1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * EMIF programming
4  *
5  * (C) Copyright 2010
6  * Texas Instruments, <www.ti.com>
7  *
8  * Aneesh V <aneesh@ti.com>
9  */
10 
11 #include <common.h>
12 #include <hang.h>
13 #include <init.h>
14 #include <log.h>
15 #include <net.h>
16 #include <asm/emif.h>
17 #include <asm/arch/clock.h>
18 #include <asm/arch/sys_proto.h>
19 #include <asm/omap_common.h>
20 #include <asm/omap_sec_common.h>
21 #include <asm/utils.h>
22 #include <linux/compiler.h>
23 #include <asm/ti-common/ti-edma3.h>
24 #include <linux/delay.h>
25 
26 static int emif1_enabled = -1, emif2_enabled = -1;
27 
set_lpmode_selfrefresh(u32 base)28 void set_lpmode_selfrefresh(u32 base)
29 {
30 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
31 	u32 reg;
32 
33 	reg = readl(&emif->emif_pwr_mgmt_ctrl);
34 	reg &= ~EMIF_REG_LP_MODE_MASK;
35 	reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
36 	reg &= ~EMIF_REG_SR_TIM_MASK;
37 	writel(reg, &emif->emif_pwr_mgmt_ctrl);
38 
39 	/* dummy read for the new SR_TIM to be loaded */
40 	readl(&emif->emif_pwr_mgmt_ctrl);
41 }
42 
force_emif_self_refresh()43 void force_emif_self_refresh()
44 {
45 	set_lpmode_selfrefresh(EMIF1_BASE);
46 	if (!is_dra72x())
47 		set_lpmode_selfrefresh(EMIF2_BASE);
48 }
49 
emif_num(u32 base)50 inline u32 emif_num(u32 base)
51 {
52 	if (base == EMIF1_BASE)
53 		return 1;
54 	else if (base == EMIF2_BASE)
55 		return 2;
56 	else
57 		return 0;
58 }
59 
get_mr(u32 base,u32 cs,u32 mr_addr)60 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
61 {
62 	u32 mr;
63 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
64 
65 	mr_addr |= cs << EMIF_REG_CS_SHIFT;
66 	writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
67 	if (omap_revision() == OMAP4430_ES2_0)
68 		mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
69 	else
70 		mr = readl(&emif->emif_lpddr2_mode_reg_data);
71 	debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
72 	      cs, mr_addr, mr);
73 	if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
74 	    ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
75 	    ((mr & 0xff000000) >> 24) == (mr & 0xff))
76 		return mr & 0xff;
77 	else
78 		return mr;
79 }
80 
set_mr(u32 base,u32 cs,u32 mr_addr,u32 mr_val)81 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
82 {
83 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
84 
85 	mr_addr |= cs << EMIF_REG_CS_SHIFT;
86 	writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
87 	writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
88 }
89 
emif_reset_phy(u32 base)90 void emif_reset_phy(u32 base)
91 {
92 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
93 	u32 iodft;
94 
95 	iodft = readl(&emif->emif_iodft_tlgc);
96 	iodft |= EMIF_REG_RESET_PHY_MASK;
97 	writel(iodft, &emif->emif_iodft_tlgc);
98 }
99 
do_lpddr2_init(u32 base,u32 cs)100 static void do_lpddr2_init(u32 base, u32 cs)
101 {
102 	u32 mr_addr;
103 	const struct lpddr2_mr_regs *mr_regs;
104 
105 	get_lpddr2_mr_regs(&mr_regs);
106 	/* Wait till device auto initialization is complete */
107 	while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
108 		;
109 	set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
110 	/*
111 	 * tZQINIT = 1 us
112 	 * Enough loops assuming a maximum of 2GHz
113 	 */
114 
115 	sdelay(2000);
116 
117 	set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
118 	set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
119 
120 	/*
121 	 * Enable refresh along with writing MR2
122 	 * Encoding of RL in MR2 is (RL - 2)
123 	 */
124 	mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
125 	set_mr(base, cs, mr_addr, mr_regs->mr2);
126 
127 	if (mr_regs->mr3 > 0)
128 		set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
129 }
130 
lpddr2_init(u32 base,const struct emif_regs * regs)131 static void lpddr2_init(u32 base, const struct emif_regs *regs)
132 {
133 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
134 
135 	/* Not NVM */
136 	clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
137 
138 	/*
139 	 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
140 	 * when EMIF_SDRAM_CONFIG register is written
141 	 */
142 	setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
143 
144 	/*
145 	 * Set the SDRAM_CONFIG and PHY_CTRL for the
146 	 * un-locked frequency & default RL
147 	 */
148 	writel(regs->sdram_config_init, &emif->emif_sdram_config);
149 	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
150 
151 	do_ext_phy_settings(base, regs);
152 
153 	do_lpddr2_init(base, CS0);
154 	if (regs->sdram_config & EMIF_REG_EBANK_MASK)
155 		do_lpddr2_init(base, CS1);
156 
157 	writel(regs->sdram_config, &emif->emif_sdram_config);
158 	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
159 
160 	/* Enable refresh now */
161 	clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
162 
163 	}
164 
do_ext_phy_settings(u32 base,const struct emif_regs * regs)165 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
166 {
167 }
168 
emif_update_timings(u32 base,const struct emif_regs * regs)169 void emif_update_timings(u32 base, const struct emif_regs *regs)
170 {
171 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
172 
173 	if (!is_dra7xx())
174 		writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
175 	else
176 		writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
177 
178 	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
179 	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
180 	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
181 	if (omap_revision() == OMAP4430_ES1_0) {
182 		/* ES1 bug EMIF should be in force idle during freq_update */
183 		writel(0, &emif->emif_pwr_mgmt_ctrl);
184 	} else {
185 		writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
186 		writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
187 	}
188 	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
189 	writel(regs->zq_config, &emif->emif_zq_config);
190 	writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
191 	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
192 
193 	if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
194 		writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
195 			&emif->emif_l3_config);
196 	} else if (omap_revision() >= OMAP4460_ES1_0) {
197 		writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
198 			&emif->emif_l3_config);
199 	} else {
200 		writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
201 			&emif->emif_l3_config);
202 	}
203 }
204 
205 #ifndef CONFIG_OMAP44XX
omap5_ddr3_leveling(u32 base,const struct emif_regs * regs)206 static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
207 {
208 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
209 
210 	/* keep sdram in self-refresh */
211 	writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
212 		& EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
213 	__udelay(130);
214 
215 	/*
216 	 * Set invert_clkout (if activated)--DDR_PHYCTRL_1
217 	 * Invert clock adds an additional half cycle delay on the
218 	 * command interface.  The additional half cycle, is usually
219 	 * meant to enable leveling in the situation that DQS is later
220 	 * than CK on the board.It also helps provide some additional
221 	 * margin for leveling.
222 	 */
223 	writel(regs->emif_ddr_phy_ctlr_1,
224 	       &emif->emif_ddr_phy_ctrl_1);
225 
226 	writel(regs->emif_ddr_phy_ctlr_1,
227 	       &emif->emif_ddr_phy_ctrl_1_shdw);
228 	__udelay(130);
229 
230 	writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
231 	       & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
232 
233 	/* Launch Full leveling */
234 	writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
235 
236 	/* Wait till full leveling is complete */
237 	readl(&emif->emif_rd_wr_lvl_ctl);
238 	      __udelay(130);
239 
240 	/* Read data eye leveling no of samples */
241 	config_data_eye_leveling_samples(base);
242 
243 	/*
244 	 * Launch 8 incremental WR_LVL- to compensate for
245 	 * PHY limitation.
246 	 */
247 	writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
248 	       &emif->emif_rd_wr_lvl_ctl);
249 
250 	__udelay(130);
251 
252 	/* Launch Incremental leveling */
253 	writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
254 	       __udelay(130);
255 }
256 
update_hwleveling_output(u32 base,const struct emif_regs * regs)257 static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
258 {
259 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
260 	u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
261 	u32 reg, i, phy;
262 
263 	emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[6];
264 	phy = readl(&emif->emif_ddr_phy_ctrl_1);
265 
266 	/* Update PHY_REG_RDDQS_RATIO */
267 	emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
268 	if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
269 		for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
270 			reg = readl(emif_phy_status++);
271 			writel(reg, emif_ext_phy_ctrl_reg++);
272 			writel(reg, emif_ext_phy_ctrl_reg++);
273 		}
274 
275 	/* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
276 	emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
277 	emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[11];
278 	if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
279 		for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
280 			reg = readl(emif_phy_status++);
281 			writel(reg, emif_ext_phy_ctrl_reg++);
282 			writel(reg, emif_ext_phy_ctrl_reg++);
283 		}
284 
285 	/* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
286 	emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
287 	emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[16];
288 	if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
289 		for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
290 			reg = readl(emif_phy_status++);
291 			writel(reg, emif_ext_phy_ctrl_reg++);
292 			writel(reg, emif_ext_phy_ctrl_reg++);
293 		}
294 
295 	/* Disable Leveling */
296 	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
297 	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
298 	writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
299 }
300 
dra7_ddr3_leveling(u32 base,const struct emif_regs * regs)301 static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
302 {
303 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
304 
305 	/* Clear Error Status */
306 	clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
307 			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
308 			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
309 
310 	clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
311 			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
312 			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
313 
314 	/* Disable refreshed before leveling */
315 	clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
316 			EMIF_REG_INITREF_DIS_MASK);
317 
318 	/* Start Full leveling */
319 	writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
320 
321 	__udelay(300);
322 
323 	/* Check for leveling timeout */
324 	if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
325 		printf("Leveling timeout on EMIF%d\n", emif_num(base));
326 		return;
327 	}
328 
329 	/* Enable refreshes after leveling */
330 	clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
331 
332 	debug("HW leveling success\n");
333 	/*
334 	 * Update slave ratios in EXT_PHY_CTRLx registers
335 	 * as per HW leveling output
336 	 */
337 	update_hwleveling_output(base, regs);
338 }
339 
dra7_reset_ddr_data(u32 base,u32 size)340 static void dra7_reset_ddr_data(u32 base, u32 size)
341 {
342 #if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA)
343 	enable_edma3_clocks();
344 
345 	edma3_fill(EDMA3_BASE, 1, (void *)base, 0, size);
346 
347 	disable_edma3_clocks();
348 #else
349 	memset((void *)base, 0, size);
350 #endif
351 }
352 
dra7_enable_ecc(u32 base,const struct emif_regs * regs)353 static void dra7_enable_ecc(u32 base, const struct emif_regs *regs)
354 {
355 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
356 	u32 rgn, rgn_start, size, ctrl_reg;
357 
358 	/* ECC available only on dra76x EMIF1 */
359 	if ((base != EMIF1_BASE) || !is_dra76x())
360 		return;
361 
362 	if (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK) {
363 		/* Disable high-order interleaving */
364 		clrbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
365 
366 #ifdef CONFIG_DRA7XX
367 		/* Clear the status flags and other history */
368 		writel(readl(&emif->emif_1b_ecc_err_cnt),
369 		       &emif->emif_1b_ecc_err_cnt);
370 		writel(0xffffffff, &emif->emif_1b_ecc_err_dist_1);
371 		writel(0x2, &emif->emif_1b_ecc_err_addr_log);
372 		writel(0x1, &emif->emif_2b_ecc_err_addr_log);
373 		writel(EMIF_INT_WR_ECC_ERR_SYS_MASK |
374 		       EMIF_INT_TWOBIT_ECC_ERR_SYS_MASK |
375 		       EMIF_INT_ONEBIT_ECC_ERR_SYS_MASK,
376 		       &emif->emif_irqstatus_sys);
377 #endif
378 		writel(regs->emif_ecc_address_range_1,
379 		       &emif->emif_ecc_address_range_1);
380 		writel(regs->emif_ecc_address_range_2,
381 		       &emif->emif_ecc_address_range_2);
382 
383 		/* Disable RMW and ECC verification for read accesses */
384 		ctrl_reg = (regs->emif_ecc_ctrl_reg &
385 			    ~EMIF_ECC_REG_RMW_EN_MASK) |
386 			   EMIF_ECC_CTRL_REG_ECC_VERIFY_DIS_MASK;
387 		writel(ctrl_reg, &emif->emif_ecc_ctrl_reg);
388 
389 		/* Set region1 memory with 0 */
390 		rgn_start = (regs->emif_ecc_address_range_1 &
391 			     EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
392 		rgn = rgn_start + CONFIG_SYS_SDRAM_BASE;
393 		size = (regs->emif_ecc_address_range_1 &
394 			EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;
395 
396 		if (regs->emif_ecc_ctrl_reg &
397 		    EMIF_ECC_REG_ECC_ADDR_RGN_1_EN_MASK)
398 			dra7_reset_ddr_data(rgn, size);
399 
400 		/* Set region2 memory with 0 */
401 		rgn_start = (regs->emif_ecc_address_range_2 &
402 			     EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
403 		rgn = rgn_start + CONFIG_SYS_SDRAM_BASE;
404 		size = (regs->emif_ecc_address_range_2 &
405 			EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;
406 
407 		if (regs->emif_ecc_ctrl_reg &
408 		    EMIF_ECC_REG_ECC_ADDR_RGN_2_EN_MASK)
409 			dra7_reset_ddr_data(rgn, size);
410 
411 		/* Default value enables RMW and ECC verification */
412 		writel(regs->emif_ecc_ctrl_reg, &emif->emif_ecc_ctrl_reg);
413 	}
414 }
415 
dra7_ddr3_init(u32 base,const struct emif_regs * regs)416 static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
417 {
418 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
419 
420 	if (warm_reset()) {
421 		emif_reset_phy(base);
422 		writel(0x0, &emif->emif_pwr_mgmt_ctrl);
423 	}
424 	do_ext_phy_settings(base, regs);
425 
426 	writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
427 	       &emif->emif_sdram_ref_ctrl);
428 	/* Update timing registers */
429 	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
430 	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
431 	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
432 
433 	writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
434 	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
435 	writel(regs->zq_config, &emif->emif_zq_config);
436 	writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
437 	writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
438 	writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
439 
440 	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
441 	writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
442 
443 	writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
444 
445 	writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
446 	writel(regs->sdram_config_init, &emif->emif_sdram_config);
447 
448 	__udelay(1000);
449 
450 	writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
451 
452 	if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK) {
453 		/*
454 		 * Perform Dummy ECC setup just to allow hardware
455 		 * leveling of ECC memories
456 		 */
457 		if (is_dra76x() && (base == EMIF1_BASE) &&
458 		    (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK)) {
459 			writel(0, &emif->emif_ecc_address_range_1);
460 			writel(0, &emif->emif_ecc_address_range_2);
461 			writel(EMIF_ECC_CTRL_REG_ECC_EN_MASK |
462 			       EMIF_ECC_CTRL_REG_ECC_ADDR_RGN_PROT_MASK,
463 			       &emif->emif_ecc_ctrl_reg);
464 		}
465 
466 		dra7_ddr3_leveling(base, regs);
467 
468 		/* Disable ECC */
469 		if (is_dra76x())
470 			writel(0, &emif->emif_ecc_ctrl_reg);
471 	}
472 
473 	/* Enable ECC as necessary */
474 	dra7_enable_ecc(base, regs);
475 }
476 
omap5_ddr3_init(u32 base,const struct emif_regs * regs)477 static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
478 {
479 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
480 
481 	writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
482 	writel(regs->sdram_config_init, &emif->emif_sdram_config);
483 	/*
484 	 * Set SDRAM_CONFIG and PHY control registers to locked frequency
485 	 * and RL =7. As the default values of the Mode Registers are not
486 	 * defined, contents of mode Registers must be fully initialized.
487 	 * H/W takes care of this initialization
488 	 */
489 	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
490 
491 	/* Update timing registers */
492 	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
493 	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
494 	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
495 
496 	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
497 
498 	writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
499 	writel(regs->sdram_config_init, &emif->emif_sdram_config);
500 	do_ext_phy_settings(base, regs);
501 
502 	writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
503 	omap5_ddr3_leveling(base, regs);
504 }
505 
ddr3_init(u32 base,const struct emif_regs * regs)506 static void ddr3_init(u32 base, const struct emif_regs *regs)
507 {
508 	if (is_omap54xx())
509 		omap5_ddr3_init(base, regs);
510 	else
511 		dra7_ddr3_init(base, regs);
512 }
513 #endif
514 
515 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
516 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
517 
518 /*
519  * Organization and refresh requirements for LPDDR2 devices of different
520  * types and densities. Derived from JESD209-2 section 2.4
521  */
522 const struct lpddr2_addressing addressing_table[] = {
523 	/* Banks tREFIx10     rowx32,rowx16      colx32,colx16	density */
524 	{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
525 	{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
526 	{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
527 	{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
528 	{BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
529 	{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
530 	{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
531 	{BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
532 	{BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
533 	{BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
534 };
535 
536 static const u32 lpddr2_density_2_size_in_mbytes[] = {
537 	8,			/* 64Mb */
538 	16,			/* 128Mb */
539 	32,			/* 256Mb */
540 	64,			/* 512Mb */
541 	128,			/* 1Gb   */
542 	256,			/* 2Gb   */
543 	512,			/* 4Gb   */
544 	1024,			/* 8Gb   */
545 	2048,			/* 16Gb  */
546 	4096			/* 32Gb  */
547 };
548 
549 /*
550  * Calculate the period of DDR clock from frequency value and set the
551  * denominator and numerator in global variables for easy access later
552  */
set_ddr_clk_period(u32 freq)553 static void set_ddr_clk_period(u32 freq)
554 {
555 	/*
556 	 * period = 1/freq
557 	 * period_in_ns = 10^9/freq
558 	 */
559 	*T_num = 1000000000;
560 	*T_den = freq;
561 	cancel_out(T_num, T_den, 200);
562 
563 }
564 
565 /*
566  * Convert time in nano seconds to number of cycles of DDR clock
567  */
ns_2_cycles(u32 ns)568 static inline u32 ns_2_cycles(u32 ns)
569 {
570 	return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
571 }
572 
573 /*
574  * ns_2_cycles with the difference that the time passed is 2 times the actual
575  * value(to avoid fractions). The cycles returned is for the original value of
576  * the timing parameter
577  */
ns_x2_2_cycles(u32 ns)578 static inline u32 ns_x2_2_cycles(u32 ns)
579 {
580 	return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
581 }
582 
583 /*
584  * Find addressing table index based on the device's type(S2 or S4) and
585  * density
586  */
addressing_table_index(u8 type,u8 density,u8 width)587 s8 addressing_table_index(u8 type, u8 density, u8 width)
588 {
589 	u8 index;
590 	if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
591 		return -1;
592 
593 	/*
594 	 * Look at the way ADDR_TABLE_INDEX* values have been defined
595 	 * in emif.h compared to LPDDR2_DENSITY_* values
596 	 * The table is layed out in the increasing order of density
597 	 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
598 	 * at the end
599 	 */
600 	if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
601 		index = ADDR_TABLE_INDEX1GS2;
602 	else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
603 		index = ADDR_TABLE_INDEX2GS2;
604 	else
605 		index = density;
606 
607 	debug("emif: addressing table index %d\n", index);
608 
609 	return index;
610 }
611 
612 /*
613  * Find the the right timing table from the array of timing
614  * tables of the device using DDR clock frequency
615  */
get_timings_table(const struct lpddr2_ac_timings * const * device_timings,u32 freq)616 static const struct lpddr2_ac_timings *get_timings_table(const struct
617 			lpddr2_ac_timings *const *device_timings,
618 			u32 freq)
619 {
620 	u32 i, temp, freq_nearest;
621 	const struct lpddr2_ac_timings *timings = 0;
622 
623 	emif_assert(freq <= MAX_LPDDR2_FREQ);
624 	emif_assert(device_timings);
625 
626 	/*
627 	 * Start with the maximum allowed frequency - that is always safe
628 	 */
629 	freq_nearest = MAX_LPDDR2_FREQ;
630 	/*
631 	 * Find the timings table that has the max frequency value:
632 	 *   i.  Above or equal to the DDR frequency - safe
633 	 *   ii. The lowest that satisfies condition (i) - optimal
634 	 */
635 	for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
636 		temp = device_timings[i]->max_freq;
637 		if ((temp >= freq) && (temp <= freq_nearest)) {
638 			freq_nearest = temp;
639 			timings = device_timings[i];
640 		}
641 	}
642 	debug("emif: timings table: %d\n", freq_nearest);
643 	return timings;
644 }
645 
646 /*
647  * Finds the value of emif_sdram_config_reg
648  * All parameters are programmed based on the device on CS0.
649  * If there is a device on CS1, it will be same as that on CS0 or
650  * it will be NVM. We don't support NVM yet.
651  * If cs1_device pointer is NULL it is assumed that there is no device
652  * on CS1
653  */
get_sdram_config_reg(const struct lpddr2_device_details * cs0_device,const struct lpddr2_device_details * cs1_device,const struct lpddr2_addressing * addressing,u8 RL)654 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
655 				const struct lpddr2_device_details *cs1_device,
656 				const struct lpddr2_addressing *addressing,
657 				u8 RL)
658 {
659 	u32 config_reg = 0;
660 
661 	config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
662 	config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
663 			EMIF_REG_IBANK_POS_SHIFT;
664 
665 	config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
666 
667 	config_reg |= RL << EMIF_REG_CL_SHIFT;
668 
669 	config_reg |= addressing->row_sz[cs0_device->io_width] <<
670 			EMIF_REG_ROWSIZE_SHIFT;
671 
672 	config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
673 
674 	config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
675 			EMIF_REG_EBANK_SHIFT;
676 
677 	config_reg |= addressing->col_sz[cs0_device->io_width] <<
678 			EMIF_REG_PAGESIZE_SHIFT;
679 
680 	return config_reg;
681 }
682 
get_sdram_ref_ctrl(u32 freq,const struct lpddr2_addressing * addressing)683 static u32 get_sdram_ref_ctrl(u32 freq,
684 			      const struct lpddr2_addressing *addressing)
685 {
686 	u32 ref_ctrl = 0, val = 0, freq_khz;
687 	freq_khz = freq / 1000;
688 	/*
689 	 * refresh rate to be set is 'tREFI * freq in MHz
690 	 * division by 10000 to account for khz and x10 in t_REFI_us_x10
691 	 */
692 	val = addressing->t_REFI_us_x10 * freq_khz / 10000;
693 	ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
694 
695 	return ref_ctrl;
696 }
697 
get_sdram_tim_1_reg(const struct lpddr2_ac_timings * timings,const struct lpddr2_min_tck * min_tck,const struct lpddr2_addressing * addressing)698 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
699 			       const struct lpddr2_min_tck *min_tck,
700 			       const struct lpddr2_addressing *addressing)
701 {
702 	u32 tim1 = 0, val = 0;
703 	val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
704 	tim1 |= val << EMIF_REG_T_WTR_SHIFT;
705 
706 	if (addressing->num_banks == BANKS8)
707 		val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
708 							(4 * (*T_num)) - 1;
709 	else
710 		val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
711 
712 	tim1 |= val << EMIF_REG_T_RRD_SHIFT;
713 
714 	val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
715 	tim1 |= val << EMIF_REG_T_RC_SHIFT;
716 
717 	val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
718 	tim1 |= val << EMIF_REG_T_RAS_SHIFT;
719 
720 	val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
721 	tim1 |= val << EMIF_REG_T_WR_SHIFT;
722 
723 	val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
724 	tim1 |= val << EMIF_REG_T_RCD_SHIFT;
725 
726 	val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
727 	tim1 |= val << EMIF_REG_T_RP_SHIFT;
728 
729 	return tim1;
730 }
731 
get_sdram_tim_2_reg(const struct lpddr2_ac_timings * timings,const struct lpddr2_min_tck * min_tck)732 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
733 			       const struct lpddr2_min_tck *min_tck)
734 {
735 	u32 tim2 = 0, val = 0;
736 	val = max(min_tck->tCKE, timings->tCKE) - 1;
737 	tim2 |= val << EMIF_REG_T_CKE_SHIFT;
738 
739 	val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
740 	tim2 |= val << EMIF_REG_T_RTP_SHIFT;
741 
742 	/*
743 	 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
744 	 * same value
745 	 */
746 	val = ns_2_cycles(timings->tXSR) - 1;
747 	tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
748 	tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
749 
750 	val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
751 	tim2 |= val << EMIF_REG_T_XP_SHIFT;
752 
753 	return tim2;
754 }
755 
get_sdram_tim_3_reg(const struct lpddr2_ac_timings * timings,const struct lpddr2_min_tck * min_tck,const struct lpddr2_addressing * addressing)756 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
757 			       const struct lpddr2_min_tck *min_tck,
758 			       const struct lpddr2_addressing *addressing)
759 {
760 	u32 tim3 = 0, val = 0;
761 	val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
762 	tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
763 
764 	val = ns_2_cycles(timings->tRFCab) - 1;
765 	tim3 |= val << EMIF_REG_T_RFC_SHIFT;
766 
767 	val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
768 	tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
769 
770 	val = ns_2_cycles(timings->tZQCS) - 1;
771 	tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
772 
773 	val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
774 	tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
775 
776 	return tim3;
777 }
778 
get_zq_config_reg(const struct lpddr2_device_details * cs1_device,const struct lpddr2_addressing * addressing,u8 volt_ramp)779 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
780 			     const struct lpddr2_addressing *addressing,
781 			     u8 volt_ramp)
782 {
783 	u32 zq = 0, val = 0;
784 	if (volt_ramp)
785 		val =
786 		    EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
787 		    addressing->t_REFI_us_x10;
788 	else
789 		val =
790 		    EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
791 		    addressing->t_REFI_us_x10;
792 	zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
793 
794 	zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
795 
796 	zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
797 
798 	zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
799 
800 	/*
801 	 * Assuming that two chipselects have a single calibration resistor
802 	 * If there are indeed two calibration resistors, then this flag should
803 	 * be enabled to take advantage of dual calibration feature.
804 	 * This data should ideally come from board files. But considering
805 	 * that none of the boards today have calibration resistors per CS,
806 	 * it would be an unnecessary overhead.
807 	 */
808 	zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
809 
810 	zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
811 
812 	zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
813 
814 	return zq;
815 }
816 
get_temp_alert_config(const struct lpddr2_device_details * cs1_device,const struct lpddr2_addressing * addressing,u8 is_derated)817 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
818 				 const struct lpddr2_addressing *addressing,
819 				 u8 is_derated)
820 {
821 	u32 alert = 0, interval;
822 	interval =
823 	    TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
824 	if (is_derated)
825 		interval *= 4;
826 	alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
827 
828 	alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
829 
830 	alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
831 
832 	alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
833 
834 	alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
835 
836 	alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
837 
838 	return alert;
839 }
840 
get_read_idle_ctrl_reg(u8 volt_ramp)841 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
842 {
843 	u32 idle = 0, val = 0;
844 	if (volt_ramp)
845 		val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
846 	else
847 		/*Maximum value in normal conditions - suggested by hw team */
848 		val = 0x1FF;
849 	idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
850 
851 	idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
852 
853 	return idle;
854 }
855 
get_ddr_phy_ctrl_1(u32 freq,u8 RL)856 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
857 {
858 	u32 phy = 0, val = 0;
859 
860 	phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
861 
862 	if (freq <= 100000000)
863 		val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
864 	else if (freq <= 200000000)
865 		val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
866 	else
867 		val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
868 	phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
869 
870 	/* Other fields are constant magic values. Hardcode them together */
871 	phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
872 		EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
873 
874 	return phy;
875 }
876 
get_emif_mem_size(u32 base)877 static u32 get_emif_mem_size(u32 base)
878 {
879 	u32 size_mbytes = 0, temp;
880 	struct emif_device_details dev_details;
881 	struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
882 	u32 emif_nr = emif_num(base);
883 
884 	emif_reset_phy(base);
885 	dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
886 						&cs0_dev_details);
887 	dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
888 						&cs1_dev_details);
889 	emif_reset_phy(base);
890 
891 	if (dev_details.cs0_device_details) {
892 		temp = dev_details.cs0_device_details->density;
893 		size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
894 	}
895 
896 	if (dev_details.cs1_device_details) {
897 		temp = dev_details.cs1_device_details->density;
898 		size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
899 	}
900 	/* convert to bytes */
901 	return size_mbytes << 20;
902 }
903 
904 /* Gets the encoding corresponding to a given DMM section size */
get_dmm_section_size_map(u32 section_size)905 u32 get_dmm_section_size_map(u32 section_size)
906 {
907 	/*
908 	 * Section size mapping:
909 	 * 0x0: 16-MiB section
910 	 * 0x1: 32-MiB section
911 	 * 0x2: 64-MiB section
912 	 * 0x3: 128-MiB section
913 	 * 0x4: 256-MiB section
914 	 * 0x5: 512-MiB section
915 	 * 0x6: 1-GiB section
916 	 * 0x7: 2-GiB section
917 	 */
918 	section_size >>= 24; /* divide by 16 MB */
919 	return log_2_n_round_down(section_size);
920 }
921 
emif_calculate_regs(const struct emif_device_details * emif_dev_details,u32 freq,struct emif_regs * regs)922 static void emif_calculate_regs(
923 		const struct emif_device_details *emif_dev_details,
924 		u32 freq, struct emif_regs *regs)
925 {
926 	u32 temp, sys_freq;
927 	const struct lpddr2_addressing *addressing;
928 	const struct lpddr2_ac_timings *timings;
929 	const struct lpddr2_min_tck *min_tck;
930 	const struct lpddr2_device_details *cs0_dev_details =
931 					emif_dev_details->cs0_device_details;
932 	const struct lpddr2_device_details *cs1_dev_details =
933 					emif_dev_details->cs1_device_details;
934 	const struct lpddr2_device_timings *cs0_dev_timings =
935 					emif_dev_details->cs0_device_timings;
936 
937 	emif_assert(emif_dev_details);
938 	emif_assert(regs);
939 	/*
940 	 * You can not have a device on CS1 without one on CS0
941 	 * So configuring EMIF without a device on CS0 doesn't
942 	 * make sense
943 	 */
944 	emif_assert(cs0_dev_details);
945 	emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
946 	/*
947 	 * If there is a device on CS1 it should be same type as CS0
948 	 * (or NVM. But NVM is not supported in this driver yet)
949 	 */
950 	emif_assert((cs1_dev_details == NULL) ||
951 		    (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
952 		    (cs0_dev_details->type == cs1_dev_details->type));
953 	emif_assert(freq <= MAX_LPDDR2_FREQ);
954 
955 	set_ddr_clk_period(freq);
956 
957 	/*
958 	 * The device on CS0 is used for all timing calculations
959 	 * There is only one set of registers for timings per EMIF. So, if the
960 	 * second CS(CS1) has a device, it should have the same timings as the
961 	 * device on CS0
962 	 */
963 	timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
964 	emif_assert(timings);
965 	min_tck = cs0_dev_timings->min_tck;
966 
967 	temp = addressing_table_index(cs0_dev_details->type,
968 				      cs0_dev_details->density,
969 				      cs0_dev_details->io_width);
970 
971 	emif_assert((temp >= 0));
972 	addressing = &(addressing_table[temp]);
973 	emif_assert(addressing);
974 
975 	sys_freq = get_sys_clk_freq();
976 
977 	regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
978 							cs1_dev_details,
979 							addressing, RL_BOOT);
980 
981 	regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
982 						cs1_dev_details,
983 						addressing, RL_FINAL);
984 
985 	regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
986 
987 	regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
988 
989 	regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
990 
991 	regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
992 
993 	regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
994 
995 	regs->temp_alert_config =
996 	    get_temp_alert_config(cs1_dev_details, addressing, 0);
997 
998 	regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
999 					    LPDDR2_VOLTAGE_STABLE);
1000 
1001 	regs->emif_ddr_phy_ctlr_1_init =
1002 			get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
1003 
1004 	regs->emif_ddr_phy_ctlr_1 =
1005 			get_ddr_phy_ctrl_1(freq, RL_FINAL);
1006 
1007 	regs->freq = freq;
1008 
1009 	print_timing_reg(regs->sdram_config_init);
1010 	print_timing_reg(regs->sdram_config);
1011 	print_timing_reg(regs->ref_ctrl);
1012 	print_timing_reg(regs->sdram_tim1);
1013 	print_timing_reg(regs->sdram_tim2);
1014 	print_timing_reg(regs->sdram_tim3);
1015 	print_timing_reg(regs->read_idle_ctrl);
1016 	print_timing_reg(regs->temp_alert_config);
1017 	print_timing_reg(regs->zq_config);
1018 	print_timing_reg(regs->emif_ddr_phy_ctlr_1);
1019 	print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
1020 }
1021 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1022 
1023 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
get_lpddr2_type(u8 type_id)1024 const char *get_lpddr2_type(u8 type_id)
1025 {
1026 	switch (type_id) {
1027 	case LPDDR2_TYPE_S4:
1028 		return "LPDDR2-S4";
1029 	case LPDDR2_TYPE_S2:
1030 		return "LPDDR2-S2";
1031 	default:
1032 		return NULL;
1033 	}
1034 }
1035 
get_lpddr2_io_width(u8 width_id)1036 const char *get_lpddr2_io_width(u8 width_id)
1037 {
1038 	switch (width_id) {
1039 	case LPDDR2_IO_WIDTH_8:
1040 		return "x8";
1041 	case LPDDR2_IO_WIDTH_16:
1042 		return "x16";
1043 	case LPDDR2_IO_WIDTH_32:
1044 		return "x32";
1045 	default:
1046 		return NULL;
1047 	}
1048 }
1049 
get_lpddr2_manufacturer(u32 manufacturer)1050 const char *get_lpddr2_manufacturer(u32 manufacturer)
1051 {
1052 	switch (manufacturer) {
1053 	case LPDDR2_MANUFACTURER_SAMSUNG:
1054 		return "Samsung";
1055 	case LPDDR2_MANUFACTURER_QIMONDA:
1056 		return "Qimonda";
1057 	case LPDDR2_MANUFACTURER_ELPIDA:
1058 		return "Elpida";
1059 	case LPDDR2_MANUFACTURER_ETRON:
1060 		return "Etron";
1061 	case LPDDR2_MANUFACTURER_NANYA:
1062 		return "Nanya";
1063 	case LPDDR2_MANUFACTURER_HYNIX:
1064 		return "Hynix";
1065 	case LPDDR2_MANUFACTURER_MOSEL:
1066 		return "Mosel";
1067 	case LPDDR2_MANUFACTURER_WINBOND:
1068 		return "Winbond";
1069 	case LPDDR2_MANUFACTURER_ESMT:
1070 		return "ESMT";
1071 	case LPDDR2_MANUFACTURER_SPANSION:
1072 		return "Spansion";
1073 	case LPDDR2_MANUFACTURER_SST:
1074 		return "SST";
1075 	case LPDDR2_MANUFACTURER_ZMOS:
1076 		return "ZMOS";
1077 	case LPDDR2_MANUFACTURER_INTEL:
1078 		return "Intel";
1079 	case LPDDR2_MANUFACTURER_NUMONYX:
1080 		return "Numonyx";
1081 	case LPDDR2_MANUFACTURER_MICRON:
1082 		return "Micron";
1083 	default:
1084 		return NULL;
1085 	}
1086 }
1087 
display_sdram_details(u32 emif_nr,u32 cs,struct lpddr2_device_details * device)1088 static void display_sdram_details(u32 emif_nr, u32 cs,
1089 				  struct lpddr2_device_details *device)
1090 {
1091 	const char *mfg_str;
1092 	const char *type_str;
1093 	char density_str[10];
1094 	u32 density;
1095 
1096 	debug("EMIF%d CS%d\t", emif_nr, cs);
1097 
1098 	if (!device) {
1099 		debug("None\n");
1100 		return;
1101 	}
1102 
1103 	mfg_str = get_lpddr2_manufacturer(device->manufacturer);
1104 	type_str = get_lpddr2_type(device->type);
1105 
1106 	density = lpddr2_density_2_size_in_mbytes[device->density];
1107 	if ((density / 1024 * 1024) == density) {
1108 		density /= 1024;
1109 		sprintf(density_str, "%d GB", density);
1110 	} else
1111 		sprintf(density_str, "%d MB", density);
1112 	if (mfg_str && type_str)
1113 		debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1114 }
1115 
is_lpddr2_sdram_present(u32 base,u32 cs,struct lpddr2_device_details * lpddr2_device)1116 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1117 				  struct lpddr2_device_details *lpddr2_device)
1118 {
1119 	u32 mr = 0, temp;
1120 
1121 	mr = get_mr(base, cs, LPDDR2_MR0);
1122 	if (mr > 0xFF) {
1123 		/* Mode register value bigger than 8 bit */
1124 		return 0;
1125 	}
1126 
1127 	temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1128 	if (temp) {
1129 		/* Not SDRAM */
1130 		return 0;
1131 	}
1132 	temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1133 
1134 	if (temp) {
1135 		/* DNV supported - But DNV is only supported for NVM */
1136 		return 0;
1137 	}
1138 
1139 	mr = get_mr(base, cs, LPDDR2_MR4);
1140 	if (mr > 0xFF) {
1141 		/* Mode register value bigger than 8 bit */
1142 		return 0;
1143 	}
1144 
1145 	mr = get_mr(base, cs, LPDDR2_MR5);
1146 	if (mr > 0xFF) {
1147 		/* Mode register value bigger than 8 bit */
1148 		return 0;
1149 	}
1150 
1151 	if (!get_lpddr2_manufacturer(mr)) {
1152 		/* Manufacturer not identified */
1153 		return 0;
1154 	}
1155 	lpddr2_device->manufacturer = mr;
1156 
1157 	mr = get_mr(base, cs, LPDDR2_MR6);
1158 	if (mr >= 0xFF) {
1159 		/* Mode register value bigger than 8 bit */
1160 		return 0;
1161 	}
1162 
1163 	mr = get_mr(base, cs, LPDDR2_MR7);
1164 	if (mr >= 0xFF) {
1165 		/* Mode register value bigger than 8 bit */
1166 		return 0;
1167 	}
1168 
1169 	mr = get_mr(base, cs, LPDDR2_MR8);
1170 	if (mr >= 0xFF) {
1171 		/* Mode register value bigger than 8 bit */
1172 		return 0;
1173 	}
1174 
1175 	temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1176 	if (!get_lpddr2_type(temp)) {
1177 		/* Not SDRAM */
1178 		return 0;
1179 	}
1180 	lpddr2_device->type = temp;
1181 
1182 	temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1183 	if (temp > LPDDR2_DENSITY_32Gb) {
1184 		/* Density not supported */
1185 		return 0;
1186 	}
1187 	lpddr2_device->density = temp;
1188 
1189 	temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1190 	if (!get_lpddr2_io_width(temp)) {
1191 		/* IO width unsupported value */
1192 		return 0;
1193 	}
1194 	lpddr2_device->io_width = temp;
1195 
1196 	/*
1197 	 * If all the above tests pass we should
1198 	 * have a device on this chip-select
1199 	 */
1200 	return 1;
1201 }
1202 
emif_get_device_details(u32 emif_nr,u8 cs,struct lpddr2_device_details * lpddr2_dev_details)1203 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1204 			struct lpddr2_device_details *lpddr2_dev_details)
1205 {
1206 	u32 phy;
1207 	u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1208 
1209 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1210 
1211 	if (!lpddr2_dev_details)
1212 		return NULL;
1213 
1214 	/* Do the minimum init for mode register accesses */
1215 	if (!(running_from_sdram() || warm_reset())) {
1216 		phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1217 		writel(phy, &emif->emif_ddr_phy_ctrl_1);
1218 	}
1219 
1220 	if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1221 		return NULL;
1222 
1223 	display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1224 
1225 	return lpddr2_dev_details;
1226 }
1227 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1228 
do_sdram_init(u32 base)1229 static void do_sdram_init(u32 base)
1230 {
1231 	const struct emif_regs *regs;
1232 	u32 in_sdram, emif_nr;
1233 
1234 	debug(">>do_sdram_init() %x\n", base);
1235 
1236 	in_sdram = running_from_sdram();
1237 	emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1238 
1239 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1240 	emif_get_reg_dump(emif_nr, &regs);
1241 	if (!regs) {
1242 		debug("EMIF: reg dump not provided\n");
1243 		return;
1244 	}
1245 #else
1246 	/*
1247 	 * The user has not provided the register values. We need to
1248 	 * calculate it based on the timings and the DDR frequency
1249 	 */
1250 	struct emif_device_details dev_details;
1251 	struct emif_regs calculated_regs;
1252 
1253 	/*
1254 	 * Get device details:
1255 	 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1256 	 * - Obtained from user otherwise
1257 	 */
1258 	struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1259 	emif_reset_phy(base);
1260 	dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1261 						&cs0_dev_details);
1262 	dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1263 						&cs1_dev_details);
1264 	emif_reset_phy(base);
1265 
1266 	/* Return if no devices on this EMIF */
1267 	if (!dev_details.cs0_device_details &&
1268 	    !dev_details.cs1_device_details) {
1269 		return;
1270 	}
1271 
1272 	/*
1273 	 * Get device timings:
1274 	 * - Default timings specified by JESD209-2 if
1275 	 *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1276 	 * - Obtained from user otherwise
1277 	 */
1278 	emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1279 				&dev_details.cs1_device_timings);
1280 
1281 	/* Calculate the register values */
1282 	emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1283 	regs = &calculated_regs;
1284 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1285 
1286 	/*
1287 	 * Initializing the DDR device can not happen from SDRAM.
1288 	 * Changing the timing registers in EMIF can happen(going from one
1289 	 * OPP to another)
1290 	 */
1291 	if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1292 		if (emif_sdram_type(regs->sdram_config) ==
1293 		    EMIF_SDRAM_TYPE_LPDDR2)
1294 			lpddr2_init(base, regs);
1295 #ifndef CONFIG_OMAP44XX
1296 		else
1297 			ddr3_init(base, regs);
1298 #endif
1299 	}
1300 #ifdef CONFIG_OMAP54XX
1301 	if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1302 	    EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1303 		set_lpmode_selfrefresh(base);
1304 		emif_reset_phy(base);
1305 		omap5_ddr3_leveling(base, regs);
1306 	}
1307 #endif
1308 
1309 	/* Write to the shadow registers */
1310 	emif_update_timings(base, regs);
1311 
1312 	debug("<<do_sdram_init() %x\n", base);
1313 }
1314 
emif_post_init_config(u32 base)1315 void emif_post_init_config(u32 base)
1316 {
1317 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1318 	u32 omap_rev = omap_revision();
1319 
1320 	/* reset phy on ES2.0 */
1321 	if (omap_rev == OMAP4430_ES2_0)
1322 		emif_reset_phy(base);
1323 
1324 	/* Put EMIF back in smart idle on ES1.0 */
1325 	if (omap_rev == OMAP4430_ES1_0)
1326 		writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1327 }
1328 
dmm_init(u32 base)1329 void dmm_init(u32 base)
1330 {
1331 	const struct dmm_lisa_map_regs *lisa_map_regs;
1332 	u32 i, section, valid;
1333 
1334 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1335 	emif_get_dmm_regs(&lisa_map_regs);
1336 #else
1337 	u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1338 	u32 section_cnt, sys_addr;
1339 	struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1340 
1341 	mapped_size = 0;
1342 	section_cnt = 3;
1343 	sys_addr = CONFIG_SYS_SDRAM_BASE;
1344 	emif1_size = get_emif_mem_size(EMIF1_BASE);
1345 	emif2_size = get_emif_mem_size(EMIF2_BASE);
1346 	debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1347 
1348 	if (!emif1_size && !emif2_size)
1349 		return;
1350 
1351 	/* symmetric interleaved section */
1352 	if (emif1_size && emif2_size) {
1353 		mapped_size = min(emif1_size, emif2_size);
1354 		section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1355 		section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1356 		/* only MSB */
1357 		section_map |= (sys_addr >> 24) <<
1358 				EMIF_SYS_ADDR_SHIFT;
1359 		section_map |= get_dmm_section_size_map(mapped_size * 2)
1360 				<< EMIF_SYS_SIZE_SHIFT;
1361 		lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1362 		emif1_size -= mapped_size;
1363 		emif2_size -= mapped_size;
1364 		sys_addr += (mapped_size * 2);
1365 		section_cnt--;
1366 	}
1367 
1368 	/*
1369 	 * Single EMIF section(we can have a maximum of 1 single EMIF
1370 	 * section- either EMIF1 or EMIF2 or none, but not both)
1371 	 */
1372 	if (emif1_size) {
1373 		section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1374 		section_map |= get_dmm_section_size_map(emif1_size)
1375 				<< EMIF_SYS_SIZE_SHIFT;
1376 		/* only MSB */
1377 		section_map |= (mapped_size >> 24) <<
1378 				EMIF_SDRC_ADDR_SHIFT;
1379 		/* only MSB */
1380 		section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1381 		section_cnt--;
1382 	}
1383 	if (emif2_size) {
1384 		section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1385 		section_map |= get_dmm_section_size_map(emif2_size) <<
1386 				EMIF_SYS_SIZE_SHIFT;
1387 		/* only MSB */
1388 		section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1389 		/* only MSB */
1390 		section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1391 		section_cnt--;
1392 	}
1393 
1394 	if (section_cnt == 2) {
1395 		/* Only 1 section - either symmetric or single EMIF */
1396 		lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1397 		lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1398 		lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1399 	} else {
1400 		/* 2 sections - 1 symmetric, 1 single EMIF */
1401 		lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1402 		lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1403 	}
1404 
1405 	/* TRAP for invalid TILER mappings in section 0 */
1406 	lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1407 
1408 	if (omap_revision() >= OMAP4460_ES1_0)
1409 		lis_map_regs_calculated.is_ma_present = 1;
1410 
1411 	lisa_map_regs = &lis_map_regs_calculated;
1412 #endif
1413 	struct dmm_lisa_map_regs *hw_lisa_map_regs =
1414 	    (struct dmm_lisa_map_regs *)base;
1415 
1416 	writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1417 	writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1418 	writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1419 	writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1420 
1421 	writel(lisa_map_regs->dmm_lisa_map_3,
1422 		&hw_lisa_map_regs->dmm_lisa_map_3);
1423 	writel(lisa_map_regs->dmm_lisa_map_2,
1424 		&hw_lisa_map_regs->dmm_lisa_map_2);
1425 	writel(lisa_map_regs->dmm_lisa_map_1,
1426 		&hw_lisa_map_regs->dmm_lisa_map_1);
1427 	writel(lisa_map_regs->dmm_lisa_map_0,
1428 		&hw_lisa_map_regs->dmm_lisa_map_0);
1429 
1430 	if (lisa_map_regs->is_ma_present) {
1431 		hw_lisa_map_regs =
1432 		    (struct dmm_lisa_map_regs *)MA_BASE;
1433 
1434 		writel(lisa_map_regs->dmm_lisa_map_3,
1435 			&hw_lisa_map_regs->dmm_lisa_map_3);
1436 		writel(lisa_map_regs->dmm_lisa_map_2,
1437 			&hw_lisa_map_regs->dmm_lisa_map_2);
1438 		writel(lisa_map_regs->dmm_lisa_map_1,
1439 			&hw_lisa_map_regs->dmm_lisa_map_1);
1440 		writel(lisa_map_regs->dmm_lisa_map_0,
1441 			&hw_lisa_map_regs->dmm_lisa_map_0);
1442 
1443 		setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
1444 	}
1445 
1446 	/*
1447 	 * EMIF should be configured only when
1448 	 * memory is mapped on it. Using emif1_enabled
1449 	 * and emif2_enabled variables for this.
1450 	 */
1451 	emif1_enabled = 0;
1452 	emif2_enabled = 0;
1453 	for (i = 0; i < 4; i++) {
1454 		section	= __raw_readl(DMM_BASE + i*4);
1455 		valid = (section & EMIF_SDRC_MAP_MASK) >>
1456 			(EMIF_SDRC_MAP_SHIFT);
1457 		if (valid == 3) {
1458 			emif1_enabled = 1;
1459 			emif2_enabled = 1;
1460 			break;
1461 		}
1462 
1463 		if (valid == 1)
1464 			emif1_enabled = 1;
1465 
1466 		if (valid == 2)
1467 			emif2_enabled = 1;
1468 	}
1469 }
1470 
do_bug0039_workaround(u32 base)1471 static void do_bug0039_workaround(u32 base)
1472 {
1473 	u32 val, i, clkctrl;
1474 	struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1475 	const struct read_write_regs *bug_00339_regs;
1476 	u32 iterations;
1477 	u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1478 	u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1479 
1480 	if (is_dra7xx())
1481 		phy_status_base++;
1482 
1483 	bug_00339_regs = get_bug_regs(&iterations);
1484 
1485 	/* Put EMIF in to idle */
1486 	clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1487 	__raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1488 
1489 	/* Copy the phy status registers in to phy ctrl shadow registers */
1490 	for (i = 0; i < iterations; i++) {
1491 		val = __raw_readl(phy_status_base +
1492 				  bug_00339_regs[i].read_reg - 1);
1493 
1494 		__raw_writel(val, phy_ctrl_base +
1495 			     ((bug_00339_regs[i].write_reg - 1) << 1));
1496 
1497 		__raw_writel(val, phy_ctrl_base +
1498 			     (bug_00339_regs[i].write_reg << 1) - 1);
1499 	}
1500 
1501 	/* Disable leveling */
1502 	writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1503 
1504 	__raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1505 }
1506 
1507 /*
1508  * SDRAM initialization:
1509  * SDRAM initialization has two parts:
1510  * 1. Configuring the SDRAM device
1511  * 2. Update the AC timings related parameters in the EMIF module
1512  * (1) should be done only once and should not be done while we are
1513  * running from SDRAM.
1514  * (2) can and should be done more than once if OPP changes.
1515  * Particularly, this may be needed when we boot without SPL and
1516  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1517  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1518  * the frequency. So,
1519  * Doing (1) and (2) makes sense - first time initialization
1520  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1521  * Doing (1) and not (2) doen't make sense
1522  * See do_sdram_init() for the details
1523  */
sdram_init(void)1524 void sdram_init(void)
1525 {
1526 	u32 in_sdram, size_prog, size_detect;
1527 	struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1528 	u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1529 
1530 	debug(">>sdram_init()\n");
1531 
1532 	if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1533 		return;
1534 
1535 	in_sdram = running_from_sdram();
1536 	debug("in_sdram = %d\n", in_sdram);
1537 
1538 	if (!in_sdram) {
1539 		if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1540 			bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1541 		else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1542 			writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1543 	}
1544 
1545 	if (!in_sdram)
1546 		dmm_init(DMM_BASE);
1547 
1548 	if (emif1_enabled)
1549 		do_sdram_init(EMIF1_BASE);
1550 
1551 	if (emif2_enabled)
1552 		do_sdram_init(EMIF2_BASE);
1553 
1554 	if (!(in_sdram || warm_reset())) {
1555 		if (emif1_enabled)
1556 			emif_post_init_config(EMIF1_BASE);
1557 		if (emif2_enabled)
1558 			emif_post_init_config(EMIF2_BASE);
1559 	}
1560 
1561 	/* for the shadow registers to take effect */
1562 	if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1563 		freq_update_core();
1564 
1565 	/* Do some testing after the init */
1566 	if (!in_sdram) {
1567 		size_prog = omap_sdram_size();
1568 		size_prog = log_2_n_round_down(size_prog);
1569 		size_prog = (1 << size_prog);
1570 
1571 		size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1572 						size_prog);
1573 		/* Compare with the size programmed */
1574 		if (size_detect != size_prog) {
1575 			printf("SDRAM: identified size not same as expected"
1576 				" size identified: %x expected: %x\n",
1577 				size_detect,
1578 				size_prog);
1579 		} else
1580 			debug("get_ram_size() successful");
1581 	}
1582 
1583 #if defined(CONFIG_TI_SECURE_DEVICE)
1584 	/*
1585 	 * On HS devices, do static EMIF firewall configuration
1586 	 * but only do it if not already running in SDRAM
1587 	 */
1588 	if (!in_sdram)
1589 		if (0 != secure_emif_reserve())
1590 			hang();
1591 
1592 	/* On HS devices, ensure static EMIF firewall APIs are locked */
1593 	if (0 != secure_emif_firewall_lock())
1594 		hang();
1595 #endif
1596 
1597 	if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1598 	    (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1599 		if (emif1_enabled)
1600 			do_bug0039_workaround(EMIF1_BASE);
1601 		if (emif2_enabled)
1602 			do_bug0039_workaround(EMIF2_BASE);
1603 	}
1604 
1605 	debug("<<sdram_init()\n");
1606 }
1607