1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2017 Micron Technology, Inc.
4  *
5  * Authors:
6  *	Peter Pan <peterpandong@micron.com>
7  *	Boris Brezillon <boris.brezillon@bootlin.com>
8  */
9 
10 #define pr_fmt(fmt)	"spi-nand: " fmt
11 
12 #ifndef __UBOOT__
13 #include <linux/device.h>
14 #include <linux/jiffies.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mtd/spinand.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22 #else
23 #include <common.h>
24 #include <errno.h>
25 #include <watchdog.h>
26 #include <spi.h>
27 #include <spi-mem.h>
28 #include <dm/device_compat.h>
29 #include <dm/devres.h>
30 #include <linux/bitops.h>
31 #include <linux/bug.h>
32 #include <linux/mtd/spinand.h>
33 #endif
34 
35 /* SPI NAND index visible in MTD names */
36 static int spi_nand_idx;
37 
spinand_cache_op_adjust_colum(struct spinand_device * spinand,const struct nand_page_io_req * req,u16 * column)38 static void spinand_cache_op_adjust_colum(struct spinand_device *spinand,
39 					  const struct nand_page_io_req *req,
40 					  u16 *column)
41 {
42 	struct nand_device *nand = spinand_to_nand(spinand);
43 	unsigned int shift;
44 
45 	if (nand->memorg.planes_per_lun < 2)
46 		return;
47 
48 	/* The plane number is passed in MSB just above the column address */
49 	shift = fls(nand->memorg.pagesize);
50 	*column |= req->pos.plane << shift;
51 }
52 
spinand_read_reg_op(struct spinand_device * spinand,u8 reg,u8 * val)53 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
54 {
55 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
56 						      spinand->scratchbuf);
57 	int ret;
58 
59 	ret = spi_mem_exec_op(spinand->slave, &op);
60 	if (ret)
61 		return ret;
62 
63 	*val = *spinand->scratchbuf;
64 	return 0;
65 }
66 
spinand_write_reg_op(struct spinand_device * spinand,u8 reg,u8 val)67 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
68 {
69 	struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
70 						      spinand->scratchbuf);
71 
72 	*spinand->scratchbuf = val;
73 	return spi_mem_exec_op(spinand->slave, &op);
74 }
75 
spinand_read_status(struct spinand_device * spinand,u8 * status)76 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
77 {
78 	return spinand_read_reg_op(spinand, REG_STATUS, status);
79 }
80 
spinand_get_cfg(struct spinand_device * spinand,u8 * cfg)81 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
82 {
83 	struct nand_device *nand = spinand_to_nand(spinand);
84 
85 	if (WARN_ON(spinand->cur_target < 0 ||
86 		    spinand->cur_target >= nand->memorg.ntargets))
87 		return -EINVAL;
88 
89 	*cfg = spinand->cfg_cache[spinand->cur_target];
90 	return 0;
91 }
92 
spinand_set_cfg(struct spinand_device * spinand,u8 cfg)93 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
94 {
95 	struct nand_device *nand = spinand_to_nand(spinand);
96 	int ret;
97 
98 	if (WARN_ON(spinand->cur_target < 0 ||
99 		    spinand->cur_target >= nand->memorg.ntargets))
100 		return -EINVAL;
101 
102 	if (spinand->cfg_cache[spinand->cur_target] == cfg)
103 		return 0;
104 
105 	ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
106 	if (ret)
107 		return ret;
108 
109 	spinand->cfg_cache[spinand->cur_target] = cfg;
110 	return 0;
111 }
112 
113 /**
114  * spinand_upd_cfg() - Update the configuration register
115  * @spinand: the spinand device
116  * @mask: the mask encoding the bits to update in the config reg
117  * @val: the new value to apply
118  *
119  * Update the configuration register.
120  *
121  * Return: 0 on success, a negative error code otherwise.
122  */
spinand_upd_cfg(struct spinand_device * spinand,u8 mask,u8 val)123 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
124 {
125 	int ret;
126 	u8 cfg;
127 
128 	ret = spinand_get_cfg(spinand, &cfg);
129 	if (ret)
130 		return ret;
131 
132 	cfg &= ~mask;
133 	cfg |= val;
134 
135 	return spinand_set_cfg(spinand, cfg);
136 }
137 
138 /**
139  * spinand_select_target() - Select a specific NAND target/die
140  * @spinand: the spinand device
141  * @target: the target/die to select
142  *
143  * Select a new target/die. If chip only has one die, this function is a NOOP.
144  *
145  * Return: 0 on success, a negative error code otherwise.
146  */
spinand_select_target(struct spinand_device * spinand,unsigned int target)147 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
148 {
149 	struct nand_device *nand = spinand_to_nand(spinand);
150 	int ret;
151 
152 	if (WARN_ON(target >= nand->memorg.ntargets))
153 		return -EINVAL;
154 
155 	if (spinand->cur_target == target)
156 		return 0;
157 
158 	if (nand->memorg.ntargets == 1) {
159 		spinand->cur_target = target;
160 		return 0;
161 	}
162 
163 	ret = spinand->select_target(spinand, target);
164 	if (ret)
165 		return ret;
166 
167 	spinand->cur_target = target;
168 	return 0;
169 }
170 
spinand_init_cfg_cache(struct spinand_device * spinand)171 static int spinand_init_cfg_cache(struct spinand_device *spinand)
172 {
173 	struct nand_device *nand = spinand_to_nand(spinand);
174 	struct udevice *dev = spinand->slave->dev;
175 	unsigned int target;
176 	int ret;
177 
178 	spinand->cfg_cache = devm_kzalloc(dev,
179 					  sizeof(*spinand->cfg_cache) *
180 					  nand->memorg.ntargets,
181 					  GFP_KERNEL);
182 	if (!spinand->cfg_cache)
183 		return -ENOMEM;
184 
185 	for (target = 0; target < nand->memorg.ntargets; target++) {
186 		ret = spinand_select_target(spinand, target);
187 		if (ret)
188 			return ret;
189 
190 		/*
191 		 * We use spinand_read_reg_op() instead of spinand_get_cfg()
192 		 * here to bypass the config cache.
193 		 */
194 		ret = spinand_read_reg_op(spinand, REG_CFG,
195 					  &spinand->cfg_cache[target]);
196 		if (ret)
197 			return ret;
198 	}
199 
200 	return 0;
201 }
202 
spinand_init_quad_enable(struct spinand_device * spinand)203 static int spinand_init_quad_enable(struct spinand_device *spinand)
204 {
205 	bool enable = false;
206 
207 	if (!(spinand->flags & SPINAND_HAS_QE_BIT))
208 		return 0;
209 
210 	if (spinand->op_templates.read_cache->data.buswidth == 4 ||
211 	    spinand->op_templates.write_cache->data.buswidth == 4 ||
212 	    spinand->op_templates.update_cache->data.buswidth == 4)
213 		enable = true;
214 
215 	return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
216 			       enable ? CFG_QUAD_ENABLE : 0);
217 }
218 
spinand_ecc_enable(struct spinand_device * spinand,bool enable)219 static int spinand_ecc_enable(struct spinand_device *spinand,
220 			      bool enable)
221 {
222 	return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
223 			       enable ? CFG_ECC_ENABLE : 0);
224 }
225 
spinand_write_enable_op(struct spinand_device * spinand)226 static int spinand_write_enable_op(struct spinand_device *spinand)
227 {
228 	struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
229 
230 	return spi_mem_exec_op(spinand->slave, &op);
231 }
232 
spinand_load_page_op(struct spinand_device * spinand,const struct nand_page_io_req * req)233 static int spinand_load_page_op(struct spinand_device *spinand,
234 				const struct nand_page_io_req *req)
235 {
236 	struct nand_device *nand = spinand_to_nand(spinand);
237 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
238 	struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
239 
240 	return spi_mem_exec_op(spinand->slave, &op);
241 }
242 
spinand_read_from_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)243 static int spinand_read_from_cache_op(struct spinand_device *spinand,
244 				      const struct nand_page_io_req *req)
245 {
246 	struct spi_mem_op op = *spinand->op_templates.read_cache;
247 	struct nand_device *nand = spinand_to_nand(spinand);
248 	struct mtd_info *mtd = nanddev_to_mtd(nand);
249 	struct nand_page_io_req adjreq = *req;
250 	unsigned int nbytes = 0;
251 	void *buf = NULL;
252 	u16 column = 0;
253 	int ret;
254 
255 	if (req->datalen) {
256 		adjreq.datalen = nanddev_page_size(nand);
257 		adjreq.dataoffs = 0;
258 		adjreq.databuf.in = spinand->databuf;
259 		buf = spinand->databuf;
260 		nbytes = adjreq.datalen;
261 	}
262 
263 	if (req->ooblen) {
264 		adjreq.ooblen = nanddev_per_page_oobsize(nand);
265 		adjreq.ooboffs = 0;
266 		adjreq.oobbuf.in = spinand->oobbuf;
267 		nbytes += nanddev_per_page_oobsize(nand);
268 		if (!buf) {
269 			buf = spinand->oobbuf;
270 			column = nanddev_page_size(nand);
271 		}
272 	}
273 
274 	spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
275 	op.addr.val = column;
276 
277 	/*
278 	 * Some controllers are limited in term of max RX data size. In this
279 	 * case, just repeat the READ_CACHE operation after updating the
280 	 * column.
281 	 */
282 	while (nbytes) {
283 		op.data.buf.in = buf;
284 		op.data.nbytes = nbytes;
285 		ret = spi_mem_adjust_op_size(spinand->slave, &op);
286 		if (ret)
287 			return ret;
288 
289 		ret = spi_mem_exec_op(spinand->slave, &op);
290 		if (ret)
291 			return ret;
292 
293 		buf += op.data.nbytes;
294 		nbytes -= op.data.nbytes;
295 		op.addr.val += op.data.nbytes;
296 	}
297 
298 	if (req->datalen)
299 		memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
300 		       req->datalen);
301 
302 	if (req->ooblen) {
303 		if (req->mode == MTD_OPS_AUTO_OOB)
304 			mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
305 						    spinand->oobbuf,
306 						    req->ooboffs,
307 						    req->ooblen);
308 		else
309 			memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
310 			       req->ooblen);
311 	}
312 
313 	return 0;
314 }
315 
spinand_write_to_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)316 static int spinand_write_to_cache_op(struct spinand_device *spinand,
317 				     const struct nand_page_io_req *req)
318 {
319 	struct spi_mem_op op = *spinand->op_templates.write_cache;
320 	struct nand_device *nand = spinand_to_nand(spinand);
321 	struct mtd_info *mtd = nanddev_to_mtd(nand);
322 	struct nand_page_io_req adjreq = *req;
323 	unsigned int nbytes = 0;
324 	void *buf = NULL;
325 	u16 column = 0;
326 	int ret;
327 
328 	memset(spinand->databuf, 0xff,
329 	       nanddev_page_size(nand) +
330 	       nanddev_per_page_oobsize(nand));
331 
332 	if (req->datalen) {
333 		memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
334 		       req->datalen);
335 		adjreq.dataoffs = 0;
336 		adjreq.datalen = nanddev_page_size(nand);
337 		adjreq.databuf.out = spinand->databuf;
338 		nbytes = adjreq.datalen;
339 		buf = spinand->databuf;
340 	}
341 
342 	if (req->ooblen) {
343 		if (req->mode == MTD_OPS_AUTO_OOB)
344 			mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
345 						    spinand->oobbuf,
346 						    req->ooboffs,
347 						    req->ooblen);
348 		else
349 			memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
350 			       req->ooblen);
351 
352 		adjreq.ooblen = nanddev_per_page_oobsize(nand);
353 		adjreq.ooboffs = 0;
354 		nbytes += nanddev_per_page_oobsize(nand);
355 		if (!buf) {
356 			buf = spinand->oobbuf;
357 			column = nanddev_page_size(nand);
358 		}
359 	}
360 
361 	spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
362 
363 	op = *spinand->op_templates.write_cache;
364 	op.addr.val = column;
365 
366 	/*
367 	 * Some controllers are limited in term of max TX data size. In this
368 	 * case, split the operation into one LOAD CACHE and one or more
369 	 * LOAD RANDOM CACHE.
370 	 */
371 	while (nbytes) {
372 		op.data.buf.out = buf;
373 		op.data.nbytes = nbytes;
374 
375 		ret = spi_mem_adjust_op_size(spinand->slave, &op);
376 		if (ret)
377 			return ret;
378 
379 		ret = spi_mem_exec_op(spinand->slave, &op);
380 		if (ret)
381 			return ret;
382 
383 		buf += op.data.nbytes;
384 		nbytes -= op.data.nbytes;
385 		op.addr.val += op.data.nbytes;
386 
387 		/*
388 		 * We need to use the RANDOM LOAD CACHE operation if there's
389 		 * more than one iteration, because the LOAD operation resets
390 		 * the cache to 0xff.
391 		 */
392 		if (nbytes) {
393 			column = op.addr.val;
394 			op = *spinand->op_templates.update_cache;
395 			op.addr.val = column;
396 		}
397 	}
398 
399 	return 0;
400 }
401 
spinand_program_op(struct spinand_device * spinand,const struct nand_page_io_req * req)402 static int spinand_program_op(struct spinand_device *spinand,
403 			      const struct nand_page_io_req *req)
404 {
405 	struct nand_device *nand = spinand_to_nand(spinand);
406 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
407 	struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
408 
409 	return spi_mem_exec_op(spinand->slave, &op);
410 }
411 
spinand_erase_op(struct spinand_device * spinand,const struct nand_pos * pos)412 static int spinand_erase_op(struct spinand_device *spinand,
413 			    const struct nand_pos *pos)
414 {
415 	struct nand_device *nand = &spinand->base;
416 	unsigned int row = nanddev_pos_to_row(nand, pos);
417 	struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
418 
419 	return spi_mem_exec_op(spinand->slave, &op);
420 }
421 
spinand_wait(struct spinand_device * spinand,u8 * s)422 static int spinand_wait(struct spinand_device *spinand, u8 *s)
423 {
424 	unsigned long start, stop;
425 	u8 status;
426 	int ret;
427 
428 	start = get_timer(0);
429 	stop = 400;
430 	do {
431 		ret = spinand_read_status(spinand, &status);
432 		if (ret)
433 			return ret;
434 
435 		if (!(status & STATUS_BUSY))
436 			goto out;
437 	} while (get_timer(start) < stop);
438 
439 	/*
440 	 * Extra read, just in case the STATUS_READY bit has changed
441 	 * since our last check
442 	 */
443 	ret = spinand_read_status(spinand, &status);
444 	if (ret)
445 		return ret;
446 
447 out:
448 	if (s)
449 		*s = status;
450 
451 	return status & STATUS_BUSY ? -ETIMEDOUT : 0;
452 }
453 
spinand_read_id_op(struct spinand_device * spinand,u8 * buf)454 static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf)
455 {
456 	struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf,
457 						 SPINAND_MAX_ID_LEN);
458 	int ret;
459 
460 	ret = spi_mem_exec_op(spinand->slave, &op);
461 	if (!ret)
462 		memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
463 
464 	return ret;
465 }
466 
spinand_reset_op(struct spinand_device * spinand)467 static int spinand_reset_op(struct spinand_device *spinand)
468 {
469 	struct spi_mem_op op = SPINAND_RESET_OP;
470 	int ret;
471 
472 	ret = spi_mem_exec_op(spinand->slave, &op);
473 	if (ret)
474 		return ret;
475 
476 	return spinand_wait(spinand, NULL);
477 }
478 
spinand_lock_block(struct spinand_device * spinand,u8 lock)479 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
480 {
481 	return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
482 }
483 
spinand_check_ecc_status(struct spinand_device * spinand,u8 status)484 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
485 {
486 	struct nand_device *nand = spinand_to_nand(spinand);
487 
488 	if (spinand->eccinfo.get_status)
489 		return spinand->eccinfo.get_status(spinand, status);
490 
491 	switch (status & STATUS_ECC_MASK) {
492 	case STATUS_ECC_NO_BITFLIPS:
493 		return 0;
494 
495 	case STATUS_ECC_HAS_BITFLIPS:
496 		/*
497 		 * We have no way to know exactly how many bitflips have been
498 		 * fixed, so let's return the maximum possible value so that
499 		 * wear-leveling layers move the data immediately.
500 		 */
501 		return nand->eccreq.strength;
502 
503 	case STATUS_ECC_UNCOR_ERROR:
504 		return -EBADMSG;
505 
506 	default:
507 		break;
508 	}
509 
510 	return -EINVAL;
511 }
512 
spinand_read_page(struct spinand_device * spinand,const struct nand_page_io_req * req,bool ecc_enabled)513 static int spinand_read_page(struct spinand_device *spinand,
514 			     const struct nand_page_io_req *req,
515 			     bool ecc_enabled)
516 {
517 	u8 status;
518 	int ret;
519 
520 	ret = spinand_load_page_op(spinand, req);
521 	if (ret)
522 		return ret;
523 
524 	ret = spinand_wait(spinand, &status);
525 	if (ret < 0)
526 		return ret;
527 
528 	ret = spinand_read_from_cache_op(spinand, req);
529 	if (ret)
530 		return ret;
531 
532 	if (!ecc_enabled)
533 		return 0;
534 
535 	return spinand_check_ecc_status(spinand, status);
536 }
537 
spinand_write_page(struct spinand_device * spinand,const struct nand_page_io_req * req)538 static int spinand_write_page(struct spinand_device *spinand,
539 			      const struct nand_page_io_req *req)
540 {
541 	u8 status;
542 	int ret;
543 
544 	ret = spinand_write_enable_op(spinand);
545 	if (ret)
546 		return ret;
547 
548 	ret = spinand_write_to_cache_op(spinand, req);
549 	if (ret)
550 		return ret;
551 
552 	ret = spinand_program_op(spinand, req);
553 	if (ret)
554 		return ret;
555 
556 	ret = spinand_wait(spinand, &status);
557 	if (!ret && (status & STATUS_PROG_FAILED))
558 		ret = -EIO;
559 
560 	return ret;
561 }
562 
spinand_mtd_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)563 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
564 			    struct mtd_oob_ops *ops)
565 {
566 	struct spinand_device *spinand = mtd_to_spinand(mtd);
567 	struct nand_device *nand = mtd_to_nanddev(mtd);
568 	unsigned int max_bitflips = 0;
569 	struct nand_io_iter iter;
570 	bool enable_ecc = false;
571 	bool ecc_failed = false;
572 	int ret = 0;
573 
574 	if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout)
575 		enable_ecc = true;
576 
577 #ifndef __UBOOT__
578 	mutex_lock(&spinand->lock);
579 #endif
580 
581 	nanddev_io_for_each_page(nand, from, ops, &iter) {
582 		WATCHDOG_RESET();
583 		ret = spinand_select_target(spinand, iter.req.pos.target);
584 		if (ret)
585 			break;
586 
587 		ret = spinand_ecc_enable(spinand, enable_ecc);
588 		if (ret)
589 			break;
590 
591 		ret = spinand_read_page(spinand, &iter.req, enable_ecc);
592 		if (ret < 0 && ret != -EBADMSG)
593 			break;
594 
595 		if (ret == -EBADMSG) {
596 			ecc_failed = true;
597 			mtd->ecc_stats.failed++;
598 			ret = 0;
599 		} else {
600 			mtd->ecc_stats.corrected += ret;
601 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
602 		}
603 
604 		ops->retlen += iter.req.datalen;
605 		ops->oobretlen += iter.req.ooblen;
606 	}
607 
608 #ifndef __UBOOT__
609 	mutex_unlock(&spinand->lock);
610 #endif
611 	if (ecc_failed && !ret)
612 		ret = -EBADMSG;
613 
614 	return ret ? ret : max_bitflips;
615 }
616 
spinand_mtd_write(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)617 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
618 			     struct mtd_oob_ops *ops)
619 {
620 	struct spinand_device *spinand = mtd_to_spinand(mtd);
621 	struct nand_device *nand = mtd_to_nanddev(mtd);
622 	struct nand_io_iter iter;
623 	bool enable_ecc = false;
624 	int ret = 0;
625 
626 	if (ops->mode != MTD_OPS_RAW && mtd->ooblayout)
627 		enable_ecc = true;
628 
629 #ifndef __UBOOT__
630 	mutex_lock(&spinand->lock);
631 #endif
632 
633 	nanddev_io_for_each_page(nand, to, ops, &iter) {
634 		WATCHDOG_RESET();
635 		ret = spinand_select_target(spinand, iter.req.pos.target);
636 		if (ret)
637 			break;
638 
639 		ret = spinand_ecc_enable(spinand, enable_ecc);
640 		if (ret)
641 			break;
642 
643 		ret = spinand_write_page(spinand, &iter.req);
644 		if (ret)
645 			break;
646 
647 		ops->retlen += iter.req.datalen;
648 		ops->oobretlen += iter.req.ooblen;
649 	}
650 
651 #ifndef __UBOOT__
652 	mutex_unlock(&spinand->lock);
653 #endif
654 
655 	return ret;
656 }
657 
spinand_isbad(struct nand_device * nand,const struct nand_pos * pos)658 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
659 {
660 	struct spinand_device *spinand = nand_to_spinand(nand);
661 	u8 marker[2] = { };
662 	struct nand_page_io_req req = {
663 		.pos = *pos,
664 		.ooblen = sizeof(marker),
665 		.ooboffs = 0,
666 		.oobbuf.in = marker,
667 		.mode = MTD_OPS_RAW,
668 	};
669 	int ret;
670 
671 	ret = spinand_select_target(spinand, pos->target);
672 	if (ret)
673 		return ret;
674 
675 	ret = spinand_read_page(spinand, &req, false);
676 	if (ret)
677 		return ret;
678 
679 	if (marker[0] != 0xff || marker[1] != 0xff)
680 		return true;
681 
682 	return false;
683 }
684 
spinand_mtd_block_isbad(struct mtd_info * mtd,loff_t offs)685 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
686 {
687 	struct nand_device *nand = mtd_to_nanddev(mtd);
688 #ifndef __UBOOT__
689 	struct spinand_device *spinand = nand_to_spinand(nand);
690 #endif
691 	struct nand_pos pos;
692 	int ret;
693 
694 	nanddev_offs_to_pos(nand, offs, &pos);
695 #ifndef __UBOOT__
696 	mutex_lock(&spinand->lock);
697 #endif
698 	ret = nanddev_isbad(nand, &pos);
699 #ifndef __UBOOT__
700 	mutex_unlock(&spinand->lock);
701 #endif
702 	return ret;
703 }
704 
spinand_markbad(struct nand_device * nand,const struct nand_pos * pos)705 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
706 {
707 	struct spinand_device *spinand = nand_to_spinand(nand);
708 	u8 marker[2] = { };
709 	struct nand_page_io_req req = {
710 		.pos = *pos,
711 		.ooboffs = 0,
712 		.ooblen = sizeof(marker),
713 		.oobbuf.out = marker,
714 		.mode = MTD_OPS_RAW,
715 	};
716 	int ret;
717 
718 	ret = spinand_select_target(spinand, pos->target);
719 	if (ret)
720 		return ret;
721 
722 	return spinand_write_page(spinand, &req);
723 }
724 
spinand_mtd_block_markbad(struct mtd_info * mtd,loff_t offs)725 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
726 {
727 	struct nand_device *nand = mtd_to_nanddev(mtd);
728 #ifndef __UBOOT__
729 	struct spinand_device *spinand = nand_to_spinand(nand);
730 #endif
731 	struct nand_pos pos;
732 	int ret;
733 
734 	nanddev_offs_to_pos(nand, offs, &pos);
735 #ifndef __UBOOT__
736 	mutex_lock(&spinand->lock);
737 #endif
738 	ret = nanddev_markbad(nand, &pos);
739 #ifndef __UBOOT__
740 	mutex_unlock(&spinand->lock);
741 #endif
742 	return ret;
743 }
744 
spinand_erase(struct nand_device * nand,const struct nand_pos * pos)745 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
746 {
747 	struct spinand_device *spinand = nand_to_spinand(nand);
748 	u8 status;
749 	int ret;
750 
751 	ret = spinand_select_target(spinand, pos->target);
752 	if (ret)
753 		return ret;
754 
755 	ret = spinand_write_enable_op(spinand);
756 	if (ret)
757 		return ret;
758 
759 	ret = spinand_erase_op(spinand, pos);
760 	if (ret)
761 		return ret;
762 
763 	ret = spinand_wait(spinand, &status);
764 	if (!ret && (status & STATUS_ERASE_FAILED))
765 		ret = -EIO;
766 
767 	return ret;
768 }
769 
spinand_mtd_erase(struct mtd_info * mtd,struct erase_info * einfo)770 static int spinand_mtd_erase(struct mtd_info *mtd,
771 			     struct erase_info *einfo)
772 {
773 #ifndef __UBOOT__
774 	struct spinand_device *spinand = mtd_to_spinand(mtd);
775 #endif
776 	int ret;
777 
778 #ifndef __UBOOT__
779 	mutex_lock(&spinand->lock);
780 #endif
781 	ret = nanddev_mtd_erase(mtd, einfo);
782 #ifndef __UBOOT__
783 	mutex_unlock(&spinand->lock);
784 #endif
785 
786 	return ret;
787 }
788 
spinand_mtd_block_isreserved(struct mtd_info * mtd,loff_t offs)789 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
790 {
791 #ifndef __UBOOT__
792 	struct spinand_device *spinand = mtd_to_spinand(mtd);
793 #endif
794 	struct nand_device *nand = mtd_to_nanddev(mtd);
795 	struct nand_pos pos;
796 	int ret;
797 
798 	nanddev_offs_to_pos(nand, offs, &pos);
799 #ifndef __UBOOT__
800 	mutex_lock(&spinand->lock);
801 #endif
802 	ret = nanddev_isreserved(nand, &pos);
803 #ifndef __UBOOT__
804 	mutex_unlock(&spinand->lock);
805 #endif
806 
807 	return ret;
808 }
809 
810 const struct spi_mem_op *
spinand_find_supported_op(struct spinand_device * spinand,const struct spi_mem_op * ops,unsigned int nops)811 spinand_find_supported_op(struct spinand_device *spinand,
812 			  const struct spi_mem_op *ops,
813 			  unsigned int nops)
814 {
815 	unsigned int i;
816 
817 	for (i = 0; i < nops; i++) {
818 		if (spi_mem_supports_op(spinand->slave, &ops[i]))
819 			return &ops[i];
820 	}
821 
822 	return NULL;
823 }
824 
825 static const struct nand_ops spinand_ops = {
826 	.erase = spinand_erase,
827 	.markbad = spinand_markbad,
828 	.isbad = spinand_isbad,
829 };
830 
831 static const struct spinand_manufacturer *spinand_manufacturers[] = {
832 	&gigadevice_spinand_manufacturer,
833 	&macronix_spinand_manufacturer,
834 	&micron_spinand_manufacturer,
835 	&toshiba_spinand_manufacturer,
836 	&winbond_spinand_manufacturer,
837 };
838 
spinand_manufacturer_detect(struct spinand_device * spinand)839 static int spinand_manufacturer_detect(struct spinand_device *spinand)
840 {
841 	unsigned int i;
842 	int ret;
843 
844 	for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
845 		ret = spinand_manufacturers[i]->ops->detect(spinand);
846 		if (ret > 0) {
847 			spinand->manufacturer = spinand_manufacturers[i];
848 			return 0;
849 		} else if (ret < 0) {
850 			return ret;
851 		}
852 	}
853 
854 	return -ENOTSUPP;
855 }
856 
spinand_manufacturer_init(struct spinand_device * spinand)857 static int spinand_manufacturer_init(struct spinand_device *spinand)
858 {
859 	if (spinand->manufacturer->ops->init)
860 		return spinand->manufacturer->ops->init(spinand);
861 
862 	return 0;
863 }
864 
spinand_manufacturer_cleanup(struct spinand_device * spinand)865 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
866 {
867 	/* Release manufacturer private data */
868 	if (spinand->manufacturer->ops->cleanup)
869 		return spinand->manufacturer->ops->cleanup(spinand);
870 }
871 
872 static const struct spi_mem_op *
spinand_select_op_variant(struct spinand_device * spinand,const struct spinand_op_variants * variants)873 spinand_select_op_variant(struct spinand_device *spinand,
874 			  const struct spinand_op_variants *variants)
875 {
876 	struct nand_device *nand = spinand_to_nand(spinand);
877 	unsigned int i;
878 
879 	for (i = 0; i < variants->nops; i++) {
880 		struct spi_mem_op op = variants->ops[i];
881 		unsigned int nbytes;
882 		int ret;
883 
884 		nbytes = nanddev_per_page_oobsize(nand) +
885 			 nanddev_page_size(nand);
886 
887 		while (nbytes) {
888 			op.data.nbytes = nbytes;
889 			ret = spi_mem_adjust_op_size(spinand->slave, &op);
890 			if (ret)
891 				break;
892 
893 			if (!spi_mem_supports_op(spinand->slave, &op))
894 				break;
895 
896 			nbytes -= op.data.nbytes;
897 		}
898 
899 		if (!nbytes)
900 			return &variants->ops[i];
901 	}
902 
903 	return NULL;
904 }
905 
906 /**
907  * spinand_match_and_init() - Try to find a match between a device ID and an
908  *			      entry in a spinand_info table
909  * @spinand: SPI NAND object
910  * @table: SPI NAND device description table
911  * @table_size: size of the device description table
912  *
913  * Should be used by SPI NAND manufacturer drivers when they want to find a
914  * match between a device ID retrieved through the READ_ID command and an
915  * entry in the SPI NAND description table. If a match is found, the spinand
916  * object will be initialized with information provided by the matching
917  * spinand_info entry.
918  *
919  * Return: 0 on success, a negative error code otherwise.
920  */
spinand_match_and_init(struct spinand_device * spinand,const struct spinand_info * table,unsigned int table_size,u8 devid)921 int spinand_match_and_init(struct spinand_device *spinand,
922 			   const struct spinand_info *table,
923 			   unsigned int table_size, u8 devid)
924 {
925 	struct nand_device *nand = spinand_to_nand(spinand);
926 	unsigned int i;
927 
928 	for (i = 0; i < table_size; i++) {
929 		const struct spinand_info *info = &table[i];
930 		const struct spi_mem_op *op;
931 
932 		if (devid != info->devid)
933 			continue;
934 
935 		nand->memorg = table[i].memorg;
936 		nand->eccreq = table[i].eccreq;
937 		spinand->eccinfo = table[i].eccinfo;
938 		spinand->flags = table[i].flags;
939 		spinand->select_target = table[i].select_target;
940 
941 		op = spinand_select_op_variant(spinand,
942 					       info->op_variants.read_cache);
943 		if (!op)
944 			return -ENOTSUPP;
945 
946 		spinand->op_templates.read_cache = op;
947 
948 		op = spinand_select_op_variant(spinand,
949 					       info->op_variants.write_cache);
950 		if (!op)
951 			return -ENOTSUPP;
952 
953 		spinand->op_templates.write_cache = op;
954 
955 		op = spinand_select_op_variant(spinand,
956 					       info->op_variants.update_cache);
957 		spinand->op_templates.update_cache = op;
958 
959 		return 0;
960 	}
961 
962 	return -ENOTSUPP;
963 }
964 
spinand_detect(struct spinand_device * spinand)965 static int spinand_detect(struct spinand_device *spinand)
966 {
967 	struct nand_device *nand = spinand_to_nand(spinand);
968 	int ret;
969 
970 	ret = spinand_reset_op(spinand);
971 	if (ret)
972 		return ret;
973 
974 	ret = spinand_read_id_op(spinand, spinand->id.data);
975 	if (ret)
976 		return ret;
977 
978 	spinand->id.len = SPINAND_MAX_ID_LEN;
979 
980 	ret = spinand_manufacturer_detect(spinand);
981 	if (ret) {
982 		dev_err(spinand->slave->dev, "unknown raw ID %*phN\n",
983 			SPINAND_MAX_ID_LEN, spinand->id.data);
984 		return ret;
985 	}
986 
987 	if (nand->memorg.ntargets > 1 && !spinand->select_target) {
988 		dev_err(spinand->slave->dev,
989 			"SPI NANDs with more than one die must implement ->select_target()\n");
990 		return -EINVAL;
991 	}
992 
993 	dev_info(spinand->slave->dev,
994 		 "%s SPI NAND was found.\n", spinand->manufacturer->name);
995 	dev_info(spinand->slave->dev,
996 		 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
997 		 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
998 		 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
999 
1000 	return 0;
1001 }
1002 
spinand_noecc_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * region)1003 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
1004 				       struct mtd_oob_region *region)
1005 {
1006 	return -ERANGE;
1007 }
1008 
spinand_noecc_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * region)1009 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
1010 					struct mtd_oob_region *region)
1011 {
1012 	if (section)
1013 		return -ERANGE;
1014 
1015 	/* Reserve 2 bytes for the BBM. */
1016 	region->offset = 2;
1017 	region->length = 62;
1018 
1019 	return 0;
1020 }
1021 
1022 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
1023 	.ecc = spinand_noecc_ooblayout_ecc,
1024 	.rfree = spinand_noecc_ooblayout_free,
1025 };
1026 
spinand_init(struct spinand_device * spinand)1027 static int spinand_init(struct spinand_device *spinand)
1028 {
1029 	struct mtd_info *mtd = spinand_to_mtd(spinand);
1030 	struct nand_device *nand = mtd_to_nanddev(mtd);
1031 	int ret, i;
1032 
1033 	/*
1034 	 * We need a scratch buffer because the spi_mem interface requires that
1035 	 * buf passed in spi_mem_op->data.buf be DMA-able.
1036 	 */
1037 	spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1038 	if (!spinand->scratchbuf)
1039 		return -ENOMEM;
1040 
1041 	ret = spinand_detect(spinand);
1042 	if (ret)
1043 		goto err_free_bufs;
1044 
1045 	/*
1046 	 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1047 	 * may use this buffer for DMA access.
1048 	 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1049 	 */
1050 	spinand->databuf = kzalloc(nanddev_page_size(nand) +
1051 			       nanddev_per_page_oobsize(nand),
1052 			       GFP_KERNEL);
1053 	if (!spinand->databuf) {
1054 		ret = -ENOMEM;
1055 		goto err_free_bufs;
1056 	}
1057 
1058 	spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1059 
1060 	ret = spinand_init_cfg_cache(spinand);
1061 	if (ret)
1062 		goto err_free_bufs;
1063 
1064 	ret = spinand_init_quad_enable(spinand);
1065 	if (ret)
1066 		goto err_free_bufs;
1067 
1068 	ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1069 	if (ret)
1070 		goto err_free_bufs;
1071 
1072 	ret = spinand_manufacturer_init(spinand);
1073 	if (ret) {
1074 		dev_err(spinand->slave->dev,
1075 			"Failed to initialize the SPI NAND chip (err = %d)\n",
1076 			ret);
1077 		goto err_free_bufs;
1078 	}
1079 
1080 	/* After power up, all blocks are locked, so unlock them here. */
1081 	for (i = 0; i < nand->memorg.ntargets; i++) {
1082 		ret = spinand_select_target(spinand, i);
1083 		if (ret)
1084 			goto err_free_bufs;
1085 
1086 		ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1087 		if (ret)
1088 			goto err_free_bufs;
1089 	}
1090 
1091 	ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1092 	if (ret)
1093 		goto err_manuf_cleanup;
1094 
1095 	/*
1096 	 * Right now, we don't support ECC, so let the whole oob
1097 	 * area is available for user.
1098 	 */
1099 	mtd->_read_oob = spinand_mtd_read;
1100 	mtd->_write_oob = spinand_mtd_write;
1101 	mtd->_block_isbad = spinand_mtd_block_isbad;
1102 	mtd->_block_markbad = spinand_mtd_block_markbad;
1103 	mtd->_block_isreserved = spinand_mtd_block_isreserved;
1104 	mtd->_erase = spinand_mtd_erase;
1105 
1106 	if (spinand->eccinfo.ooblayout)
1107 		mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
1108 	else
1109 		mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
1110 
1111 	ret = mtd_ooblayout_count_freebytes(mtd);
1112 	if (ret < 0)
1113 		goto err_cleanup_nanddev;
1114 
1115 	mtd->oobavail = ret;
1116 
1117 	return 0;
1118 
1119 err_cleanup_nanddev:
1120 	nanddev_cleanup(nand);
1121 
1122 err_manuf_cleanup:
1123 	spinand_manufacturer_cleanup(spinand);
1124 
1125 err_free_bufs:
1126 	kfree(spinand->databuf);
1127 	kfree(spinand->scratchbuf);
1128 	return ret;
1129 }
1130 
spinand_cleanup(struct spinand_device * spinand)1131 static void spinand_cleanup(struct spinand_device *spinand)
1132 {
1133 	struct nand_device *nand = spinand_to_nand(spinand);
1134 
1135 	nanddev_cleanup(nand);
1136 	spinand_manufacturer_cleanup(spinand);
1137 	kfree(spinand->databuf);
1138 	kfree(spinand->scratchbuf);
1139 }
1140 
spinand_probe(struct udevice * dev)1141 static int spinand_probe(struct udevice *dev)
1142 {
1143 	struct spinand_device *spinand = dev_get_priv(dev);
1144 	struct spi_slave *slave = dev_get_parent_priv(dev);
1145 	struct mtd_info *mtd = dev_get_uclass_priv(dev);
1146 	struct nand_device *nand = spinand_to_nand(spinand);
1147 	int ret;
1148 
1149 #ifndef __UBOOT__
1150 	spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1151 			       GFP_KERNEL);
1152 	if (!spinand)
1153 		return -ENOMEM;
1154 
1155 	spinand->spimem = mem;
1156 	spi_mem_set_drvdata(mem, spinand);
1157 	spinand_set_of_node(spinand, mem->spi->dev.of_node);
1158 	mutex_init(&spinand->lock);
1159 
1160 	mtd = spinand_to_mtd(spinand);
1161 	mtd->dev.parent = &mem->spi->dev;
1162 #else
1163 	nand->mtd = mtd;
1164 	mtd->priv = nand;
1165 	mtd->dev = dev;
1166 	mtd->name = malloc(20);
1167 	if (!mtd->name)
1168 		return -ENOMEM;
1169 	sprintf(mtd->name, "spi-nand%d", spi_nand_idx++);
1170 	spinand->slave = slave;
1171 	spinand_set_ofnode(spinand, dev_ofnode(dev));
1172 #endif
1173 
1174 	ret = spinand_init(spinand);
1175 	if (ret)
1176 		return ret;
1177 
1178 #ifndef __UBOOT__
1179 	ret = mtd_device_register(mtd, NULL, 0);
1180 #else
1181 	ret = add_mtd_device(mtd);
1182 #endif
1183 	if (ret)
1184 		goto err_spinand_cleanup;
1185 
1186 	return 0;
1187 
1188 err_spinand_cleanup:
1189 	spinand_cleanup(spinand);
1190 
1191 	return ret;
1192 }
1193 
1194 #ifndef __UBOOT__
spinand_remove(struct udevice * slave)1195 static int spinand_remove(struct udevice *slave)
1196 {
1197 	struct spinand_device *spinand;
1198 	struct mtd_info *mtd;
1199 	int ret;
1200 
1201 	spinand = spi_mem_get_drvdata(slave);
1202 	mtd = spinand_to_mtd(spinand);
1203 	free(mtd->name);
1204 
1205 	ret = mtd_device_unregister(mtd);
1206 	if (ret)
1207 		return ret;
1208 
1209 	spinand_cleanup(spinand);
1210 
1211 	return 0;
1212 }
1213 
1214 static const struct spi_device_id spinand_ids[] = {
1215 	{ .name = "spi-nand" },
1216 	{ /* sentinel */ },
1217 };
1218 
1219 #ifdef CONFIG_OF
1220 static const struct of_device_id spinand_of_ids[] = {
1221 	{ .compatible = "spi-nand" },
1222 	{ /* sentinel */ },
1223 };
1224 #endif
1225 
1226 static struct spi_mem_driver spinand_drv = {
1227 	.spidrv = {
1228 		.id_table = spinand_ids,
1229 		.driver = {
1230 			.name = "spi-nand",
1231 			.of_match_table = of_match_ptr(spinand_of_ids),
1232 		},
1233 	},
1234 	.probe = spinand_probe,
1235 	.remove = spinand_remove,
1236 };
1237 module_spi_mem_driver(spinand_drv);
1238 
1239 MODULE_DESCRIPTION("SPI NAND framework");
1240 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1241 MODULE_LICENSE("GPL v2");
1242 #endif /* __UBOOT__ */
1243 
1244 static const struct udevice_id spinand_ids[] = {
1245 	{ .compatible = "spi-nand" },
1246 	{ /* sentinel */ },
1247 };
1248 
1249 U_BOOT_DRIVER(spinand) = {
1250 	.name = "spi_nand",
1251 	.id = UCLASS_MTD,
1252 	.of_match = spinand_ids,
1253 	.priv_auto	= sizeof(struct spinand_device),
1254 	.probe = spinand_probe,
1255 };
1256