1/*Package difflib is a partial port of Python difflib module.
2
3Original source: https://github.com/pmezard/go-difflib
4
5This file is trimmed to only the parts used by this repository.
6*/
7package difflib // import "gotest.tools/internal/difflib"
8
9func min(a, b int) int {
10	if a < b {
11		return a
12	}
13	return b
14}
15
16func max(a, b int) int {
17	if a > b {
18		return a
19	}
20	return b
21}
22
23// Match stores line numbers of size of match
24type Match struct {
25	A    int
26	B    int
27	Size int
28}
29
30// OpCode identifies the type of diff
31type OpCode struct {
32	Tag byte
33	I1  int
34	I2  int
35	J1  int
36	J2  int
37}
38
39// SequenceMatcher compares sequence of strings. The basic
40// algorithm predates, and is a little fancier than, an algorithm
41// published in the late 1980's by Ratcliff and Obershelp under the
42// hyperbolic name "gestalt pattern matching".  The basic idea is to find
43// the longest contiguous matching subsequence that contains no "junk"
44// elements (R-O doesn't address junk).  The same idea is then applied
45// recursively to the pieces of the sequences to the left and to the right
46// of the matching subsequence.  This does not yield minimal edit
47// sequences, but does tend to yield matches that "look right" to people.
48//
49// SequenceMatcher tries to compute a "human-friendly diff" between two
50// sequences.  Unlike e.g. UNIX(tm) diff, the fundamental notion is the
51// longest *contiguous* & junk-free matching subsequence.  That's what
52// catches peoples' eyes.  The Windows(tm) windiff has another interesting
53// notion, pairing up elements that appear uniquely in each sequence.
54// That, and the method here, appear to yield more intuitive difference
55// reports than does diff.  This method appears to be the least vulnerable
56// to synching up on blocks of "junk lines", though (like blank lines in
57// ordinary text files, or maybe "<P>" lines in HTML files).  That may be
58// because this is the only method of the 3 that has a *concept* of
59// "junk" <wink>.
60//
61// Timing:  Basic R-O is cubic time worst case and quadratic time expected
62// case.  SequenceMatcher is quadratic time for the worst case and has
63// expected-case behavior dependent in a complicated way on how many
64// elements the sequences have in common; best case time is linear.
65type SequenceMatcher struct {
66	a              []string
67	b              []string
68	b2j            map[string][]int
69	IsJunk         func(string) bool
70	autoJunk       bool
71	bJunk          map[string]struct{}
72	matchingBlocks []Match
73	fullBCount     map[string]int
74	bPopular       map[string]struct{}
75	opCodes        []OpCode
76}
77
78// NewMatcher returns a new SequenceMatcher
79func NewMatcher(a, b []string) *SequenceMatcher {
80	m := SequenceMatcher{autoJunk: true}
81	m.SetSeqs(a, b)
82	return &m
83}
84
85// SetSeqs sets two sequences to be compared.
86func (m *SequenceMatcher) SetSeqs(a, b []string) {
87	m.SetSeq1(a)
88	m.SetSeq2(b)
89}
90
91// SetSeq1 sets the first sequence to be compared. The second sequence to be compared is
92// not changed.
93//
94// SequenceMatcher computes and caches detailed information about the second
95// sequence, so if you want to compare one sequence S against many sequences,
96// use .SetSeq2(s) once and call .SetSeq1(x) repeatedly for each of the other
97// sequences.
98//
99// See also SetSeqs() and SetSeq2().
100func (m *SequenceMatcher) SetSeq1(a []string) {
101	if &a == &m.a {
102		return
103	}
104	m.a = a
105	m.matchingBlocks = nil
106	m.opCodes = nil
107}
108
109// SetSeq2 sets the second sequence to be compared. The first sequence to be compared is
110// not changed.
111func (m *SequenceMatcher) SetSeq2(b []string) {
112	if &b == &m.b {
113		return
114	}
115	m.b = b
116	m.matchingBlocks = nil
117	m.opCodes = nil
118	m.fullBCount = nil
119	m.chainB()
120}
121
122func (m *SequenceMatcher) chainB() {
123	// Populate line -> index mapping
124	b2j := map[string][]int{}
125	for i, s := range m.b {
126		indices := b2j[s]
127		indices = append(indices, i)
128		b2j[s] = indices
129	}
130
131	// Purge junk elements
132	m.bJunk = map[string]struct{}{}
133	if m.IsJunk != nil {
134		junk := m.bJunk
135		for s := range b2j {
136			if m.IsJunk(s) {
137				junk[s] = struct{}{}
138			}
139		}
140		for s := range junk {
141			delete(b2j, s)
142		}
143	}
144
145	// Purge remaining popular elements
146	popular := map[string]struct{}{}
147	n := len(m.b)
148	if m.autoJunk && n >= 200 {
149		ntest := n/100 + 1
150		for s, indices := range b2j {
151			if len(indices) > ntest {
152				popular[s] = struct{}{}
153			}
154		}
155		for s := range popular {
156			delete(b2j, s)
157		}
158	}
159	m.bPopular = popular
160	m.b2j = b2j
161}
162
163func (m *SequenceMatcher) isBJunk(s string) bool {
164	_, ok := m.bJunk[s]
165	return ok
166}
167
168// Find longest matching block in a[alo:ahi] and b[blo:bhi].
169//
170// If IsJunk is not defined:
171//
172// Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
173//     alo <= i <= i+k <= ahi
174//     blo <= j <= j+k <= bhi
175// and for all (i',j',k') meeting those conditions,
176//     k >= k'
177//     i <= i'
178//     and if i == i', j <= j'
179//
180// In other words, of all maximal matching blocks, return one that
181// starts earliest in a, and of all those maximal matching blocks that
182// start earliest in a, return the one that starts earliest in b.
183//
184// If IsJunk is defined, first the longest matching block is
185// determined as above, but with the additional restriction that no
186// junk element appears in the block.  Then that block is extended as
187// far as possible by matching (only) junk elements on both sides.  So
188// the resulting block never matches on junk except as identical junk
189// happens to be adjacent to an "interesting" match.
190//
191// If no blocks match, return (alo, blo, 0).
192func (m *SequenceMatcher) findLongestMatch(alo, ahi, blo, bhi int) Match {
193	// CAUTION:  stripping common prefix or suffix would be incorrect.
194	// E.g.,
195	//    ab
196	//    acab
197	// Longest matching block is "ab", but if common prefix is
198	// stripped, it's "a" (tied with "b").  UNIX(tm) diff does so
199	// strip, so ends up claiming that ab is changed to acab by
200	// inserting "ca" in the middle.  That's minimal but unintuitive:
201	// "it's obvious" that someone inserted "ac" at the front.
202	// Windiff ends up at the same place as diff, but by pairing up
203	// the unique 'b's and then matching the first two 'a's.
204	besti, bestj, bestsize := alo, blo, 0
205
206	// find longest junk-free match
207	// during an iteration of the loop, j2len[j] = length of longest
208	// junk-free match ending with a[i-1] and b[j]
209	j2len := map[int]int{}
210	for i := alo; i != ahi; i++ {
211		// look at all instances of a[i] in b; note that because
212		// b2j has no junk keys, the loop is skipped if a[i] is junk
213		newj2len := map[int]int{}
214		for _, j := range m.b2j[m.a[i]] {
215			// a[i] matches b[j]
216			if j < blo {
217				continue
218			}
219			if j >= bhi {
220				break
221			}
222			k := j2len[j-1] + 1
223			newj2len[j] = k
224			if k > bestsize {
225				besti, bestj, bestsize = i-k+1, j-k+1, k
226			}
227		}
228		j2len = newj2len
229	}
230
231	// Extend the best by non-junk elements on each end.  In particular,
232	// "popular" non-junk elements aren't in b2j, which greatly speeds
233	// the inner loop above, but also means "the best" match so far
234	// doesn't contain any junk *or* popular non-junk elements.
235	for besti > alo && bestj > blo && !m.isBJunk(m.b[bestj-1]) &&
236		m.a[besti-1] == m.b[bestj-1] {
237		besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
238	}
239	for besti+bestsize < ahi && bestj+bestsize < bhi &&
240		!m.isBJunk(m.b[bestj+bestsize]) &&
241		m.a[besti+bestsize] == m.b[bestj+bestsize] {
242		bestsize += 1
243	}
244
245	// Now that we have a wholly interesting match (albeit possibly
246	// empty!), we may as well suck up the matching junk on each
247	// side of it too.  Can't think of a good reason not to, and it
248	// saves post-processing the (possibly considerable) expense of
249	// figuring out what to do with it.  In the case of an empty
250	// interesting match, this is clearly the right thing to do,
251	// because no other kind of match is possible in the regions.
252	for besti > alo && bestj > blo && m.isBJunk(m.b[bestj-1]) &&
253		m.a[besti-1] == m.b[bestj-1] {
254		besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
255	}
256	for besti+bestsize < ahi && bestj+bestsize < bhi &&
257		m.isBJunk(m.b[bestj+bestsize]) &&
258		m.a[besti+bestsize] == m.b[bestj+bestsize] {
259		bestsize += 1
260	}
261
262	return Match{A: besti, B: bestj, Size: bestsize}
263}
264
265// GetMatchingBlocks returns a list of triples describing matching subsequences.
266//
267// Each triple is of the form (i, j, n), and means that
268// a[i:i+n] == b[j:j+n].  The triples are monotonically increasing in
269// i and in j. It's also guaranteed that if (i, j, n) and (i', j', n') are
270// adjacent triples in the list, and the second is not the last triple in the
271// list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe
272// adjacent equal blocks.
273//
274// The last triple is a dummy, (len(a), len(b), 0), and is the only
275// triple with n==0.
276func (m *SequenceMatcher) GetMatchingBlocks() []Match {
277	if m.matchingBlocks != nil {
278		return m.matchingBlocks
279	}
280
281	var matchBlocks func(alo, ahi, blo, bhi int, matched []Match) []Match
282	matchBlocks = func(alo, ahi, blo, bhi int, matched []Match) []Match {
283		match := m.findLongestMatch(alo, ahi, blo, bhi)
284		i, j, k := match.A, match.B, match.Size
285		if match.Size > 0 {
286			if alo < i && blo < j {
287				matched = matchBlocks(alo, i, blo, j, matched)
288			}
289			matched = append(matched, match)
290			if i+k < ahi && j+k < bhi {
291				matched = matchBlocks(i+k, ahi, j+k, bhi, matched)
292			}
293		}
294		return matched
295	}
296	matched := matchBlocks(0, len(m.a), 0, len(m.b), nil)
297
298	// It's possible that we have adjacent equal blocks in the
299	// matching_blocks list now.
300	nonAdjacent := []Match{}
301	i1, j1, k1 := 0, 0, 0
302	for _, b := range matched {
303		// Is this block adjacent to i1, j1, k1?
304		i2, j2, k2 := b.A, b.B, b.Size
305		if i1+k1 == i2 && j1+k1 == j2 {
306			// Yes, so collapse them -- this just increases the length of
307			// the first block by the length of the second, and the first
308			// block so lengthened remains the block to compare against.
309			k1 += k2
310		} else {
311			// Not adjacent.  Remember the first block (k1==0 means it's
312			// the dummy we started with), and make the second block the
313			// new block to compare against.
314			if k1 > 0 {
315				nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
316			}
317			i1, j1, k1 = i2, j2, k2
318		}
319	}
320	if k1 > 0 {
321		nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
322	}
323
324	nonAdjacent = append(nonAdjacent, Match{len(m.a), len(m.b), 0})
325	m.matchingBlocks = nonAdjacent
326	return m.matchingBlocks
327}
328
329// GetOpCodes returns a list of 5-tuples describing how to turn a into b.
330//
331// Each tuple is of the form (tag, i1, i2, j1, j2).  The first tuple
332// has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the
333// tuple preceding it, and likewise for j1 == the previous j2.
334//
335// The tags are characters, with these meanings:
336//
337// 'r' (replace):  a[i1:i2] should be replaced by b[j1:j2]
338//
339// 'd' (delete):   a[i1:i2] should be deleted, j1==j2 in this case.
340//
341// 'i' (insert):   b[j1:j2] should be inserted at a[i1:i1], i1==i2 in this case.
342//
343// 'e' (equal):    a[i1:i2] == b[j1:j2]
344func (m *SequenceMatcher) GetOpCodes() []OpCode {
345	if m.opCodes != nil {
346		return m.opCodes
347	}
348	i, j := 0, 0
349	matching := m.GetMatchingBlocks()
350	opCodes := make([]OpCode, 0, len(matching))
351	for _, m := range matching {
352		//  invariant:  we've pumped out correct diffs to change
353		//  a[:i] into b[:j], and the next matching block is
354		//  a[ai:ai+size] == b[bj:bj+size]. So we need to pump
355		//  out a diff to change a[i:ai] into b[j:bj], pump out
356		//  the matching block, and move (i,j) beyond the match
357		ai, bj, size := m.A, m.B, m.Size
358		tag := byte(0)
359		if i < ai && j < bj {
360			tag = 'r'
361		} else if i < ai {
362			tag = 'd'
363		} else if j < bj {
364			tag = 'i'
365		}
366		if tag > 0 {
367			opCodes = append(opCodes, OpCode{tag, i, ai, j, bj})
368		}
369		i, j = ai+size, bj+size
370		// the list of matching blocks is terminated by a
371		// sentinel with size 0
372		if size > 0 {
373			opCodes = append(opCodes, OpCode{'e', ai, i, bj, j})
374		}
375	}
376	m.opCodes = opCodes
377	return m.opCodes
378}
379
380// GetGroupedOpCodes isolates change clusters by eliminating ranges with no changes.
381//
382// Return a generator of groups with up to n lines of context.
383// Each group is in the same format as returned by GetOpCodes().
384func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode {
385	if n < 0 {
386		n = 3
387	}
388	codes := m.GetOpCodes()
389	if len(codes) == 0 {
390		codes = []OpCode{{'e', 0, 1, 0, 1}}
391	}
392	// Fixup leading and trailing groups if they show no changes.
393	if codes[0].Tag == 'e' {
394		c := codes[0]
395		i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
396		codes[0] = OpCode{c.Tag, max(i1, i2-n), i2, max(j1, j2-n), j2}
397	}
398	if codes[len(codes)-1].Tag == 'e' {
399		c := codes[len(codes)-1]
400		i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
401		codes[len(codes)-1] = OpCode{c.Tag, i1, min(i2, i1+n), j1, min(j2, j1+n)}
402	}
403	nn := n + n
404	groups := [][]OpCode{}
405	group := []OpCode{}
406	for _, c := range codes {
407		i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
408		// End the current group and start a new one whenever
409		// there is a large range with no changes.
410		if c.Tag == 'e' && i2-i1 > nn {
411			group = append(group, OpCode{c.Tag, i1, min(i2, i1+n),
412				j1, min(j2, j1+n)})
413			groups = append(groups, group)
414			group = []OpCode{}
415			i1, j1 = max(i1, i2-n), max(j1, j2-n)
416		}
417		group = append(group, OpCode{c.Tag, i1, i2, j1, j2})
418	}
419	if len(group) > 0 && !(len(group) == 1 && group[0].Tag == 'e') {
420		groups = append(groups, group)
421	}
422	return groups
423}
424