1 /*
2  * This code implements the MD5 message-digest algorithm.
3  * The algorithm is due to Ron Rivest.  This code was
4  * written by Colin Plumb in 1993, no copyright is claimed.
5  * This code is in the public domain; do with it what you wish.
6  *
7  * Equivalent code is available from RSA Data Security, Inc.
8  * This code has been tested against that, and is equivalent,
9  * except that you don't need to include two pages of legalese
10  * with every copy.
11  *
12  * To compute the message digest of a chunk of bytes, declare an
13  * MD5Context structure, pass it to MD5Init, call MD5Update as
14  * needed on buffers full of bytes, and then call MD5Final, which
15  * will fill a supplied 16-byte array with the digest.
16  *
17  * Changed 2007 by Bernhard R. Link for usage in LPRng (only
18  * type names and such stuff), still in public domain */
19 
20 #include <config.h>
21 
22 #ifdef HAVE_ENDIAN_H
23 #include <endian.h>
24 #endif
25 #ifdef HAVE_STRING_H
26 #include <string.h>
27 #endif
28 #ifdef HAVE_STRINGS_H
29 #include <strings.h>
30 #endif
31 
32 #include "md5.h"
33 
34 #ifdef __BYTE_ORDER
35 #if __BYTE_ORDER == __LITTLE_ENDIAN
36 #define LITTLE_ENDIAN_FOR_SURE 1
37 #endif
38 #else
39 #ifdef BYTE_ORDER
40 #if BYTE_ORDER == LITTLE_ENDIAN
41 #define LITTLE_ENDIAN_FOR_SURE 1
42 #endif
43 #endif
44 #endif
45 
46 #ifdef LITTLE_ENDIAN_FOR_SURE
47 #define byteReverse(buf, len)	/* Nothing */
48 #else
49 static void byteReverse(unsigned char *buf, unsigned longs);
50 
51 /*
52  * Note: this code is harmless on little-endian machines.
53  */
byteReverse(unsigned char * buf,unsigned longs)54 static void byteReverse(unsigned char *buf, unsigned longs)
55 {
56 	uint32_t t;
57 	do {
58 		t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
59 			((unsigned) buf[1] << 8 | buf[0]);
60 		*(uint32_t *) buf = t;
61 		buf += 4;
62 	} while (--longs);
63 }
64 #endif
65 
66 static void MD5Transform(uint32_t buf[4], uint32_t const in[16]);
67 
68 /*
69  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
70  * initialization constants.
71  */
MD5Init(struct MD5Context * ctx)72 void MD5Init(struct MD5Context *ctx)
73 {
74 	ctx->buf[0] = 0x67452301;
75 	ctx->buf[1] = 0xefcdab89;
76 	ctx->buf[2] = 0x98badcfe;
77 	ctx->buf[3] = 0x10325476;
78 
79 	ctx->bits[0] = 0;
80 	ctx->bits[1] = 0;
81 }
82 
83 /*
84  * Update context to reflect the concatenation of another buffer full
85  * of bytes.
86  */
MD5Update(struct MD5Context * ctx,unsigned char const * buf,unsigned len)87 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
88 {
89 	register uint32_t t;
90 
91 	/* Update bitcount */
92 
93 	t = ctx->bits[0];
94 	if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t)
95 		ctx->bits[1]++;		/* Carry from low to high */
96 	ctx->bits[1] += len >> 29;
97 
98 	t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */
99 
100 	/* Handle any leading odd-sized chunks */
101 
102 	if (t) {
103 		unsigned char *p = (unsigned char *) ctx->in + t;
104 
105 		t = 64 - t;
106 		if (len < t) {
107 			memcpy(p, buf, len);
108 			return;
109 		}
110 		memcpy(p, buf, t);
111 		byteReverse(ctx->in, 16);
112 		MD5Transform(ctx->buf, (uint32_t *) ctx->in);
113 		buf += t;
114 		len -= t;
115 	}
116 	/* Process data in 64-byte chunks */
117 
118 	while (len >= 64) {
119 		memcpy(ctx->in, buf, 64);
120 		byteReverse(ctx->in, 16);
121 		MD5Transform(ctx->buf, (uint32_t *) ctx->in);
122 		buf += 64;
123 		len -= 64;
124 	}
125 
126 	/* Handle any remaining bytes of data. */
127 
128 	memcpy(ctx->in, buf, len);
129 }
130 
131 /*
132  * Final wrapup - pad to 64-byte boundary with the bit pattern
133  * 1 0* (64-bit count of bits processed, MSB-first)
134  */
MD5Final(struct MD5Context * ctx,unsigned char * digest)135 void MD5Final(struct MD5Context *ctx, unsigned char* digest)
136 {
137 	unsigned int count;
138 	unsigned char *p;
139 
140 	/* Compute number of bytes mod 64 */
141 	count = (ctx->bits[0] >> 3) & 0x3F;
142 
143 	/* Set the first char of padding to 0x80.  This is safe since there is
144 	   always at least one byte free */
145 	p = ctx->in + count;
146 	*p++ = 0x80;
147 
148 	/* Bytes of padding needed to make 64 bytes */
149 	count = 64 - 1 - count;
150 
151 	/* Pad out to 56 mod 64 */
152 	if (count < 8) {
153 		/* Two lots of padding:  Pad the first block to 64 bytes */
154 		memset(p, 0, count);
155 		byteReverse(ctx->in, 16);
156 		MD5Transform(ctx->buf, (uint32_t *) ctx->in);
157 
158 		/* Now fill the next block with 56 bytes */
159 		memset(ctx->in, 0, 56);
160 	} else {
161 		/* Pad block to 56 bytes */
162 		memset(p, 0, count - 8);
163 	}
164 	byteReverse(ctx->in, 14);
165 
166 	/* Append length in bits and transform */
167 	((uint32_t *) ctx->in)[14] = ctx->bits[0];
168 	((uint32_t *) ctx->in)[15] = ctx->bits[1];
169 
170 	MD5Transform(ctx->buf, (uint32_t *) ctx->in);
171 	byteReverse((unsigned char *) ctx->buf, 4);
172 
173 	if (digest!=NULL)
174 		memcpy(digest, ctx->buf, 16);
175 	memset(ctx, 0, sizeof(ctx));	/* In case it's sensitive */
176 }
177 
178 /* The four core functions - F1 is optimized somewhat */
179 
180 /* #define F1(x, y, z) (x & y | ~x & z) */
181 #define F1(x, y, z) (z ^ (x & (y ^ z)))
182 #define F2(x, y, z) F1(z, x, y)
183 #define F3(x, y, z) (x ^ y ^ z)
184 #define F4(x, y, z) (y ^ (x | ~z))
185 
186 /* This is the central step in the MD5 algorithm. */
187 #define MD5STEP(f, w, x, y, z, data, s) \
188 	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
189 
190 /*
191  * The core of the MD5 algorithm, this alters an existing MD5 hash to
192  * reflect the addition of 16 longwords of new data.  MD5Update blocks
193  * the data and converts bytes into longwords for this routine.
194  */
MD5Transform(uint32_t buf[4],uint32_t const in[16])195 static void MD5Transform(uint32_t buf[4], uint32_t const in[16])
196 {
197 	register uint32_t a, b, c, d;
198 
199 	a = buf[0];
200 	b = buf[1];
201 	c = buf[2];
202 	d = buf[3];
203 
204 	MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
205 	MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
206 	MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
207 	MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
208 	MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
209 	MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
210 	MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
211 	MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
212 	MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
213 	MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
214 	MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
215 	MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
216 	MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
217 	MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
218 	MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
219 	MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
220 
221 	MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
222 	MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
223 	MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
224 	MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
225 	MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
226 	MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
227 	MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
228 	MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
229 	MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
230 	MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
231 	MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
232 	MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
233 	MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
234 	MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
235 	MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
236 	MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
237 
238 	MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
239 	MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
240 	MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
241 	MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
242 	MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
243 	MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
244 	MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
245 	MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
246 	MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
247 	MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
248 	MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
249 	MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
250 	MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
251 	MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
252 	MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
253 	MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
254 
255 	MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
256 	MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
257 	MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
258 	MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
259 	MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
260 	MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
261 	MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
262 	MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
263 	MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
264 	MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
265 	MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
266 	MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
267 	MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
268 	MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
269 	MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
270 	MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
271 
272 	buf[0] += a;
273 	buf[1] += b;
274 	buf[2] += c;
275 	buf[3] += d;
276 }
277