1 /*
2  * NTP client/server, based on OpenNTPD 3.9p1
3  *
4  * Busybox port author: Adam Tkac (C) 2009 <vonsch@gmail.com>
5  *
6  * OpenNTPd 3.9p1 copyright holders:
7  *   Copyright (c) 2003, 2004 Henning Brauer <henning@openbsd.org>
8  *   Copyright (c) 2004 Alexander Guy <alexander.guy@andern.org>
9  *
10  * OpenNTPd code is licensed under ISC-style licence:
11  *
12  * Permission to use, copy, modify, and distribute this software for any
13  * purpose with or without fee is hereby granted, provided that the above
14  * copyright notice and this permission notice appear in all copies.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
17  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
18  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
19  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
20  * WHATSOEVER RESULTING FROM LOSS OF MIND, USE, DATA OR PROFITS, WHETHER
21  * IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
22  * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
23  ***********************************************************************
24  *
25  * Parts of OpenNTPD clock syncronization code is replaced by
26  * code which is based on ntp-4.2.6, which carries the following
27  * copyright notice:
28  *
29  * Copyright (c) University of Delaware 1992-2009
30  *
31  * Permission to use, copy, modify, and distribute this software and
32  * its documentation for any purpose with or without fee is hereby
33  * granted, provided that the above copyright notice appears in all
34  * copies and that both the copyright notice and this permission
35  * notice appear in supporting documentation, and that the name
36  * University of Delaware not be used in advertising or publicity
37  * pertaining to distribution of the software without specific,
38  * written prior permission. The University of Delaware makes no
39  * representations about the suitability this software for any
40  * purpose. It is provided "as is" without express or implied warranty.
41  ***********************************************************************
42  */
43 //config:config NTPD
44 //config:	bool "ntpd"
45 //config:	default y
46 //config:	select PLATFORM_LINUX
47 //config:	help
48 //config:	  The NTP client/server daemon.
49 //config:
50 //config:config FEATURE_NTPD_SERVER
51 //config:	bool "Make ntpd usable as a NTP server"
52 //config:	default y
53 //config:	depends on NTPD
54 //config:	help
55 //config:	  Make ntpd usable as a NTP server. If you disable this option
56 //config:	  ntpd will be usable only as a NTP client.
57 //config:
58 //config:config FEATURE_NTPD_CONF
59 //config:	bool "Make ntpd understand /etc/ntp.conf"
60 //config:	default y
61 //config:	depends on NTPD
62 //config:	help
63 //config:	  Make ntpd look in /etc/ntp.conf for peers. Only "server address"
64 //config:	  is supported.
65 
66 //applet:IF_NTPD(APPLET(ntpd, BB_DIR_USR_SBIN, BB_SUID_DROP))
67 
68 //kbuild:lib-$(CONFIG_NTPD) += ntpd.o
69 
70 //usage:#define ntpd_trivial_usage
71 //usage:	"[-dnqNw"IF_FEATURE_NTPD_SERVER("l -I IFACE")"] [-S PROG] [-p PEER]..."
72 //usage:#define ntpd_full_usage "\n\n"
73 //usage:       "NTP client/server\n"
74 //usage:     "\n	-d	Verbose"
75 //usage:     "\n	-n	Do not daemonize"
76 //usage:     "\n	-q	Quit after clock is set"
77 //usage:     "\n	-N	Run at high priority"
78 //usage:     "\n	-w	Do not set time (only query peers), implies -n"
79 //usage:     "\n	-S PROG	Run PROG after stepping time, stratum change, and every 11 mins"
80 //usage:     "\n	-p PEER	Obtain time from PEER (may be repeated)"
81 //usage:	IF_FEATURE_NTPD_CONF(
82 //usage:     "\n		If -p is not given, 'server HOST' lines"
83 //usage:     "\n		from /etc/ntp.conf are used"
84 //usage:	)
85 //usage:	IF_FEATURE_NTPD_SERVER(
86 //usage:     "\n	-l	Also run as server on port 123"
87 //usage:     "\n	-I IFACE Bind server to IFACE, implies -l"
88 //usage:	)
89 
90 // -l and -p options are not compatible with "standard" ntpd:
91 // it has them as "-l logfile" and "-p pidfile".
92 // -S and -w are not compat either, "standard" ntpd has no such opts.
93 
94 #include "libbb.h"
95 #include <math.h>
96 #include <netinet/ip.h> /* For IPTOS_LOWDELAY definition */
97 #include <sys/resource.h> /* setpriority */
98 #include <sys/timex.h>
99 #ifndef IPTOS_LOWDELAY
100 # define IPTOS_LOWDELAY 0x10
101 #endif
102 
103 
104 /* Verbosity control (max level of -dddd options accepted).
105  * max 6 is very talkative (and bloated). 3 is non-bloated,
106  * production level setting.
107  */
108 #define MAX_VERBOSE     3
109 
110 
111 /* High-level description of the algorithm:
112  *
113  * We start running with very small poll_exp, BURSTPOLL,
114  * in order to quickly accumulate INITIAL_SAMPLES datapoints
115  * for each peer. Then, time is stepped if the offset is larger
116  * than STEP_THRESHOLD, otherwise it isn't; anyway, we enlarge
117  * poll_exp to MINPOLL and enter frequency measurement step:
118  * we collect new datapoints but ignore them for WATCH_THRESHOLD
119  * seconds. After WATCH_THRESHOLD seconds we look at accumulated
120  * offset and estimate frequency drift.
121  *
122  * (frequency measurement step seems to not be strictly needed,
123  * it is conditionally disabled with USING_INITIAL_FREQ_ESTIMATION
124  * define set to 0)
125  *
126  * After this, we enter "steady state": we collect a datapoint,
127  * we select the best peer, if this datapoint is not a new one
128  * (IOW: if this datapoint isn't for selected peer), sleep
129  * and collect another one; otherwise, use its offset to update
130  * frequency drift, if offset is somewhat large, reduce poll_exp,
131  * otherwise increase poll_exp.
132  *
133  * If offset is larger than STEP_THRESHOLD, which shouldn't normally
134  * happen, we assume that something "bad" happened (computer
135  * was hibernated, someone set totally wrong date, etc),
136  * then the time is stepped, all datapoints are discarded,
137  * and we go back to steady state.
138  *
139  * Made some changes to speed up re-syncing after our clock goes bad
140  * (tested with suspending my laptop):
141  * - if largish offset (>= STEP_THRESHOLD == 1 sec) is seen
142  *   from a peer, schedule next query for this peer soon
143  *   without drastically lowering poll interval for everybody.
144  *   This makes us collect enough data for step much faster:
145  *   e.g. at poll = 10 (1024 secs), step was done within 5 minutes
146  *   after first reply which indicated that our clock is 14 seconds off.
147  * - on step, do not discard d_dispersion data of the existing datapoints,
148  *   do not clear reachable_bits. This prevents discarding first ~8
149  *   datapoints after the step.
150  */
151 
152 #define INITIAL_SAMPLES    4    /* how many samples do we want for init */
153 #define BAD_DELAY_GROWTH   4    /* drop packet if its delay grew by more than this */
154 
155 #define RETRY_INTERVAL    32    /* on send/recv error, retry in N secs (need to be power of 2) */
156 #define NOREPLY_INTERVAL 512    /* sent, but got no reply: cap next query by this many seconds */
157 #define RESPONSE_INTERVAL 16    /* wait for reply up to N secs */
158 
159 /* Step threshold (sec). std ntpd uses 0.128.
160  */
161 #define STEP_THRESHOLD     1
162 /* Slew threshold (sec): adjtimex() won't accept offsets larger than this.
163  * Using exact power of 2 (1/8) results in smaller code
164  */
165 #define SLEW_THRESHOLD 0.125
166 /* Stepout threshold (sec). std ntpd uses 900 (11 mins (!)) */
167 #define WATCH_THRESHOLD  128
168 /* NB: set WATCH_THRESHOLD to ~60 when debugging to save time) */
169 //UNUSED: #define PANIC_THRESHOLD 1000    /* panic threshold (sec) */
170 
171 /*
172  * If we got |offset| > BIGOFF from a peer, cap next query interval
173  * for this peer by this many seconds:
174  */
175 #define BIGOFF          STEP_THRESHOLD
176 #define BIGOFF_INTERVAL (1 << 7) /* 128 s */
177 
178 #define FREQ_TOLERANCE  0.000015 /* frequency tolerance (15 PPM) */
179 #define BURSTPOLL       0       /* initial poll */
180 #define MINPOLL         5       /* minimum poll interval. std ntpd uses 6 (6: 64 sec) */
181 /*
182  * If offset > discipline_jitter * POLLADJ_GATE, and poll interval is > 2^BIGPOLL,
183  * then it is decreased _at once_. (If <= 2^BIGPOLL, it will be decreased _eventually_).
184  */
185 #define BIGPOLL         9       /* 2^9 sec ~= 8.5 min */
186 #define MAXPOLL         12      /* maximum poll interval (12: 1.1h, 17: 36.4h). std ntpd uses 17 */
187 /*
188  * Actively lower poll when we see such big offsets.
189  * With SLEW_THRESHOLD = 0.125, it means we try to sync more aggressively
190  * if offset increases over ~0.04 sec
191  */
192 //#define POLLDOWN_OFFSET (SLEW_THRESHOLD / 3)
193 #define MINDISP         0.01    /* minimum dispersion (sec) */
194 #define MAXDISP         16      /* maximum dispersion (sec) */
195 #define MAXSTRAT        16      /* maximum stratum (infinity metric) */
196 #define MAXDIST         1       /* distance threshold (sec) */
197 #define MIN_SELECTED    1       /* minimum intersection survivors */
198 #define MIN_CLUSTERED   3       /* minimum cluster survivors */
199 
200 #define MAXDRIFT        0.000500 /* frequency drift we can correct (500 PPM) */
201 
202 /* Poll-adjust threshold.
203  * When we see that offset is small enough compared to discipline jitter,
204  * we grow a counter: += MINPOLL. When counter goes over POLLADJ_LIMIT,
205  * we poll_exp++. If offset isn't small, counter -= poll_exp*2,
206  * and when it goes below -POLLADJ_LIMIT, we poll_exp--.
207  * (Bumped from 30 to 40 since otherwise I often see poll_exp going *2* steps down)
208  */
209 #define POLLADJ_LIMIT   40
210 /* If offset < discipline_jitter * POLLADJ_GATE, then we decide to increase
211  * poll interval (we think we can't improve timekeeping
212  * by staying at smaller poll).
213  */
214 #define POLLADJ_GATE    4
215 #define TIMECONST_HACK_GATE 2
216 /* Compromise Allan intercept (sec). doc uses 1500, std ntpd uses 512 */
217 #define ALLAN           512
218 /* PLL loop gain */
219 #define PLL             65536
220 /* FLL loop gain [why it depends on MAXPOLL??] */
221 #define FLL             (MAXPOLL + 1)
222 /* Parameter averaging constant */
223 #define AVG             4
224 
225 
226 enum {
227 	NTP_VERSION     = 4,
228 	NTP_MAXSTRATUM  = 15,
229 
230 	NTP_DIGESTSIZE     = 16,
231 	NTP_MSGSIZE_NOAUTH = 48,
232 	NTP_MSGSIZE        = (NTP_MSGSIZE_NOAUTH + 4 + NTP_DIGESTSIZE),
233 
234 	/* Status Masks */
235 	MODE_MASK       = (7 << 0),
236 	VERSION_MASK    = (7 << 3),
237 	VERSION_SHIFT   = 3,
238 	LI_MASK         = (3 << 6),
239 
240 	/* Leap Second Codes (high order two bits of m_status) */
241 	LI_NOWARNING    = (0 << 6),    /* no warning */
242 	LI_PLUSSEC      = (1 << 6),    /* add a second (61 seconds) */
243 	LI_MINUSSEC     = (2 << 6),    /* minus a second (59 seconds) */
244 	LI_ALARM        = (3 << 6),    /* alarm condition */
245 
246 	/* Mode values */
247 	MODE_RES0       = 0,    /* reserved */
248 	MODE_SYM_ACT    = 1,    /* symmetric active */
249 	MODE_SYM_PAS    = 2,    /* symmetric passive */
250 	MODE_CLIENT     = 3,    /* client */
251 	MODE_SERVER     = 4,    /* server */
252 	MODE_BROADCAST  = 5,    /* broadcast */
253 	MODE_RES1       = 6,    /* reserved for NTP control message */
254 	MODE_RES2       = 7,    /* reserved for private use */
255 };
256 
257 //TODO: better base selection
258 #define OFFSET_1900_1970 2208988800UL  /* 1970 - 1900 in seconds */
259 
260 #define NUM_DATAPOINTS  8
261 
262 typedef struct {
263 	uint32_t int_partl;
264 	uint32_t fractionl;
265 } l_fixedpt_t;
266 
267 typedef struct {
268 	uint16_t int_parts;
269 	uint16_t fractions;
270 } s_fixedpt_t;
271 
272 typedef struct {
273 	uint8_t     m_status;     /* status of local clock and leap info */
274 	uint8_t     m_stratum;
275 	uint8_t     m_ppoll;      /* poll value */
276 	int8_t      m_precision_exp;
277 	s_fixedpt_t m_rootdelay;
278 	s_fixedpt_t m_rootdisp;
279 	uint32_t    m_refid;
280 	l_fixedpt_t m_reftime;
281 	l_fixedpt_t m_orgtime;
282 	l_fixedpt_t m_rectime;
283 	l_fixedpt_t m_xmttime;
284 	uint32_t    m_keyid;
285 	uint8_t     m_digest[NTP_DIGESTSIZE];
286 } msg_t;
287 
288 typedef struct {
289 	double d_offset;
290 	double d_recv_time;
291 	double d_dispersion;
292 } datapoint_t;
293 
294 typedef struct {
295 	len_and_sockaddr *p_lsa;
296 	char             *p_dotted;
297 	int              p_fd;
298 	int              datapoint_idx;
299 	uint32_t         lastpkt_refid;
300 	uint8_t          lastpkt_status;
301 	uint8_t          lastpkt_stratum;
302 	uint8_t          reachable_bits;
303 	/* when to send new query (if p_fd == -1)
304 	 * or when receive times out (if p_fd >= 0): */
305 	double           next_action_time;
306 	double           p_xmttime;
307 	double           p_raw_delay;
308 	/* p_raw_delay is set even by "high delay" packets */
309 	/* lastpkt_delay isn't */
310 	double           lastpkt_recv_time;
311 	double           lastpkt_delay;
312 	double           lastpkt_rootdelay;
313 	double           lastpkt_rootdisp;
314 	/* produced by filter algorithm: */
315 	double           filter_offset;
316 	double           filter_dispersion;
317 	double           filter_jitter;
318 	datapoint_t      filter_datapoint[NUM_DATAPOINTS];
319 	/* last sent packet: */
320 	msg_t            p_xmt_msg;
321 	char             p_hostname[1];
322 } peer_t;
323 
324 
325 #define USING_KERNEL_PLL_LOOP          1
326 #define USING_INITIAL_FREQ_ESTIMATION  0
327 
328 enum {
329 	OPT_n = (1 << 0),
330 	OPT_q = (1 << 1),
331 	OPT_N = (1 << 2),
332 	OPT_x = (1 << 3),
333 	/* Insert new options above this line. */
334 	/* Non-compat options: */
335 	OPT_w = (1 << 4),
336 	OPT_p = (1 << 5),
337 	OPT_S = (1 << 6),
338 	OPT_l = (1 << 7) * ENABLE_FEATURE_NTPD_SERVER,
339 	OPT_I = (1 << 8) * ENABLE_FEATURE_NTPD_SERVER,
340 	/* We hijack some bits for other purposes */
341 	OPT_qq = (1 << 31),
342 };
343 
344 struct globals {
345 	double   cur_time;
346 	/* total round trip delay to currently selected reference clock */
347 	double   rootdelay;
348 	/* reference timestamp: time when the system clock was last set or corrected */
349 	double   reftime;
350 	/* total dispersion to currently selected reference clock */
351 	double   rootdisp;
352 
353 	double   last_script_run;
354 	char     *script_name;
355 	llist_t  *ntp_peers;
356 #if ENABLE_FEATURE_NTPD_SERVER
357 	int      listen_fd;
358 	char     *if_name;
359 # define G_listen_fd (G.listen_fd)
360 #else
361 # define G_listen_fd (-1)
362 #endif
363 	unsigned verbose;
364 	unsigned peer_cnt;
365 	/* refid: 32-bit code identifying the particular server or reference clock
366 	 * in stratum 0 packets this is a four-character ASCII string,
367 	 * called the kiss code, used for debugging and monitoring
368 	 * in stratum 1 packets this is a four-character ASCII string
369 	 * assigned to the reference clock by IANA. Example: "GPS "
370 	 * in stratum 2+ packets, it's IPv4 address or 4 first bytes
371 	 * of MD5 hash of IPv6
372 	 */
373 	uint32_t refid;
374 	uint8_t  ntp_status;
375 	/* precision is defined as the larger of the resolution and time to
376 	 * read the clock, in log2 units.  For instance, the precision of a
377 	 * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the
378 	 * system clock hardware representation is to the nanosecond.
379 	 *
380 	 * Delays, jitters of various kinds are clamped down to precision.
381 	 *
382 	 * If precision_sec is too large, discipline_jitter gets clamped to it
383 	 * and if offset is smaller than discipline_jitter * POLLADJ_GATE, poll
384 	 * interval grows even though we really can benefit from staying at
385 	 * smaller one, collecting non-lagged datapoits and correcting offset.
386 	 * (Lagged datapoits exist when poll_exp is large but we still have
387 	 * systematic offset error - the time distance between datapoints
388 	 * is significant and older datapoints have smaller offsets.
389 	 * This makes our offset estimation a bit smaller than reality)
390 	 * Due to this effect, setting G_precision_sec close to
391 	 * STEP_THRESHOLD isn't such a good idea - offsets may grow
392 	 * too big and we will step. I observed it with -6.
393 	 *
394 	 * OTOH, setting precision_sec far too small would result in futile
395 	 * attempts to syncronize to an unachievable precision.
396 	 *
397 	 * -6 is 1/64 sec, -7 is 1/128 sec and so on.
398 	 * -8 is 1/256 ~= 0.003906 (worked well for me --vda)
399 	 * -9 is 1/512 ~= 0.001953 (let's try this for some time)
400 	 */
401 #define G_precision_exp  -9
402 	/*
403 	 * G_precision_exp is used only for construction outgoing packets.
404 	 * It's ok to set G_precision_sec to a slightly different value
405 	 * (One which is "nicer looking" in logs).
406 	 * Exact value would be (1.0 / (1 << (- G_precision_exp))):
407 	 */
408 #define G_precision_sec  0.002
409 	uint8_t  stratum;
410 
411 #define STATE_NSET      0       /* initial state, "nothing is set" */
412 //#define STATE_FSET    1       /* frequency set from file */
413 //#define STATE_SPIK    2       /* spike detected */
414 //#define STATE_FREQ    3       /* initial frequency */
415 #define STATE_SYNC      4       /* clock synchronized (normal operation) */
416 	uint8_t  discipline_state;      // doc calls it c.state
417 	uint8_t  poll_exp;              // s.poll
418 	int      polladj_count;         // c.count
419 	long     kernel_freq_drift;
420 	peer_t   *last_update_peer;
421 	double   last_update_offset;    // c.last
422 	double   last_update_recv_time; // s.t
423 	double   discipline_jitter;     // c.jitter
424 	/* Since we only compare it with ints, can simplify code
425 	 * by not making this variable floating point:
426 	 */
427 	unsigned offset_to_jitter_ratio;
428 	//double   cluster_offset;        // s.offset
429 	//double   cluster_jitter;        // s.jitter
430 #if !USING_KERNEL_PLL_LOOP
431 	double   discipline_freq_drift; // c.freq
432 	/* Maybe conditionally calculate wander? it's used only for logging */
433 	double   discipline_wander;     // c.wander
434 #endif
435 };
436 #define G (*ptr_to_globals)
437 
438 
439 #define VERB1 if (MAX_VERBOSE && G.verbose)
440 #define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2)
441 #define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3)
442 #define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4)
443 #define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5)
444 #define VERB6 if (MAX_VERBOSE >= 6 && G.verbose >= 6)
445 
446 
LOG2D(int a)447 static double LOG2D(int a)
448 {
449 	if (a < 0)
450 		return 1.0 / (1UL << -a);
451 	return 1UL << a;
452 }
SQUARE(double x)453 static ALWAYS_INLINE double SQUARE(double x)
454 {
455 	return x * x;
456 }
MAXD(double a,double b)457 static ALWAYS_INLINE double MAXD(double a, double b)
458 {
459 	if (a > b)
460 		return a;
461 	return b;
462 }
MIND(double a,double b)463 static ALWAYS_INLINE double MIND(double a, double b)
464 {
465 	if (a < b)
466 		return a;
467 	return b;
468 }
my_SQRT(double X)469 static NOINLINE double my_SQRT(double X)
470 {
471 	union {
472 		float   f;
473 		int32_t i;
474 	} v;
475 	double invsqrt;
476 	double Xhalf = X * 0.5;
477 
478 	/* Fast and good approximation to 1/sqrt(X), black magic */
479 	v.f = X;
480 	/*v.i = 0x5f3759df - (v.i >> 1);*/
481 	v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */
482 	invsqrt = v.f; /* better than 0.2% accuracy */
483 
484 	/* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0)
485 	 * f(x) = 1/(x*x) - X  (f==0 when x = 1/sqrt(X))
486 	 * f'(x) = -2/(x*x*x)
487 	 * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2
488 	 * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0)
489 	 */
490 	invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */
491 	/* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */
492 	/* With 4 iterations, more than half results will be exact,
493 	 * at 6th iterations result stabilizes with about 72% results exact.
494 	 * We are well satisfied with 0.05% accuracy.
495 	 */
496 
497 	return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */
498 }
SQRT(double X)499 static ALWAYS_INLINE double SQRT(double X)
500 {
501 	/* If this arch doesn't use IEEE 754 floats, fall back to using libm */
502 	if (sizeof(float) != 4)
503 		return sqrt(X);
504 
505 	/* This avoids needing libm, saves about 0.5k on x86-32 */
506 	return my_SQRT(X);
507 }
508 
509 static double
gettime1900d(void)510 gettime1900d(void)
511 {
512 	struct timeval tv;
513 	gettimeofday(&tv, NULL); /* never fails */
514 	G.cur_time = tv.tv_sec + (1.0e-6 * tv.tv_usec) + OFFSET_1900_1970;
515 	return G.cur_time;
516 }
517 
518 static void
d_to_tv(double d,struct timeval * tv)519 d_to_tv(double d, struct timeval *tv)
520 {
521 	tv->tv_sec = (long)d;
522 	tv->tv_usec = (d - tv->tv_sec) * 1000000;
523 }
524 
525 static double
lfp_to_d(l_fixedpt_t lfp)526 lfp_to_d(l_fixedpt_t lfp)
527 {
528 	double ret;
529 	lfp.int_partl = ntohl(lfp.int_partl);
530 	lfp.fractionl = ntohl(lfp.fractionl);
531 	ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX);
532 	return ret;
533 }
534 static double
sfp_to_d(s_fixedpt_t sfp)535 sfp_to_d(s_fixedpt_t sfp)
536 {
537 	double ret;
538 	sfp.int_parts = ntohs(sfp.int_parts);
539 	sfp.fractions = ntohs(sfp.fractions);
540 	ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX);
541 	return ret;
542 }
543 #if ENABLE_FEATURE_NTPD_SERVER
544 static l_fixedpt_t
d_to_lfp(double d)545 d_to_lfp(double d)
546 {
547 	l_fixedpt_t lfp;
548 	lfp.int_partl = (uint32_t)d;
549 	lfp.fractionl = (uint32_t)((d - lfp.int_partl) * UINT_MAX);
550 	lfp.int_partl = htonl(lfp.int_partl);
551 	lfp.fractionl = htonl(lfp.fractionl);
552 	return lfp;
553 }
554 static s_fixedpt_t
d_to_sfp(double d)555 d_to_sfp(double d)
556 {
557 	s_fixedpt_t sfp;
558 	sfp.int_parts = (uint16_t)d;
559 	sfp.fractions = (uint16_t)((d - sfp.int_parts) * USHRT_MAX);
560 	sfp.int_parts = htons(sfp.int_parts);
561 	sfp.fractions = htons(sfp.fractions);
562 	return sfp;
563 }
564 #endif
565 
566 static double
dispersion(const datapoint_t * dp)567 dispersion(const datapoint_t *dp)
568 {
569 	return dp->d_dispersion + FREQ_TOLERANCE * (G.cur_time - dp->d_recv_time);
570 }
571 
572 static double
root_distance(peer_t * p)573 root_distance(peer_t *p)
574 {
575 	/* The root synchronization distance is the maximum error due to
576 	 * all causes of the local clock relative to the primary server.
577 	 * It is defined as half the total delay plus total dispersion
578 	 * plus peer jitter.
579 	 */
580 	return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2
581 		+ p->lastpkt_rootdisp
582 		+ p->filter_dispersion
583 		+ FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time)
584 		+ p->filter_jitter;
585 }
586 
587 static void
set_next(peer_t * p,unsigned t)588 set_next(peer_t *p, unsigned t)
589 {
590 	p->next_action_time = G.cur_time + t;
591 }
592 
593 /*
594  * Peer clock filter and its helpers
595  */
596 static void
filter_datapoints(peer_t * p)597 filter_datapoints(peer_t *p)
598 {
599 	int i, idx;
600 	double sum, wavg;
601 	datapoint_t *fdp;
602 
603 #if 0
604 /* Simulations have shown that use of *averaged* offset for p->filter_offset
605  * is in fact worse than simply using last received one: with large poll intervals
606  * (>= 2048) averaging code uses offset values which are outdated by hours,
607  * and time/frequency correction goes totally wrong when fed essentially bogus offsets.
608  */
609 	int got_newest;
610 	double minoff, maxoff, w;
611 	double x = x; /* for compiler */
612 	double oldest_off = oldest_off;
613 	double oldest_age = oldest_age;
614 	double newest_off = newest_off;
615 	double newest_age = newest_age;
616 
617 	fdp = p->filter_datapoint;
618 
619 	minoff = maxoff = fdp[0].d_offset;
620 	for (i = 1; i < NUM_DATAPOINTS; i++) {
621 		if (minoff > fdp[i].d_offset)
622 			minoff = fdp[i].d_offset;
623 		if (maxoff < fdp[i].d_offset)
624 			maxoff = fdp[i].d_offset;
625 	}
626 
627 	idx = p->datapoint_idx; /* most recent datapoint's index */
628 	/* Average offset:
629 	 * Drop two outliers and take weighted average of the rest:
630 	 * most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32
631 	 * we use older6/32, not older6/64 since sum of weights should be 1:
632 	 * 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1
633 	 */
634 	wavg = 0;
635 	w = 0.5;
636 	/*                     n-1
637 	 *                     ---    dispersion(i)
638 	 * filter_dispersion =  \     -------------
639 	 *                      /       (i+1)
640 	 *                     ---     2
641 	 *                     i=0
642 	 */
643 	got_newest = 0;
644 	sum = 0;
645 	for (i = 0; i < NUM_DATAPOINTS; i++) {
646 		VERB5 {
647 			bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s",
648 				i,
649 				fdp[idx].d_offset,
650 				fdp[idx].d_dispersion, dispersion(&fdp[idx]),
651 				G.cur_time - fdp[idx].d_recv_time,
652 				(minoff == fdp[idx].d_offset || maxoff == fdp[idx].d_offset)
653 					? " (outlier by offset)" : ""
654 			);
655 		}
656 
657 		sum += dispersion(&fdp[idx]) / (2 << i);
658 
659 		if (minoff == fdp[idx].d_offset) {
660 			minoff -= 1; /* so that we don't match it ever again */
661 		} else
662 		if (maxoff == fdp[idx].d_offset) {
663 			maxoff += 1;
664 		} else {
665 			oldest_off = fdp[idx].d_offset;
666 			oldest_age = G.cur_time - fdp[idx].d_recv_time;
667 			if (!got_newest) {
668 				got_newest = 1;
669 				newest_off = oldest_off;
670 				newest_age = oldest_age;
671 			}
672 			x = oldest_off * w;
673 			wavg += x;
674 			w /= 2;
675 		}
676 
677 		idx = (idx - 1) & (NUM_DATAPOINTS - 1);
678 	}
679 	p->filter_dispersion = sum;
680 	wavg += x; /* add another older6/64 to form older6/32 */
681 	/* Fix systematic underestimation with large poll intervals.
682 	 * Imagine that we still have a bit of uncorrected drift,
683 	 * and poll interval is big (say, 100 sec). Offsets form a progression:
684 	 * 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent.
685 	 * The algorithm above drops 0.0 and 0.7 as outliers,
686 	 * and then we have this estimation, ~25% off from 0.7:
687 	 * 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125
688 	 */
689 	x = oldest_age - newest_age;
690 	if (x != 0) {
691 		x = newest_age / x; /* in above example, 100 / (600 - 100) */
692 		if (x < 1) { /* paranoia check */
693 			x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */
694 			wavg += x;
695 		}
696 	}
697 	p->filter_offset = wavg;
698 
699 #else
700 
701 	fdp = p->filter_datapoint;
702 	idx = p->datapoint_idx; /* most recent datapoint's index */
703 
704 	/* filter_offset: simply use the most recent value */
705 	p->filter_offset = fdp[idx].d_offset;
706 
707 	/*                     n-1
708 	 *                     ---    dispersion(i)
709 	 * filter_dispersion =  \     -------------
710 	 *                      /       (i+1)
711 	 *                     ---     2
712 	 *                     i=0
713 	 */
714 	wavg = 0;
715 	sum = 0;
716 	for (i = 0; i < NUM_DATAPOINTS; i++) {
717 		sum += dispersion(&fdp[idx]) / (2 << i);
718 		wavg += fdp[idx].d_offset;
719 		idx = (idx - 1) & (NUM_DATAPOINTS - 1);
720 	}
721 	wavg /= NUM_DATAPOINTS;
722 	p->filter_dispersion = sum;
723 #endif
724 
725 	/*                  +-----                 -----+ ^ 1/2
726 	 *                  |       n-1                 |
727 	 *                  |       ---                 |
728 	 *                  |  1    \                2  |
729 	 * filter_jitter =  | --- * /  (avg-offset_j)   |
730 	 *                  |  n    ---                 |
731 	 *                  |       j=0                 |
732 	 *                  +-----                 -----+
733 	 * where n is the number of valid datapoints in the filter (n > 1);
734 	 * if filter_jitter < precision then filter_jitter = precision
735 	 */
736 	sum = 0;
737 	for (i = 0; i < NUM_DATAPOINTS; i++) {
738 		sum += SQUARE(wavg - fdp[i].d_offset);
739 	}
740 	sum = SQRT(sum / NUM_DATAPOINTS);
741 	p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec;
742 
743 	VERB4 bb_error_msg("filter offset:%+f disp:%f jitter:%f",
744 			p->filter_offset,
745 			p->filter_dispersion,
746 			p->filter_jitter);
747 }
748 
749 static void
reset_peer_stats(peer_t * p,double offset)750 reset_peer_stats(peer_t *p, double offset)
751 {
752 	int i;
753 	bool small_ofs = fabs(offset) < STEP_THRESHOLD;
754 
755 	/* Used to set p->filter_datapoint[i].d_dispersion = MAXDISP
756 	 * and clear reachable bits, but this proved to be too agressive:
757 	 * after step (tested with suspending laptop for ~30 secs),
758 	 * this caused all previous data to be considered invalid,
759 	 * making us needing to collect full ~8 datapoins per peer
760 	 * after step in order to start trusting them.
761 	 * In turn, this was making poll interval decrease even after
762 	 * step was done. (Poll interval decreases already before step
763 	 * in this scenario, because we see large offsets and end up with
764 	 * no good peer to select).
765 	 */
766 
767 	for (i = 0; i < NUM_DATAPOINTS; i++) {
768 		if (small_ofs) {
769 			p->filter_datapoint[i].d_recv_time += offset;
770 			if (p->filter_datapoint[i].d_offset != 0) {
771 				p->filter_datapoint[i].d_offset -= offset;
772 				//bb_error_msg("p->filter_datapoint[%d].d_offset %f -> %f",
773 				//	i,
774 				//	p->filter_datapoint[i].d_offset + offset,
775 				//	p->filter_datapoint[i].d_offset);
776 			}
777 		} else {
778 			p->filter_datapoint[i].d_recv_time  = G.cur_time;
779 			p->filter_datapoint[i].d_offset     = 0;
780 			/*p->filter_datapoint[i].d_dispersion = MAXDISP;*/
781 		}
782 	}
783 	if (small_ofs) {
784 		p->lastpkt_recv_time += offset;
785 	} else {
786 		/*p->reachable_bits = 0;*/
787 		p->lastpkt_recv_time = G.cur_time;
788 	}
789 	filter_datapoints(p); /* recalc p->filter_xxx */
790 	VERB6 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
791 }
792 
793 static void
resolve_peer_hostname(peer_t * p,int loop_on_fail)794 resolve_peer_hostname(peer_t *p, int loop_on_fail)
795 {
796 	len_and_sockaddr *lsa;
797 
798  again:
799 	lsa = host2sockaddr(p->p_hostname, 123);
800 	if (!lsa) {
801 		/* error message already emitted by host2sockaddr() */
802 		if (!loop_on_fail)
803 			return;
804 //FIXME: do this to avoid infinite looping on typo in a hostname?
805 //well... in which case, what is a good value for loop_on_fail?
806 		//if (--loop_on_fail == 0)
807 		//	xfunc_die();
808 		sleep(5);
809 		goto again;
810 	}
811 	free(p->p_lsa);
812 	free(p->p_dotted);
813 	p->p_lsa = lsa;
814 	p->p_dotted = xmalloc_sockaddr2dotted_noport(&lsa->u.sa);
815 }
816 
817 static void
add_peers(const char * s)818 add_peers(const char *s)
819 {
820 	llist_t *item;
821 	peer_t *p;
822 
823 	p = xzalloc(sizeof(*p) + strlen(s));
824 	strcpy(p->p_hostname, s);
825 	resolve_peer_hostname(p, /*loop_on_fail=*/ 1);
826 
827 	/* Names like N.<country2chars>.pool.ntp.org are randomly resolved
828 	 * to a pool of machines. Sometimes different N's resolve to the same IP.
829 	 * It is not useful to have two peers with same IP. We skip duplicates.
830 	 */
831 	for (item = G.ntp_peers; item != NULL; item = item->link) {
832 		peer_t *pp = (peer_t *) item->data;
833 		if (strcmp(p->p_dotted, pp->p_dotted) == 0) {
834 			bb_error_msg("duplicate peer %s (%s)", s, p->p_dotted);
835 			free(p->p_lsa);
836 			free(p->p_dotted);
837 			free(p);
838 			return;
839 		}
840 	}
841 
842 	p->p_fd = -1;
843 	p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3);
844 	p->next_action_time = G.cur_time; /* = set_next(p, 0); */
845 	reset_peer_stats(p, STEP_THRESHOLD);
846 
847 	llist_add_to(&G.ntp_peers, p);
848 	G.peer_cnt++;
849 }
850 
851 static int
do_sendto(int fd,const struct sockaddr * from,const struct sockaddr * to,socklen_t addrlen,msg_t * msg,ssize_t len)852 do_sendto(int fd,
853 		const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen,
854 		msg_t *msg, ssize_t len)
855 {
856 	ssize_t ret;
857 
858 	errno = 0;
859 	if (!from) {
860 		ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen);
861 	} else {
862 		ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen);
863 	}
864 	if (ret != len) {
865 		bb_perror_msg("send failed");
866 		return -1;
867 	}
868 	return 0;
869 }
870 
871 static void
send_query_to_peer(peer_t * p)872 send_query_to_peer(peer_t *p)
873 {
874 	/* Why do we need to bind()?
875 	 * See what happens when we don't bind:
876 	 *
877 	 * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3
878 	 * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0
879 	 * gettimeofday({1259071266, 327885}, NULL) = 0
880 	 * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48
881 	 * ^^^ we sent it from some source port picked by kernel.
882 	 * time(NULL)              = 1259071266
883 	 * write(2, "ntpd: entering poll 15 secs\n", 28) = 28
884 	 * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}])
885 	 * recv(3, "yyy", 68, MSG_DONTWAIT) = 48
886 	 * ^^^ this recv will receive packets to any local port!
887 	 *
888 	 * Uncomment this and use strace to see it in action:
889 	 */
890 #define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */
891 
892 	if (p->p_fd == -1) {
893 		int fd, family;
894 		len_and_sockaddr *local_lsa;
895 
896 		family = p->p_lsa->u.sa.sa_family;
897 		p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM);
898 		/* local_lsa has "null" address and port 0 now.
899 		 * bind() ensures we have a *particular port* selected by kernel
900 		 * and remembered in p->p_fd, thus later recv(p->p_fd)
901 		 * receives only packets sent to this port.
902 		 */
903 		PROBE_LOCAL_ADDR
904 		xbind(fd, &local_lsa->u.sa, local_lsa->len);
905 		PROBE_LOCAL_ADDR
906 #if ENABLE_FEATURE_IPV6
907 		if (family == AF_INET)
908 #endif
909 			setsockopt_int(fd, IPPROTO_IP, IP_TOS, IPTOS_LOWDELAY);
910 		free(local_lsa);
911 	}
912 
913 	/* Emit message _before_ attempted send. Think of a very short
914 	 * roundtrip networks: we need to go back to recv loop ASAP,
915 	 * to reduce delay. Printing messages after send works against that.
916 	 */
917 	VERB1 bb_error_msg("sending query to %s", p->p_dotted);
918 
919 	/*
920 	 * Send out a random 64-bit number as our transmit time.  The NTP
921 	 * server will copy said number into the originate field on the
922 	 * response that it sends us.  This is totally legal per the SNTP spec.
923 	 *
924 	 * The impact of this is two fold: we no longer send out the current
925 	 * system time for the world to see (which may aid an attacker), and
926 	 * it gives us a (not very secure) way of knowing that we're not
927 	 * getting spoofed by an attacker that can't capture our traffic
928 	 * but can spoof packets from the NTP server we're communicating with.
929 	 *
930 	 * Save the real transmit timestamp locally.
931 	 */
932 	p->p_xmt_msg.m_xmttime.int_partl = rand();
933 	p->p_xmt_msg.m_xmttime.fractionl = rand();
934 	p->p_xmttime = gettime1900d();
935 
936 	/* Were doing it only if sendto worked, but
937 	 * loss of sync detection needs reachable_bits updated
938 	 * even if sending fails *locally*:
939 	 * "network is unreachable" because cable was pulled?
940 	 * We still need to declare "unsync" if this condition persists.
941 	 */
942 	p->reachable_bits <<= 1;
943 
944 	if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
945 			&p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1
946 	) {
947 		close(p->p_fd);
948 		p->p_fd = -1;
949 		/*
950 		 * We know that we sent nothing.
951 		 * We can retry *soon* without fearing
952 		 * that we are flooding the peer.
953 		 */
954 		set_next(p, RETRY_INTERVAL);
955 		return;
956 	}
957 
958 	set_next(p, RESPONSE_INTERVAL);
959 }
960 
961 
962 /* Note that there is no provision to prevent several run_scripts
963  * to be started in quick succession. In fact, it happens rather often
964  * if initial syncronization results in a step.
965  * You will see "step" and then "stratum" script runs, sometimes
966  * as close as only 0.002 seconds apart.
967  * Script should be ready to deal with this.
968  */
run_script(const char * action,double offset)969 static void run_script(const char *action, double offset)
970 {
971 	char *argv[3];
972 	char *env1, *env2, *env3, *env4;
973 
974 	G.last_script_run = G.cur_time;
975 
976 	if (!G.script_name)
977 		return;
978 
979 	argv[0] = (char*) G.script_name;
980 	argv[1] = (char*) action;
981 	argv[2] = NULL;
982 
983 	VERB1 bb_error_msg("executing '%s %s'", G.script_name, action);
984 
985 	env1 = xasprintf("%s=%u", "stratum", G.stratum);
986 	putenv(env1);
987 	env2 = xasprintf("%s=%ld", "freq_drift_ppm", G.kernel_freq_drift);
988 	putenv(env2);
989 	env3 = xasprintf("%s=%u", "poll_interval", 1 << G.poll_exp);
990 	putenv(env3);
991 	env4 = xasprintf("%s=%f", "offset", offset);
992 	putenv(env4);
993 	/* Other items of potential interest: selected peer,
994 	 * rootdelay, reftime, rootdisp, refid, ntp_status,
995 	 * last_update_offset, last_update_recv_time, discipline_jitter,
996 	 * how many peers have reachable_bits = 0?
997 	 */
998 
999 	/* Don't want to wait: it may run hwclock --systohc, and that
1000 	 * may take some time (seconds): */
1001 	/*spawn_and_wait(argv);*/
1002 	spawn(argv);
1003 
1004 	unsetenv("stratum");
1005 	unsetenv("freq_drift_ppm");
1006 	unsetenv("poll_interval");
1007 	unsetenv("offset");
1008 	free(env1);
1009 	free(env2);
1010 	free(env3);
1011 	free(env4);
1012 }
1013 
1014 static NOINLINE void
step_time(double offset)1015 step_time(double offset)
1016 {
1017 	llist_t *item;
1018 	double dtime;
1019 	struct timeval tvc, tvn;
1020 	char buf[sizeof("yyyy-mm-dd hh:mm:ss") + /*paranoia:*/ 4];
1021 	time_t tval;
1022 
1023 	gettimeofday(&tvc, NULL); /* never fails */
1024 	dtime = tvc.tv_sec + (1.0e-6 * tvc.tv_usec) + offset;
1025 	d_to_tv(dtime, &tvn);
1026 	if (settimeofday(&tvn, NULL) == -1)
1027 		bb_perror_msg_and_die("settimeofday");
1028 
1029 	VERB2 {
1030 		tval = tvc.tv_sec;
1031 		strftime_YYYYMMDDHHMMSS(buf, sizeof(buf), &tval);
1032 		bb_error_msg("current time is %s.%06u", buf, (unsigned)tvc.tv_usec);
1033 	}
1034 	tval = tvn.tv_sec;
1035 	strftime_YYYYMMDDHHMMSS(buf, sizeof(buf), &tval);
1036 	bb_error_msg("setting time to %s.%06u (offset %+fs)", buf, (unsigned)tvn.tv_usec, offset);
1037 
1038 	/* Correct various fields which contain time-relative values: */
1039 
1040 	/* Globals: */
1041 	G.cur_time += offset;
1042 	G.last_update_recv_time += offset;
1043 	G.last_script_run += offset;
1044 
1045 	/* p->lastpkt_recv_time, p->next_action_time and such: */
1046 	for (item = G.ntp_peers; item != NULL; item = item->link) {
1047 		peer_t *pp = (peer_t *) item->data;
1048 		reset_peer_stats(pp, offset);
1049 		//bb_error_msg("offset:%+f pp->next_action_time:%f -> %f",
1050 		//	offset, pp->next_action_time, pp->next_action_time + offset);
1051 		pp->next_action_time += offset;
1052 		if (pp->p_fd >= 0) {
1053 			/* We wait for reply from this peer too.
1054 			 * But due to step we are doing, reply's data is no longer
1055 			 * useful (in fact, it'll be bogus). Stop waiting for it.
1056 			 */
1057 			close(pp->p_fd);
1058 			pp->p_fd = -1;
1059 			set_next(pp, RETRY_INTERVAL);
1060 		}
1061 	}
1062 }
1063 
clamp_pollexp_and_set_MAXSTRAT(void)1064 static void clamp_pollexp_and_set_MAXSTRAT(void)
1065 {
1066 	if (G.poll_exp < MINPOLL)
1067 		G.poll_exp = MINPOLL;
1068 	if (G.poll_exp > BIGPOLL)
1069 		G.poll_exp = BIGPOLL;
1070 	G.polladj_count = 0;
1071 	G.stratum = MAXSTRAT;
1072 }
1073 
1074 
1075 /*
1076  * Selection and clustering, and their helpers
1077  */
1078 typedef struct {
1079 	peer_t *p;
1080 	int    type;
1081 	double edge;
1082 	double opt_rd; /* optimization */
1083 } point_t;
1084 static int
compare_point_edge(const void * aa,const void * bb)1085 compare_point_edge(const void *aa, const void *bb)
1086 {
1087 	const point_t *a = aa;
1088 	const point_t *b = bb;
1089 	if (a->edge < b->edge) {
1090 		return -1;
1091 	}
1092 	return (a->edge > b->edge);
1093 }
1094 typedef struct {
1095 	peer_t *p;
1096 	double metric;
1097 } survivor_t;
1098 static int
compare_survivor_metric(const void * aa,const void * bb)1099 compare_survivor_metric(const void *aa, const void *bb)
1100 {
1101 	const survivor_t *a = aa;
1102 	const survivor_t *b = bb;
1103 	if (a->metric < b->metric) {
1104 		return -1;
1105 	}
1106 	return (a->metric > b->metric);
1107 }
1108 static int
fit(peer_t * p,double rd)1109 fit(peer_t *p, double rd)
1110 {
1111 	if ((p->reachable_bits & (p->reachable_bits-1)) == 0) {
1112 		/* One or zero bits in reachable_bits */
1113 		VERB4 bb_error_msg("peer %s unfit for selection: unreachable", p->p_dotted);
1114 		return 0;
1115 	}
1116 #if 0 /* we filter out such packets earlier */
1117 	if ((p->lastpkt_status & LI_ALARM) == LI_ALARM
1118 	 || p->lastpkt_stratum >= MAXSTRAT
1119 	) {
1120 		VERB4 bb_error_msg("peer %s unfit for selection: bad status/stratum", p->p_dotted);
1121 		return 0;
1122 	}
1123 #endif
1124 	/* rd is root_distance(p) */
1125 	if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) {
1126 		VERB4 bb_error_msg("peer %s unfit for selection: root distance too high", p->p_dotted);
1127 		return 0;
1128 	}
1129 //TODO
1130 //	/* Do we have a loop? */
1131 //	if (p->refid == p->dstaddr || p->refid == s.refid)
1132 //		return 0;
1133 	return 1;
1134 }
1135 static peer_t*
select_and_cluster(void)1136 select_and_cluster(void)
1137 {
1138 	peer_t     *p;
1139 	llist_t    *item;
1140 	int        i, j;
1141 	int        size = 3 * G.peer_cnt;
1142 	/* for selection algorithm */
1143 	point_t    point[size];
1144 	unsigned   num_points, num_candidates;
1145 	double     low, high;
1146 	unsigned   num_falsetickers;
1147 	/* for cluster algorithm */
1148 	survivor_t survivor[size];
1149 	unsigned   num_survivors;
1150 
1151 	/* Selection */
1152 
1153 	num_points = 0;
1154 	item = G.ntp_peers;
1155 	while (item != NULL) {
1156 		double rd, offset;
1157 
1158 		p = (peer_t *) item->data;
1159 		rd = root_distance(p);
1160 		offset = p->filter_offset;
1161 		if (!fit(p, rd)) {
1162 			item = item->link;
1163 			continue;
1164 		}
1165 
1166 		VERB5 bb_error_msg("interval: [%f %f %f] %s",
1167 				offset - rd,
1168 				offset,
1169 				offset + rd,
1170 				p->p_dotted
1171 		);
1172 		point[num_points].p = p;
1173 		point[num_points].type = -1;
1174 		point[num_points].edge = offset - rd;
1175 		point[num_points].opt_rd = rd;
1176 		num_points++;
1177 		point[num_points].p = p;
1178 		point[num_points].type = 0;
1179 		point[num_points].edge = offset;
1180 		point[num_points].opt_rd = rd;
1181 		num_points++;
1182 		point[num_points].p = p;
1183 		point[num_points].type = 1;
1184 		point[num_points].edge = offset + rd;
1185 		point[num_points].opt_rd = rd;
1186 		num_points++;
1187 		item = item->link;
1188 	}
1189 	num_candidates = num_points / 3;
1190 	if (num_candidates == 0) {
1191 		VERB3 bb_error_msg("no valid datapoints%s", ", no peer selected");
1192 		return NULL;
1193 	}
1194 //TODO: sorting does not seem to be done in reference code
1195 	qsort(point, num_points, sizeof(point[0]), compare_point_edge);
1196 
1197 	/* Start with the assumption that there are no falsetickers.
1198 	 * Attempt to find a nonempty intersection interval containing
1199 	 * the midpoints of all truechimers.
1200 	 * If a nonempty interval cannot be found, increase the number
1201 	 * of assumed falsetickers by one and try again.
1202 	 * If a nonempty interval is found and the number of falsetickers
1203 	 * is less than the number of truechimers, a majority has been found
1204 	 * and the midpoint of each truechimer represents
1205 	 * the candidates available to the cluster algorithm.
1206 	 */
1207 	num_falsetickers = 0;
1208 	while (1) {
1209 		int c;
1210 		unsigned num_midpoints = 0;
1211 
1212 		low = 1 << 9;
1213 		high = - (1 << 9);
1214 		c = 0;
1215 		for (i = 0; i < num_points; i++) {
1216 			/* We want to do:
1217 			 * if (point[i].type == -1) c++;
1218 			 * if (point[i].type == 1) c--;
1219 			 * and it's simpler to do it this way:
1220 			 */
1221 			c -= point[i].type;
1222 			if (c >= num_candidates - num_falsetickers) {
1223 				/* If it was c++ and it got big enough... */
1224 				low = point[i].edge;
1225 				break;
1226 			}
1227 			if (point[i].type == 0)
1228 				num_midpoints++;
1229 		}
1230 		c = 0;
1231 		for (i = num_points-1; i >= 0; i--) {
1232 			c += point[i].type;
1233 			if (c >= num_candidates - num_falsetickers) {
1234 				high = point[i].edge;
1235 				break;
1236 			}
1237 			if (point[i].type == 0)
1238 				num_midpoints++;
1239 		}
1240 		/* If the number of midpoints is greater than the number
1241 		 * of allowed falsetickers, the intersection contains at
1242 		 * least one truechimer with no midpoint - bad.
1243 		 * Also, interval should be nonempty.
1244 		 */
1245 		if (num_midpoints <= num_falsetickers && low < high)
1246 			break;
1247 		num_falsetickers++;
1248 		if (num_falsetickers * 2 >= num_candidates) {
1249 			VERB3 bb_error_msg("falsetickers:%d, candidates:%d%s",
1250 					num_falsetickers, num_candidates,
1251 					", no peer selected");
1252 			return NULL;
1253 		}
1254 	}
1255 	VERB4 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d",
1256 			low, high, num_candidates, num_falsetickers);
1257 
1258 	/* Clustering */
1259 
1260 	/* Construct a list of survivors (p, metric)
1261 	 * from the chime list, where metric is dominated
1262 	 * first by stratum and then by root distance.
1263 	 * All other things being equal, this is the order of preference.
1264 	 */
1265 	num_survivors = 0;
1266 	for (i = 0; i < num_points; i++) {
1267 		if (point[i].edge < low || point[i].edge > high)
1268 			continue;
1269 		p = point[i].p;
1270 		survivor[num_survivors].p = p;
1271 		/* x.opt_rd == root_distance(p); */
1272 		survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + point[i].opt_rd;
1273 		VERB5 bb_error_msg("survivor[%d] metric:%f peer:%s",
1274 			num_survivors, survivor[num_survivors].metric, p->p_dotted);
1275 		num_survivors++;
1276 	}
1277 	/* There must be at least MIN_SELECTED survivors to satisfy the
1278 	 * correctness assertions. Ordinarily, the Byzantine criteria
1279 	 * require four survivors, but for the demonstration here, one
1280 	 * is acceptable.
1281 	 */
1282 	if (num_survivors < MIN_SELECTED) {
1283 		VERB3 bb_error_msg("survivors:%d%s",
1284 				num_survivors,
1285 				", no peer selected");
1286 		return NULL;
1287 	}
1288 
1289 //looks like this is ONLY used by the fact that later we pick survivor[0].
1290 //we can avoid sorting then, just find the minimum once!
1291 	qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric);
1292 
1293 	/* For each association p in turn, calculate the selection
1294 	 * jitter p->sjitter as the square root of the sum of squares
1295 	 * (p->offset - q->offset) over all q associations. The idea is
1296 	 * to repeatedly discard the survivor with maximum selection
1297 	 * jitter until a termination condition is met.
1298 	 */
1299 	while (1) {
1300 		unsigned max_idx = max_idx;
1301 		double max_selection_jitter = max_selection_jitter;
1302 		double min_jitter = min_jitter;
1303 
1304 		if (num_survivors <= MIN_CLUSTERED) {
1305 			VERB4 bb_error_msg("num_survivors %d <= %d, not discarding more",
1306 					num_survivors, MIN_CLUSTERED);
1307 			break;
1308 		}
1309 
1310 		/* To make sure a few survivors are left
1311 		 * for the clustering algorithm to chew on,
1312 		 * we stop if the number of survivors
1313 		 * is less than or equal to MIN_CLUSTERED (3).
1314 		 */
1315 		for (i = 0; i < num_survivors; i++) {
1316 			double selection_jitter_sq;
1317 
1318 			p = survivor[i].p;
1319 			if (i == 0 || p->filter_jitter < min_jitter)
1320 				min_jitter = p->filter_jitter;
1321 
1322 			selection_jitter_sq = 0;
1323 			for (j = 0; j < num_survivors; j++) {
1324 				peer_t *q = survivor[j].p;
1325 				selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset);
1326 			}
1327 			if (i == 0 || selection_jitter_sq > max_selection_jitter) {
1328 				max_selection_jitter = selection_jitter_sq;
1329 				max_idx = i;
1330 			}
1331 			VERB6 bb_error_msg("survivor %d selection_jitter^2:%f",
1332 					i, selection_jitter_sq);
1333 		}
1334 		max_selection_jitter = SQRT(max_selection_jitter / num_survivors);
1335 		VERB5 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f",
1336 				max_idx, max_selection_jitter, min_jitter);
1337 
1338 		/* If the maximum selection jitter is less than the
1339 		 * minimum peer jitter, then tossing out more survivors
1340 		 * will not lower the minimum peer jitter, so we might
1341 		 * as well stop.
1342 		 */
1343 		if (max_selection_jitter < min_jitter) {
1344 			VERB4 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more",
1345 					max_selection_jitter, min_jitter, num_survivors);
1346 			break;
1347 		}
1348 
1349 		/* Delete survivor[max_idx] from the list
1350 		 * and go around again.
1351 		 */
1352 		VERB6 bb_error_msg("dropping survivor %d", max_idx);
1353 		num_survivors--;
1354 		while (max_idx < num_survivors) {
1355 			survivor[max_idx] = survivor[max_idx + 1];
1356 			max_idx++;
1357 		}
1358 	}
1359 
1360 	if (0) {
1361 		/* Combine the offsets of the clustering algorithm survivors
1362 		 * using a weighted average with weight determined by the root
1363 		 * distance. Compute the selection jitter as the weighted RMS
1364 		 * difference between the first survivor and the remaining
1365 		 * survivors. In some cases the inherent clock jitter can be
1366 		 * reduced by not using this algorithm, especially when frequent
1367 		 * clockhopping is involved. bbox: thus we don't do it.
1368 		 */
1369 		double x, y, z, w;
1370 		y = z = w = 0;
1371 		for (i = 0; i < num_survivors; i++) {
1372 			p = survivor[i].p;
1373 			x = root_distance(p);
1374 			y += 1 / x;
1375 			z += p->filter_offset / x;
1376 			w += SQUARE(p->filter_offset - survivor[0].p->filter_offset) / x;
1377 		}
1378 		//G.cluster_offset = z / y;
1379 		//G.cluster_jitter = SQRT(w / y);
1380 	}
1381 
1382 	/* Pick the best clock. If the old system peer is on the list
1383 	 * and at the same stratum as the first survivor on the list,
1384 	 * then don't do a clock hop. Otherwise, select the first
1385 	 * survivor on the list as the new system peer.
1386 	 */
1387 	p = survivor[0].p;
1388 	if (G.last_update_peer
1389 	 && G.last_update_peer->lastpkt_stratum <= p->lastpkt_stratum
1390 	) {
1391 		/* Starting from 1 is ok here */
1392 		for (i = 1; i < num_survivors; i++) {
1393 			if (G.last_update_peer == survivor[i].p) {
1394 				VERB5 bb_error_msg("keeping old synced peer");
1395 				p = G.last_update_peer;
1396 				goto keep_old;
1397 			}
1398 		}
1399 	}
1400 	G.last_update_peer = p;
1401  keep_old:
1402 	VERB4 bb_error_msg("selected peer %s filter_offset:%+f age:%f",
1403 			p->p_dotted,
1404 			p->filter_offset,
1405 			G.cur_time - p->lastpkt_recv_time
1406 	);
1407 	return p;
1408 }
1409 
1410 
1411 /*
1412  * Local clock discipline and its helpers
1413  */
1414 static void
set_new_values(int disc_state,double offset,double recv_time)1415 set_new_values(int disc_state, double offset, double recv_time)
1416 {
1417 	/* Enter new state and set state variables. Note we use the time
1418 	 * of the last clock filter sample, which must be earlier than
1419 	 * the current time.
1420 	 */
1421 	VERB4 bb_error_msg("disc_state=%d last update offset=%f recv_time=%f",
1422 			disc_state, offset, recv_time);
1423 	G.discipline_state = disc_state;
1424 	G.last_update_offset = offset;
1425 	G.last_update_recv_time = recv_time;
1426 }
1427 /* Return: -1: decrease poll interval, 0: leave as is, 1: increase */
1428 static NOINLINE int
update_local_clock(peer_t * p)1429 update_local_clock(peer_t *p)
1430 {
1431 	int rc;
1432 	struct timex tmx;
1433 	/* Note: can use G.cluster_offset instead: */
1434 	double offset = p->filter_offset;
1435 	double recv_time = p->lastpkt_recv_time;
1436 	double abs_offset;
1437 #if !USING_KERNEL_PLL_LOOP
1438 	double freq_drift;
1439 #endif
1440 #if !USING_KERNEL_PLL_LOOP || USING_INITIAL_FREQ_ESTIMATION
1441 	double since_last_update;
1442 #endif
1443 	double etemp, dtemp;
1444 
1445 	abs_offset = fabs(offset);
1446 
1447 #if 0
1448 	/* If needed, -S script can do it by looking at $offset
1449 	 * env var and killing parent */
1450 	/* If the offset is too large, give up and go home */
1451 	if (abs_offset > PANIC_THRESHOLD) {
1452 		bb_error_msg_and_die("offset %f far too big, exiting", offset);
1453 	}
1454 #endif
1455 
1456 	/* If this is an old update, for instance as the result
1457 	 * of a system peer change, avoid it. We never use
1458 	 * an old sample or the same sample twice.
1459 	 */
1460 	if (recv_time <= G.last_update_recv_time) {
1461 		VERB3 bb_error_msg("update from %s: same or older datapoint, not using it",
1462 			p->p_dotted);
1463 		return 0; /* "leave poll interval as is" */
1464 	}
1465 
1466 	/* Clock state machine transition function. This is where the
1467 	 * action is and defines how the system reacts to large time
1468 	 * and frequency errors.
1469 	 */
1470 #if !USING_KERNEL_PLL_LOOP || USING_INITIAL_FREQ_ESTIMATION
1471 	since_last_update = recv_time - G.reftime;
1472 #endif
1473 #if !USING_KERNEL_PLL_LOOP
1474 	freq_drift = 0;
1475 #endif
1476 #if USING_INITIAL_FREQ_ESTIMATION
1477 	if (G.discipline_state == STATE_FREQ) {
1478 		/* Ignore updates until the stepout threshold */
1479 		if (since_last_update < WATCH_THRESHOLD) {
1480 			VERB4 bb_error_msg("measuring drift, datapoint ignored, %f sec remains",
1481 					WATCH_THRESHOLD - since_last_update);
1482 			return 0; /* "leave poll interval as is" */
1483 		}
1484 # if !USING_KERNEL_PLL_LOOP
1485 		freq_drift = (offset - G.last_update_offset) / since_last_update;
1486 # endif
1487 	}
1488 #endif
1489 
1490 	/* There are two main regimes: when the
1491 	 * offset exceeds the step threshold and when it does not.
1492 	 */
1493 	if (abs_offset > STEP_THRESHOLD) {
1494 #if 0
1495 		double remains;
1496 
1497 // This "spike state" seems to be useless, peer selection already drops
1498 // occassional "bad" datapoints. If we are here, there were _many_
1499 // large offsets. When a few first large offsets are seen,
1500 // we end up in "no valid datapoints, no peer selected" state.
1501 // Only when enough of them are seen (which means it's not a fluke),
1502 // we end up here. Looks like _our_ clock is off.
1503 		switch (G.discipline_state) {
1504 		case STATE_SYNC:
1505 			/* The first outlyer: ignore it, switch to SPIK state */
1506 			VERB3 bb_error_msg("update from %s: offset:%+f, spike%s",
1507 				p->p_dotted, offset,
1508 				"");
1509 			G.discipline_state = STATE_SPIK;
1510 			return -1; /* "decrease poll interval" */
1511 
1512 		case STATE_SPIK:
1513 			/* Ignore succeeding outlyers until either an inlyer
1514 			 * is found or the stepout threshold is exceeded.
1515 			 */
1516 			remains = WATCH_THRESHOLD - since_last_update;
1517 			if (remains > 0) {
1518 				VERB3 bb_error_msg("update from %s: offset:%+f, spike%s",
1519 					p->p_dotted, offset,
1520 					", datapoint ignored");
1521 				return -1; /* "decrease poll interval" */
1522 			}
1523 			/* fall through: we need to step */
1524 		} /* switch */
1525 #endif
1526 
1527 		/* Step the time and clamp down the poll interval.
1528 		 *
1529 		 * In NSET state an initial frequency correction is
1530 		 * not available, usually because the frequency file has
1531 		 * not yet been written. Since the time is outside the
1532 		 * capture range, the clock is stepped. The frequency
1533 		 * will be set directly following the stepout interval.
1534 		 *
1535 		 * In FSET state the initial frequency has been set
1536 		 * from the frequency file. Since the time is outside
1537 		 * the capture range, the clock is stepped immediately,
1538 		 * rather than after the stepout interval. Guys get
1539 		 * nervous if it takes 17 minutes to set the clock for
1540 		 * the first time.
1541 		 *
1542 		 * In SPIK state the stepout threshold has expired and
1543 		 * the phase is still above the step threshold. Note
1544 		 * that a single spike greater than the step threshold
1545 		 * is always suppressed, even at the longer poll
1546 		 * intervals.
1547 		 */
1548 		VERB4 bb_error_msg("stepping time by %+f; poll_exp=MINPOLL", offset);
1549 		step_time(offset);
1550 		if (option_mask32 & OPT_q) {
1551 			/* We were only asked to set time once. Done. */
1552 			exit(0);
1553 		}
1554 
1555 		clamp_pollexp_and_set_MAXSTRAT();
1556 
1557 		run_script("step", offset);
1558 
1559 		recv_time += offset;
1560 
1561 #if USING_INITIAL_FREQ_ESTIMATION
1562 		if (G.discipline_state == STATE_NSET) {
1563 			set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time);
1564 			return 1; /* "ok to increase poll interval" */
1565 		}
1566 #endif
1567 		abs_offset = offset = 0;
1568 		set_new_values(STATE_SYNC, offset, recv_time);
1569 	} else { /* abs_offset <= STEP_THRESHOLD */
1570 
1571 		/* The ratio is calculated before jitter is updated to make
1572 		 * poll adjust code more sensitive to large offsets.
1573 		 */
1574 		G.offset_to_jitter_ratio = abs_offset / G.discipline_jitter;
1575 
1576 		/* Compute the clock jitter as the RMS of exponentially
1577 		 * weighted offset differences. Used by the poll adjust code.
1578 		 */
1579 		etemp = SQUARE(G.discipline_jitter);
1580 		dtemp = SQUARE(offset - G.last_update_offset);
1581 		G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG);
1582 		if (G.discipline_jitter < G_precision_sec)
1583 			G.discipline_jitter = G_precision_sec;
1584 
1585 		switch (G.discipline_state) {
1586 		case STATE_NSET:
1587 			if (option_mask32 & OPT_q) {
1588 				/* We were only asked to set time once.
1589 				 * The clock is precise enough, no need to step.
1590 				 */
1591 				exit(0);
1592 			}
1593 #if USING_INITIAL_FREQ_ESTIMATION
1594 			/* This is the first update received and the frequency
1595 			 * has not been initialized. The first thing to do
1596 			 * is directly measure the oscillator frequency.
1597 			 */
1598 			set_new_values(STATE_FREQ, offset, recv_time);
1599 #else
1600 			set_new_values(STATE_SYNC, offset, recv_time);
1601 #endif
1602 			VERB4 bb_error_msg("transitioning to FREQ, datapoint ignored");
1603 			return 0; /* "leave poll interval as is" */
1604 
1605 #if 0 /* this is dead code for now */
1606 		case STATE_FSET:
1607 			/* This is the first update and the frequency
1608 			 * has been initialized. Adjust the phase, but
1609 			 * don't adjust the frequency until the next update.
1610 			 */
1611 			set_new_values(STATE_SYNC, offset, recv_time);
1612 			/* freq_drift remains 0 */
1613 			break;
1614 #endif
1615 
1616 #if USING_INITIAL_FREQ_ESTIMATION
1617 		case STATE_FREQ:
1618 			/* since_last_update >= WATCH_THRESHOLD, we waited enough.
1619 			 * Correct the phase and frequency and switch to SYNC state.
1620 			 * freq_drift was already estimated (see code above)
1621 			 */
1622 			set_new_values(STATE_SYNC, offset, recv_time);
1623 			break;
1624 #endif
1625 
1626 		default:
1627 #if !USING_KERNEL_PLL_LOOP
1628 			/* Compute freq_drift due to PLL and FLL contributions.
1629 			 *
1630 			 * The FLL and PLL frequency gain constants
1631 			 * depend on the poll interval and Allan
1632 			 * intercept. The FLL is not used below one-half
1633 			 * the Allan intercept. Above that the loop gain
1634 			 * increases in steps to 1 / AVG.
1635 			 */
1636 			if ((1 << G.poll_exp) > ALLAN / 2) {
1637 				etemp = FLL - G.poll_exp;
1638 				if (etemp < AVG)
1639 					etemp = AVG;
1640 				freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp);
1641 			}
1642 			/* For the PLL the integration interval
1643 			 * (numerator) is the minimum of the update
1644 			 * interval and poll interval. This allows
1645 			 * oversampling, but not undersampling.
1646 			 */
1647 			etemp = MIND(since_last_update, (1 << G.poll_exp));
1648 			dtemp = (4 * PLL) << G.poll_exp;
1649 			freq_drift += offset * etemp / SQUARE(dtemp);
1650 #endif
1651 			set_new_values(STATE_SYNC, offset, recv_time);
1652 			break;
1653 		}
1654 		if (G.stratum != p->lastpkt_stratum + 1) {
1655 			G.stratum = p->lastpkt_stratum + 1;
1656 			run_script("stratum", offset);
1657 		}
1658 	}
1659 
1660 	G.reftime = G.cur_time;
1661 	G.ntp_status = p->lastpkt_status;
1662 	G.refid = p->lastpkt_refid;
1663 	G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay;
1664 	dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(G.cluster_jitter));
1665 	dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + abs_offset, MINDISP);
1666 	G.rootdisp = p->lastpkt_rootdisp + dtemp;
1667 	VERB4 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted);
1668 
1669 	/* We are in STATE_SYNC now, but did not do adjtimex yet.
1670 	 * (Any other state does not reach this, they all return earlier)
1671 	 * By this time, freq_drift and offset are set
1672 	 * to values suitable for adjtimex.
1673 	 */
1674 #if !USING_KERNEL_PLL_LOOP
1675 	/* Calculate the new frequency drift and frequency stability (wander).
1676 	 * Compute the clock wander as the RMS of exponentially weighted
1677 	 * frequency differences. This is not used directly, but can,
1678 	 * along with the jitter, be a highly useful monitoring and
1679 	 * debugging tool.
1680 	 */
1681 	dtemp = G.discipline_freq_drift + freq_drift;
1682 	G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT);
1683 	etemp = SQUARE(G.discipline_wander);
1684 	dtemp = SQUARE(dtemp);
1685 	G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG);
1686 
1687 	VERB4 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f",
1688 			G.discipline_freq_drift,
1689 			(long)(G.discipline_freq_drift * 65536e6),
1690 			freq_drift,
1691 			G.discipline_wander);
1692 #endif
1693 	VERB4 {
1694 		memset(&tmx, 0, sizeof(tmx));
1695 		if (adjtimex(&tmx) < 0)
1696 			bb_perror_msg_and_die("adjtimex");
1697 		bb_error_msg("p adjtimex freq:%ld offset:%+ld status:0x%x tc:%ld",
1698 				tmx.freq, tmx.offset, tmx.status, tmx.constant);
1699 	}
1700 
1701 	memset(&tmx, 0, sizeof(tmx));
1702 #if 0
1703 //doesn't work, offset remains 0 (!) in kernel:
1704 //ntpd:  set adjtimex freq:1786097 tmx.offset:77487
1705 //ntpd: prev adjtimex freq:1786097 tmx.offset:0
1706 //ntpd:  cur adjtimex freq:1786097 tmx.offset:0
1707 	tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET;
1708 	/* 65536 is one ppm */
1709 	tmx.freq = G.discipline_freq_drift * 65536e6;
1710 #endif
1711 	tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR;
1712 	tmx.constant = (int)G.poll_exp - 4;
1713 	/* EXPERIMENTAL.
1714 	 * The below if statement should be unnecessary, but...
1715 	 * It looks like Linux kernel's PLL is far too gentle in changing
1716 	 * tmx.freq in response to clock offset. Offset keeps growing
1717 	 * and eventually we fall back to smaller poll intervals.
1718 	 * We can make correction more agressive (about x2) by supplying
1719 	 * PLL time constant which is one less than the real one.
1720 	 * To be on a safe side, let's do it only if offset is significantly
1721 	 * larger than jitter.
1722 	 */
1723 	if (G.offset_to_jitter_ratio >= TIMECONST_HACK_GATE)
1724 		tmx.constant--;
1725 	tmx.offset = (long)(offset * 1000000); /* usec */
1726 	if (SLEW_THRESHOLD < STEP_THRESHOLD) {
1727 		if (tmx.offset > (long)(SLEW_THRESHOLD * 1000000)) {
1728 			tmx.offset = (long)(SLEW_THRESHOLD * 1000000);
1729 			tmx.constant--;
1730 		}
1731 		if (tmx.offset < -(long)(SLEW_THRESHOLD * 1000000)) {
1732 			tmx.offset = -(long)(SLEW_THRESHOLD * 1000000);
1733 			tmx.constant--;
1734 		}
1735 	}
1736 	if (tmx.constant < 0)
1737 		tmx.constant = 0;
1738 
1739 	tmx.status = STA_PLL;
1740 	if (G.ntp_status & LI_PLUSSEC)
1741 		tmx.status |= STA_INS;
1742 	if (G.ntp_status & LI_MINUSSEC)
1743 		tmx.status |= STA_DEL;
1744 
1745 	//tmx.esterror = (uint32_t)(clock_jitter * 1e6);
1746 	//tmx.maxerror = (uint32_t)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
1747 	rc = adjtimex(&tmx);
1748 	if (rc < 0)
1749 		bb_perror_msg_and_die("adjtimex");
1750 	/* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4.
1751 	 * Not sure why. Perhaps it is normal.
1752 	 */
1753 	VERB4 bb_error_msg("adjtimex:%d freq:%ld offset:%+ld status:0x%x",
1754 				rc, tmx.freq, tmx.offset, tmx.status);
1755 	G.kernel_freq_drift = tmx.freq / 65536;
1756 	VERB2 bb_error_msg("update from:%s offset:%+f delay:%f jitter:%f clock drift:%+.3fppm tc:%d",
1757 			p->p_dotted,
1758 			offset,
1759 			p->lastpkt_delay,
1760 			G.discipline_jitter,
1761 			(double)tmx.freq / 65536,
1762 			(int)tmx.constant
1763 	);
1764 
1765 	return 1; /* "ok to increase poll interval" */
1766 }
1767 
1768 
1769 /*
1770  * We've got a new reply packet from a peer, process it
1771  * (helpers first)
1772  */
1773 static unsigned
poll_interval(int upper_bound)1774 poll_interval(int upper_bound)
1775 {
1776 	unsigned interval, r, mask;
1777 	interval = 1 << G.poll_exp;
1778 	if (interval > upper_bound)
1779 		interval = upper_bound;
1780 	mask = ((interval-1) >> 4) | 1;
1781 	r = rand();
1782 	interval += r & mask; /* ~ random(0..1) * interval/16 */
1783 	VERB4 bb_error_msg("chose poll interval:%u (poll_exp:%d)", interval, G.poll_exp);
1784 	return interval;
1785 }
1786 static void
adjust_poll(int count)1787 adjust_poll(int count)
1788 {
1789 	G.polladj_count += count;
1790 	if (G.polladj_count > POLLADJ_LIMIT) {
1791 		G.polladj_count = 0;
1792 		if (G.poll_exp < MAXPOLL) {
1793 			G.poll_exp++;
1794 			VERB4 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d",
1795 					G.discipline_jitter, G.poll_exp);
1796 		}
1797 	} else if (G.polladj_count < -POLLADJ_LIMIT || (count < 0 && G.poll_exp > BIGPOLL)) {
1798 		G.polladj_count = 0;
1799 		if (G.poll_exp > MINPOLL) {
1800 			llist_t *item;
1801 
1802 			G.poll_exp--;
1803 			/* Correct p->next_action_time in each peer
1804 			 * which waits for sending, so that they send earlier.
1805 			 * Old pp->next_action_time are on the order
1806 			 * of t + (1 << old_poll_exp) + small_random,
1807 			 * we simply need to subtract ~half of that.
1808 			 */
1809 			for (item = G.ntp_peers; item != NULL; item = item->link) {
1810 				peer_t *pp = (peer_t *) item->data;
1811 				if (pp->p_fd < 0)
1812 					pp->next_action_time -= (1 << G.poll_exp);
1813 			}
1814 			VERB4 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d",
1815 					G.discipline_jitter, G.poll_exp);
1816 		}
1817 	} else {
1818 		VERB4 bb_error_msg("polladj: count:%d", G.polladj_count);
1819 	}
1820 }
1821 static NOINLINE void
recv_and_process_peer_pkt(peer_t * p)1822 recv_and_process_peer_pkt(peer_t *p)
1823 {
1824 	int         rc;
1825 	ssize_t     size;
1826 	msg_t       msg;
1827 	double      T1, T2, T3, T4;
1828 	double      offset;
1829 	double      prev_delay, delay;
1830 	unsigned    interval;
1831 	datapoint_t *datapoint;
1832 	peer_t      *q;
1833 
1834 	offset = 0;
1835 
1836 	/* We can recvfrom here and check from.IP, but some multihomed
1837 	 * ntp servers reply from their *other IP*.
1838 	 * TODO: maybe we should check at least what we can: from.port == 123?
1839 	 */
1840  recv_again:
1841 	size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT);
1842 	if (size < 0) {
1843 		if (errno == EINTR)
1844 			/* Signal caught */
1845 			goto recv_again;
1846 		if (errno == EAGAIN)
1847 			/* There was no packet after all
1848 			 * (poll() returning POLLIN for a fd
1849 			 * is not a ironclad guarantee that data is there)
1850 			 */
1851 			return;
1852 		/*
1853 		 * If you need a different handling for a specific
1854 		 * errno, always explain it in comment.
1855 		 */
1856 		bb_perror_msg_and_die("recv(%s) error", p->p_dotted);
1857 	}
1858 
1859 	if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1860 		bb_error_msg("malformed packet received from %s", p->p_dotted);
1861 		return;
1862 	}
1863 
1864 	if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl
1865 	 || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl
1866 	) {
1867 		/* Somebody else's packet */
1868 		return;
1869 	}
1870 
1871 	/* We do not expect any more packets from this peer for now.
1872 	 * Closing the socket informs kernel about it.
1873 	 * We open a new socket when we send a new query.
1874 	 */
1875 	close(p->p_fd);
1876 	p->p_fd = -1;
1877 
1878 	if ((msg.m_status & LI_ALARM) == LI_ALARM
1879 	 || msg.m_stratum == 0
1880 	 || msg.m_stratum > NTP_MAXSTRATUM
1881 	) {
1882 		bb_error_msg("reply from %s: peer is unsynced", p->p_dotted);
1883 		/*
1884 		 * Stratum 0 responses may have commands in 32-bit m_refid field:
1885 		 * "DENY", "RSTR" - peer does not like us at all,
1886 		 * "RATE" - peer is overloaded, reduce polling freq.
1887 		 * If poll interval is small, increase it.
1888 		 */
1889 		if (G.poll_exp < BIGPOLL)
1890 			goto increase_interval;
1891 		goto pick_normal_interval;
1892 	}
1893 
1894 //	/* Verify valid root distance */
1895 //	if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt)
1896 //		return;                 /* invalid header values */
1897 
1898 	/*
1899 	 * From RFC 2030 (with a correction to the delay math):
1900 	 *
1901 	 * Timestamp Name          ID   When Generated
1902 	 * ------------------------------------------------------------
1903 	 * Originate Timestamp     T1   time request sent by client
1904 	 * Receive Timestamp       T2   time request received by server
1905 	 * Transmit Timestamp      T3   time reply sent by server
1906 	 * Destination Timestamp   T4   time reply received by client
1907 	 *
1908 	 * The roundtrip delay and local clock offset are defined as
1909 	 *
1910 	 * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2
1911 	 */
1912 	T1 = p->p_xmttime;
1913 	T2 = lfp_to_d(msg.m_rectime);
1914 	T3 = lfp_to_d(msg.m_xmttime);
1915 	T4 = G.cur_time;
1916 
1917 	/* The delay calculation is a special case. In cases where the
1918 	 * server and client clocks are running at different rates and
1919 	 * with very fast networks, the delay can appear negative. In
1920 	 * order to avoid violating the Principle of Least Astonishment,
1921 	 * the delay is clamped not less than the system precision.
1922 	 */
1923 	delay = (T4 - T1) - (T3 - T2);
1924 	if (delay < G_precision_sec)
1925 		delay = G_precision_sec;
1926 	/*
1927 	 * If this packet's delay is much bigger than the last one,
1928 	 * it's better to just ignore it than use its much less precise value.
1929 	 */
1930 	prev_delay = p->p_raw_delay;
1931 	p->p_raw_delay = delay;
1932 	if (p->reachable_bits && delay > prev_delay * BAD_DELAY_GROWTH) {
1933 		bb_error_msg("reply from %s: delay %f is too high, ignoring", p->p_dotted, delay);
1934 		goto pick_normal_interval;
1935 	}
1936 
1937 	p->lastpkt_delay = delay;
1938 	p->lastpkt_recv_time = T4;
1939 	VERB6 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
1940 	p->lastpkt_status = msg.m_status;
1941 	p->lastpkt_stratum = msg.m_stratum;
1942 	p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay);
1943 	p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp);
1944 	p->lastpkt_refid = msg.m_refid;
1945 
1946 	p->datapoint_idx = p->reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0;
1947 	datapoint = &p->filter_datapoint[p->datapoint_idx];
1948 	datapoint->d_recv_time = T4;
1949 	datapoint->d_offset    = offset = ((T2 - T1) + (T3 - T4)) / 2;
1950 	datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec;
1951 	if (!p->reachable_bits) {
1952 		/* 1st datapoint ever - replicate offset in every element */
1953 		int i;
1954 		for (i = 0; i < NUM_DATAPOINTS; i++) {
1955 			p->filter_datapoint[i].d_offset = offset;
1956 		}
1957 	}
1958 
1959 	p->reachable_bits |= 1;
1960 	if ((MAX_VERBOSE && G.verbose) || (option_mask32 & OPT_w)) {
1961 		bb_error_msg("reply from %s: offset:%+f delay:%f status:0x%02x strat:%d refid:0x%08x rootdelay:%f reach:0x%02x",
1962 			p->p_dotted,
1963 			offset,
1964 			p->lastpkt_delay,
1965 			p->lastpkt_status,
1966 			p->lastpkt_stratum,
1967 			p->lastpkt_refid,
1968 			p->lastpkt_rootdelay,
1969 			p->reachable_bits
1970 			/* not shown: m_ppoll, m_precision_exp, m_rootdisp,
1971 			 * m_reftime, m_orgtime, m_rectime, m_xmttime
1972 			 */
1973 		);
1974 	}
1975 
1976 	/* Muck with statictics and update the clock */
1977 	filter_datapoints(p);
1978 	q = select_and_cluster();
1979 	rc = 0;
1980 	if (q) {
1981 		if (!(option_mask32 & OPT_w)) {
1982 			rc = update_local_clock(q);
1983 #if 0
1984 //Disabled this because there is a case where largish offsets
1985 //are unavoidable: if network round-trip delay is, say, ~0.6s,
1986 //error in offset estimation would be ~delay/2 ~= 0.3s.
1987 //Thus, offsets will be usually in -0.3...0.3s range.
1988 //In this case, this code would keep poll interval small,
1989 //but it won't be helping.
1990 //BIGOFF check below deals with a case of seeing multi-second offsets.
1991 
1992 			/* If drift is dangerously large, immediately
1993 			 * drop poll interval one step down.
1994 			 */
1995 			if (fabs(q->filter_offset) >= POLLDOWN_OFFSET) {
1996 				VERB4 bb_error_msg("offset:%+f > POLLDOWN_OFFSET", q->filter_offset);
1997 				adjust_poll(-POLLADJ_LIMIT * 3);
1998 				rc = 0;
1999 			}
2000 #endif
2001 		}
2002 	} else {
2003 		/* No peer selected.
2004 		 * If poll interval is small, increase it.
2005 		 */
2006 		if (G.poll_exp < BIGPOLL)
2007 			goto increase_interval;
2008 	}
2009 
2010 	if (rc != 0) {
2011 		/* Adjust the poll interval by comparing the current offset
2012 		 * with the clock jitter. If the offset is less than
2013 		 * the clock jitter times a constant, then the averaging interval
2014 		 * is increased, otherwise it is decreased. A bit of hysteresis
2015 		 * helps calm the dance. Works best using burst mode.
2016 		 */
2017 		if (rc > 0 && G.offset_to_jitter_ratio <= POLLADJ_GATE) {
2018 			/* was += G.poll_exp but it is a bit
2019 			 * too optimistic for my taste at high poll_exp's */
2020  increase_interval:
2021 			adjust_poll(MINPOLL);
2022 		} else {
2023 			VERB3 if (rc > 0)
2024 				bb_error_msg("want smaller interval: offset/jitter = %u",
2025 					G.offset_to_jitter_ratio);
2026 			adjust_poll(-G.poll_exp * 2);
2027 		}
2028 	}
2029 
2030 	/* Decide when to send new query for this peer */
2031  pick_normal_interval:
2032 	interval = poll_interval(INT_MAX);
2033 	if (fabs(offset) >= BIGOFF && interval > BIGOFF_INTERVAL) {
2034 		/* If we are synced, offsets are less than SLEW_THRESHOLD,
2035 		 * or at the very least not much larger than it.
2036 		 * Now we see a largish one.
2037 		 * Either this peer is feeling bad, or packet got corrupted,
2038 		 * or _our_ clock is wrong now and _all_ peers will show similar
2039 		 * largish offsets too.
2040 		 * I observed this with laptop suspend stopping clock.
2041 		 * In any case, it makes sense to make next request soonish:
2042 		 * cases 1 and 2: get a better datapoint,
2043 		 * case 3: allows to resync faster.
2044 		 */
2045 		interval = BIGOFF_INTERVAL;
2046 	}
2047 
2048 	set_next(p, interval);
2049 }
2050 
2051 #if ENABLE_FEATURE_NTPD_SERVER
2052 static NOINLINE void
recv_and_process_client_pkt(void)2053 recv_and_process_client_pkt(void /*int fd*/)
2054 {
2055 	ssize_t          size;
2056 	//uint8_t          version;
2057 	len_and_sockaddr *to;
2058 	struct sockaddr  *from;
2059 	msg_t            msg;
2060 	uint8_t          query_status;
2061 	l_fixedpt_t      query_xmttime;
2062 
2063 	to = get_sock_lsa(G_listen_fd);
2064 	from = xzalloc(to->len);
2065 
2066 	size = recv_from_to(G_listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len);
2067 	if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
2068 		char *addr;
2069 		if (size < 0) {
2070 			if (errno == EAGAIN)
2071 				goto bail;
2072 			bb_perror_msg_and_die("recv");
2073 		}
2074 		addr = xmalloc_sockaddr2dotted_noport(from);
2075 		bb_error_msg("malformed packet received from %s: size %u", addr, (int)size);
2076 		free(addr);
2077 		goto bail;
2078 	}
2079 
2080 	/* Respond only to client and symmetric active packets */
2081 	if ((msg.m_status & MODE_MASK) != MODE_CLIENT
2082 	 && (msg.m_status & MODE_MASK) != MODE_SYM_ACT
2083 	) {
2084 		goto bail;
2085 	}
2086 
2087 	query_status = msg.m_status;
2088 	query_xmttime = msg.m_xmttime;
2089 
2090 	/* Build a reply packet */
2091 	memset(&msg, 0, sizeof(msg));
2092 	msg.m_status = G.stratum < MAXSTRAT ? (G.ntp_status & LI_MASK) : LI_ALARM;
2093 	msg.m_status |= (query_status & VERSION_MASK);
2094 	msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ?
2095 			MODE_SERVER : MODE_SYM_PAS;
2096 	msg.m_stratum = G.stratum;
2097 	msg.m_ppoll = G.poll_exp;
2098 	msg.m_precision_exp = G_precision_exp;
2099 	/* this time was obtained between poll() and recv() */
2100 	msg.m_rectime = d_to_lfp(G.cur_time);
2101 	msg.m_xmttime = d_to_lfp(gettime1900d()); /* this instant */
2102 	if (G.peer_cnt == 0) {
2103 		/* we have no peers: "stratum 1 server" mode. reftime = our own time */
2104 		G.reftime = G.cur_time;
2105 	}
2106 	msg.m_reftime = d_to_lfp(G.reftime);
2107 	msg.m_orgtime = query_xmttime;
2108 	msg.m_rootdelay = d_to_sfp(G.rootdelay);
2109 //simple code does not do this, fix simple code!
2110 	msg.m_rootdisp = d_to_sfp(G.rootdisp);
2111 	//version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */
2112 	msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3;
2113 
2114 	/* We reply from the local address packet was sent to,
2115 	 * this makes to/from look swapped here: */
2116 	do_sendto(G_listen_fd,
2117 		/*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len,
2118 		&msg, size);
2119 
2120  bail:
2121 	free(to);
2122 	free(from);
2123 }
2124 #endif
2125 
2126 /* Upstream ntpd's options:
2127  *
2128  * -4   Force DNS resolution of host names to the IPv4 namespace.
2129  * -6   Force DNS resolution of host names to the IPv6 namespace.
2130  * -a   Require cryptographic authentication for broadcast client,
2131  *      multicast client and symmetric passive associations.
2132  *      This is the default.
2133  * -A   Do not require cryptographic authentication for broadcast client,
2134  *      multicast client and symmetric passive associations.
2135  *      This is almost never a good idea.
2136  * -b   Enable the client to synchronize to broadcast servers.
2137  * -c conffile
2138  *      Specify the name and path of the configuration file,
2139  *      default /etc/ntp.conf
2140  * -d   Specify debugging mode. This option may occur more than once,
2141  *      with each occurrence indicating greater detail of display.
2142  * -D level
2143  *      Specify debugging level directly.
2144  * -f driftfile
2145  *      Specify the name and path of the frequency file.
2146  *      This is the same operation as the "driftfile FILE"
2147  *      configuration command.
2148  * -g   Normally, ntpd exits with a message to the system log
2149  *      if the offset exceeds the panic threshold, which is 1000 s
2150  *      by default. This option allows the time to be set to any value
2151  *      without restriction; however, this can happen only once.
2152  *      If the threshold is exceeded after that, ntpd will exit
2153  *      with a message to the system log. This option can be used
2154  *      with the -q and -x options. See the tinker command for other options.
2155  * -i jaildir
2156  *      Chroot the server to the directory jaildir. This option also implies
2157  *      that the server attempts to drop root privileges at startup
2158  *      (otherwise, chroot gives very little additional security).
2159  *      You may need to also specify a -u option.
2160  * -k keyfile
2161  *      Specify the name and path of the symmetric key file,
2162  *      default /etc/ntp/keys. This is the same operation
2163  *      as the "keys FILE" configuration command.
2164  * -l logfile
2165  *      Specify the name and path of the log file. The default
2166  *      is the system log file. This is the same operation as
2167  *      the "logfile FILE" configuration command.
2168  * -L   Do not listen to virtual IPs. The default is to listen.
2169  * -n   Don't fork.
2170  * -N   To the extent permitted by the operating system,
2171  *      run the ntpd at the highest priority.
2172  * -p pidfile
2173  *      Specify the name and path of the file used to record the ntpd
2174  *      process ID. This is the same operation as the "pidfile FILE"
2175  *      configuration command.
2176  * -P priority
2177  *      To the extent permitted by the operating system,
2178  *      run the ntpd at the specified priority.
2179  * -q   Exit the ntpd just after the first time the clock is set.
2180  *      This behavior mimics that of the ntpdate program, which is
2181  *      to be retired. The -g and -x options can be used with this option.
2182  *      Note: The kernel time discipline is disabled with this option.
2183  * -r broadcastdelay
2184  *      Specify the default propagation delay from the broadcast/multicast
2185  *      server to this client. This is necessary only if the delay
2186  *      cannot be computed automatically by the protocol.
2187  * -s statsdir
2188  *      Specify the directory path for files created by the statistics
2189  *      facility. This is the same operation as the "statsdir DIR"
2190  *      configuration command.
2191  * -t key
2192  *      Add a key number to the trusted key list. This option can occur
2193  *      more than once.
2194  * -u user[:group]
2195  *      Specify a user, and optionally a group, to switch to.
2196  * -v variable
2197  * -V variable
2198  *      Add a system variable listed by default.
2199  * -x   Normally, the time is slewed if the offset is less than the step
2200  *      threshold, which is 128 ms by default, and stepped if above
2201  *      the threshold. This option sets the threshold to 600 s, which is
2202  *      well within the accuracy window to set the clock manually.
2203  *      Note: since the slew rate of typical Unix kernels is limited
2204  *      to 0.5 ms/s, each second of adjustment requires an amortization
2205  *      interval of 2000 s. Thus, an adjustment as much as 600 s
2206  *      will take almost 14 days to complete. This option can be used
2207  *      with the -g and -q options. See the tinker command for other options.
2208  *      Note: The kernel time discipline is disabled with this option.
2209  */
2210 
2211 /* By doing init in a separate function we decrease stack usage
2212  * in main loop.
2213  */
ntp_init(char ** argv)2214 static NOINLINE void ntp_init(char **argv)
2215 {
2216 	unsigned opts;
2217 	llist_t *peers;
2218 
2219 	srand(getpid());
2220 
2221 	if (getuid())
2222 		bb_error_msg_and_die(bb_msg_you_must_be_root);
2223 
2224 	/* Set some globals */
2225 	G.discipline_jitter = G_precision_sec;
2226 	G.stratum = MAXSTRAT;
2227 	if (BURSTPOLL != 0)
2228 		G.poll_exp = BURSTPOLL; /* speeds up initial sync */
2229 	G.last_script_run = G.reftime = G.last_update_recv_time = gettime1900d(); /* sets G.cur_time too */
2230 
2231 	/* Parse options */
2232 	peers = NULL;
2233 	opt_complementary = "dd:wn"  /* -d: counter; -p: list; -w implies -n */
2234 		IF_FEATURE_NTPD_SERVER(":Il"); /* -I implies -l */
2235 	opts = getopt32(argv,
2236 			"nqNx" /* compat */
2237 			"wp:*S:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */
2238 			IF_FEATURE_NTPD_SERVER("I:") /* compat */
2239 			"d" /* compat */
2240 			"46aAbgL", /* compat, ignored */
2241 			&peers,&G.script_name,
2242 #if ENABLE_FEATURE_NTPD_SERVER
2243 			&G.if_name,
2244 #endif
2245 			&G.verbose);
2246 
2247 //	if (opts & OPT_x) /* disable stepping, only slew is allowed */
2248 //		G.time_was_stepped = 1;
2249 
2250 #if ENABLE_FEATURE_NTPD_SERVER
2251 	G_listen_fd = -1;
2252 	if (opts & OPT_l) {
2253 		G_listen_fd = create_and_bind_dgram_or_die(NULL, 123);
2254 		if (G.if_name) {
2255 			if (setsockopt_bindtodevice(G_listen_fd, G.if_name))
2256 				xfunc_die();
2257 		}
2258 		socket_want_pktinfo(G_listen_fd);
2259 		setsockopt_int(G_listen_fd, IPPROTO_IP, IP_TOS, IPTOS_LOWDELAY);
2260 	}
2261 #endif
2262 	/* I hesitate to set -20 prio. -15 should be high enough for timekeeping */
2263 	if (opts & OPT_N)
2264 		setpriority(PRIO_PROCESS, 0, -15);
2265 
2266 	/* add_peers() calls can retry DNS resolution (possibly forever).
2267 	 * Daemonize before them, or else boot can stall forever.
2268 	 */
2269 	if (!(opts & OPT_n)) {
2270 		bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv);
2271 		logmode = LOGMODE_NONE;
2272 	}
2273 
2274 	if (peers) {
2275 		while (peers)
2276 			add_peers(llist_pop(&peers));
2277 	}
2278 #if ENABLE_FEATURE_NTPD_CONF
2279 	else {
2280 		parser_t *parser;
2281 		char *token[3];
2282 
2283 		parser = config_open("/etc/ntp.conf");
2284 		while (config_read(parser, token, 3, 1, "# \t", PARSE_NORMAL)) {
2285 			if (strcmp(token[0], "server") == 0 && token[1]) {
2286 				add_peers(token[1]);
2287 				continue;
2288 			}
2289 			bb_error_msg("skipping %s:%u: unimplemented command '%s'",
2290 				"/etc/ntp.conf", parser->lineno, token[0]
2291 			);
2292 		}
2293 		config_close(parser);
2294 	}
2295 #endif
2296 	if (G.peer_cnt == 0) {
2297 		if (!(opts & OPT_l))
2298 			bb_show_usage();
2299 		/* -l but no peers: "stratum 1 server" mode */
2300 		G.stratum = 1;
2301 	}
2302 	/* If network is up, syncronization occurs in ~10 seconds.
2303 	 * We give "ntpd -q" 10 seconds to get first reply,
2304 	 * then another 50 seconds to finish syncing.
2305 	 *
2306 	 * I tested ntpd 4.2.6p1 and apparently it never exits
2307 	 * (will try forever), but it does not feel right.
2308 	 * The goal of -q is to act like ntpdate: set time
2309 	 * after a reasonably small period of polling, or fail.
2310 	 */
2311 	if (opts & OPT_q) {
2312 		option_mask32 |= OPT_qq;
2313 		alarm(10);
2314 	}
2315 
2316 	bb_signals(0
2317 		| (1 << SIGTERM)
2318 		| (1 << SIGINT)
2319 		| (1 << SIGALRM)
2320 		, record_signo
2321 	);
2322 	bb_signals(0
2323 		| (1 << SIGPIPE)
2324 		| (1 << SIGCHLD)
2325 		, SIG_IGN
2326 	);
2327 }
2328 
2329 int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE;
ntpd_main(int argc UNUSED_PARAM,char ** argv)2330 int ntpd_main(int argc UNUSED_PARAM, char **argv)
2331 {
2332 #undef G
2333 	struct globals G;
2334 	struct pollfd *pfd;
2335 	peer_t **idx2peer;
2336 	unsigned cnt;
2337 
2338 	memset(&G, 0, sizeof(G));
2339 	SET_PTR_TO_GLOBALS(&G);
2340 
2341 	ntp_init(argv);
2342 
2343 	/* If ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */
2344 	cnt = G.peer_cnt + ENABLE_FEATURE_NTPD_SERVER;
2345 	idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt);
2346 	pfd = xzalloc(sizeof(pfd[0]) * cnt);
2347 
2348 	/* Countdown: we never sync before we sent INITIAL_SAMPLES+1
2349 	 * packets to each peer.
2350 	 * NB: if some peer is not responding, we may end up sending
2351 	 * fewer packets to it and more to other peers.
2352 	 * NB2: sync usually happens using INITIAL_SAMPLES packets,
2353 	 * since last reply does not come back instantaneously.
2354 	 */
2355 	cnt = G.peer_cnt * (INITIAL_SAMPLES + 1);
2356 
2357 	write_pidfile(CONFIG_PID_FILE_PATH "/ntpd.pid");
2358 
2359 	while (!bb_got_signal) {
2360 		llist_t *item;
2361 		unsigned i, j;
2362 		int nfds, timeout;
2363 		double nextaction;
2364 
2365 		/* Nothing between here and poll() blocks for any significant time */
2366 
2367 		nextaction = G.cur_time + 3600;
2368 
2369 		i = 0;
2370 #if ENABLE_FEATURE_NTPD_SERVER
2371 		if (G_listen_fd != -1) {
2372 			pfd[0].fd = G_listen_fd;
2373 			pfd[0].events = POLLIN;
2374 			i++;
2375 		}
2376 #endif
2377 		/* Pass over peer list, send requests, time out on receives */
2378 		for (item = G.ntp_peers; item != NULL; item = item->link) {
2379 			peer_t *p = (peer_t *) item->data;
2380 
2381 			if (p->next_action_time <= G.cur_time) {
2382 				if (p->p_fd == -1) {
2383 					/* Time to send new req */
2384 					if (--cnt == 0) {
2385 						VERB4 bb_error_msg("disabling burst mode");
2386 						G.polladj_count = 0;
2387 						G.poll_exp = MINPOLL;
2388 					}
2389 					send_query_to_peer(p);
2390 				} else {
2391 					/* Timed out waiting for reply */
2392 					close(p->p_fd);
2393 					p->p_fd = -1;
2394 					/* If poll interval is small, increase it */
2395 					if (G.poll_exp < BIGPOLL)
2396 						adjust_poll(MINPOLL);
2397 					timeout = poll_interval(NOREPLY_INTERVAL);
2398 					bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us",
2399 							p->p_dotted, p->reachable_bits, timeout);
2400 
2401 					/* What if don't see it because it changed its IP? */
2402 					if (p->reachable_bits == 0)
2403 						resolve_peer_hostname(p, /*loop_on_fail=*/ 0);
2404 
2405 					set_next(p, timeout);
2406 				}
2407 			}
2408 
2409 			if (p->next_action_time < nextaction)
2410 				nextaction = p->next_action_time;
2411 
2412 			if (p->p_fd >= 0) {
2413 				/* Wait for reply from this peer */
2414 				pfd[i].fd = p->p_fd;
2415 				pfd[i].events = POLLIN;
2416 				idx2peer[i] = p;
2417 				i++;
2418 			}
2419 		}
2420 
2421 		timeout = nextaction - G.cur_time;
2422 		if (timeout < 0)
2423 			timeout = 0;
2424 		timeout++; /* (nextaction - G.cur_time) rounds down, compensating */
2425 
2426 		/* Here we may block */
2427 		VERB2 {
2428 			if (i > (ENABLE_FEATURE_NTPD_SERVER && G_listen_fd != -1)) {
2429 				/* We wait for at least one reply.
2430 				 * Poll for it, without wasting time for message.
2431 				 * Since replies often come under 1 second, this also
2432 				 * reduces clutter in logs.
2433 				 */
2434 				nfds = poll(pfd, i, 1000);
2435 				if (nfds != 0)
2436 					goto did_poll;
2437 				if (--timeout <= 0)
2438 					goto did_poll;
2439 			}
2440 			bb_error_msg("poll:%us sockets:%u interval:%us", timeout, i, 1 << G.poll_exp);
2441 		}
2442 		nfds = poll(pfd, i, timeout * 1000);
2443  did_poll:
2444 		gettime1900d(); /* sets G.cur_time */
2445 		if (nfds <= 0) {
2446 			if (!bb_got_signal /* poll wasn't interrupted by a signal */
2447 			 && G.cur_time - G.last_script_run > 11*60
2448 			) {
2449 				/* Useful for updating battery-backed RTC and such */
2450 				run_script("periodic", G.last_update_offset);
2451 				gettime1900d(); /* sets G.cur_time */
2452 			}
2453 			goto check_unsync;
2454 		}
2455 
2456 		/* Process any received packets */
2457 		j = 0;
2458 #if ENABLE_FEATURE_NTPD_SERVER
2459 		if (G.listen_fd != -1) {
2460 			if (pfd[0].revents /* & (POLLIN|POLLERR)*/) {
2461 				nfds--;
2462 				recv_and_process_client_pkt(/*G.listen_fd*/);
2463 				gettime1900d(); /* sets G.cur_time */
2464 			}
2465 			j = 1;
2466 		}
2467 #endif
2468 		for (; nfds != 0 && j < i; j++) {
2469 			if (pfd[j].revents /* & (POLLIN|POLLERR)*/) {
2470 				/*
2471 				 * At init, alarm was set to 10 sec.
2472 				 * Now we did get a reply.
2473 				 * Increase timeout to 50 seconds to finish syncing.
2474 				 */
2475 				if (option_mask32 & OPT_qq) {
2476 					option_mask32 &= ~OPT_qq;
2477 					alarm(50);
2478 				}
2479 				nfds--;
2480 				recv_and_process_peer_pkt(idx2peer[j]);
2481 				gettime1900d(); /* sets G.cur_time */
2482 			}
2483 		}
2484 
2485  check_unsync:
2486 		if (G.ntp_peers && G.stratum != MAXSTRAT) {
2487 			for (item = G.ntp_peers; item != NULL; item = item->link) {
2488 				peer_t *p = (peer_t *) item->data;
2489 				if (p->reachable_bits)
2490 					goto have_reachable_peer;
2491 			}
2492 			/* No peer responded for last 8 packets, panic */
2493 			clamp_pollexp_and_set_MAXSTRAT();
2494 			run_script("unsync", 0.0);
2495  have_reachable_peer: ;
2496 		}
2497 	} /* while (!bb_got_signal) */
2498 
2499 	remove_pidfile(CONFIG_PID_FILE_PATH "/ntpd.pid");
2500 	kill_myself_with_sig(bb_got_signal);
2501 }
2502 
2503 
2504 
2505 
2506 
2507 
2508 /*** openntpd-4.6 uses only adjtime, not adjtimex ***/
2509 
2510 /*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/
2511 
2512 #if 0
2513 static double
2514 direct_freq(double fp_offset)
2515 {
2516 #ifdef KERNEL_PLL
2517 	/*
2518 	 * If the kernel is enabled, we need the residual offset to
2519 	 * calculate the frequency correction.
2520 	 */
2521 	if (pll_control && kern_enable) {
2522 		memset(&ntv, 0, sizeof(ntv));
2523 		ntp_adjtime(&ntv);
2524 #ifdef STA_NANO
2525 		clock_offset = ntv.offset / 1e9;
2526 #else /* STA_NANO */
2527 		clock_offset = ntv.offset / 1e6;
2528 #endif /* STA_NANO */
2529 		drift_comp = FREQTOD(ntv.freq);
2530 	}
2531 #endif /* KERNEL_PLL */
2532 	set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp);
2533 	wander_resid = 0;
2534 	return drift_comp;
2535 }
2536 
2537 static void
2538 set_freq(double freq) /* frequency update */
2539 {
2540 	char tbuf[80];
2541 
2542 	drift_comp = freq;
2543 
2544 #ifdef KERNEL_PLL
2545 	/*
2546 	 * If the kernel is enabled, update the kernel frequency.
2547 	 */
2548 	if (pll_control && kern_enable) {
2549 		memset(&ntv, 0, sizeof(ntv));
2550 		ntv.modes = MOD_FREQUENCY;
2551 		ntv.freq = DTOFREQ(drift_comp);
2552 		ntp_adjtime(&ntv);
2553 		snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6);
2554 		report_event(EVNT_FSET, NULL, tbuf);
2555 	} else {
2556 		snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2557 		report_event(EVNT_FSET, NULL, tbuf);
2558 	}
2559 #else /* KERNEL_PLL */
2560 	snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2561 	report_event(EVNT_FSET, NULL, tbuf);
2562 #endif /* KERNEL_PLL */
2563 }
2564 
2565 ...
2566 ...
2567 ...
2568 
2569 #ifdef KERNEL_PLL
2570 	/*
2571 	 * This code segment works when clock adjustments are made using
2572 	 * precision time kernel support and the ntp_adjtime() system
2573 	 * call. This support is available in Solaris 2.6 and later,
2574 	 * Digital Unix 4.0 and later, FreeBSD, Linux and specially
2575 	 * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
2576 	 * DECstation 5000/240 and Alpha AXP, additional kernel
2577 	 * modifications provide a true microsecond clock and nanosecond
2578 	 * clock, respectively.
2579 	 *
2580 	 * Important note: The kernel discipline is used only if the
2581 	 * step threshold is less than 0.5 s, as anything higher can
2582 	 * lead to overflow problems. This might occur if some misguided
2583 	 * lad set the step threshold to something ridiculous.
2584 	 */
2585 	if (pll_control && kern_enable) {
2586 
2587 #define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST)
2588 
2589 		/*
2590 		 * We initialize the structure for the ntp_adjtime()
2591 		 * system call. We have to convert everything to
2592 		 * microseconds or nanoseconds first. Do not update the
2593 		 * system variables if the ext_enable flag is set. In
2594 		 * this case, the external clock driver will update the
2595 		 * variables, which will be read later by the local
2596 		 * clock driver. Afterwards, remember the time and
2597 		 * frequency offsets for jitter and stability values and
2598 		 * to update the frequency file.
2599 		 */
2600 		memset(&ntv,  0, sizeof(ntv));
2601 		if (ext_enable) {
2602 			ntv.modes = MOD_STATUS;
2603 		} else {
2604 #ifdef STA_NANO
2605 			ntv.modes = MOD_BITS | MOD_NANO;
2606 #else /* STA_NANO */
2607 			ntv.modes = MOD_BITS;
2608 #endif /* STA_NANO */
2609 			if (clock_offset < 0)
2610 				dtemp = -.5;
2611 			else
2612 				dtemp = .5;
2613 #ifdef STA_NANO
2614 			ntv.offset = (int32)(clock_offset * 1e9 + dtemp);
2615 			ntv.constant = sys_poll;
2616 #else /* STA_NANO */
2617 			ntv.offset = (int32)(clock_offset * 1e6 + dtemp);
2618 			ntv.constant = sys_poll - 4;
2619 #endif /* STA_NANO */
2620 			ntv.esterror = (u_int32)(clock_jitter * 1e6);
2621 			ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
2622 			ntv.status = STA_PLL;
2623 
2624 			/*
2625 			 * Enable/disable the PPS if requested.
2626 			 */
2627 			if (pps_enable) {
2628 				if (!(pll_status & STA_PPSTIME))
2629 					report_event(EVNT_KERN,
2630 						NULL, "PPS enabled");
2631 				ntv.status |= STA_PPSTIME | STA_PPSFREQ;
2632 			} else {
2633 				if (pll_status & STA_PPSTIME)
2634 					report_event(EVNT_KERN,
2635 						NULL, "PPS disabled");
2636 				ntv.status &= ~(STA_PPSTIME | STA_PPSFREQ);
2637 			}
2638 			if (sys_leap == LEAP_ADDSECOND)
2639 				ntv.status |= STA_INS;
2640 			else if (sys_leap == LEAP_DELSECOND)
2641 				ntv.status |= STA_DEL;
2642 		}
2643 
2644 		/*
2645 		 * Pass the stuff to the kernel. If it squeals, turn off
2646 		 * the pps. In any case, fetch the kernel offset,
2647 		 * frequency and jitter.
2648 		 */
2649 		if (ntp_adjtime(&ntv) == TIME_ERROR) {
2650 			if (!(ntv.status & STA_PPSSIGNAL))
2651 				report_event(EVNT_KERN, NULL,
2652 						"PPS no signal");
2653 		}
2654 		pll_status = ntv.status;
2655 #ifdef STA_NANO
2656 		clock_offset = ntv.offset / 1e9;
2657 #else /* STA_NANO */
2658 		clock_offset = ntv.offset / 1e6;
2659 #endif /* STA_NANO */
2660 		clock_frequency = FREQTOD(ntv.freq);
2661 
2662 		/*
2663 		 * If the kernel PPS is lit, monitor its performance.
2664 		 */
2665 		if (ntv.status & STA_PPSTIME) {
2666 #ifdef STA_NANO
2667 			clock_jitter = ntv.jitter / 1e9;
2668 #else /* STA_NANO */
2669 			clock_jitter = ntv.jitter / 1e6;
2670 #endif /* STA_NANO */
2671 		}
2672 
2673 #if defined(STA_NANO) && NTP_API == 4
2674 		/*
2675 		 * If the TAI changes, update the kernel TAI.
2676 		 */
2677 		if (loop_tai != sys_tai) {
2678 			loop_tai = sys_tai;
2679 			ntv.modes = MOD_TAI;
2680 			ntv.constant = sys_tai;
2681 			ntp_adjtime(&ntv);
2682 		}
2683 #endif /* STA_NANO */
2684 	}
2685 #endif /* KERNEL_PLL */
2686 #endif
2687