1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Copyright (C) 2013-2014, 2020 Synopsys, Inc. All rights reserved.
4  */
5 
6 #ifndef __ASM_ARC_IO_H
7 #define __ASM_ARC_IO_H
8 
9 #include <linux/types.h>
10 #include <asm/byteorder.h>
11 
12 /*
13  * Compiler barrier. It prevents compiler from reordering instructions before
14  * and after it. It doesn't prevent HW (CPU) from any reordering though.
15  */
16 #define __comp_b()		asm volatile("" : : : "memory")
17 
18 #ifdef __ARCHS__
19 
20 /*
21  * ARCv2 based HS38 cores are in-order issue, but still weakly ordered
22  * due to micro-arch buffering/queuing of load/store, cache hit vs. miss ...
23  *
24  * Explicit barrier provided by DMB instruction
25  *  - Operand supports fine grained load/store/load+store semantics
26  *  - Ensures that selected memory operation issued before it will complete
27  *    before any subsequent memory operation of same type
28  *  - DMB guarantees SMP as well as local barrier semantics
29  *    (asm-generic/barrier.h ensures sane smp_*mb if not defined here, i.e.
30  *    UP: barrier(), SMP: smp_*mb == *mb)
31  *  - DSYNC provides DMB+completion_of_cache_bpu_maintenance_ops hence not needed
32  *    in the general case. Plus it only provides full barrier.
33  */
34 
35 #define mb()	asm volatile("dmb 3\n" : : : "memory")
36 #define rmb()	asm volatile("dmb 1\n" : : : "memory")
37 #define wmb()	asm volatile("dmb 2\n" : : : "memory")
38 
39 #else
40 
41 /*
42  * ARCompact based cores (ARC700) only have SYNC instruction which is super
43  * heavy weight as it flushes the pipeline as well.
44  * There are no real SMP implementations of such cores.
45  */
46 
47 #define mb()	asm volatile("sync\n" : : : "memory")
48 #endif
49 
50 #ifdef __ARCHS__
51 #define __iormb()		rmb()
52 #define __iowmb()		wmb()
53 #else
54 #define __iormb()		__comp_b()
55 #define __iowmb()		__comp_b()
56 #endif
57 
sync(void)58 static inline void sync(void)
59 {
60 	/* Not yet implemented */
61 }
62 
63 /*
64  * We must use 'volatile' in C-version read/write IO accessors implementation
65  * to avoid merging several reads (writes) into one read (write), or optimizing
66  * them out by compiler.
67  * We must use compiler barriers before and after operation (read or write) so
68  * it won't be reordered by compiler.
69  */
70 #define __arch_getb(a)		({ u8  __v; __comp_b(); __v = *(volatile u8  *)(a); __comp_b(); __v; })
71 #define __arch_getw(a)		({ u16 __v; __comp_b(); __v = *(volatile u16 *)(a); __comp_b(); __v; })
72 #define __arch_getl(a)		({ u32 __v; __comp_b(); __v = *(volatile u32 *)(a); __comp_b(); __v; })
73 #define __arch_getq(a)		({ u64 __v; __comp_b(); __v = *(volatile u64 *)(a); __comp_b(); __v; })
74 
75 #define __arch_putb(v, a)	({ __comp_b(); *(volatile u8  *)(a) = (v); __comp_b(); })
76 #define __arch_putw(v, a)	({ __comp_b(); *(volatile u16 *)(a) = (v); __comp_b(); })
77 #define __arch_putl(v, a)	({ __comp_b(); *(volatile u32 *)(a) = (v); __comp_b(); })
78 #define __arch_putq(v, a)	({ __comp_b(); *(volatile u64 *)(a) = (v); __comp_b(); })
79 
80 
81 /*
82  * We add memory barriers for __raw_readX / __raw_writeX accessors same way as
83  * it is done for readX and writeX accessors as lots of U-boot driver uses
84  * __raw_readX / __raw_writeX instead of proper accessor with barrier.
85  */
86 #define __raw_writeb(v, c)	({ __iowmb(); __arch_putb(v, c); })
87 #define __raw_writew(v, c)	({ __iowmb(); __arch_putw(v, c); })
88 #define __raw_writel(v, c)	({ __iowmb(); __arch_putl(v, c); })
89 #define __raw_writeq(v, c)	({ __iowmb(); __arch_putq(v, c); })
90 
91 #define __raw_readb(c)		({ u8  __v = __arch_getb(c); __iormb(); __v; })
92 #define __raw_readw(c)		({ u16 __v = __arch_getw(c); __iormb(); __v; })
93 #define __raw_readl(c)		({ u32 __v = __arch_getl(c); __iormb(); __v; })
94 #define __raw_readq(c)		({ u64 __v = __arch_getq(c); __iormb(); __v; })
95 
96 
__raw_writesb(unsigned long addr,const void * data,int bytelen)97 static inline void __raw_writesb(unsigned long addr, const void *data,
98 				 int bytelen)
99 {
100 	u8 *buf = (uint8_t *)data;
101 
102 	__iowmb();
103 
104 	while (bytelen--)
105 		__arch_putb(*buf++, addr);
106 }
107 
__raw_writesw(unsigned long addr,const void * data,int wordlen)108 static inline void __raw_writesw(unsigned long addr, const void *data,
109 				 int wordlen)
110 {
111 	u16 *buf = (uint16_t *)data;
112 
113 	__iowmb();
114 
115 	while (wordlen--)
116 		__arch_putw(*buf++, addr);
117 }
118 
__raw_writesl(unsigned long addr,const void * data,int longlen)119 static inline void __raw_writesl(unsigned long addr, const void *data,
120 				 int longlen)
121 {
122 	u32 *buf = (uint32_t *)data;
123 
124 	__iowmb();
125 
126 	while (longlen--)
127 		__arch_putl(*buf++, addr);
128 }
129 
__raw_readsb(unsigned long addr,void * data,int bytelen)130 static inline void __raw_readsb(unsigned long addr, void *data, int bytelen)
131 {
132 	u8 *buf = (uint8_t *)data;
133 
134 	while (bytelen--)
135 		*buf++ = __arch_getb(addr);
136 
137 	__iormb();
138 }
139 
__raw_readsw(unsigned long addr,void * data,int wordlen)140 static inline void __raw_readsw(unsigned long addr, void *data, int wordlen)
141 {
142 	u16 *buf = (uint16_t *)data;
143 
144 	while (wordlen--)
145 		*buf++ = __arch_getw(addr);
146 
147 	__iormb();
148 }
149 
__raw_readsl(unsigned long addr,void * data,int longlen)150 static inline void __raw_readsl(unsigned long addr, void *data, int longlen)
151 {
152 	u32 *buf = (uint32_t *)data;
153 
154 	while (longlen--)
155 		*buf++ = __arch_getl(addr);
156 
157 	__iormb();
158 }
159 
160 /*
161  * Relaxed I/O memory access primitives. These follow the Device memory
162  * ordering rules but do not guarantee any ordering relative to Normal memory
163  * accesses.
164  */
165 #define readb_relaxed(c)	({ u8  __r = __arch_getb(c); __r; })
166 #define readw_relaxed(c)	({ u16 __r = le16_to_cpu((__force __le16)__arch_getw(c)); __r; })
167 #define readl_relaxed(c)	({ u32 __r = le32_to_cpu((__force __le32)__arch_getl(c)); __r; })
168 #define readq_relaxed(c)	({ u64 __r = le64_to_cpu((__force __le64)__arch_getq(c)); __r; })
169 
170 #define writeb_relaxed(v, c)	((void)__arch_putb((v), (c)))
171 #define writew_relaxed(v, c)	((void)__arch_putw((__force u16)cpu_to_le16(v), (c)))
172 #define writel_relaxed(v, c)	((void)__arch_putl((__force u32)cpu_to_le32(v), (c)))
173 #define writeq_relaxed(v, c)	((void)__arch_putq((__force u64)cpu_to_le64(v), (c)))
174 
175 /*
176  * MMIO can also get buffered/optimized in micro-arch, so barriers needed
177  * Based on ARM model for the typical use case
178  *
179  *	<ST [DMA buffer]>
180  *	<writel MMIO "go" reg>
181  *  or:
182  *	<readl MMIO "status" reg>
183  *	<LD [DMA buffer]>
184  *
185  * http://lkml.kernel.org/r/20150622133656.GG1583@arm.com
186  */
187 #define readb(c)	({ u8  __v = readb_relaxed(c); __iormb(); __v; })
188 #define readw(c)	({ u16 __v = readw_relaxed(c); __iormb(); __v; })
189 #define readl(c)	({ u32 __v = readl_relaxed(c); __iormb(); __v; })
190 #define readq(c)	({ u64 __v = readq_relaxed(c); __iormb(); __v; })
191 
192 #define writeb(v, c)	({ __iowmb(); writeb_relaxed(v, c); })
193 #define writew(v, c)	({ __iowmb(); writew_relaxed(v, c); })
194 #define writel(v, c)	({ __iowmb(); writel_relaxed(v, c); })
195 #define writeq(v, c)	({ __iowmb(); writeq_relaxed(v, c); })
196 
197 #define out_arch(type, endian, a, v)	__raw_write##type(cpu_to_##endian(v), a)
198 #define in_arch(type, endian, a)	endian##_to_cpu(__raw_read##type(a))
199 
200 #define out_le32(a, v)	out_arch(l, le32, a, v)
201 #define out_le16(a, v)	out_arch(w, le16, a, v)
202 
203 #define in_le32(a)	in_arch(l, le32, a)
204 #define in_le16(a)	in_arch(w, le16, a)
205 
206 #define out_be32(a, v)	out_arch(l, be32, a, v)
207 #define out_be16(a, v)	out_arch(w, be16, a, v)
208 
209 #define in_be32(a)	in_arch(l, be32, a)
210 #define in_be16(a)	in_arch(w, be16, a)
211 
212 #define out_8(a, v)	__raw_writeb(v, a)
213 #define in_8(a)		__raw_readb(a)
214 
215 /*
216  * Clear and set bits in one shot. These macros can be used to clear and
217  * set multiple bits in a register using a single call. These macros can
218  * also be used to set a multiple-bit bit pattern using a mask, by
219  * specifying the mask in the 'clear' parameter and the new bit pattern
220  * in the 'set' parameter.
221  */
222 
223 #define clrbits(type, addr, clear) \
224 	out_##type((addr), in_##type(addr) & ~(clear))
225 
226 #define setbits(type, addr, set) \
227 	out_##type((addr), in_##type(addr) | (set))
228 
229 #define clrsetbits(type, addr, clear, set) \
230 	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
231 
232 #define clrbits_be32(addr, clear) clrbits(be32, addr, clear)
233 #define setbits_be32(addr, set) setbits(be32, addr, set)
234 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
235 
236 #define clrbits_le32(addr, clear) clrbits(le32, addr, clear)
237 #define setbits_le32(addr, set) setbits(le32, addr, set)
238 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
239 
240 #define clrbits_be16(addr, clear) clrbits(be16, addr, clear)
241 #define setbits_be16(addr, set) setbits(be16, addr, set)
242 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
243 
244 #define clrbits_le16(addr, clear) clrbits(le16, addr, clear)
245 #define setbits_le16(addr, set) setbits(le16, addr, set)
246 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
247 
248 #define clrbits_8(addr, clear) clrbits(8, addr, clear)
249 #define setbits_8(addr, set) setbits(8, addr, set)
250 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
251 
252 #include <asm-generic/io.h>
253 
254 #endif	/* __ASM_ARC_IO_H */
255