1=pod 2 3=head1 NAME 4 5scrypt - EVP_PKEY scrypt KDF support 6 7=head1 DESCRIPTION 8 9The EVP_PKEY_SCRYPT algorithm implements the scrypt password based key 10derivation function, as described in RFC 7914. It is memory-hard in the sense 11that it deliberately requires a significant amount of RAM for efficient 12computation. The intention of this is to render brute forcing of passwords on 13systems that lack large amounts of main memory (such as GPUs or ASICs) 14computationally infeasible. 15 16scrypt provides three work factors that can be customized: N, r and p. N, which 17has to be a positive power of two, is the general work factor and scales CPU 18time in an approximately linear fashion. r is the block size of the internally 19used hash function and p is the parallelization factor. Both r and p need to be 20greater than zero. The amount of RAM that scrypt requires for its computation 21is roughly (128 * N * r * p) bytes. 22 23In the original paper of Colin Percival ("Stronger Key Derivation via 24Sequential Memory-Hard Functions", 2009), the suggested values that give a 25computation time of less than 5 seconds on a 2.5 GHz Intel Core 2 Duo are N = 262^20 = 1048576, r = 8, p = 1. Consequently, the required amount of memory for 27this computation is roughly 1 GiB. On a more recent CPU (Intel i7-5930K at 3.5 28GHz), this computation takes about 3 seconds. When N, r or p are not specified, 29they default to 1048576, 8, and 1, respectively. The default amount of RAM that 30may be used by scrypt defaults to 1025 MiB. 31 32=head1 NOTES 33 34A context for scrypt can be obtained by calling: 35 36 EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_SCRYPT, NULL); 37 38The output length of an scrypt key derivation is specified via the 39length parameter to the L<EVP_PKEY_derive(3)> function. 40 41=head1 EXAMPLES 42 43This example derives a 64-byte long test vector using scrypt using the password 44"password", salt "NaCl" and N = 1024, r = 8, p = 16. 45 46 EVP_PKEY_CTX *pctx; 47 unsigned char out[64]; 48 49 size_t outlen = sizeof(out); 50 pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_SCRYPT, NULL); 51 52 if (EVP_PKEY_derive_init(pctx) <= 0) { 53 error("EVP_PKEY_derive_init"); 54 } 55 if (EVP_PKEY_CTX_set1_pbe_pass(pctx, "password", 8) <= 0) { 56 error("EVP_PKEY_CTX_set1_pbe_pass"); 57 } 58 if (EVP_PKEY_CTX_set1_scrypt_salt(pctx, "NaCl", 4) <= 0) { 59 error("EVP_PKEY_CTX_set1_scrypt_salt"); 60 } 61 if (EVP_PKEY_CTX_set_scrypt_N(pctx, 1024) <= 0) { 62 error("EVP_PKEY_CTX_set_scrypt_N"); 63 } 64 if (EVP_PKEY_CTX_set_scrypt_r(pctx, 8) <= 0) { 65 error("EVP_PKEY_CTX_set_scrypt_r"); 66 } 67 if (EVP_PKEY_CTX_set_scrypt_p(pctx, 16) <= 0) { 68 error("EVP_PKEY_CTX_set_scrypt_p"); 69 } 70 if (EVP_PKEY_derive(pctx, out, &outlen) <= 0) { 71 error("EVP_PKEY_derive"); 72 } 73 74 { 75 const unsigned char expected[sizeof(out)] = { 76 0xfd, 0xba, 0xbe, 0x1c, 0x9d, 0x34, 0x72, 0x00, 77 0x78, 0x56, 0xe7, 0x19, 0x0d, 0x01, 0xe9, 0xfe, 78 0x7c, 0x6a, 0xd7, 0xcb, 0xc8, 0x23, 0x78, 0x30, 79 0xe7, 0x73, 0x76, 0x63, 0x4b, 0x37, 0x31, 0x62, 80 0x2e, 0xaf, 0x30, 0xd9, 0x2e, 0x22, 0xa3, 0x88, 81 0x6f, 0xf1, 0x09, 0x27, 0x9d, 0x98, 0x30, 0xda, 82 0xc7, 0x27, 0xaf, 0xb9, 0x4a, 0x83, 0xee, 0x6d, 83 0x83, 0x60, 0xcb, 0xdf, 0xa2, 0xcc, 0x06, 0x40 84 }; 85 86 assert(!memcmp(out, expected, sizeof(out))); 87 } 88 89 EVP_PKEY_CTX_free(pctx); 90 91=head1 CONFORMING TO 92 93RFC 7914 94 95=head1 SEE ALSO 96 97L<EVP_PKEY_CTX_set1_scrypt_salt(3)>, 98L<EVP_PKEY_CTX_set_scrypt_N(3)>, 99L<EVP_PKEY_CTX_set_scrypt_r(3)>, 100L<EVP_PKEY_CTX_set_scrypt_p(3)>, 101L<EVP_PKEY_CTX_set_scrypt_maxmem_bytes(3)>, 102L<EVP_PKEY_CTX_new(3)>, 103L<EVP_PKEY_CTX_ctrl_str(3)>, 104L<EVP_PKEY_derive(3)> 105 106=head1 COPYRIGHT 107 108Copyright 2017-2019 The OpenSSL Project Authors. All Rights Reserved. 109 110Licensed under the OpenSSL license (the "License"). You may not use 111this file except in compliance with the License. You can obtain a copy 112in the file LICENSE in the source distribution or at 113L<https://www.openssl.org/source/license.html>. 114 115=cut 116