_large_to_represent = (   (abs(gamma_value) < 1)
480                                                      && ((tools::max_value<T>() * abs(gamma_value)) < boost::math::constants::pi<T>()));
481 
482       if(result_is_too_large_to_represent)
483          return policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
484 
485       gamma_value = -boost::math::constants::pi<T>() / gamma_value;
486       BOOST_MATH_INSTRUMENT_VARIABLE(gamma_value);
487 
488       if(gamma_value == 0)
489          return policies::raise_underflow_error<T>(function, "Result of tgamma is too small to represent.", pol);
490 
491       if((boost::math::fpclassify)(gamma_value) == static_cast<int>(FP_SUBNORMAL))
492          return policies::raise_denorm_error<T>(function, "Result of tgamma is denormalized.", gamma_value, pol);
493    }
494 
495    return gamma_value;
496 }
497 
498 template <class T, class Policy>
log_gamma_near_1(const T & z,Policy const & pol)499 inline T log_gamma_near_1(const T& z, Policy const& pol)
500 {
501    //
502    // This is for the multiprecision case where there is
503    // no lanczos support...
504    //
505    BOOST_MATH_STD_USING // ADL of std names
506 
507    BOOST_ASSERT(fabs(z) < 1);
508 
509    T result = -constants::euler<T>() * z;
510 
511    T power_term = z * z;
512    T term;
513    unsigned j = 0;
514 
515    do
516    {
517       term = boost::math::zeta<T>(j + 2, pol) * power_term / (j + 2);
518       if(j & 1)
519          result -= term;
520       else
521          result += term;
522       power_term *= z;
523       ++j;
524    } while(fabs(result) * tools::epsilon<T>() < fabs(term));
525 
526    return result;
527 }
528 
529 template <class T, class Policy>
530 T lgamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&, int* sign)
531 {
532    BOOST_MATH_STD_USING
533 
534    static const char* function = "boost::math::lgamma<%1%>(%1%)";
535 
536    // Check if the argument of lgamma is identically zero.
537    const bool is_at_zero = (z == 0);
538 
539    if(is_at_zero)
540       return policies::raise_domain_error<T>(function, "Evaluation of lgamma at zero %1%.", z, pol);
541 
542    const bool b_neg = (z < 0);
543 
544    const bool floor_of_z_is_equal_to_z = (floor(z) == z);
545 
546    // Special case handling of small factorials:
547    if((!b_neg) && floor_of_z_is_equal_to_z && (z < boost::math::max_factorial<T>::value))
548    {
549       return log(boost::math::unchecked_factorial<T>(itrunc(z) - 1));
550    }
551 
552    // Make a local, unsigned copy of the input argument.
553    T zz((!b_neg) ? z : -z);
554 
555    const T min_arg_for_recursion = minimum_argument_for_bernoulli_recursion<T>();
556 
557    T log_gamma_value;
558 
559    if (zz < min_arg_for_recursion)
560    {
561       // Here we simply take the logarithm of tgamma(). This is somewhat
562       // inefficient, but simple. The rationale is that the argument here
563       // is relatively small and overflow is not expected to be likely.
564       if(fabs(z - 1) < 0.25)
565       {
566          return log_gamma_near_1(T(zz - 1), pol);
567       }
568       else if(fabs(z - 2) < 0.25)
569       {
570          return log_gamma_near_1(T(zz - 2), pol) + log(zz - 1);
571       }
572       else if (z > -tools::root_epsilon<T>())
573       {
574          // Reflection formula may fail if z is very close to zero, let the series
575          // expansion for tgamma close to zero do the work:
576          log_gamma_value = log(abs(gamma_imp(z, pol, lanczos::undefined_lanczos())));
577          if (sign)
578          {
579              *sign = z < 0 ? -1 : 1;
580          }
581          return log_gamma_value;
582       }
583       else
584       {
585          // No issue with spurious overflow in reflection formula,
586          // just fall through to regular code:
587          log_gamma_value = log(abs(gamma_imp(zz, pol, lanczos::undefined_lanczos())));
588       }
589    }
590    else
591    {
592       // Perform the Bernoulli series expansion of Stirling's approximation.
593 
594       const std::size_t number_of_bernoullis_b2n = highest_bernoulli_index<T>();
595 
596             T one_over_x_pow_two_n_minus_one = 1 / zz;
597       const T one_over_x2                    = one_over_x_pow_two_n_minus_one * one_over_x_pow_two_n_minus_one;
598             T sum                            = (boost::math::bernoulli_b2n<T>(1) / 2) * one_over_x_pow_two_n_minus_one;
599       const T target_epsilon_to_break_loop   = (sum * boost::math::tools::epsilon<T>()) * T(1.0E-10F);
600 
601       for(std::size_t n = 2U; n < number_of_bernoullis_b2n; ++n)
602       {
603          one_over_x_pow_two_n_minus_one *= one_over_x2;
604 
605          const std::size_t n2 = static_cast<std::size_t>(n * 2U);
606 
607          const T term = (boost::math::bernoulli_b2n<T>(static_cast<int>(n)) * one_over_x_pow_two_n_minus_one) / (n2 * (n2 - 1U));
608 
609          if((n >= 8U) && (abs(term) < target_epsilon_to_break_loop))
610          {
611             // We have reached the desired precision in Stirling's expansion.
612             // Adding additional terms to the sum of this divergent asymptotic
613             // expansion will not improve the result.
614 
615             // Break from the loop.
616             break;
617          }
618 
619          sum += term;
620       }
621 
622       // Complete Stirling's approximation.
623       const T half_ln_two_pi = log(boost::math::constants::two_pi<T>()) / 2;
624 
625       log_gamma_value = ((((zz - boost::math::constants::half<T>()) * log(zz)) - zz) + half_ln_two_pi) + sum;
626    }
627 
628    int sign_of_result = 1;
629 
630    if(b_neg)
631    {
632       // Provide special error analysis if the argument is exactly
633       // equal to a negative integer.
634 
635       // Check if the argument of lgamma is exactly equal to a negative integer.
636       if(floor_of_z_is_equal_to_z)
637          return policies::raise_pole_error<T>(function, "Evaluation of lgamma at a negative integer %1%.", z, pol);
638 
639       T t = sinpx(z);
640 
641       if(t < 0)
642       {
643          t = -t;
644       }
645       else
646       {
647          sign_of_result = -sign_of_result;
648       }
649 
650       log_gamma_value = - log_gamma_value
651                         + log(boost::math::constants::pi<T>())
652                         - log(t);
653    }
654 
655    if(sign != static_cast<int*>(0U)) { *sign = sign_of_result; }
656 
657    return log_gamma_value;
658 }
659 
660 //
661 // This helper calculates tgamma(dz+1)-1 without cancellation errors,
662 // used by the upper incomplete gamma with z < 1:
663 //
664 template <class T, class Policy, class Lanczos>
665 T tgammap1m1_imp(T dz, Policy const& pol, const Lanczos& l)
666 {
667    BOOST_MATH_STD_USING
668 
669    typedef typename policies::precision<T,Policy>::type precision_type;
670 
671    typedef typename mpl::if_<
672       mpl::or_<
673          mpl::less_equal<precision_type, mpl::int_<0> >,
674          mpl::greater<precision_type, mpl::int_<113> >
675       >,
676       typename mpl::if_<
677          mpl::and_<is_same<Lanczos, lanczos::lanczos24m113>, mpl::greater<precision_type, mpl::int_<0> > >,
678          mpl::int_<113>,
679          mpl::int_<0>
680       >::type,
681       typename mpl::if_<
682          mpl::less_equal<precision_type, mpl::int_<64> >,
683          mpl::int_<64>, mpl::int_<113> >::type
684        >::type tag_type;
685 
686    T result;
687    if(dz < 0)
688    {
689       if(dz < -0.5)
690       {
691          // Best method is simply to subtract 1 from tgamma:
692          result = boost::math::tgamma(1+dz, pol) - 1;
693          BOOST_MATH_INSTRUMENT_CODE(result);
694       }
695       else
696       {
697          // Use expm1 on lgamma:
698          result = boost::math::expm1(-boost::math::log1p(dz, pol)
699             + lgamma_small_imp<T>(dz+2, dz + 1, dz, tag_type(), pol, l));
700          BOOST_MATH_INSTRUMENT_CODE(result);
701       }
702    }
703    else
704    {
705       if(dz < 2)
706       {
707          // Use expm1 on lgamma:
708          result = boost::math::expm1(lgamma_small_imp<T>(dz+1, dz, dz-1, tag_type(), pol, l), pol);
709          BOOST_MATH_INSTRUMENT_CODE(result);
710       }
711       else
712       {
713          // Best method is simply to subtract 1 from tgamma:
714          result = boost::math::tgamma(1+dz, pol) - 1;
715          BOOST_MATH_INSTRUMENT_CODE(result);
716       }
717    }
718 
719    return result;
720 }
721 
722 template <class T, class Policy>
tgammap1m1_imp(T z,Policy const & pol,const::boost::math::lanczos::undefined_lanczos &)723 inline T tgammap1m1_imp(T z, Policy const& pol,
724                  const ::boost::math::lanczos::undefined_lanczos&)
725 {
726    BOOST_MATH_STD_USING // ADL of std names
727 
728    if(fabs(z) < 0.55)
729    {
730       return boost::math::expm1(log_gamma_near_1(z, pol));
731    }
732    return boost::math::expm1(boost::math::lgamma(1 + z, pol));
733 }
734 
735 //
736 // Series representation for upper fraction when z is small:
737 //
738 template <class T>
739 struct small_gamma2_series
740 {
741    typedef T result_type;
742 
small_gamma2_seriesboost::math::detail::small_gamma2_series743    small_gamma2_series(T a_, T x_) : result(-x_), x(-x_), apn(a_+1), n(1){}
744 
operator ()boost::math::detail::small_gamma2_series745    T operator()()
746    {
747       T r = result / (apn);
748       result *= x;
749       result /= ++n;
750       apn += 1;
751       return r;
752    }
753 
754 private:
755    T result, x, apn;
756    int n;
757 };
758 //
759 // calculate power term prefix (z^a)(e^-z) used in the non-normalised
760 // incomplete gammas:
761 //
762 template <class T, class Policy>
763 T full_igamma_prefix(T a, T z, const Policy& pol)
764 {
765    BOOST_MATH_STD_USING
766 
767    T prefix;
768    T alz = a * log(z);
769 
770    if(z >= 1)
771    {
772       if((alz < tools::log_max_value<T>()) && (-z > tools::log_min_value<T>()))
773       {
774          prefix = pow(z, a) * exp(-z);
775       }
776       else if(a >= 1)
777       {
778          prefix = pow(z / exp(z/a), a);
779       }
780       else
781       {
782          prefix = exp(alz - z);
783       }
784    }
785    else
786    {
787       if(alz > tools::log_min_value<T>())
788       {
789          prefix = pow(z, a) * exp(-z);
790       }
791       else if(z/a < tools::log_max_value<T>())
792       {
793          prefix = pow(z / exp(z/a), a);
794       }
795       else
796       {
797          prefix = exp(alz - z);
798       }
799    }
800    //
801    // This error handling isn't very good: it happens after the fact
802    // rather than before it...
803    //
804    if((boost::math::fpclassify)(prefix) == (int)FP_INFINITE)
805       return policies::raise_overflow_error<T>("boost::math::detail::full_igamma_prefix<%1%>(%1%, %1%)", "Result of incomplete gamma function is too large to represent.", pol);
806 
807    return prefix;
808 }
809 //
810 // Compute (z^a)(e^-z)/tgamma(a)
811 // most if the error occurs in this function:
812 //
813 template <class T, class Policy, class Lanczos>
814 T regularised_gamma_prefix(T a, T z, const Policy& pol, const Lanczos& l)
815 {
816    BOOST_MATH_STD_USING
817    T agh = a + static_cast<T>(Lanczos::g()) - T(0.5);
818    T prefix;
819    T d = ((z - a) - static_cast<T>(Lanczos::g()) + T(0.5)) / agh;
820 
821    if(a < 1)
822    {
823       //
824       // We have to treat a < 1 as a special case because our Lanczos
825       // approximations are optimised against the factorials with a > 1,
826       // and for high precision types especially (128-bit reals for example)
827       // very small values of a can give rather eroneous results for gamma
828       // unless we do this:
829       //
830       // TODO: is this still required?  Lanczos approx should be better now?
831       //
832       if(z <= tools::log_min_value<T>())
833       {
834          // Oh dear, have to use logs, should be free of cancellation errors though:
835          return exp(a * log(z) - z - lgamma_imp(a, pol, l));
836       }
837       else
838       {
839          // direct calculation, no danger of overflow as gamma(a) < 1/a
840          // for small a.
841          return pow(z, a) * exp(-z) / gamma_imp(a, pol, l);
842       }
843    }
844    else if((fabs(d*d*a) <= 100) && (a > 150))
845    {
846       // special case for large a and a ~ z.
847       prefix = a * boost::math::log1pmx(d, pol) + z * static_cast<T>(0.5 - Lanczos::g()) / agh;
848       prefix = exp(prefix);
849    }
850    else
851    {
852       //
853       // general case.
854       // direct computation is most accurate, but use various fallbacks
855       // for different parts of the problem domain:
856       //
857       T alz = a * log(z / agh);
858       T amz = a - z;
859       if(((std::min)(alz, amz) <= tools::log_min_value<T>()) || ((std::max)(alz, amz) >= tools::log_max_value<T>()))
860       {
861          T amza = amz / a;
862          if(((std::min)(alz, amz)/2 > tools::log_min_value<T>()) && ((std::max)(alz, amz)/2 < tools::log_max_value<T>()))
863          {
864             // compute square root of the result and then square it:
865             T sq = pow(z / agh, a / 2) * exp(amz / 2);
866             prefix = sq * sq;
867          }
868          else if(((std::min)(alz, amz)/4 > tools::log_min_value<T>()) && ((std::max)(alz, amz)/4 < tools::log_max_value<T>()) && (z > a))
869          {
870             // compute the 4th root of the result then square it twice:
871             T sq = pow(z / agh, a / 4) * exp(amz / 4);
872             prefix = sq * sq;
873             prefix *= prefix;
874          }
875          else if((amza > tools::log_min_value<T>()) && (amza < tools::log_max_value<T>()))
876          {
877             prefix = pow((z * exp(amza)) / agh, a);
878          }
879          else
880          {
881             prefix = exp(alz + amz);
882          }
883       }
884       else
885       {
886          prefix = pow(z / agh, a) * exp(amz);
887       }
888    }
889    prefix *= sqrt(agh / boost::math::constants::e<T>()) / Lanczos::lanczos_sum_expG_scaled(a);
890    return prefix;
891 }
892 //
893 // And again, without Lanczos support:
894 //
895 template <class T, class Policy>
896 T regularised_gamma_prefix(T a, T z, const Policy& pol, const lanczos::undefined_lanczos&)
897 {
898    BOOST_MATH_STD_USING
899 
900    T limit = (std::max)(T(10), a);
901    T sum = detail::lower_gamma_series(a, limit, pol) / a;
902    sum += detail::upper_gamma_fraction(a, limit, ::boost::math::policies::get_epsilon<T, Policy>());
903 
904    if(a < 10)
905    {
906       // special case for small a:
907       T prefix = pow(z / 10, a);
908       prefix *= exp(10-z);
909       if(0 == prefix)
910       {
911          prefix = pow((z * exp((10-z)/a)) / 10, a);
912       }
913       prefix /= sum;
914       return prefix;
915    }
916 
917    T zoa = z / a;
918    T amz = a - z;
919    T alzoa = a * log(zoa);
920    T prefix;
921    if(((std::min)(alzoa, amz) <= tools::log_min_value<T>()) || ((std::max)(alzoa, amz) >= tools::log_max_value<T>()))
922    {
923       T amza = amz / a;
924       if((amza <= tools::log_min_value<T>()) || (amza >= tools::log_max_value<T>()))
925       {
926          prefix = exp(alzoa + amz);
927       }
928       else
929       {
930          prefix = pow(zoa * exp(amza), a);
931       }
932    }
933    else
934    {
935       prefix = pow(zoa, a) * exp(amz);
936    }
937    prefix /= sum;
938    return prefix;
939 }
940 //
941 // Upper gamma fraction for very small a:
942 //
943 template <class T, class Policy>
tgamma_small_upper_part(T a,T x,const Policy & pol,T * pgam=0,bool invert=false,T * pderivative=0)944 inline T tgamma_small_upper_part(T a, T x, const Policy& pol, T* pgam = 0, bool invert = false, T* pderivative = 0)
945 {
946    BOOST_MATH_STD_USING  // ADL of std functions.
947    //
948    // Compute the full upper fraction (Q) when a is very small:
949    //
950    T result;
951    result = boost::math::tgamma1pm1(a, pol);
952    if(pgam)
953       *pgam = (result + 1) / a;
954    T p = boost::math::powm1(x, a, pol);
955    result -= p;
956    result /= a;
957    detail::small_gamma2_series<T> s(a, x);
958    boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>() - 10;
959    p += 1;
960    if(pderivative)
961       *pderivative = p / (*pgam * exp(x));
962    T init_value = invert ? *pgam : 0;
963    result = -p * tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, (init_value - result) / p);
964    policies::check_series_iterations<T>("boost::math::tgamma_small_upper_part<%1%>(%1%, %1%)", max_iter, pol);
965    if(invert)
966       result = -result;
967    return result;
968 }
969 //
970 // Upper gamma fraction for integer a:
971 //
972 template <class T, class Policy>
finite_gamma_q(T a,T x,Policy const & pol,T * pderivative=0)973 inline T finite_gamma_q(T a, T x, Policy const& pol, T* pderivative = 0)
974 {
975    //
976    // Calculates normalised Q when a is an integer:
977    //
978    BOOST_MATH_STD_USING
979    T e = exp(-x);
980    T sum = e;
981    if(sum != 0)
982    {
983       T term = sum;
984       for(unsigned n = 1; n < a; ++n)
985       {
986          term /= n;
987          term *= x;
988          sum += term;
989       }
990    }
991    if(pderivative)
992    {
993       *pderivative = e * pow(x, a) / boost::math::unchecked_factorial<T>(itrunc(T(a - 1), pol));
994    }
995    return sum;
996 }
997 //
998 // Upper gamma fraction for half integer a:
999 //
1000 template <class T, class Policy>
1001 T finite_half_gamma_q(T a, T x, T* p_derivative, const Policy& pol)
1002 {
1003    //
1004    // Calculates normalised Q when a is a half-integer:
1005    //
1006    BOOST_MATH_STD_USING
1007    T e = boost::math::erfc(sqrt(x), pol);
1008    if((e != 0) && (a > 1))
1009    {
1010       T term = exp(-x) / sqrt(constants::pi<T>() * x);
1011       term *= x;
1012       static const T half = T(1) / 2;
1013       term /= half;
1014       T sum = term;
1015       for(unsigned n = 2; n < a; ++n)
1016       {
1017          term /= n - half;
1018          term *= x;
1019          sum += term;
1020       }
1021       e += sum;
1022       if(p_derivative)
1023       {
1024          *p_derivative = 0;
1025       }
1026    }
1027    else if(p_derivative)
1028    {
1029       // We'll be dividing by x later, so calculate derivative * x:
1030       *p_derivative = sqrt(x) * exp(-x) / constants::root_pi<T>();
1031    }
1032    return e;
1033 }
1034 //
1035 // Main incomplete gamma entry point, handles all four incomplete gamma's:
1036 //
1037 template <class T, class Policy>
1038 T gamma_incomplete_imp(T a, T x, bool normalised, bool invert,
1039                        const Policy& pol, T* p_derivative)
1040 {
1041    static const char* function = "boost::math::gamma_p<%1%>(%1%, %1%)";
1042    if(a <= 0)
1043       return policies::raise_domain_error<T>(function, "Argument a to the incomplete gamma function must be greater than zero (got a=%1%).", a, pol);
1044    if(x < 0)
1045       return policies::raise_domain_error<T>(function, "Argument x to the incomplete gamma function must be >= 0 (got x=%1%).", x, pol);
1046 
1047    BOOST_MATH_STD_USING
1048 
1049    typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
1050 
1051    T result = 0; // Just to avoid warning C4701: potentially uninitialized local variable 'result' used
1052 
1053    if(a >= max_factorial<T>::value && !normalised)
1054    {
1055       //
1056       // When we're computing the non-normalized incomplete gamma
1057       // and a is large the result is rather hard to compute unless
1058       // we use logs.  There are really two options - if x is a long
1059       // way from a in value then we can reliably use methods 2 and 4
1060       // below in logarithmic form and go straight to the result.
1061       // Otherwise we let the regularized gamma take the strain
1062       // (the result is unlikely to unerflow in the central region anyway)
1063       // and combine with lgamma in the hopes that we get a finite result.
1064       //
1065       if(invert && (a * 4 < x))
1066       {
1067          // This is method 4 below, done in logs:
1068          result = a * log(x) - x;
1069          if(p_derivative)
1070             *p_derivative = exp(result);
1071          result += log(upper_gamma_fraction(a, x, policies::get_epsilon<T, Policy>()));
1072       }
1073       else if(!invert && (a > 4 * x))
1074       {
1075          // This is method 2 below, done in logs:
1076          result = a * log(x) - x;
1077          if(p_derivative)
1078             *p_derivative = exp(result);
1079          T init_value = 0;
1080          result += log(detail::lower_gamma_series(a, x, pol, init_value) / a);
1081       }
1082       else
1083       {
1084          result = gamma_incomplete_imp(a, x, true, invert, pol, p_derivative);
1085          if(result == 0)
1086          {
1087             if(invert)
1088             {
1089                // Try http://functions.wolfram.com/06.06.06.0039.01
1090                result = 1 + 1 / (12 * a) + 1 / (288 * a * a);
1091                result = log(result) - a + (a - 0.5f) * log(a) + log(boost::math::constants::root_two_pi<T>());
1092                if(p_derivative)
1093                   *p_derivative = exp(a * log(x) - x);
1094             }
1095             else
1096             {
1097                // This is method 2 below, done in logs, we're really outside the
1098                // range of this method, but since the result is almost certainly
1099                // infinite, we should probably be OK:
1100                result = a * log(x) - x;
1101                if(p_derivative)
1102                   *p_derivative = exp(result);
1103                T init_value = 0;
1104                result += log(detail::lower_gamma_series(a, x, pol, init_value) / a);
1105             }
1106          }
1107          else
1108          {
1109             result = log(result) + boost::math::lgamma(a, pol);
1110          }
1111       }
1112       if(result > tools::log_max_value<T>())
1113          return policies::raise_overflow_error<T>(function, 0, pol);
1114       return exp(result);
1115    }
1116 
1117    BOOST_ASSERT((p_derivative == 0) || (normalised == true));
1118 
1119    bool is_int, is_half_int;
1120    bool is_small_a = (a < 30) && (a <= x + 1) && (x < tools::log_max_value<T>());
1121    if(is_small_a)
1122    {
1123       T fa = floor(a);
1124       is_int = (fa == a);
1125       is_half_int = is_int ? false : (fabs(fa - a) == 0.5f);
1126    }
1127    else
1128    {
1129       is_int = is_half_int = false;
1130    }
1131 
1132    int eval_method;
1133 
1134    if(is_int && (x > 0.6))
1135    {
1136       // calculate Q via finite sum:
1137       invert = !invert;
1138       eval_method = 0;
1139    }
1140    else if(is_half_int && (x > 0.2))
1141    {
1142       // calculate Q via finite sum for half integer a:
1143       invert = !invert;
1144       eval_method = 1;
1145    }
1146    else if((x < tools::root_epsilon<T>()) && (a > 1))
1147    {
1148       eval_method = 6;
1149    }
1150    else if(x < 0.5)
1151    {
1152       //
1153       // Changeover criterion chosen to give a changeover at Q ~ 0.33
1154       //
1155       if(-0.4 / log(x) < a)
1156       {
1157          eval_method = 2;
1158       }
1159       else
1160       {
1161          eval_method = 3;
1162       }
1163    }
1164    else if(x < 1.1)
1165    {
1166       //
1167       // Changover here occurs when P ~ 0.75 or Q ~ 0.25:
1168       //
1169       if(x * 0.75f < a)
1170       {
1171          eval_method = 2;
1172       }
1173       else
1174       {
1175          eval_method = 3;
1176       }
1177    }
1178    else
1179    {
1180       //
1181       // Begin by testing whether we're in the "bad" zone
1182       // where the result will be near 0.5 and the usual
1183       // series and continued fractions are slow to converge:
1184       //
1185       bool use_temme = false;
1186       if(normalised && std::numeric_limits<T>::is_specialized && (a > 20))
1187       {
1188          T sigma = fabs((x-a)/a);
1189          if((a > 200) && (policies::digits<T, Policy>() <= 113))
1190          {
1191             //
1192             // This limit is chosen so that we use Temme's expansion
1193             // only if the result would be larger than about 10^-6.
1194             // Below that the regular series and continued fractions
1195             // converge OK, and if we use Temme's method we get increasing
1196             // errors from the dominant erfc term as it's (inexact) argument
1197             // increases in magnitude.
1198             //
1199             if(20 / a > sigma * sigma)
1200                use_temme = true;
1201          }
1202          else if(policies::digits<T, Policy>() <= 64)
1203          {
1204             // Note in this zone we can't use Temme's expansion for
1205             // types longer than an 80-bit real:
1206             // it would require too many terms in the polynomials.
1207             if(sigma < 0.4)
1208                use_temme = true;
1209          }
1210       }
1211       if(use_temme)
1212       {
1213          eval_method = 5;
1214       }
1215       else
1216       {
1217          //
1218          // Regular case where the result will not be too close to 0.5.
1219          //
1220          // Changeover here occurs at P ~ Q ~ 0.5
1221          // Note that series computation of P is about x2 faster than continued fraction
1222          // calculation of Q, so try and use the CF only when really necessary, especially
1223          // for small x.
1224          //
1225          if(x - (1 / (3 * x)) < a)
1226          {
1227             eval_method = 2;
1228          }
1229          else
1230          {
1231             eval_method = 4;
1232             invert = !invert;
1233          }
1234       }
1235    }
1236 
1237    switch(eval_method)
1238    {
1239    case 0:
1240       {
1241          result = finite_gamma_q(a, x, pol, p_derivative);
1242          if(normalised == false)
1243             result *= boost::math::tgamma(a, pol);
1244          break;
1245       }
1246    case 1:
1247       {
1248          result = finite_half_gamma_q(a, x, p_derivative, pol);
1249          if(normalised == false)
1250             result *= boost::math::tgamma(a, pol);
1251          if(p_derivative && (*p_derivative == 0))
1252             *p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type());
1253          break;
1254       }
1255    case 2:
1256       {
1257          // Compute P:
1258          result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol);
1259          if(p_derivative)
1260             *p_derivative = result;
1261          if(result != 0)
1262          {
1263             //
1264             // If we're going to be inverting the result then we can
1265             // reduce the number of series evaluations by quite
1266             // a few iterations if we set an initial value for the
1267             // series sum based on what we'll end up subtracting it from
1268             // at the end.
1269             // Have to be careful though that this optimization doesn't
1270             // lead to spurious numberic overflow.  Note that the
1271             // scary/expensive overflow checks below are more often
1272             // than not bypassed in practice for "sensible" input
1273             // values:
1274             //
1275             T init_value = 0;
1276             bool optimised_invert = false;
1277             if(invert)
1278             {
1279                init_value = (normalised ? 1 : boost::math::tgamma(a, pol));
1280                if(normalised || (result >= 1) || (tools::max_value<T>() * result > init_value))
1281                {
1282                   init_value /= result;
1283                   if(normalised || (a < 1) || (tools::max_value<T>() / a > init_value))
1284                   {
1285                      init_value *= -a;
1286                      optimised_invert = true;
1287                   }
1288                   else
1289                      init_value = 0;
1290                }
1291                else
1292                   init_value = 0;
1293             }
1294             result *= detail::lower_gamma_series(a, x, pol, init_value) / a;
1295             if(optimised_invert)
1296             {
1297                invert = false;
1298                result = -result;
1299             }
1300          }
1301          break;
1302       }
1303    case 3:
1304       {
1305          // Compute Q:
1306          invert = !invert;
1307          T g;
1308          result = tgamma_small_upper_part(a, x, pol, &g, invert, p_derivative);
1309          invert = false;
1310          if(normalised)
1311             result /= g;
1312          break;
1313       }
1314    case 4:
1315       {
1316          // Compute Q:
1317          result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol);
1318          if(p_derivative)
1319             *p_derivative = result;
1320          if(result != 0)
1321             result *= upper_gamma_fraction(a, x, policies::get_epsilon<T, Policy>());
1322          break;
1323       }
1324    case 5:
1325       {
1326          //
1327          // Use compile time dispatch to the appropriate
1328          // Temme asymptotic expansion.  This may be dead code
1329          // if T does not have numeric limits support, or has
1330          // too many digits for the most precise version of
1331          // these expansions, in that case we'll be calling
1332          // an empty function.
1333          //
1334          typedef typename policies::precision<T, Policy>::type precision_type;
1335 
1336          typedef typename mpl::if_<
1337             mpl::or_<mpl::equal_to<precision_type, mpl::int_<0> >,
1338             mpl::greater<precision_type, mpl::int_<113> > >,
1339             mpl::int_<0>,
1340             typename mpl::if_<
1341                mpl::less_equal<precision_type, mpl::int_<53> >,
1342                mpl::int_<53>,
1343                typename mpl::if_<
1344                   mpl::less_equal<precision_type, mpl::int_<64> >,
1345                   mpl::int_<64>,
1346                   mpl::int_<113>
1347                >::type
1348             >::type
1349          >::type tag_type;
1350 
1351          result = igamma_temme_large(a, x, pol, static_cast<tag_type const*>(0));
1352          if(x >= a)
1353             invert = !invert;
1354          if(p_derivative)
1355             *p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type());
1356          break;
1357       }
1358    case 6:
1359       {
1360          // x is so small that P is necessarily very small too,
1361          // use http://functions.wolfram.com/GammaBetaErf/GammaRegularized/06/01/05/01/01/
1362          result = !normalised ? pow(x, a) / (a) : pow(x, a) / boost::math::tgamma(a + 1, pol);
1363          result *= 1 - a * x / (a + 1);
1364       }
1365    }
1366 
1367    if(normalised && (result > 1))
1368       result = 1;
1369    if(invert)
1370    {
1371       T gam = normalised ? 1 : boost::math::tgamma(a, pol);
1372       result = gam - result;
1373    }
1374    if(p_derivative)
1375    {
1376       //
1377       // Need to convert prefix term to derivative:
1378       //
1379       if((x < 1) && (tools::max_value<T>() * x < *p_derivative))
1380       {
1381          // overflow, just return an arbitrarily large value:
1382          *p_derivative = tools::max_value<T>() / 2;
1383       }
1384 
1385       *p_derivative /= x;
1386    }
1387 
1388    return result;
1389 }
1390 
1391 //
1392 // Ratios of two gamma functions:
1393 //
1394 template <class T, class Policy, class Lanczos>
1395 T tgamma_delta_ratio_imp_lanczos(T z, T delta, const Policy& pol, const Lanczos& l)
1396 {
1397    BOOST_MATH_STD_USING
1398    if(z < tools::epsilon<T>())
1399    {
1400       //
1401       // We get spurious numeric overflow unless we're very careful, this
1402       // can occur either inside Lanczos::lanczos_sum(z) or in the
1403       // final combination of terms, to avoid this, split the product up
1404       // into 2 (or 3) parts:
1405       //
1406       // G(z) / G(L) = 1 / (z * G(L)) ; z < eps, L = z + delta = delta
1407       //    z * G(L) = z * G(lim) * (G(L)/G(lim)) ; lim = largest factorial
1408       //
1409       if(boost::math::max_factorial<T>::value < delta)
1410       {
1411          T ratio = tgamma_delta_ratio_imp_lanczos(delta, T(boost::math::max_factorial<T>::value - delta), pol, l);
1412          ratio *= z;
1413          ratio *= boost::math::unchecked_factorial<T>(boost::math::max_factorial<T>::value - 1);
1414          return 1 / ratio;
1415       }
1416       else
1417       {
1418          return 1 / (z * boost::math::tgamma(z + delta, pol));
1419       }
1420    }
1421    T zgh = static_cast<T>(z + Lanczos::g() - constants::half<T>());
1422    T result;
1423    if(z + delta == z)
1424    {
1425       if(fabs(delta) < 10)
1426          result = exp((constants::half<T>() - z) * boost::math::log1p(delta / zgh, pol));
1427       else
1428          result = 1;
1429    }
1430    else
1431    {
1432       if(fabs(delta) < 10)
1433       {
1434          result = exp((constants::half<T>() - z) * boost::math::log1p(delta / zgh, pol));
1435       }
1436       else
1437       {
1438          result = pow(zgh / (zgh + delta), z - constants::half<T>());
1439       }
1440       // Split the calculation up to avoid spurious overflow:
1441       result *= Lanczos::lanczos_sum(z) / Lanczos::lanczos_sum(T(z + delta));
1442    }
1443    result *= pow(constants::e<T>() / (zgh + delta), delta);
1444    return result;
1445 }
1446 //
1447 // And again without Lanczos support this time:
1448 //
1449 template <class T, class Policy>
1450 T tgamma_delta_ratio_imp_lanczos(T z, T delta, const Policy& pol, const lanczos::undefined_lanczos&)
1451 {
1452    BOOST_MATH_STD_USING
1453    //
1454    // The upper gamma fraction is *very* slow for z < 6, actually it's very
1455    // slow to converge everywhere but recursing until z > 6 gets rid of the
1456    // worst of it's behaviour.
1457    //
1458    T prefix = 1;
1459    T zd = z + delta;
1460    while((zd < 6) && (z < 6))
1461    {
1462       prefix /= z;
1463       prefix *= zd;
1464       z += 1;
1465       zd += 1;
1466    }
1467    if(delta < 10)
1468    {
1469       prefix *= exp(-z * boost::math::log1p(delta / z, pol));
1470    }
1471    else
1472    {
1473       prefix *= pow(z / zd, z);
1474    }
1475    prefix *= pow(constants::e<T>() / zd, delta);
1476    T sum = detail::lower_gamma_series(z, z, pol) / z;
1477    sum += detail::upper_gamma_fraction(z, z, ::boost::math::policies::get_epsilon<T, Policy>());
1478    T sumd = detail::lower_gamma_series(zd, zd, pol) / zd;
1479    sumd += detail::upper_gamma_fraction(zd, zd, ::boost::math::policies::get_epsilon<T, Policy>());
1480    sum /= sumd;
1481    if(fabs(tools::max_value<T>() / prefix) < fabs(sum))
1482       return policies::raise_overflow_error<T>("boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)", "Result of tgamma is too large to represent.", pol);
1483    return sum * prefix;
1484 }
1485 
1486 template <class T, class Policy>
1487 T tgamma_delta_ratio_imp(T z, T delta, const Policy& pol)
1488 {
1489    BOOST_MATH_STD_USING
1490 
1491    if((z <= 0) || (z + delta <= 0))
1492    {
1493       // This isn't very sofisticated, or accurate, but it does work:
1494       return boost::math::tgamma(z, pol) / boost::math::tgamma(z + delta, pol);
1495    }
1496 
1497    if(floor(delta) == delta)
1498    {
1499       if(floor(z) == z)
1500       {
1501          //
1502          // Both z and delta are integers, see if we can just use table lookup
1503          // of the factorials to get the result:
1504          //
1505          if((z <= max_factorial<T>::value) && (z + delta <= max_factorial<T>::value))
1506          {
1507             return unchecked_factorial<T>((unsigned)itrunc(z, pol) - 1) / unchecked_factorial<T>((unsigned)itrunc(T(z + delta), pol) - 1);
1508          }
1509       }
1510       if(fabs(delta) < 20)
1511       {
1512          //
1513          // delta is a small integer, we can use a finite product:
1514          //
1515          if(delta == 0)
1516             return 1;
1517          if(delta < 0)
1518          {
1519             z -= 1;
1520             T result = z;
1521             while(0 != (delta += 1))
1522             {
1523                z -= 1;
1524                result *= z;
1525             }
1526             return result;
1527          }
1528          else
1529          {
1530             T result = 1 / z;
1531             while(0 != (delta -= 1))
1532             {
1533                z += 1;
1534                result /= z;
1535             }
1536             return result;
1537          }
1538       }
1539    }
1540    typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
1541    return tgamma_delta_ratio_imp_lanczos(z, delta, pol, lanczos_type());
1542 }
1543 
1544 template <class T, class Policy>
1545 T tgamma_ratio_imp(T x, T y, const Policy& pol)
1546 {
1547    BOOST_MATH_STD_USING
1548 
1549    if((x <= 0) || (boost::math::isinf)(x))
1550       return policies::raise_domain_error<T>("boost::math::tgamma_ratio<%1%>(%1%, %1%)", "Gamma function ratios only implemented for positive arguments (got a=%1%).", x, pol);
1551    if((y <= 0) || (boost::math::isinf)(y))
1552       return policies::raise_domain_error<T>("boost::math::tgamma_ratio<%1%>(%1%, %1%)", "Gamma function ratios only implemented for positive arguments (got b=%1%).", y, pol);
1553 
1554    if(x <= tools::min_value<T>())
1555    {
1556       // Special case for denorms...Ugh.
1557       T shift = ldexp(T(1), tools::digits<T>());
1558       return shift * tgamma_ratio_imp(T(x * shift), y, pol);
1559    }
1560 
1561    if((x < max_factorial<T>::value) && (y < max_factorial<T>::value))
1562    {
1563       // Rather than subtracting values, lets just call the gamma functions directly:
1564       return boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol);
1565    }
1566    T prefix = 1;
1567    if(x < 1)
1568    {
1569       if(y < 2 * max_factorial<T>::value)
1570       {
1571          // We need to sidestep on x as well, otherwise we'll underflow
1572          // before we get to factor in the prefix term:
1573          prefix /= x;
1574          x += 1;
1575          while(y >=  max_factorial<T>::value)
1576          {
1577             y -= 1;
1578             prefix /= y;
1579          }
1580          return prefix * boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol);
1581       }
1582       //
1583       // result is almost certainly going to underflow to zero, try logs just in case:
1584       //
1585       return exp(boost::math::lgamma(x, pol) - boost::math::lgamma(y, pol));
1586    }
1587    if(y < 1)
1588    {
1589       if(x < 2 * max_factorial<T>::value)
1590       {
1591          // We need to sidestep on y as well, otherwise we'll overflow
1592          // before we get to factor in the prefix term:
1593          prefix *= y;
1594          y += 1;
1595          while(x >= max_factorial<T>::value)
1596          {
1597             x -= 1;
1598             prefix *= x;
1599          }
1600          return prefix * boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol);
1601       }
1602       //
1603       // Result will almost certainly overflow, try logs just in case:
1604       //
1605       return exp(boost::math::lgamma(x, pol) - boost::math::lgamma(y, pol));
1606    }
1607    //
1608    // Regular case, x and y both large and similar in magnitude:
1609    //
1610    return boost::math::tgamma_delta_ratio(x, y - x, pol);
1611 }
1612 
1613 template <class T, class Policy>
1614 T gamma_p_derivative_imp(T a, T x, const Policy& pol)
1615 {
1616    BOOST_MATH_STD_USING
1617    //
1618    // Usual error checks first:
1619    //
1620    if(a <= 0)
1621       return policies::raise_domain_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", "Argument a to the incomplete gamma function must be greater than zero (got a=%1%).", a, pol);
1622    if(x < 0)
1623       return policies::raise_domain_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", "Argument x to the incomplete gamma function must be >= 0 (got x=%1%).", x, pol);
1624    //
1625    // Now special cases:
1626    //
1627    if(x == 0)
1628    {
1629       return (a > 1) ? 0 :
1630          (a == 1) ? 1 : policies::raise_overflow_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", 0, pol);
1631    }
1632    //
1633    // Normal case:
1634    //
1635    typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
1636    T f1 = detail::regularised_gamma_prefix(a, x, pol, lanczos_type());
1637    if((x < 1) && (tools::max_value<T>() * x < f1))
1638    {
1639       // overflow:
1640       return policies::raise_overflow_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", 0, pol);
1641    }
1642    if(f1 == 0)
1643    {
1644       // Underflow in calculation, use logs instead:
1645       f1 = a * log(x) - x - lgamma(a, pol) - log(x);
1646       f1 = exp(f1);
1647    }
1648    else
1649       f1 /= x;
1650 
1651    return f1;
1652 }
1653 
1654 template <class T, class Policy>
1655 inline typename tools::promote_args<T>::type
tgamma(T z,const Policy &,const mpl::true_)1656    tgamma(T z, const Policy& /* pol */, const mpl::true_)
1657 {
1658    BOOST_FPU_EXCEPTION_GUARD
1659    typedef typename tools::promote_args<T>::type result_type;
1660    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1661    typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1662    typedef typename policies::normalise<
1663       Policy,
1664       policies::promote_float<false>,
1665       policies::promote_double<false>,
1666       policies::discrete_quantile<>,
1667       policies::assert_undefined<> >::type forwarding_policy;
1668    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::gamma_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type()), "boost::math::tgamma<%1%>(%1%)");
1669 }
1670 
1671 template <class T, class Policy>
1672 struct igamma_initializer
1673 {
1674    struct init
1675    {
initboost::math::detail::igamma_initializer::init1676       init()
1677       {
1678          typedef typename policies::precision<T, Policy>::type precision_type;
1679 
1680          typedef typename mpl::if_<
1681             mpl::or_<mpl::equal_to<precision_type, mpl::int_<0> >,
1682             mpl::greater<precision_type, mpl::int_<113> > >,
1683             mpl::int_<0>,
1684             typename mpl::if_<
1685                mpl::less_equal<precision_type, mpl::int_<53> >,
1686                mpl::int_<53>,
1687                typename mpl::if_<
1688                   mpl::less_equal<precision_type, mpl::int_<64> >,
1689                   mpl::int_<64>,
1690                   mpl::int_<113>
1691                >::type
1692             >::type
1693          >::type tag_type;
1694 
1695          do_init(tag_type());
1696       }
1697       template <int N>
do_initboost::math::detail::igamma_initializer::init1698       static void do_init(const mpl::int_<N>&)
1699       {
1700          // If std::numeric_limits<T>::digits is zero, we must not call
1701          // our inituialization code here as the precision presumably
1702          // varies at runtime, and will not have been set yet.  Plus the
1703          // code requiring initialization isn't called when digits == 0.
1704          if(std::numeric_limits<T>::digits)
1705          {
1706             boost::math::gamma_p(static_cast<T>(400), static_cast<T>(400), Policy());
1707          }
1708       }
do_initboost::math::detail::igamma_initializer::init1709       static void do_init(const mpl::int_<53>&){}
force_instantiateboost::math::detail::igamma_initializer::init1710       void force_instantiate()const{}
1711    };
1712    static const init initializer;
force_instantiateboost::math::detail::igamma_initializer1713    static void force_instantiate()
1714    {
1715       initializer.force_instantiate();
1716    }
1717 };
1718 
1719 template <class T, class Policy>
1720 const typename igamma_initializer<T, Policy>::init igamma_initializer<T, Policy>::initializer;
1721 
1722 template <class T, class Policy>
1723 struct lgamma_initializer
1724 {
1725    struct init
1726    {
initboost::math::detail::lgamma_initializer::init1727       init()
1728       {
1729          typedef typename policies::precision<T, Policy>::type precision_type;
1730          typedef typename mpl::if_<
1731             mpl::and_<
1732                mpl::less_equal<precision_type, mpl::int_<64> >,
1733                mpl::greater<precision_type, mpl::int_<0> >
1734             >,
1735             mpl::int_<64>,
1736             typename mpl::if_<
1737                mpl::and_<
1738                   mpl::less_equal<precision_type, mpl::int_<113> >,
1739                   mpl::greater<precision_type, mpl::int_<0> >
1740                >,
1741                mpl::int_<113>, mpl::int_<0> >::type
1742              >::type tag_type;
1743          do_init(tag_type());
1744       }
do_initboost::math::detail::lgamma_initializer::init1745       static void do_init(const mpl::int_<64>&)
1746       {
1747          boost::math::lgamma(static_cast<T>(2.5), Policy());
1748          boost::math::lgamma(static_cast<T>(1.25), Policy());
1749          boost::math::lgamma(static_cast<T>(1.75), Policy());
1750       }
do_initboost::math::detail::lgamma_initializer::init1751       static void do_init(const mpl::int_<113>&)
1752       {
1753          boost::math::lgamma(static_cast<T>(2.5), Policy());
1754          boost::math::lgamma(static_cast<T>(1.25), Policy());
1755          boost::math::lgamma(static_cast<T>(1.5), Policy());
1756          boost::math::lgamma(static_cast<T>(1.75), Policy());
1757       }
do_initboost::math::detail::lgamma_initializer::init1758       static void do_init(const mpl::int_<0>&)
1759       {
1760       }
force_instantiateboost::math::detail::lgamma_initializer::init1761       void force_instantiate()const{}
1762    };
1763    static const init initializer;
force_instantiateboost::math::detail::lgamma_initializer1764    static void force_instantiate()
1765    {
1766       initializer.force_instantiate();
1767    }
1768 };
1769 
1770 template <class T, class Policy>
1771 const typename lgamma_initializer<T, Policy>::init lgamma_initializer<T, Policy>::initializer;
1772 
1773 template <class T1, class T2, class Policy>
1774 inline typename tools::promote_args<T1, T2>::type
tgamma(T1 a,T2 z,const Policy &,const mpl::false_)1775    tgamma(T1 a, T2 z, const Policy&, const mpl::false_)
1776 {
1777    BOOST_FPU_EXCEPTION_GUARD
1778    typedef typename tools::promote_args<T1, T2>::type result_type;
1779    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1780    // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1781    typedef typename policies::normalise<
1782       Policy,
1783       policies::promote_float<false>,
1784       policies::promote_double<false>,
1785       policies::discrete_quantile<>,
1786       policies::assert_undefined<> >::type forwarding_policy;
1787 
1788    igamma_initializer<value_type, forwarding_policy>::force_instantiate();
1789 
1790    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
1791       detail::gamma_incomplete_imp(static_cast<value_type>(a),
1792       static_cast<value_type>(z), false, true,
1793       forwarding_policy(), static_cast<value_type*>(0)), "boost::math::tgamma<%1%>(%1%, %1%)");
1794 }
1795 
1796 template <class T1, class T2>
1797 inline typename tools::promote_args<T1, T2>::type
tgamma(T1 a,T2 z,const mpl::false_ tag)1798    tgamma(T1 a, T2 z, const mpl::false_ tag)
1799 {
1800    return tgamma(a, z, policies::policy<>(), tag);
1801 }
1802 
1803 
1804 } // namespace detail
1805 
1806 template <class T>
1807 inline typename tools::promote_args<T>::type
tgamma(T z)1808    tgamma(T z)
1809 {
1810    return tgamma(z, policies::policy<>());
1811 }
1812 
1813 template <class T, class Policy>
1814 inline typename tools::promote_args<T>::type
lgamma(T z,int * sign,const Policy &)1815    lgamma(T z, int* sign, const Policy&)
1816 {
1817    BOOST_FPU_EXCEPTION_GUARD
1818    typedef typename tools::promote_args<T>::type result_type;
1819    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1820    typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1821    typedef typename policies::normalise<
1822       Policy,
1823       policies::promote_float<false>,
1824       policies::promote_double<false>,
1825       policies::discrete_quantile<>,
1826       policies::assert_undefined<> >::type forwarding_policy;
1827 
1828    detail::lgamma_initializer<value_type, forwarding_policy>::force_instantiate();
1829 
1830    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::lgamma_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type(), sign), "boost::math::lgamma<%1%>(%1%)");
1831 }
1832 
1833 template <class T>
1834 inline typename tools::promote_args<T>::type
lgamma(T z,int * sign)1835    lgamma(T z, int* sign)
1836 {
1837    return lgamma(z, sign, policies::policy<>());
1838 }
1839 
1840 template <class T, class Policy>
1841 inline typename tools::promote_args<T>::type
lgamma(T x,const Policy & pol)1842    lgamma(T x, const Policy& pol)
1843 {
1844    return ::boost::math::lgamma(x, 0, pol);
1845 }
1846 
1847 template <class T>
1848 inline typename tools::promote_args<T>::type
lgamma(T x)1849    lgamma(T x)
1850 {
1851    return ::boost::math::lgamma(x, 0, policies::policy<>());
1852 }
1853 
1854 template <class T, class Policy>
1855 inline typename tools::promote_args<T>::type
tgamma1pm1(T z,const Policy &)1856    tgamma1pm1(T z, const Policy& /* pol */)
1857 {
1858    BOOST_FPU_EXCEPTION_GUARD
1859    typedef typename tools::promote_args<T>::type result_type;
1860    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1861    typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1862    typedef typename policies::normalise<
1863       Policy,
1864       policies::promote_float<false>,
1865       policies::promote_double<false>,
1866       policies::discrete_quantile<>,
1867       policies::assert_undefined<> >::type forwarding_policy;
1868 
1869    return policies::checked_narrowing_cast<typename remove_cv<result_type>::type, forwarding_policy>(detail::tgammap1m1_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type()), "boost::math::tgamma1pm1<%!%>(%1%)");
1870 }
1871 
1872 template <class T>
1873 inline typename tools::promote_args<T>::type
tgamma1pm1(T z)1874    tgamma1pm1(T z)
1875 {
1876    return tgamma1pm1(z, policies::policy<>());
1877 }
1878 
1879 //
1880 // Full upper incomplete gamma:
1881 //
1882 template <class T1, class T2>
1883 inline typename tools::promote_args<T1, T2>::type
tgamma(T1 a,T2 z)1884    tgamma(T1 a, T2 z)
1885 {
1886    //
1887    // Type T2 could be a policy object, or a value, select the
1888    // right overload based on T2:
1889    //
1890    typedef typename policies::is_policy<T2>::type maybe_policy;
1891    return detail::tgamma(a, z, maybe_policy());
1892 }
1893 template <class T1, class T2, class Policy>
1894 inline typename tools::promote_args<T1, T2>::type
tgamma(T1 a,T2 z,const Policy & pol)1895    tgamma(T1 a, T2 z, const Policy& pol)
1896 {
1897    return detail::tgamma(a, z, pol, mpl::false_());
1898 }
1899 //
1900 // Full lower incomplete gamma:
1901 //
1902 template <class T1, class T2, class Policy>
1903 inline typename tools::promote_args<T1, T2>::type
tgamma_lower(T1 a,T2 z,const Policy &)1904    tgamma_lower(T1 a, T2 z, const Policy&)
1905 {
1906    BOOST_FPU_EXCEPTION_GUARD
1907    typedef typename tools::promote_args<T1, T2>::type result_type;
1908    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1909    // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1910    typedef typename policies::normalise<
1911       Policy,
1912       policies::promote_float<false>,
1913       policies::promote_double<false>,
1914       policies::discrete_quantile<>,
1915       policies::assert_undefined<> >::type forwarding_policy;
1916 
1917    detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate();
1918 
1919    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
1920       detail::gamma_incomplete_imp(static_cast<value_type>(a),
1921       static_cast<value_type>(z), false, false,
1922       forwarding_policy(), static_cast<value_type*>(0)), "tgamma_lower<%1%>(%1%, %1%)");
1923 }
1924 template <class T1, class T2>
1925 inline typename tools::promote_args<T1, T2>::type
tgamma_lower(T1 a,T2 z)1926    tgamma_lower(T1 a, T2 z)
1927 {
1928    return tgamma_lower(a, z, policies::policy<>());
1929 }
1930 //
1931 // Regularised upper incomplete gamma:
1932 //
1933 template <class T1, class T2, class Policy>
1934 inline typename tools::promote_args<T1, T2>::type
gamma_q(T1 a,T2 z,const Policy &)1935    gamma_q(T1 a, T2 z, const Policy& /* pol */)
1936 {
1937    BOOST_FPU_EXCEPTION_GUARD
1938    typedef typename tools::promote_args<T1, T2>::type result_type;
1939    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1940    // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1941    typedef typename policies::normalise<
1942       Policy,
1943       policies::promote_float<false>,
1944       policies::promote_double<false>,
1945       policies::discrete_quantile<>,
1946       policies::assert_undefined<> >::type forwarding_policy;
1947 
1948    detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate();
1949 
1950    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
1951       detail::gamma_incomplete_imp(static_cast<value_type>(a),
1952       static_cast<value_type>(z), true, true,
1953       forwarding_policy(), static_cast<value_type*>(0)), "gamma_q<%1%>(%1%, %1%)");
1954 }
1955 template <class T1, class T2>
1956 inline typename tools::promote_args<T1, T2>::type
gamma_q(T1 a,T2 z)1957    gamma_q(T1 a, T2 z)
1958 {
1959    return gamma_q(a, z, policies::policy<>());
1960 }
1961 //
1962 // Regularised lower incomplete gamma:
1963 //
1964 template <class T1, class T2, class Policy>
1965 inline typename tools::promote_args<T1, T2>::type
gamma_p(T1 a,T2 z,const Policy &)1966    gamma_p(T1 a, T2 z, const Policy&)
1967 {
1968    BOOST_FPU_EXCEPTION_GUARD
1969    typedef typename tools::promote_args<T1, T2>::type result_type;
1970    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1971    // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1972    typedef typename policies::normalise<
1973       Policy,
1974       policies::promote_float<false>,
1975       policies::promote_double<false>,
1976       policies::discrete_quantile<>,
1977       policies::assert_undefined<> >::type forwarding_policy;
1978 
1979    detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate();
1980 
1981    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
1982       detail::gamma_incomplete_imp(static_cast<value_type>(a),
1983       static_cast<value_type>(z), true, false,
1984       forwarding_policy(), static_cast<value_type*>(0)), "gamma_p<%1%>(%1%, %1%)");
1985 }
1986 template <class T1, class T2>
1987 inline typename tools::promote_args<T1, T2>::type
gamma_p(T1 a,T2 z)1988    gamma_p(T1 a, T2 z)
1989 {
1990    return gamma_p(a, z, policies::policy<>());
1991 }
1992 
1993 // ratios of gamma functions:
1994 template <class T1, class T2, class Policy>
1995 inline typename tools::promote_args<T1, T2>::type
tgamma_delta_ratio(T1 z,T2 delta,const Policy &)1996    tgamma_delta_ratio(T1 z, T2 delta, const Policy& /* pol */)
1997 {
1998    BOOST_FPU_EXCEPTION_GUARD
1999    typedef typename tools::promote_args<T1, T2>::type result_type;
2000    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2001    typedef typename policies::normalise<
2002       Policy,
2003       policies::promote_float<false>,
2004       policies::promote_double<false>,
2005       policies::discrete_quantile<>,
2006       policies::assert_undefined<> >::type forwarding_policy;
2007 
2008    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::tgamma_delta_ratio_imp(static_cast<value_type>(z), static_cast<value_type>(delta), forwarding_policy()), "boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)");
2009 }
2010 template <class T1, class T2>
2011 inline typename tools::promote_args<T1, T2>::type
tgamma_delta_ratio(T1 z,T2 delta)2012    tgamma_delta_ratio(T1 z, T2 delta)
2013 {
2014    return tgamma_delta_ratio(z, delta, policies::policy<>());
2015 }
2016 template <class T1, class T2, class Policy>
2017 inline typename tools::promote_args<T1, T2>::type
tgamma_ratio(T1 a,T2 b,const Policy &)2018    tgamma_ratio(T1 a, T2 b, const Policy&)
2019 {
2020    typedef typename tools::promote_args<T1, T2>::type result_type;
2021    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2022    typedef typename policies::normalise<
2023       Policy,
2024       policies::promote_float<false>,
2025       policies::promote_double<false>,
2026       policies::discrete_quantile<>,
2027       policies::assert_undefined<> >::type forwarding_policy;
2028 
2029    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::tgamma_ratio_imp(static_cast<value_type>(a), static_cast<value_type>(b), forwarding_policy()), "boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)");
2030 }
2031 template <class T1, class T2>
2032 inline typename tools::promote_args<T1, T2>::type
tgamma_ratio(T1 a,T2 b)2033    tgamma_ratio(T1 a, T2 b)
2034 {
2035    return tgamma_ratio(a, b, policies::policy<>());
2036 }
2037 
2038 template <class T1, class T2, class Policy>
2039 inline typename tools::promote_args<T1, T2>::type
gamma_p_derivative(T1 a,T2 x,const Policy &)2040    gamma_p_derivative(T1 a, T2 x, const Policy&)
2041 {
2042    BOOST_FPU_EXCEPTION_GUARD
2043    typedef typename tools::promote_args<T1, T2>::type result_type;
2044    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2045    typedef typename policies::normalise<
2046       Policy,
2047       policies::promote_float<false>,
2048       policies::promote_double<false>,
2049       policies::discrete_quantile<>,
2050       policies::assert_undefined<> >::type forwarding_policy;
2051 
2052    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::gamma_p_derivative_imp(static_cast<value_type>(a), static_cast<value_type>(x), forwarding_policy()), "boost::math::gamma_p_derivative<%1%>(%1%, %1%)");
2053 }
2054 template <class T1, class T2>
2055 inline typename tools::promote_args<T1, T2>::type
gamma_p_derivative(T1 a,T2 x)2056    gamma_p_derivative(T1 a, T2 x)
2057 {
2058    return gamma_p_derivative(a, x, policies::policy<>());
2059 }
2060 
2061 } // namespace math
2062 } // namespace boost
2063 
2064 #ifdef BOOST_MSVC
2065 # pragma warning(pop)
2066 #endif
2067 
2068 #include <boost/math/special_functions/detail/igamma_inverse.hpp>
2069 #include <boost/math/special_functions/detail/gamma_inva.hpp>
2070 #include <boost/math/special_functions/erf.hpp>
2071 
2072 #endif // BOOST_MATH_SF_GAMMA_HPP
2073 
2074 
2075 
2076 
2077