1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 NXP Semiconductors
4  * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
5  */
6 
7 #include <common.h>
8 #include <blk.h>
9 #include <cpu_func.h>
10 #include <dm.h>
11 #include <errno.h>
12 #include <log.h>
13 #include <malloc.h>
14 #include <memalign.h>
15 #include <pci.h>
16 #include <time.h>
17 #include <dm/device-internal.h>
18 #include <linux/compat.h>
19 #include "nvme.h"
20 
21 #define NVME_Q_DEPTH		2
22 #define NVME_AQ_DEPTH		2
23 #define NVME_SQ_SIZE(depth)	(depth * sizeof(struct nvme_command))
24 #define NVME_CQ_SIZE(depth)	(depth * sizeof(struct nvme_completion))
25 #define NVME_CQ_ALLOCATION	ALIGN(NVME_CQ_SIZE(NVME_Q_DEPTH), \
26 				      ARCH_DMA_MINALIGN)
27 #define ADMIN_TIMEOUT		60
28 #define IO_TIMEOUT		30
29 #define MAX_PRP_POOL		512
30 
31 enum nvme_queue_id {
32 	NVME_ADMIN_Q,
33 	NVME_IO_Q,
34 	NVME_Q_NUM,
35 };
36 
37 /*
38  * An NVM Express queue. Each device has at least two (one for admin
39  * commands and one for I/O commands).
40  */
41 struct nvme_queue {
42 	struct nvme_dev *dev;
43 	struct nvme_command *sq_cmds;
44 	struct nvme_completion *cqes;
45 	wait_queue_head_t sq_full;
46 	u32 __iomem *q_db;
47 	u16 q_depth;
48 	s16 cq_vector;
49 	u16 sq_head;
50 	u16 sq_tail;
51 	u16 cq_head;
52 	u16 qid;
53 	u8 cq_phase;
54 	u8 cqe_seen;
55 	unsigned long cmdid_data[];
56 };
57 
nvme_wait_ready(struct nvme_dev * dev,bool enabled)58 static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
59 {
60 	u32 bit = enabled ? NVME_CSTS_RDY : 0;
61 	int timeout;
62 	ulong start;
63 
64 	/* Timeout field in the CAP register is in 500 millisecond units */
65 	timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
66 
67 	start = get_timer(0);
68 	while (get_timer(start) < timeout) {
69 		if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
70 			return 0;
71 	}
72 
73 	return -ETIME;
74 }
75 
nvme_setup_prps(struct nvme_dev * dev,u64 * prp2,int total_len,u64 dma_addr)76 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
77 			   int total_len, u64 dma_addr)
78 {
79 	u32 page_size = dev->page_size;
80 	int offset = dma_addr & (page_size - 1);
81 	u64 *prp_pool;
82 	int length = total_len;
83 	int i, nprps;
84 	u32 prps_per_page = page_size >> 3;
85 	u32 num_pages;
86 
87 	length -= (page_size - offset);
88 
89 	if (length <= 0) {
90 		*prp2 = 0;
91 		return 0;
92 	}
93 
94 	if (length)
95 		dma_addr += (page_size - offset);
96 
97 	if (length <= page_size) {
98 		*prp2 = dma_addr;
99 		return 0;
100 	}
101 
102 	nprps = DIV_ROUND_UP(length, page_size);
103 	num_pages = DIV_ROUND_UP(nprps, prps_per_page);
104 
105 	if (nprps > dev->prp_entry_num) {
106 		free(dev->prp_pool);
107 		/*
108 		 * Always increase in increments of pages.  It doesn't waste
109 		 * much memory and reduces the number of allocations.
110 		 */
111 		dev->prp_pool = memalign(page_size, num_pages * page_size);
112 		if (!dev->prp_pool) {
113 			printf("Error: malloc prp_pool fail\n");
114 			return -ENOMEM;
115 		}
116 		dev->prp_entry_num = prps_per_page * num_pages;
117 	}
118 
119 	prp_pool = dev->prp_pool;
120 	i = 0;
121 	while (nprps) {
122 		if (i == ((page_size >> 3) - 1)) {
123 			*(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
124 					page_size);
125 			i = 0;
126 			prp_pool += page_size;
127 		}
128 		*(prp_pool + i++) = cpu_to_le64(dma_addr);
129 		dma_addr += page_size;
130 		nprps--;
131 	}
132 	*prp2 = (ulong)dev->prp_pool;
133 
134 	flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
135 			   dev->prp_entry_num * sizeof(u64));
136 
137 	return 0;
138 }
139 
nvme_get_cmd_id(void)140 static __le16 nvme_get_cmd_id(void)
141 {
142 	static unsigned short cmdid;
143 
144 	return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
145 }
146 
nvme_read_completion_status(struct nvme_queue * nvmeq,u16 index)147 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
148 {
149 	/*
150 	 * Single CQ entries are always smaller than a cache line, so we
151 	 * can't invalidate them individually. However CQ entries are
152 	 * read only by the CPU, so it's safe to always invalidate all of them,
153 	 * as the cache line should never become dirty.
154 	 */
155 	ulong start = (ulong)&nvmeq->cqes[0];
156 	ulong stop = start + NVME_CQ_ALLOCATION;
157 
158 	invalidate_dcache_range(start, stop);
159 
160 	return readw(&(nvmeq->cqes[index].status));
161 }
162 
163 /**
164  * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
165  *
166  * @nvmeq:	The queue to use
167  * @cmd:	The command to send
168  */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)169 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
170 {
171 	u16 tail = nvmeq->sq_tail;
172 
173 	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
174 	flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
175 			   (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
176 
177 	if (++tail == nvmeq->q_depth)
178 		tail = 0;
179 	writel(tail, nvmeq->q_db);
180 	nvmeq->sq_tail = tail;
181 }
182 
nvme_submit_sync_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,u32 * result,unsigned timeout)183 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
184 				struct nvme_command *cmd,
185 				u32 *result, unsigned timeout)
186 {
187 	u16 head = nvmeq->cq_head;
188 	u16 phase = nvmeq->cq_phase;
189 	u16 status;
190 	ulong start_time;
191 	ulong timeout_us = timeout * 100000;
192 
193 	cmd->common.command_id = nvme_get_cmd_id();
194 	nvme_submit_cmd(nvmeq, cmd);
195 
196 	start_time = timer_get_us();
197 
198 	for (;;) {
199 		status = nvme_read_completion_status(nvmeq, head);
200 		if ((status & 0x01) == phase)
201 			break;
202 		if (timeout_us > 0 && (timer_get_us() - start_time)
203 		    >= timeout_us)
204 			return -ETIMEDOUT;
205 	}
206 
207 	status >>= 1;
208 	if (status) {
209 		printf("ERROR: status = %x, phase = %d, head = %d\n",
210 		       status, phase, head);
211 		status = 0;
212 		if (++head == nvmeq->q_depth) {
213 			head = 0;
214 			phase = !phase;
215 		}
216 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
217 		nvmeq->cq_head = head;
218 		nvmeq->cq_phase = phase;
219 
220 		return -EIO;
221 	}
222 
223 	if (result)
224 		*result = readl(&(nvmeq->cqes[head].result));
225 
226 	if (++head == nvmeq->q_depth) {
227 		head = 0;
228 		phase = !phase;
229 	}
230 	writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
231 	nvmeq->cq_head = head;
232 	nvmeq->cq_phase = phase;
233 
234 	return status;
235 }
236 
nvme_submit_admin_cmd(struct nvme_dev * dev,struct nvme_command * cmd,u32 * result)237 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
238 				 u32 *result)
239 {
240 	return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
241 				    result, ADMIN_TIMEOUT);
242 }
243 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)244 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
245 					   int qid, int depth)
246 {
247 	struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
248 	if (!nvmeq)
249 		return NULL;
250 	memset(nvmeq, 0, sizeof(*nvmeq));
251 
252 	nvmeq->cqes = (void *)memalign(4096, NVME_CQ_ALLOCATION);
253 	if (!nvmeq->cqes)
254 		goto free_nvmeq;
255 	memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
256 
257 	nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
258 	if (!nvmeq->sq_cmds)
259 		goto free_queue;
260 	memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
261 
262 	nvmeq->dev = dev;
263 
264 	nvmeq->cq_head = 0;
265 	nvmeq->cq_phase = 1;
266 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
267 	nvmeq->q_depth = depth;
268 	nvmeq->qid = qid;
269 	dev->queue_count++;
270 	dev->queues[qid] = nvmeq;
271 
272 	return nvmeq;
273 
274  free_queue:
275 	free((void *)nvmeq->cqes);
276  free_nvmeq:
277 	free(nvmeq);
278 
279 	return NULL;
280 }
281 
nvme_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)282 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
283 {
284 	struct nvme_command c;
285 
286 	memset(&c, 0, sizeof(c));
287 	c.delete_queue.opcode = opcode;
288 	c.delete_queue.qid = cpu_to_le16(id);
289 
290 	return nvme_submit_admin_cmd(dev, &c, NULL);
291 }
292 
nvme_delete_sq(struct nvme_dev * dev,u16 sqid)293 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
294 {
295 	return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
296 }
297 
nvme_delete_cq(struct nvme_dev * dev,u16 cqid)298 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
299 {
300 	return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
301 }
302 
nvme_enable_ctrl(struct nvme_dev * dev)303 static int nvme_enable_ctrl(struct nvme_dev *dev)
304 {
305 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
306 	dev->ctrl_config |= NVME_CC_ENABLE;
307 	writel(dev->ctrl_config, &dev->bar->cc);
308 
309 	return nvme_wait_ready(dev, true);
310 }
311 
nvme_disable_ctrl(struct nvme_dev * dev)312 static int nvme_disable_ctrl(struct nvme_dev *dev)
313 {
314 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
315 	dev->ctrl_config &= ~NVME_CC_ENABLE;
316 	writel(dev->ctrl_config, &dev->bar->cc);
317 
318 	return nvme_wait_ready(dev, false);
319 }
320 
nvme_free_queue(struct nvme_queue * nvmeq)321 static void nvme_free_queue(struct nvme_queue *nvmeq)
322 {
323 	free((void *)nvmeq->cqes);
324 	free(nvmeq->sq_cmds);
325 	free(nvmeq);
326 }
327 
nvme_free_queues(struct nvme_dev * dev,int lowest)328 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
329 {
330 	int i;
331 
332 	for (i = dev->queue_count - 1; i >= lowest; i--) {
333 		struct nvme_queue *nvmeq = dev->queues[i];
334 		dev->queue_count--;
335 		dev->queues[i] = NULL;
336 		nvme_free_queue(nvmeq);
337 	}
338 }
339 
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)340 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
341 {
342 	struct nvme_dev *dev = nvmeq->dev;
343 
344 	nvmeq->sq_tail = 0;
345 	nvmeq->cq_head = 0;
346 	nvmeq->cq_phase = 1;
347 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
348 	memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
349 	flush_dcache_range((ulong)nvmeq->cqes,
350 			   (ulong)nvmeq->cqes + NVME_CQ_ALLOCATION);
351 	dev->online_queues++;
352 }
353 
nvme_configure_admin_queue(struct nvme_dev * dev)354 static int nvme_configure_admin_queue(struct nvme_dev *dev)
355 {
356 	int result;
357 	u32 aqa;
358 	u64 cap = dev->cap;
359 	struct nvme_queue *nvmeq;
360 	/* most architectures use 4KB as the page size */
361 	unsigned page_shift = 12;
362 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
363 	unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
364 
365 	if (page_shift < dev_page_min) {
366 		debug("Device minimum page size (%u) too large for host (%u)\n",
367 		      1 << dev_page_min, 1 << page_shift);
368 		return -ENODEV;
369 	}
370 
371 	if (page_shift > dev_page_max) {
372 		debug("Device maximum page size (%u) smaller than host (%u)\n",
373 		      1 << dev_page_max, 1 << page_shift);
374 		page_shift = dev_page_max;
375 	}
376 
377 	result = nvme_disable_ctrl(dev);
378 	if (result < 0)
379 		return result;
380 
381 	nvmeq = dev->queues[NVME_ADMIN_Q];
382 	if (!nvmeq) {
383 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
384 		if (!nvmeq)
385 			return -ENOMEM;
386 	}
387 
388 	aqa = nvmeq->q_depth - 1;
389 	aqa |= aqa << 16;
390 
391 	dev->page_size = 1 << page_shift;
392 
393 	dev->ctrl_config = NVME_CC_CSS_NVM;
394 	dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
395 	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
396 	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
397 
398 	writel(aqa, &dev->bar->aqa);
399 	nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
400 	nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
401 
402 	result = nvme_enable_ctrl(dev);
403 	if (result)
404 		goto free_nvmeq;
405 
406 	nvmeq->cq_vector = 0;
407 
408 	nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
409 
410 	return result;
411 
412  free_nvmeq:
413 	nvme_free_queues(dev, 0);
414 
415 	return result;
416 }
417 
nvme_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)418 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
419 			    struct nvme_queue *nvmeq)
420 {
421 	struct nvme_command c;
422 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
423 
424 	memset(&c, 0, sizeof(c));
425 	c.create_cq.opcode = nvme_admin_create_cq;
426 	c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
427 	c.create_cq.cqid = cpu_to_le16(qid);
428 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
429 	c.create_cq.cq_flags = cpu_to_le16(flags);
430 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
431 
432 	return nvme_submit_admin_cmd(dev, &c, NULL);
433 }
434 
nvme_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)435 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
436 			    struct nvme_queue *nvmeq)
437 {
438 	struct nvme_command c;
439 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
440 
441 	memset(&c, 0, sizeof(c));
442 	c.create_sq.opcode = nvme_admin_create_sq;
443 	c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
444 	c.create_sq.sqid = cpu_to_le16(qid);
445 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
446 	c.create_sq.sq_flags = cpu_to_le16(flags);
447 	c.create_sq.cqid = cpu_to_le16(qid);
448 
449 	return nvme_submit_admin_cmd(dev, &c, NULL);
450 }
451 
nvme_identify(struct nvme_dev * dev,unsigned nsid,unsigned cns,dma_addr_t dma_addr)452 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
453 		  unsigned cns, dma_addr_t dma_addr)
454 {
455 	struct nvme_command c;
456 	u32 page_size = dev->page_size;
457 	int offset = dma_addr & (page_size - 1);
458 	int length = sizeof(struct nvme_id_ctrl);
459 	int ret;
460 
461 	memset(&c, 0, sizeof(c));
462 	c.identify.opcode = nvme_admin_identify;
463 	c.identify.nsid = cpu_to_le32(nsid);
464 	c.identify.prp1 = cpu_to_le64(dma_addr);
465 
466 	length -= (page_size - offset);
467 	if (length <= 0) {
468 		c.identify.prp2 = 0;
469 	} else {
470 		dma_addr += (page_size - offset);
471 		c.identify.prp2 = cpu_to_le64(dma_addr);
472 	}
473 
474 	c.identify.cns = cpu_to_le32(cns);
475 
476 	invalidate_dcache_range(dma_addr,
477 				dma_addr + sizeof(struct nvme_id_ctrl));
478 
479 	ret = nvme_submit_admin_cmd(dev, &c, NULL);
480 	if (!ret)
481 		invalidate_dcache_range(dma_addr,
482 					dma_addr + sizeof(struct nvme_id_ctrl));
483 
484 	return ret;
485 }
486 
nvme_get_features(struct nvme_dev * dev,unsigned fid,unsigned nsid,dma_addr_t dma_addr,u32 * result)487 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
488 		      dma_addr_t dma_addr, u32 *result)
489 {
490 	struct nvme_command c;
491 	int ret;
492 
493 	memset(&c, 0, sizeof(c));
494 	c.features.opcode = nvme_admin_get_features;
495 	c.features.nsid = cpu_to_le32(nsid);
496 	c.features.prp1 = cpu_to_le64(dma_addr);
497 	c.features.fid = cpu_to_le32(fid);
498 
499 	ret = nvme_submit_admin_cmd(dev, &c, result);
500 
501 	/*
502 	 * TODO: Add some cache invalidation when a DMA buffer is involved
503 	 * in the request, here and before the command gets submitted. The
504 	 * buffer size varies by feature, also some features use a different
505 	 * field in the command packet to hold the buffer address.
506 	 * Section 5.21.1 (Set Features command) in the NVMe specification
507 	 * details the buffer requirements for each feature.
508 	 *
509 	 * At the moment there is no user of this function.
510 	 */
511 
512 	return ret;
513 }
514 
nvme_set_features(struct nvme_dev * dev,unsigned fid,unsigned dword11,dma_addr_t dma_addr,u32 * result)515 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
516 		      dma_addr_t dma_addr, u32 *result)
517 {
518 	struct nvme_command c;
519 
520 	memset(&c, 0, sizeof(c));
521 	c.features.opcode = nvme_admin_set_features;
522 	c.features.prp1 = cpu_to_le64(dma_addr);
523 	c.features.fid = cpu_to_le32(fid);
524 	c.features.dword11 = cpu_to_le32(dword11);
525 
526 	/*
527 	 * TODO: Add a cache clean (aka flush) operation when a DMA buffer is
528 	 * involved in the request. The buffer size varies by feature, also
529 	 * some features use a different field in the command packet to hold
530 	 * the buffer address. Section 5.21.1 (Set Features command) in the
531 	 * NVMe specification details the buffer requirements for each
532 	 * feature.
533 	 * At the moment the only user of this function is not using
534 	 * any DMA buffer at all.
535 	 */
536 
537 	return nvme_submit_admin_cmd(dev, &c, result);
538 }
539 
nvme_create_queue(struct nvme_queue * nvmeq,int qid)540 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
541 {
542 	struct nvme_dev *dev = nvmeq->dev;
543 	int result;
544 
545 	nvmeq->cq_vector = qid - 1;
546 	result = nvme_alloc_cq(dev, qid, nvmeq);
547 	if (result < 0)
548 		goto release_cq;
549 
550 	result = nvme_alloc_sq(dev, qid, nvmeq);
551 	if (result < 0)
552 		goto release_sq;
553 
554 	nvme_init_queue(nvmeq, qid);
555 
556 	return result;
557 
558  release_sq:
559 	nvme_delete_sq(dev, qid);
560  release_cq:
561 	nvme_delete_cq(dev, qid);
562 
563 	return result;
564 }
565 
nvme_set_queue_count(struct nvme_dev * dev,int count)566 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
567 {
568 	int status;
569 	u32 result;
570 	u32 q_count = (count - 1) | ((count - 1) << 16);
571 
572 	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
573 			q_count, 0, &result);
574 
575 	if (status < 0)
576 		return status;
577 	if (status > 1)
578 		return 0;
579 
580 	return min(result & 0xffff, result >> 16) + 1;
581 }
582 
nvme_create_io_queues(struct nvme_dev * dev)583 static void nvme_create_io_queues(struct nvme_dev *dev)
584 {
585 	unsigned int i;
586 
587 	for (i = dev->queue_count; i <= dev->max_qid; i++)
588 		if (!nvme_alloc_queue(dev, i, dev->q_depth))
589 			break;
590 
591 	for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
592 		if (nvme_create_queue(dev->queues[i], i))
593 			break;
594 }
595 
nvme_setup_io_queues(struct nvme_dev * dev)596 static int nvme_setup_io_queues(struct nvme_dev *dev)
597 {
598 	int nr_io_queues;
599 	int result;
600 
601 	nr_io_queues = 1;
602 	result = nvme_set_queue_count(dev, nr_io_queues);
603 	if (result <= 0)
604 		return result;
605 
606 	dev->max_qid = nr_io_queues;
607 
608 	/* Free previously allocated queues */
609 	nvme_free_queues(dev, nr_io_queues + 1);
610 	nvme_create_io_queues(dev);
611 
612 	return 0;
613 }
614 
nvme_get_info_from_identify(struct nvme_dev * dev)615 static int nvme_get_info_from_identify(struct nvme_dev *dev)
616 {
617 	struct nvme_id_ctrl *ctrl;
618 	int ret;
619 	int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
620 
621 	ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
622 	if (!ctrl)
623 		return -ENOMEM;
624 
625 	ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
626 	if (ret) {
627 		free(ctrl);
628 		return -EIO;
629 	}
630 
631 	dev->nn = le32_to_cpu(ctrl->nn);
632 	dev->vwc = ctrl->vwc;
633 	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
634 	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
635 	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
636 	if (ctrl->mdts)
637 		dev->max_transfer_shift = (ctrl->mdts + shift);
638 	else {
639 		/*
640 		 * Maximum Data Transfer Size (MDTS) field indicates the maximum
641 		 * data transfer size between the host and the controller. The
642 		 * host should not submit a command that exceeds this transfer
643 		 * size. The value is in units of the minimum memory page size
644 		 * and is reported as a power of two (2^n).
645 		 *
646 		 * The spec also says: a value of 0h indicates no restrictions
647 		 * on transfer size. But in nvme_blk_read/write() below we have
648 		 * the following algorithm for maximum number of logic blocks
649 		 * per transfer:
650 		 *
651 		 * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
652 		 *
653 		 * In order for lbas not to overflow, the maximum number is 15
654 		 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
655 		 * Let's use 20 which provides 1MB size.
656 		 */
657 		dev->max_transfer_shift = 20;
658 	}
659 
660 	free(ctrl);
661 	return 0;
662 }
663 
nvme_get_namespace_id(struct udevice * udev,u32 * ns_id,u8 * eui64)664 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
665 {
666 	struct nvme_ns *ns = dev_get_priv(udev);
667 
668 	if (ns_id)
669 		*ns_id = ns->ns_id;
670 	if (eui64)
671 		memcpy(eui64, ns->eui64, sizeof(ns->eui64));
672 
673 	return 0;
674 }
675 
nvme_scan_namespace(void)676 int nvme_scan_namespace(void)
677 {
678 	struct uclass *uc;
679 	struct udevice *dev;
680 	int ret;
681 
682 	ret = uclass_get(UCLASS_NVME, &uc);
683 	if (ret)
684 		return ret;
685 
686 	uclass_foreach_dev(dev, uc) {
687 		ret = device_probe(dev);
688 		if (ret)
689 			return ret;
690 	}
691 
692 	return 0;
693 }
694 
nvme_blk_probe(struct udevice * udev)695 static int nvme_blk_probe(struct udevice *udev)
696 {
697 	struct nvme_dev *ndev = dev_get_priv(udev->parent);
698 	struct blk_desc *desc = dev_get_uclass_plat(udev);
699 	struct nvme_ns *ns = dev_get_priv(udev);
700 	u8 flbas;
701 	struct pci_child_plat *pplat;
702 	struct nvme_id_ns *id;
703 
704 	id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
705 	if (!id)
706 		return -ENOMEM;
707 
708 	ns->dev = ndev;
709 	/* extract the namespace id from the block device name */
710 	ns->ns_id = trailing_strtol(udev->name);
711 	if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
712 		free(id);
713 		return -EIO;
714 	}
715 
716 	memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
717 	flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
718 	ns->flbas = flbas;
719 	ns->lba_shift = id->lbaf[flbas].ds;
720 	list_add(&ns->list, &ndev->namespaces);
721 
722 	desc->lba = le64_to_cpu(id->nsze);
723 	desc->log2blksz = ns->lba_shift;
724 	desc->blksz = 1 << ns->lba_shift;
725 	desc->bdev = udev;
726 	pplat = dev_get_parent_plat(udev->parent);
727 	sprintf(desc->vendor, "0x%.4x", pplat->vendor);
728 	memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
729 	memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
730 
731 	free(id);
732 	return 0;
733 }
734 
nvme_blk_rw(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,void * buffer,bool read)735 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
736 			 lbaint_t blkcnt, void *buffer, bool read)
737 {
738 	struct nvme_ns *ns = dev_get_priv(udev);
739 	struct nvme_dev *dev = ns->dev;
740 	struct nvme_command c;
741 	struct blk_desc *desc = dev_get_uclass_plat(udev);
742 	int status;
743 	u64 prp2;
744 	u64 total_len = blkcnt << desc->log2blksz;
745 	u64 temp_len = total_len;
746 
747 	u64 slba = blknr;
748 	u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
749 	u64 total_lbas = blkcnt;
750 
751 	flush_dcache_range((unsigned long)buffer,
752 			   (unsigned long)buffer + total_len);
753 
754 	c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
755 	c.rw.flags = 0;
756 	c.rw.nsid = cpu_to_le32(ns->ns_id);
757 	c.rw.control = 0;
758 	c.rw.dsmgmt = 0;
759 	c.rw.reftag = 0;
760 	c.rw.apptag = 0;
761 	c.rw.appmask = 0;
762 	c.rw.metadata = 0;
763 
764 	while (total_lbas) {
765 		if (total_lbas < lbas) {
766 			lbas = (u16)total_lbas;
767 			total_lbas = 0;
768 		} else {
769 			total_lbas -= lbas;
770 		}
771 
772 		if (nvme_setup_prps(dev, &prp2,
773 				    lbas << ns->lba_shift, (ulong)buffer))
774 			return -EIO;
775 		c.rw.slba = cpu_to_le64(slba);
776 		slba += lbas;
777 		c.rw.length = cpu_to_le16(lbas - 1);
778 		c.rw.prp1 = cpu_to_le64((ulong)buffer);
779 		c.rw.prp2 = cpu_to_le64(prp2);
780 		status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
781 				&c, NULL, IO_TIMEOUT);
782 		if (status)
783 			break;
784 		temp_len -= (u32)lbas << ns->lba_shift;
785 		buffer += lbas << ns->lba_shift;
786 	}
787 
788 	if (read)
789 		invalidate_dcache_range((unsigned long)buffer,
790 					(unsigned long)buffer + total_len);
791 
792 	return (total_len - temp_len) >> desc->log2blksz;
793 }
794 
nvme_blk_read(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,void * buffer)795 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
796 			   lbaint_t blkcnt, void *buffer)
797 {
798 	return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
799 }
800 
nvme_blk_write(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,const void * buffer)801 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
802 			    lbaint_t blkcnt, const void *buffer)
803 {
804 	return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
805 }
806 
807 static const struct blk_ops nvme_blk_ops = {
808 	.read	= nvme_blk_read,
809 	.write	= nvme_blk_write,
810 };
811 
812 U_BOOT_DRIVER(nvme_blk) = {
813 	.name	= "nvme-blk",
814 	.id	= UCLASS_BLK,
815 	.probe	= nvme_blk_probe,
816 	.ops	= &nvme_blk_ops,
817 	.priv_auto	= sizeof(struct nvme_ns),
818 };
819 
nvme_bind(struct udevice * udev)820 static int nvme_bind(struct udevice *udev)
821 {
822 	static int ndev_num;
823 	char name[20];
824 
825 	sprintf(name, "nvme#%d", ndev_num++);
826 
827 	return device_set_name(udev, name);
828 }
829 
nvme_probe(struct udevice * udev)830 static int nvme_probe(struct udevice *udev)
831 {
832 	int ret;
833 	struct nvme_dev *ndev = dev_get_priv(udev);
834 	struct nvme_id_ns *id;
835 
836 	ndev->instance = trailing_strtol(udev->name);
837 
838 	INIT_LIST_HEAD(&ndev->namespaces);
839 	ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
840 			PCI_REGION_MEM);
841 	if (readl(&ndev->bar->csts) == -1) {
842 		ret = -ENODEV;
843 		printf("Error: %s: Out of memory!\n", udev->name);
844 		goto free_nvme;
845 	}
846 
847 	ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
848 	if (!ndev->queues) {
849 		ret = -ENOMEM;
850 		printf("Error: %s: Out of memory!\n", udev->name);
851 		goto free_nvme;
852 	}
853 	memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
854 
855 	ndev->cap = nvme_readq(&ndev->bar->cap);
856 	ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
857 	ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
858 	ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
859 
860 	ret = nvme_configure_admin_queue(ndev);
861 	if (ret)
862 		goto free_queue;
863 
864 	/* Allocate after the page size is known */
865 	ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
866 	if (!ndev->prp_pool) {
867 		ret = -ENOMEM;
868 		printf("Error: %s: Out of memory!\n", udev->name);
869 		goto free_nvme;
870 	}
871 	ndev->prp_entry_num = MAX_PRP_POOL >> 3;
872 
873 	ret = nvme_setup_io_queues(ndev);
874 	if (ret)
875 		goto free_queue;
876 
877 	nvme_get_info_from_identify(ndev);
878 
879 	/* Create a blk device for each namespace */
880 
881 	id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
882 	if (!id) {
883 		ret = -ENOMEM;
884 		goto free_queue;
885 	}
886 
887 	for (int i = 1; i <= ndev->nn; i++) {
888 		struct udevice *ns_udev;
889 		char name[20];
890 
891 		memset(id, 0, sizeof(*id));
892 		if (nvme_identify(ndev, i, 0, (dma_addr_t)(long)id)) {
893 			ret = -EIO;
894 			goto free_id;
895 		}
896 
897 		/* skip inactive namespace */
898 		if (!id->nsze)
899 			continue;
900 
901 		/*
902 		 * Encode the namespace id to the device name so that
903 		 * we can extract it when doing the probe.
904 		 */
905 		sprintf(name, "blk#%d", i);
906 
907 		/* The real blksz and size will be set by nvme_blk_probe() */
908 		ret = blk_create_devicef(udev, "nvme-blk", name, IF_TYPE_NVME,
909 					 -1, 512, 0, &ns_udev);
910 		if (ret)
911 			goto free_id;
912 	}
913 
914 	free(id);
915 	return 0;
916 
917 free_id:
918 	free(id);
919 free_queue:
920 	free((void *)ndev->queues);
921 free_nvme:
922 	return ret;
923 }
924 
925 U_BOOT_DRIVER(nvme) = {
926 	.name	= "nvme",
927 	.id	= UCLASS_NVME,
928 	.bind	= nvme_bind,
929 	.probe	= nvme_probe,
930 	.priv_auto	= sizeof(struct nvme_dev),
931 };
932 
933 struct pci_device_id nvme_supported[] = {
934 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
935 	{}
936 };
937 
938 U_BOOT_PCI_DEVICE(nvme, nvme_supported);
939