1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * MTD device concatenation layer
4  *
5  * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
6  * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
7  *
8  * NAND support by Christian Gan <cgan@iders.ca>
9  *
10  */
11 
12 #ifndef __UBOOT__
13 #include <log.h>
14 #include <dm/devres.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/types.h>
20 #include <linux/backing-dev.h>
21 #include <asm/div64.h>
22 #else
23 #include <div64.h>
24 #include <linux/bug.h>
25 #include <linux/compat.h>
26 #endif
27 
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/concat.h>
30 
31 #include <ubi_uboot.h>
32 
33 /*
34  * Our storage structure:
35  * Subdev points to an array of pointers to struct mtd_info objects
36  * which is allocated along with this structure
37  *
38  */
39 struct mtd_concat {
40 	struct mtd_info mtd;
41 	int num_subdev;
42 	struct mtd_info **subdev;
43 };
44 
45 /*
46  * how to calculate the size required for the above structure,
47  * including the pointer array subdev points to:
48  */
49 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
50 	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
51 
52 /*
53  * Given a pointer to the MTD object in the mtd_concat structure,
54  * we can retrieve the pointer to that structure with this macro.
55  */
56 #define CONCAT(x)  ((struct mtd_concat *)(x))
57 
58 /*
59  * MTD methods which look up the relevant subdevice, translate the
60  * effective address and pass through to the subdevice.
61  */
62 
63 static int
concat_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)64 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
65 	    size_t * retlen, u_char * buf)
66 {
67 	struct mtd_concat *concat = CONCAT(mtd);
68 	int ret = 0, err;
69 	int i;
70 
71 #ifdef __UBOOT__
72 	*retlen = 0;
73 #endif
74 
75 	for (i = 0; i < concat->num_subdev; i++) {
76 		struct mtd_info *subdev = concat->subdev[i];
77 		size_t size, retsize;
78 
79 		if (from >= subdev->size) {
80 			/* Not destined for this subdev */
81 			size = 0;
82 			from -= subdev->size;
83 			continue;
84 		}
85 		if (from + len > subdev->size)
86 			/* First part goes into this subdev */
87 			size = subdev->size - from;
88 		else
89 			/* Entire transaction goes into this subdev */
90 			size = len;
91 
92 		err = mtd_read(subdev, from, size, &retsize, buf);
93 
94 		/* Save information about bitflips! */
95 		if (unlikely(err)) {
96 			if (mtd_is_eccerr(err)) {
97 				mtd->ecc_stats.failed++;
98 				ret = err;
99 			} else if (mtd_is_bitflip(err)) {
100 				mtd->ecc_stats.corrected++;
101 				/* Do not overwrite -EBADMSG !! */
102 				if (!ret)
103 					ret = err;
104 			} else
105 				return err;
106 		}
107 
108 		*retlen += retsize;
109 		len -= size;
110 		if (len == 0)
111 			return ret;
112 
113 		buf += size;
114 		from = 0;
115 	}
116 	return -EINVAL;
117 }
118 
119 static int
concat_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)120 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
121 	     size_t * retlen, const u_char * buf)
122 {
123 	struct mtd_concat *concat = CONCAT(mtd);
124 	int err = -EINVAL;
125 	int i;
126 
127 #ifdef __UBOOT__
128 	*retlen = 0;
129 #endif
130 
131 	for (i = 0; i < concat->num_subdev; i++) {
132 		struct mtd_info *subdev = concat->subdev[i];
133 		size_t size, retsize;
134 
135 		if (to >= subdev->size) {
136 			size = 0;
137 			to -= subdev->size;
138 			continue;
139 		}
140 		if (to + len > subdev->size)
141 			size = subdev->size - to;
142 		else
143 			size = len;
144 
145 		err = mtd_write(subdev, to, size, &retsize, buf);
146 		if (err)
147 			break;
148 
149 		*retlen += retsize;
150 		len -= size;
151 		if (len == 0)
152 			break;
153 
154 		err = -EINVAL;
155 		buf += size;
156 		to = 0;
157 	}
158 	return err;
159 }
160 
161 #ifndef __UBOOT__
162 static int
concat_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)163 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
164 		unsigned long count, loff_t to, size_t * retlen)
165 {
166 	struct mtd_concat *concat = CONCAT(mtd);
167 	struct kvec *vecs_copy;
168 	unsigned long entry_low, entry_high;
169 	size_t total_len = 0;
170 	int i;
171 	int err = -EINVAL;
172 
173 	/* Calculate total length of data */
174 	for (i = 0; i < count; i++)
175 		total_len += vecs[i].iov_len;
176 
177 	/* Check alignment */
178 	if (mtd->writesize > 1) {
179 		uint64_t __to = to;
180 		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
181 			return -EINVAL;
182 	}
183 
184 	/* make a copy of vecs */
185 	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
186 	if (!vecs_copy)
187 		return -ENOMEM;
188 
189 	entry_low = 0;
190 	for (i = 0; i < concat->num_subdev; i++) {
191 		struct mtd_info *subdev = concat->subdev[i];
192 		size_t size, wsize, retsize, old_iov_len;
193 
194 		if (to >= subdev->size) {
195 			to -= subdev->size;
196 			continue;
197 		}
198 
199 		size = min_t(uint64_t, total_len, subdev->size - to);
200 		wsize = size; /* store for future use */
201 
202 		entry_high = entry_low;
203 		while (entry_high < count) {
204 			if (size <= vecs_copy[entry_high].iov_len)
205 				break;
206 			size -= vecs_copy[entry_high++].iov_len;
207 		}
208 
209 		old_iov_len = vecs_copy[entry_high].iov_len;
210 		vecs_copy[entry_high].iov_len = size;
211 
212 		err = mtd_writev(subdev, &vecs_copy[entry_low],
213 				 entry_high - entry_low + 1, to, &retsize);
214 
215 		vecs_copy[entry_high].iov_len = old_iov_len - size;
216 		vecs_copy[entry_high].iov_base += size;
217 
218 		entry_low = entry_high;
219 
220 		if (err)
221 			break;
222 
223 		*retlen += retsize;
224 		total_len -= wsize;
225 
226 		if (total_len == 0)
227 			break;
228 
229 		err = -EINVAL;
230 		to = 0;
231 	}
232 
233 	kfree(vecs_copy);
234 	return err;
235 }
236 #endif
237 
238 static int
concat_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)239 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
240 {
241 	struct mtd_concat *concat = CONCAT(mtd);
242 	struct mtd_oob_ops devops = *ops;
243 	int i, err, ret = 0;
244 
245 	ops->retlen = ops->oobretlen = 0;
246 
247 	for (i = 0; i < concat->num_subdev; i++) {
248 		struct mtd_info *subdev = concat->subdev[i];
249 
250 		if (from >= subdev->size) {
251 			from -= subdev->size;
252 			continue;
253 		}
254 
255 		/* partial read ? */
256 		if (from + devops.len > subdev->size)
257 			devops.len = subdev->size - from;
258 
259 		err = mtd_read_oob(subdev, from, &devops);
260 		ops->retlen += devops.retlen;
261 		ops->oobretlen += devops.oobretlen;
262 
263 		/* Save information about bitflips! */
264 		if (unlikely(err)) {
265 			if (mtd_is_eccerr(err)) {
266 				mtd->ecc_stats.failed++;
267 				ret = err;
268 			} else if (mtd_is_bitflip(err)) {
269 				mtd->ecc_stats.corrected++;
270 				/* Do not overwrite -EBADMSG !! */
271 				if (!ret)
272 					ret = err;
273 			} else
274 				return err;
275 		}
276 
277 		if (devops.datbuf) {
278 			devops.len = ops->len - ops->retlen;
279 			if (!devops.len)
280 				return ret;
281 			devops.datbuf += devops.retlen;
282 		}
283 		if (devops.oobbuf) {
284 			devops.ooblen = ops->ooblen - ops->oobretlen;
285 			if (!devops.ooblen)
286 				return ret;
287 			devops.oobbuf += ops->oobretlen;
288 		}
289 
290 		from = 0;
291 	}
292 	return -EINVAL;
293 }
294 
295 static int
concat_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)296 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
297 {
298 	struct mtd_concat *concat = CONCAT(mtd);
299 	struct mtd_oob_ops devops = *ops;
300 	int i, err;
301 
302 	if (!(mtd->flags & MTD_WRITEABLE))
303 		return -EROFS;
304 
305 	ops->retlen = ops->oobretlen = 0;
306 
307 	for (i = 0; i < concat->num_subdev; i++) {
308 		struct mtd_info *subdev = concat->subdev[i];
309 
310 		if (to >= subdev->size) {
311 			to -= subdev->size;
312 			continue;
313 		}
314 
315 		/* partial write ? */
316 		if (to + devops.len > subdev->size)
317 			devops.len = subdev->size - to;
318 
319 		err = mtd_write_oob(subdev, to, &devops);
320 		ops->retlen += devops.oobretlen;
321 		if (err)
322 			return err;
323 
324 		if (devops.datbuf) {
325 			devops.len = ops->len - ops->retlen;
326 			if (!devops.len)
327 				return 0;
328 			devops.datbuf += devops.retlen;
329 		}
330 		if (devops.oobbuf) {
331 			devops.ooblen = ops->ooblen - ops->oobretlen;
332 			if (!devops.ooblen)
333 				return 0;
334 			devops.oobbuf += devops.oobretlen;
335 		}
336 		to = 0;
337 	}
338 	return -EINVAL;
339 }
340 
concat_erase_callback(struct erase_info * instr)341 static void concat_erase_callback(struct erase_info *instr)
342 {
343 	/* Nothing to do here in U-Boot */
344 #ifndef __UBOOT__
345 	wake_up((wait_queue_head_t *) instr->priv);
346 #endif
347 }
348 
concat_dev_erase(struct mtd_info * mtd,struct erase_info * erase)349 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
350 {
351 	int err;
352 	wait_queue_head_t waitq;
353 	DECLARE_WAITQUEUE(wait, current);
354 
355 	/*
356 	 * This code was stol^H^H^H^Hinspired by mtdchar.c
357 	 */
358 	init_waitqueue_head(&waitq);
359 
360 	erase->mtd = mtd;
361 	erase->callback = concat_erase_callback;
362 	erase->priv = (unsigned long) &waitq;
363 
364 	/*
365 	 * FIXME: Allow INTERRUPTIBLE. Which means
366 	 * not having the wait_queue head on the stack.
367 	 */
368 	err = mtd_erase(mtd, erase);
369 	if (!err) {
370 		set_current_state(TASK_UNINTERRUPTIBLE);
371 		add_wait_queue(&waitq, &wait);
372 		if (erase->state != MTD_ERASE_DONE
373 		    && erase->state != MTD_ERASE_FAILED)
374 			schedule();
375 		remove_wait_queue(&waitq, &wait);
376 		set_current_state(TASK_RUNNING);
377 
378 		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
379 	}
380 	return err;
381 }
382 
concat_erase(struct mtd_info * mtd,struct erase_info * instr)383 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
384 {
385 	struct mtd_concat *concat = CONCAT(mtd);
386 	struct mtd_info *subdev;
387 	int i, err;
388 	uint64_t length, offset = 0;
389 	struct erase_info *erase;
390 
391 	/*
392 	 * Check for proper erase block alignment of the to-be-erased area.
393 	 * It is easier to do this based on the super device's erase
394 	 * region info rather than looking at each particular sub-device
395 	 * in turn.
396 	 */
397 	if (!concat->mtd.numeraseregions) {
398 		/* the easy case: device has uniform erase block size */
399 		if (instr->addr & (concat->mtd.erasesize - 1))
400 			return -EINVAL;
401 		if (instr->len & (concat->mtd.erasesize - 1))
402 			return -EINVAL;
403 	} else {
404 		/* device has variable erase size */
405 		struct mtd_erase_region_info *erase_regions =
406 		    concat->mtd.eraseregions;
407 
408 		/*
409 		 * Find the erase region where the to-be-erased area begins:
410 		 */
411 		for (i = 0; i < concat->mtd.numeraseregions &&
412 		     instr->addr >= erase_regions[i].offset; i++) ;
413 		--i;
414 
415 		/*
416 		 * Now erase_regions[i] is the region in which the
417 		 * to-be-erased area begins. Verify that the starting
418 		 * offset is aligned to this region's erase size:
419 		 */
420 		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
421 			return -EINVAL;
422 
423 		/*
424 		 * now find the erase region where the to-be-erased area ends:
425 		 */
426 		for (; i < concat->mtd.numeraseregions &&
427 		     (instr->addr + instr->len) >= erase_regions[i].offset;
428 		     ++i) ;
429 		--i;
430 		/*
431 		 * check if the ending offset is aligned to this region's erase size
432 		 */
433 		if (i < 0 || ((instr->addr + instr->len) &
434 					(erase_regions[i].erasesize - 1)))
435 			return -EINVAL;
436 	}
437 
438 	/* make a local copy of instr to avoid modifying the caller's struct */
439 	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
440 
441 	if (!erase)
442 		return -ENOMEM;
443 
444 	*erase = *instr;
445 	length = instr->len;
446 
447 	/*
448 	 * find the subdevice where the to-be-erased area begins, adjust
449 	 * starting offset to be relative to the subdevice start
450 	 */
451 	for (i = 0; i < concat->num_subdev; i++) {
452 		subdev = concat->subdev[i];
453 		if (subdev->size <= erase->addr) {
454 			erase->addr -= subdev->size;
455 			offset += subdev->size;
456 		} else {
457 			break;
458 		}
459 	}
460 
461 	/* must never happen since size limit has been verified above */
462 	BUG_ON(i >= concat->num_subdev);
463 
464 	/* now do the erase: */
465 	err = 0;
466 	for (; length > 0; i++) {
467 		/* loop for all subdevices affected by this request */
468 		subdev = concat->subdev[i];	/* get current subdevice */
469 
470 		/* limit length to subdevice's size: */
471 		if (erase->addr + length > subdev->size)
472 			erase->len = subdev->size - erase->addr;
473 		else
474 			erase->len = length;
475 
476 		length -= erase->len;
477 		if ((err = concat_dev_erase(subdev, erase))) {
478 			/* sanity check: should never happen since
479 			 * block alignment has been checked above */
480 			BUG_ON(err == -EINVAL);
481 			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
482 				instr->fail_addr = erase->fail_addr + offset;
483 			break;
484 		}
485 		/*
486 		 * erase->addr specifies the offset of the area to be
487 		 * erased *within the current subdevice*. It can be
488 		 * non-zero only the first time through this loop, i.e.
489 		 * for the first subdevice where blocks need to be erased.
490 		 * All the following erases must begin at the start of the
491 		 * current subdevice, i.e. at offset zero.
492 		 */
493 		erase->addr = 0;
494 		offset += subdev->size;
495 	}
496 	instr->state = erase->state;
497 	kfree(erase);
498 	if (err)
499 		return err;
500 
501 	if (instr->callback)
502 		instr->callback(instr);
503 	return 0;
504 }
505 
concat_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)506 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
507 {
508 	struct mtd_concat *concat = CONCAT(mtd);
509 	int i, err = -EINVAL;
510 
511 	for (i = 0; i < concat->num_subdev; i++) {
512 		struct mtd_info *subdev = concat->subdev[i];
513 		uint64_t size;
514 
515 		if (ofs >= subdev->size) {
516 			size = 0;
517 			ofs -= subdev->size;
518 			continue;
519 		}
520 		if (ofs + len > subdev->size)
521 			size = subdev->size - ofs;
522 		else
523 			size = len;
524 
525 		err = mtd_lock(subdev, ofs, size);
526 		if (err)
527 			break;
528 
529 		len -= size;
530 		if (len == 0)
531 			break;
532 
533 		err = -EINVAL;
534 		ofs = 0;
535 	}
536 
537 	return err;
538 }
539 
concat_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)540 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
541 {
542 	struct mtd_concat *concat = CONCAT(mtd);
543 	int i, err = 0;
544 
545 	for (i = 0; i < concat->num_subdev; i++) {
546 		struct mtd_info *subdev = concat->subdev[i];
547 		uint64_t size;
548 
549 		if (ofs >= subdev->size) {
550 			size = 0;
551 			ofs -= subdev->size;
552 			continue;
553 		}
554 		if (ofs + len > subdev->size)
555 			size = subdev->size - ofs;
556 		else
557 			size = len;
558 
559 		err = mtd_unlock(subdev, ofs, size);
560 		if (err)
561 			break;
562 
563 		len -= size;
564 		if (len == 0)
565 			break;
566 
567 		err = -EINVAL;
568 		ofs = 0;
569 	}
570 
571 	return err;
572 }
573 
concat_sync(struct mtd_info * mtd)574 static void concat_sync(struct mtd_info *mtd)
575 {
576 	struct mtd_concat *concat = CONCAT(mtd);
577 	int i;
578 
579 	for (i = 0; i < concat->num_subdev; i++) {
580 		struct mtd_info *subdev = concat->subdev[i];
581 		mtd_sync(subdev);
582 	}
583 }
584 
585 #ifndef __UBOOT__
concat_suspend(struct mtd_info * mtd)586 static int concat_suspend(struct mtd_info *mtd)
587 {
588 	struct mtd_concat *concat = CONCAT(mtd);
589 	int i, rc = 0;
590 
591 	for (i = 0; i < concat->num_subdev; i++) {
592 		struct mtd_info *subdev = concat->subdev[i];
593 		if ((rc = mtd_suspend(subdev)) < 0)
594 			return rc;
595 	}
596 	return rc;
597 }
598 
concat_resume(struct mtd_info * mtd)599 static void concat_resume(struct mtd_info *mtd)
600 {
601 	struct mtd_concat *concat = CONCAT(mtd);
602 	int i;
603 
604 	for (i = 0; i < concat->num_subdev; i++) {
605 		struct mtd_info *subdev = concat->subdev[i];
606 		mtd_resume(subdev);
607 	}
608 }
609 #endif
610 
concat_block_isbad(struct mtd_info * mtd,loff_t ofs)611 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
612 {
613 	struct mtd_concat *concat = CONCAT(mtd);
614 	int i, res = 0;
615 
616 	if (!mtd_can_have_bb(concat->subdev[0]))
617 		return res;
618 
619 	for (i = 0; i < concat->num_subdev; i++) {
620 		struct mtd_info *subdev = concat->subdev[i];
621 
622 		if (ofs >= subdev->size) {
623 			ofs -= subdev->size;
624 			continue;
625 		}
626 
627 		res = mtd_block_isbad(subdev, ofs);
628 		break;
629 	}
630 
631 	return res;
632 }
633 
concat_block_markbad(struct mtd_info * mtd,loff_t ofs)634 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
635 {
636 	struct mtd_concat *concat = CONCAT(mtd);
637 	int i, err = -EINVAL;
638 
639 	for (i = 0; i < concat->num_subdev; i++) {
640 		struct mtd_info *subdev = concat->subdev[i];
641 
642 		if (ofs >= subdev->size) {
643 			ofs -= subdev->size;
644 			continue;
645 		}
646 
647 		err = mtd_block_markbad(subdev, ofs);
648 		if (!err)
649 			mtd->ecc_stats.badblocks++;
650 		break;
651 	}
652 
653 	return err;
654 }
655 
656 /*
657  * try to support NOMMU mmaps on concatenated devices
658  * - we don't support subdev spanning as we can't guarantee it'll work
659  */
concat_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)660 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
661 					      unsigned long len,
662 					      unsigned long offset,
663 					      unsigned long flags)
664 {
665 	struct mtd_concat *concat = CONCAT(mtd);
666 	int i;
667 
668 	for (i = 0; i < concat->num_subdev; i++) {
669 		struct mtd_info *subdev = concat->subdev[i];
670 
671 		if (offset >= subdev->size) {
672 			offset -= subdev->size;
673 			continue;
674 		}
675 
676 		return mtd_get_unmapped_area(subdev, len, offset, flags);
677 	}
678 
679 	return (unsigned long) -ENOSYS;
680 }
681 
682 /*
683  * This function constructs a virtual MTD device by concatenating
684  * num_devs MTD devices. A pointer to the new device object is
685  * stored to *new_dev upon success. This function does _not_
686  * register any devices: this is the caller's responsibility.
687  */
mtd_concat_create(struct mtd_info * subdev[],int num_devs,const char * name)688 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
689 				   int num_devs,	/* number of subdevices      */
690 #ifndef __UBOOT__
691 				   const char *name)
692 #else
693 				   char *name)
694 #endif
695 {				/* name for the new device   */
696 	int i;
697 	size_t size;
698 	struct mtd_concat *concat;
699 	uint32_t max_erasesize, curr_erasesize;
700 	int num_erase_region;
701 	int max_writebufsize = 0;
702 
703 	debug("Concatenating MTD devices:\n");
704 	for (i = 0; i < num_devs; i++)
705 		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
706 	debug("into device \"%s\"\n", name);
707 
708 	/* allocate the device structure */
709 	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
710 	concat = kzalloc(size, GFP_KERNEL);
711 	if (!concat) {
712 		printk
713 		    ("memory allocation error while creating concatenated device \"%s\"\n",
714 		     name);
715 		return NULL;
716 	}
717 	concat->subdev = (struct mtd_info **) (concat + 1);
718 
719 	/*
720 	 * Set up the new "super" device's MTD object structure, check for
721 	 * incompatibilities between the subdevices.
722 	 */
723 	concat->mtd.type = subdev[0]->type;
724 	concat->mtd.flags = subdev[0]->flags;
725 	concat->mtd.size = subdev[0]->size;
726 	concat->mtd.erasesize = subdev[0]->erasesize;
727 	concat->mtd.writesize = subdev[0]->writesize;
728 
729 	for (i = 0; i < num_devs; i++)
730 		if (max_writebufsize < subdev[i]->writebufsize)
731 			max_writebufsize = subdev[i]->writebufsize;
732 	concat->mtd.writebufsize = max_writebufsize;
733 
734 	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
735 	concat->mtd.oobsize = subdev[0]->oobsize;
736 	concat->mtd.oobavail = subdev[0]->oobavail;
737 #ifndef __UBOOT__
738 	if (subdev[0]->_writev)
739 		concat->mtd._writev = concat_writev;
740 #endif
741 	if (subdev[0]->_read_oob)
742 		concat->mtd._read_oob = concat_read_oob;
743 	if (subdev[0]->_write_oob)
744 		concat->mtd._write_oob = concat_write_oob;
745 	if (subdev[0]->_block_isbad)
746 		concat->mtd._block_isbad = concat_block_isbad;
747 	if (subdev[0]->_block_markbad)
748 		concat->mtd._block_markbad = concat_block_markbad;
749 
750 	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
751 
752 #ifndef __UBOOT__
753 	concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;
754 #endif
755 
756 	concat->subdev[0] = subdev[0];
757 
758 	for (i = 1; i < num_devs; i++) {
759 		if (concat->mtd.type != subdev[i]->type) {
760 			kfree(concat);
761 			printk("Incompatible device type on \"%s\"\n",
762 			       subdev[i]->name);
763 			return NULL;
764 		}
765 		if (concat->mtd.flags != subdev[i]->flags) {
766 			/*
767 			 * Expect all flags except MTD_WRITEABLE to be
768 			 * equal on all subdevices.
769 			 */
770 			if ((concat->mtd.flags ^ subdev[i]->
771 			     flags) & ~MTD_WRITEABLE) {
772 				kfree(concat);
773 				printk("Incompatible device flags on \"%s\"\n",
774 				       subdev[i]->name);
775 				return NULL;
776 			} else
777 				/* if writeable attribute differs,
778 				   make super device writeable */
779 				concat->mtd.flags |=
780 				    subdev[i]->flags & MTD_WRITEABLE;
781 		}
782 
783 #ifndef __UBOOT__
784 		/* only permit direct mapping if the BDIs are all the same
785 		 * - copy-mapping is still permitted
786 		 */
787 		if (concat->mtd.backing_dev_info !=
788 		    subdev[i]->backing_dev_info)
789 			concat->mtd.backing_dev_info =
790 				&default_backing_dev_info;
791 #endif
792 
793 		concat->mtd.size += subdev[i]->size;
794 		concat->mtd.ecc_stats.badblocks +=
795 			subdev[i]->ecc_stats.badblocks;
796 		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
797 		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
798 		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
799 		    !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
800 		    !concat->mtd._write_oob != !subdev[i]->_write_oob) {
801 			kfree(concat);
802 			printk("Incompatible OOB or ECC data on \"%s\"\n",
803 			       subdev[i]->name);
804 			return NULL;
805 		}
806 		concat->subdev[i] = subdev[i];
807 
808 	}
809 
810 	concat->mtd.ecclayout = subdev[0]->ecclayout;
811 
812 	concat->num_subdev = num_devs;
813 	concat->mtd.name = name;
814 
815 	concat->mtd._erase = concat_erase;
816 	concat->mtd._read = concat_read;
817 	concat->mtd._write = concat_write;
818 	concat->mtd._sync = concat_sync;
819 	concat->mtd._lock = concat_lock;
820 	concat->mtd._unlock = concat_unlock;
821 #ifndef __UBOOT__
822 	concat->mtd._suspend = concat_suspend;
823 	concat->mtd._resume = concat_resume;
824 #endif
825 	concat->mtd._get_unmapped_area = concat_get_unmapped_area;
826 
827 	/*
828 	 * Combine the erase block size info of the subdevices:
829 	 *
830 	 * first, walk the map of the new device and see how
831 	 * many changes in erase size we have
832 	 */
833 	max_erasesize = curr_erasesize = subdev[0]->erasesize;
834 	num_erase_region = 1;
835 	for (i = 0; i < num_devs; i++) {
836 		if (subdev[i]->numeraseregions == 0) {
837 			/* current subdevice has uniform erase size */
838 			if (subdev[i]->erasesize != curr_erasesize) {
839 				/* if it differs from the last subdevice's erase size, count it */
840 				++num_erase_region;
841 				curr_erasesize = subdev[i]->erasesize;
842 				if (curr_erasesize > max_erasesize)
843 					max_erasesize = curr_erasesize;
844 			}
845 		} else {
846 			/* current subdevice has variable erase size */
847 			int j;
848 			for (j = 0; j < subdev[i]->numeraseregions; j++) {
849 
850 				/* walk the list of erase regions, count any changes */
851 				if (subdev[i]->eraseregions[j].erasesize !=
852 				    curr_erasesize) {
853 					++num_erase_region;
854 					curr_erasesize =
855 					    subdev[i]->eraseregions[j].
856 					    erasesize;
857 					if (curr_erasesize > max_erasesize)
858 						max_erasesize = curr_erasesize;
859 				}
860 			}
861 		}
862 	}
863 
864 	if (num_erase_region == 1) {
865 		/*
866 		 * All subdevices have the same uniform erase size.
867 		 * This is easy:
868 		 */
869 		concat->mtd.erasesize = curr_erasesize;
870 		concat->mtd.numeraseregions = 0;
871 	} else {
872 		uint64_t tmp64;
873 
874 		/*
875 		 * erase block size varies across the subdevices: allocate
876 		 * space to store the data describing the variable erase regions
877 		 */
878 		struct mtd_erase_region_info *erase_region_p;
879 		uint64_t begin, position;
880 
881 		concat->mtd.erasesize = max_erasesize;
882 		concat->mtd.numeraseregions = num_erase_region;
883 		concat->mtd.eraseregions = erase_region_p =
884 		    kmalloc(num_erase_region *
885 			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
886 		if (!erase_region_p) {
887 			kfree(concat);
888 			printk
889 			    ("memory allocation error while creating erase region list"
890 			     " for device \"%s\"\n", name);
891 			return NULL;
892 		}
893 
894 		/*
895 		 * walk the map of the new device once more and fill in
896 		 * in erase region info:
897 		 */
898 		curr_erasesize = subdev[0]->erasesize;
899 		begin = position = 0;
900 		for (i = 0; i < num_devs; i++) {
901 			if (subdev[i]->numeraseregions == 0) {
902 				/* current subdevice has uniform erase size */
903 				if (subdev[i]->erasesize != curr_erasesize) {
904 					/*
905 					 *  fill in an mtd_erase_region_info structure for the area
906 					 *  we have walked so far:
907 					 */
908 					erase_region_p->offset = begin;
909 					erase_region_p->erasesize =
910 					    curr_erasesize;
911 					tmp64 = position - begin;
912 					do_div(tmp64, curr_erasesize);
913 					erase_region_p->numblocks = tmp64;
914 					begin = position;
915 
916 					curr_erasesize = subdev[i]->erasesize;
917 					++erase_region_p;
918 				}
919 				position += subdev[i]->size;
920 			} else {
921 				/* current subdevice has variable erase size */
922 				int j;
923 				for (j = 0; j < subdev[i]->numeraseregions; j++) {
924 					/* walk the list of erase regions, count any changes */
925 					if (subdev[i]->eraseregions[j].
926 					    erasesize != curr_erasesize) {
927 						erase_region_p->offset = begin;
928 						erase_region_p->erasesize =
929 						    curr_erasesize;
930 						tmp64 = position - begin;
931 						do_div(tmp64, curr_erasesize);
932 						erase_region_p->numblocks = tmp64;
933 						begin = position;
934 
935 						curr_erasesize =
936 						    subdev[i]->eraseregions[j].
937 						    erasesize;
938 						++erase_region_p;
939 					}
940 					position +=
941 					    subdev[i]->eraseregions[j].
942 					    numblocks * (uint64_t)curr_erasesize;
943 				}
944 			}
945 		}
946 		/* Now write the final entry */
947 		erase_region_p->offset = begin;
948 		erase_region_p->erasesize = curr_erasesize;
949 		tmp64 = position - begin;
950 		do_div(tmp64, curr_erasesize);
951 		erase_region_p->numblocks = tmp64;
952 	}
953 
954 	return &concat->mtd;
955 }
956 
957 /*
958  * This function destroys an MTD object obtained from concat_mtd_devs()
959  */
960 
mtd_concat_destroy(struct mtd_info * mtd)961 void mtd_concat_destroy(struct mtd_info *mtd)
962 {
963 	struct mtd_concat *concat = CONCAT(mtd);
964 	if (concat->mtd.numeraseregions)
965 		kfree(concat->mtd.eraseregions);
966 	kfree(concat);
967 }
968 
969 EXPORT_SYMBOL(mtd_concat_create);
970 EXPORT_SYMBOL(mtd_concat_destroy);
971 
972 MODULE_LICENSE("GPL");
973 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
974 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
975