1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2015 Freescale Semiconductor, Inc.
4  *
5  * Author:
6  *	Peng Fan <Peng.Fan@freescale.com>
7  */
8 
9 #include <common.h>
10 #include <clock_legacy.h>
11 #include <command.h>
12 #include <div64.h>
13 #include <log.h>
14 #include <asm/global_data.h>
15 #include <asm/io.h>
16 #include <linux/errno.h>
17 #include <asm/arch/imx-regs.h>
18 #include <asm/arch/crm_regs.h>
19 #include <asm/arch/clock.h>
20 #include <asm/arch/sys_proto.h>
21 
22 struct mxc_ccm_anatop_reg *ccm_anatop = (struct mxc_ccm_anatop_reg *)
23 					 ANATOP_BASE_ADDR;
24 struct mxc_ccm_reg *ccm_reg = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
25 
26 #ifdef CONFIG_FSL_ESDHC_IMX
27 DECLARE_GLOBAL_DATA_PTR;
28 #endif
29 
get_clocks(void)30 int get_clocks(void)
31 {
32 #ifdef CONFIG_FSL_ESDHC_IMX
33 #if CONFIG_SYS_FSL_ESDHC_ADDR == USDHC2_BASE_ADDR
34 	gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK);
35 #elif CONFIG_SYS_FSL_ESDHC_ADDR == USDHC3_BASE_ADDR
36 	gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK);
37 #else
38 	gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK);
39 #endif
40 #endif
41 	return 0;
42 }
43 
get_ahb_clk(void)44 u32 get_ahb_clk(void)
45 {
46 	return get_root_clk(AHB_CLK_ROOT);
47 }
48 
get_ipg_clk(void)49 static u32 get_ipg_clk(void)
50 {
51 	/*
52 	 * The AHB and IPG are fixed at 2:1 ratio, and synchronized to
53 	 * each other.
54 	 */
55 	return get_ahb_clk() / 2;
56 }
57 
imx_get_uartclk(void)58 u32 imx_get_uartclk(void)
59 {
60 	return get_root_clk(UART_CLK_ROOT);
61 }
62 
imx_get_fecclk(void)63 u32 imx_get_fecclk(void)
64 {
65 	return get_root_clk(ENET_AXI_CLK_ROOT);
66 }
67 
68 #ifdef CONFIG_MXC_OCOTP
enable_ocotp_clk(unsigned char enable)69 void enable_ocotp_clk(unsigned char enable)
70 {
71 	clock_enable(CCGR_OCOTP, enable);
72 }
73 
enable_thermal_clk(void)74 void enable_thermal_clk(void)
75 {
76 	enable_ocotp_clk(1);
77 }
78 #endif
79 
enable_usboh3_clk(unsigned char enable)80 void enable_usboh3_clk(unsigned char enable)
81 {
82 	u32 target;
83 
84 	if (enable) {
85 		/* disable the clock gate first */
86 		clock_enable(CCGR_USB_HSIC, 0);
87 
88 		/* 120Mhz */
89 		target = CLK_ROOT_ON |
90 			 USB_HSIC_CLK_ROOT_FROM_PLL_SYS_MAIN_480M_CLK |
91 			 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
92 			 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
93 		clock_set_target_val(USB_HSIC_CLK_ROOT, target);
94 
95 		/* enable the clock gate */
96 		clock_enable(CCGR_USB_CTRL, 1);
97 		clock_enable(CCGR_USB_HSIC, 1);
98 		clock_enable(CCGR_USB_PHY1, 1);
99 		clock_enable(CCGR_USB_PHY2, 1);
100 	} else {
101 		clock_enable(CCGR_USB_CTRL, 0);
102 		clock_enable(CCGR_USB_HSIC, 0);
103 		clock_enable(CCGR_USB_PHY1, 0);
104 		clock_enable(CCGR_USB_PHY2, 0);
105 	}
106 }
107 
decode_pll(enum pll_clocks pll,u32 infreq)108 static u32 decode_pll(enum pll_clocks pll, u32 infreq)
109 {
110 	u32 reg, div_sel;
111 	u32 num, denom;
112 
113 	/*
114 	 * Alought there are four choices for the bypass src,
115 	 * we choose OSC_24M which is the default set in ROM.
116 	 */
117 	switch (pll) {
118 	case PLL_CORE:
119 		reg = readl(&ccm_anatop->pll_arm);
120 
121 		if (reg & CCM_ANALOG_PLL_ARM_POWERDOWN_MASK)
122 			return 0;
123 
124 		if (reg & CCM_ANALOG_PLL_ARM_BYPASS_MASK)
125 			return MXC_HCLK;
126 
127 		div_sel = (reg & CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK) >>
128 			   CCM_ANALOG_PLL_ARM_DIV_SELECT_SHIFT;
129 
130 		return (infreq * div_sel) / 2;
131 
132 	case PLL_SYS:
133 		reg = readl(&ccm_anatop->pll_480);
134 
135 		if (reg & CCM_ANALOG_PLL_480_POWERDOWN_MASK)
136 			return 0;
137 
138 		if (reg & CCM_ANALOG_PLL_480_BYPASS_MASK)
139 			return MXC_HCLK;
140 
141 		if (((reg & CCM_ANALOG_PLL_480_DIV_SELECT_MASK) >>
142 			CCM_ANALOG_PLL_480_DIV_SELECT_SHIFT) == 0)
143 			return 480000000u;
144 		else
145 			return 528000000u;
146 
147 	case PLL_ENET:
148 		reg = readl(&ccm_anatop->pll_enet);
149 
150 		if (reg & CCM_ANALOG_PLL_ENET_POWERDOWN_MASK)
151 			return 0;
152 
153 		if (reg & CCM_ANALOG_PLL_ENET_BYPASS_MASK)
154 			return MXC_HCLK;
155 
156 		return 1000000000u;
157 
158 	case PLL_DDR:
159 		reg = readl(&ccm_anatop->pll_ddr);
160 
161 		if (reg & CCM_ANALOG_PLL_DDR_POWERDOWN_MASK)
162 			return 0;
163 
164 		num = ccm_anatop->pll_ddr_num;
165 		denom = ccm_anatop->pll_ddr_denom;
166 
167 		if (reg & CCM_ANALOG_PLL_DDR_BYPASS_MASK)
168 			return MXC_HCLK;
169 
170 		div_sel = (reg & CCM_ANALOG_PLL_DDR_DIV_SELECT_MASK) >>
171 			   CCM_ANALOG_PLL_DDR_DIV_SELECT_SHIFT;
172 
173 		return infreq * (div_sel + num / denom);
174 
175 	case PLL_USB:
176 		return 480000000u;
177 
178 	default:
179 		printf("Unsupported pll clocks %d\n", pll);
180 		break;
181 	}
182 
183 	return 0;
184 }
185 
mxc_get_pll_sys_derive(int derive)186 static u32 mxc_get_pll_sys_derive(int derive)
187 {
188 	u32 freq, div, frac;
189 	u32 reg;
190 
191 	div = 1;
192 	reg = readl(&ccm_anatop->pll_480);
193 	freq = decode_pll(PLL_SYS, MXC_HCLK);
194 
195 	switch (derive) {
196 	case PLL_SYS_MAIN_480M_CLK:
197 		if (reg & CCM_ANALOG_PLL_480_MAIN_DIV1_CLKGATE_MASK)
198 			return 0;
199 		else
200 			return freq;
201 	case PLL_SYS_MAIN_240M_CLK:
202 		if (reg & CCM_ANALOG_PLL_480_MAIN_DIV2_CLKGATE_MASK)
203 			return 0;
204 		else
205 			return freq / 2;
206 	case PLL_SYS_MAIN_120M_CLK:
207 		if (reg & CCM_ANALOG_PLL_480_MAIN_DIV4_CLKGATE_MASK)
208 			return 0;
209 		else
210 			return freq / 4;
211 	case PLL_SYS_PFD0_392M_CLK:
212 		reg = readl(&ccm_anatop->pfd_480a);
213 		if (reg & CCM_ANALOG_PFD_480A_PFD0_DIV1_CLKGATE_MASK)
214 			return 0;
215 		frac = (reg & CCM_ANALOG_PFD_480A_PFD0_FRAC_MASK) >>
216 			CCM_ANALOG_PFD_480A_PFD0_FRAC_SHIFT;
217 		break;
218 	case PLL_SYS_PFD0_196M_CLK:
219 		if (reg & CCM_ANALOG_PLL_480_PFD0_DIV2_CLKGATE_MASK)
220 			return 0;
221 		reg = readl(&ccm_anatop->pfd_480a);
222 		frac = (reg & CCM_ANALOG_PFD_480A_PFD0_FRAC_MASK) >>
223 			CCM_ANALOG_PFD_480A_PFD0_FRAC_SHIFT;
224 		div = 2;
225 		break;
226 	case PLL_SYS_PFD1_332M_CLK:
227 		reg = readl(&ccm_anatop->pfd_480a);
228 		if (reg & CCM_ANALOG_PFD_480A_PFD1_DIV1_CLKGATE_MASK)
229 			return 0;
230 		frac = (reg & CCM_ANALOG_PFD_480A_PFD1_FRAC_MASK) >>
231 			CCM_ANALOG_PFD_480A_PFD1_FRAC_SHIFT;
232 		break;
233 	case PLL_SYS_PFD1_166M_CLK:
234 		if (reg & CCM_ANALOG_PLL_480_PFD1_DIV2_CLKGATE_MASK)
235 			return 0;
236 		reg = readl(&ccm_anatop->pfd_480a);
237 		frac = (reg & CCM_ANALOG_PFD_480A_PFD1_FRAC_MASK) >>
238 			CCM_ANALOG_PFD_480A_PFD1_FRAC_SHIFT;
239 		div = 2;
240 		break;
241 	case PLL_SYS_PFD2_270M_CLK:
242 		reg = readl(&ccm_anatop->pfd_480a);
243 		if (reg & CCM_ANALOG_PFD_480A_PFD2_DIV1_CLKGATE_MASK)
244 			return 0;
245 		frac = (reg & CCM_ANALOG_PFD_480A_PFD2_FRAC_MASK) >>
246 			CCM_ANALOG_PFD_480A_PFD2_FRAC_SHIFT;
247 		break;
248 	case PLL_SYS_PFD2_135M_CLK:
249 		if (reg & CCM_ANALOG_PLL_480_PFD2_DIV2_CLKGATE_MASK)
250 			return 0;
251 		reg = readl(&ccm_anatop->pfd_480a);
252 		frac = (reg & CCM_ANALOG_PFD_480A_PFD2_FRAC_MASK) >>
253 			CCM_ANALOG_PFD_480A_PFD2_FRAC_SHIFT;
254 		div = 2;
255 		break;
256 	case PLL_SYS_PFD3_CLK:
257 		reg = readl(&ccm_anatop->pfd_480a);
258 		if (reg & CCM_ANALOG_PFD_480A_PFD3_DIV1_CLKGATE_MASK)
259 			return 0;
260 		frac = (reg & CCM_ANALOG_PFD_480A_PFD3_FRAC_MASK) >>
261 			CCM_ANALOG_PFD_480A_PFD3_FRAC_SHIFT;
262 		break;
263 	case PLL_SYS_PFD4_CLK:
264 		reg = readl(&ccm_anatop->pfd_480b);
265 		if (reg & CCM_ANALOG_PFD_480B_PFD4_DIV1_CLKGATE_MASK)
266 			return 0;
267 		frac = (reg & CCM_ANALOG_PFD_480B_PFD4_FRAC_MASK) >>
268 			CCM_ANALOG_PFD_480B_PFD4_FRAC_SHIFT;
269 		break;
270 	case PLL_SYS_PFD5_CLK:
271 		reg = readl(&ccm_anatop->pfd_480b);
272 		if (reg & CCM_ANALOG_PFD_480B_PFD5_DIV1_CLKGATE_MASK)
273 			return 0;
274 		frac = (reg & CCM_ANALOG_PFD_480B_PFD5_FRAC_MASK) >>
275 			CCM_ANALOG_PFD_480B_PFD5_FRAC_SHIFT;
276 		break;
277 	case PLL_SYS_PFD6_CLK:
278 		reg = readl(&ccm_anatop->pfd_480b);
279 		if (reg & CCM_ANALOG_PFD_480B_PFD6_DIV1_CLKGATE_MASK)
280 			return 0;
281 		frac = (reg & CCM_ANALOG_PFD_480B_PFD6_FRAC_MASK) >>
282 			CCM_ANALOG_PFD_480B_PFD6_FRAC_SHIFT;
283 		break;
284 	case PLL_SYS_PFD7_CLK:
285 		reg = readl(&ccm_anatop->pfd_480b);
286 		if (reg & CCM_ANALOG_PFD_480B_PFD7_DIV1_CLKGATE_MASK)
287 			return 0;
288 		frac = (reg & CCM_ANALOG_PFD_480B_PFD7_FRAC_MASK) >>
289 			CCM_ANALOG_PFD_480B_PFD7_FRAC_SHIFT;
290 		break;
291 	default:
292 		printf("Error derived pll_sys clock %d\n", derive);
293 		return 0;
294 	}
295 
296 	return ((freq / frac) * 18) / div;
297 }
298 
mxc_get_pll_enet_derive(int derive)299 static u32 mxc_get_pll_enet_derive(int derive)
300 {
301 	u32 freq, reg;
302 
303 	freq = decode_pll(PLL_ENET, MXC_HCLK);
304 	reg = readl(&ccm_anatop->pll_enet);
305 
306 	switch (derive) {
307 	case PLL_ENET_MAIN_500M_CLK:
308 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_500MHZ_MASK)
309 			return freq / 2;
310 		break;
311 	case PLL_ENET_MAIN_250M_CLK:
312 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_250MHZ_MASK)
313 			return freq / 4;
314 		break;
315 	case PLL_ENET_MAIN_125M_CLK:
316 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_125MHZ_MASK)
317 			return freq / 8;
318 		break;
319 	case PLL_ENET_MAIN_100M_CLK:
320 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_100MHZ_MASK)
321 			return freq / 10;
322 		break;
323 	case PLL_ENET_MAIN_50M_CLK:
324 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_50MHZ_MASK)
325 			return freq / 20;
326 		break;
327 	case PLL_ENET_MAIN_40M_CLK:
328 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_40MHZ_MASK)
329 			return freq / 25;
330 		break;
331 	case PLL_ENET_MAIN_25M_CLK:
332 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_25MHZ_MASK)
333 			return freq / 40;
334 		break;
335 	default:
336 		printf("Error derived pll_enet clock %d\n", derive);
337 		break;
338 	}
339 
340 	return 0;
341 }
342 
mxc_get_pll_ddr_derive(int derive)343 static u32 mxc_get_pll_ddr_derive(int derive)
344 {
345 	u32 freq, reg;
346 
347 	freq = decode_pll(PLL_DDR, MXC_HCLK);
348 	reg = readl(&ccm_anatop->pll_ddr);
349 
350 	switch (derive) {
351 	case PLL_DRAM_MAIN_1066M_CLK:
352 		return freq;
353 	case PLL_DRAM_MAIN_533M_CLK:
354 		if (reg & CCM_ANALOG_PLL_DDR_DIV2_ENABLE_CLK_MASK)
355 			return freq / 2;
356 		break;
357 	default:
358 		printf("Error derived pll_ddr clock %d\n", derive);
359 		break;
360 	}
361 
362 	return 0;
363 }
364 
mxc_get_pll_derive(enum pll_clocks pll,int derive)365 static u32 mxc_get_pll_derive(enum pll_clocks pll, int derive)
366 {
367 	switch (pll) {
368 	case PLL_SYS:
369 		return mxc_get_pll_sys_derive(derive);
370 	case PLL_ENET:
371 		return mxc_get_pll_enet_derive(derive);
372 	case PLL_DDR:
373 		return mxc_get_pll_ddr_derive(derive);
374 	default:
375 		printf("Error pll.\n");
376 		return 0;
377 	}
378 }
379 
get_root_src_clk(enum clk_root_src root_src)380 static u32 get_root_src_clk(enum clk_root_src root_src)
381 {
382 	switch (root_src) {
383 	case OSC_24M_CLK:
384 		return 24000000u;
385 	case PLL_ARM_MAIN_800M_CLK:
386 		return decode_pll(PLL_CORE, MXC_HCLK);
387 
388 	case PLL_SYS_MAIN_480M_CLK:
389 	case PLL_SYS_MAIN_240M_CLK:
390 	case PLL_SYS_MAIN_120M_CLK:
391 	case PLL_SYS_PFD0_392M_CLK:
392 	case PLL_SYS_PFD0_196M_CLK:
393 	case PLL_SYS_PFD1_332M_CLK:
394 	case PLL_SYS_PFD1_166M_CLK:
395 	case PLL_SYS_PFD2_270M_CLK:
396 	case PLL_SYS_PFD2_135M_CLK:
397 	case PLL_SYS_PFD3_CLK:
398 	case PLL_SYS_PFD4_CLK:
399 	case PLL_SYS_PFD5_CLK:
400 	case PLL_SYS_PFD6_CLK:
401 	case PLL_SYS_PFD7_CLK:
402 		return mxc_get_pll_derive(PLL_SYS, root_src);
403 
404 	case PLL_ENET_MAIN_500M_CLK:
405 	case PLL_ENET_MAIN_250M_CLK:
406 	case PLL_ENET_MAIN_125M_CLK:
407 	case PLL_ENET_MAIN_100M_CLK:
408 	case PLL_ENET_MAIN_50M_CLK:
409 	case PLL_ENET_MAIN_40M_CLK:
410 	case PLL_ENET_MAIN_25M_CLK:
411 		return mxc_get_pll_derive(PLL_ENET, root_src);
412 
413 	case PLL_DRAM_MAIN_1066M_CLK:
414 	case PLL_DRAM_MAIN_533M_CLK:
415 		return mxc_get_pll_derive(PLL_DDR, root_src);
416 
417 	case PLL_AUDIO_MAIN_CLK:
418 		return decode_pll(PLL_AUDIO, MXC_HCLK);
419 	case PLL_VIDEO_MAIN_CLK:
420 		return decode_pll(PLL_VIDEO, MXC_HCLK);
421 
422 	case PLL_USB_MAIN_480M_CLK:
423 		return decode_pll(PLL_USB, MXC_HCLK);
424 
425 	case REF_1M_CLK:
426 		return 1000000;
427 	case OSC_32K_CLK:
428 		return MXC_CLK32;
429 
430 	case EXT_CLK_1:
431 	case EXT_CLK_2:
432 	case EXT_CLK_3:
433 	case EXT_CLK_4:
434 		printf("No EXT CLK supported??\n");
435 		break;
436 	};
437 
438 	return 0;
439 }
440 
get_root_clk(enum clk_root_index clock_id)441 u32 get_root_clk(enum clk_root_index clock_id)
442 {
443 	enum clk_root_src root_src;
444 	u32 post_podf, pre_podf, auto_podf, root_src_clk;
445 	int auto_en;
446 
447 	if (clock_root_enabled(clock_id) <= 0)
448 		return 0;
449 
450 	if (clock_get_prediv(clock_id, &pre_podf) < 0)
451 		return 0;
452 
453 	if (clock_get_postdiv(clock_id, &post_podf) < 0)
454 		return 0;
455 
456 	if (clock_get_autopostdiv(clock_id, &auto_podf, &auto_en) < 0)
457 		return 0;
458 
459 	if (auto_en == 0)
460 		auto_podf = 0;
461 
462 	if (clock_get_src(clock_id, &root_src) < 0)
463 		return 0;
464 
465 	root_src_clk = get_root_src_clk(root_src);
466 
467 	/*
468 	 * bypass clk is ignored.
469 	 */
470 
471 	return root_src_clk / (post_podf + 1) / (pre_podf + 1) /
472 		(auto_podf + 1);
473 }
474 
get_ddrc_clk(void)475 static u32 get_ddrc_clk(void)
476 {
477 	u32 reg, freq;
478 	enum root_post_div post_div;
479 
480 	reg = readl(&ccm_reg->root[DRAM_CLK_ROOT].target_root);
481 	if (reg & CLK_ROOT_MUX_MASK)
482 		/* DRAM_ALT_CLK_ROOT */
483 		freq = get_root_clk(DRAM_ALT_CLK_ROOT);
484 	else
485 		/* PLL_DRAM_MAIN_1066M_CLK */
486 		freq = mxc_get_pll_derive(PLL_DDR, PLL_DRAM_MAIN_1066M_CLK);
487 
488 	post_div = reg & DRAM_CLK_ROOT_POST_DIV_MASK;
489 
490 	return freq / (post_div + 1) / 2;
491 }
492 
mxc_get_clock(enum mxc_clock clk)493 unsigned int mxc_get_clock(enum mxc_clock clk)
494 {
495 	switch (clk) {
496 	case MXC_ARM_CLK:
497 		return get_root_clk(ARM_A7_CLK_ROOT);
498 	case MXC_AXI_CLK:
499 		return get_root_clk(MAIN_AXI_CLK_ROOT);
500 	case MXC_AHB_CLK:
501 		return get_root_clk(AHB_CLK_ROOT);
502 	case MXC_IPG_CLK:
503 		return get_ipg_clk();
504 	case MXC_I2C_CLK:
505 		return get_root_clk(I2C1_CLK_ROOT);
506 	case MXC_UART_CLK:
507 		return get_root_clk(UART1_CLK_ROOT);
508 	case MXC_CSPI_CLK:
509 		return get_root_clk(ECSPI1_CLK_ROOT);
510 	case MXC_DDR_CLK:
511 		return get_ddrc_clk();
512 	case MXC_ESDHC_CLK:
513 		return get_root_clk(USDHC1_CLK_ROOT);
514 	case MXC_ESDHC2_CLK:
515 		return get_root_clk(USDHC2_CLK_ROOT);
516 	case MXC_ESDHC3_CLK:
517 		return get_root_clk(USDHC3_CLK_ROOT);
518 	default:
519 		printf("Unsupported mxc_clock %d\n", clk);
520 		break;
521 	}
522 
523 	return 0;
524 }
525 
526 #ifdef CONFIG_SYS_I2C_MXC
527 /* i2c_num can be 0 - 3 */
enable_i2c_clk(unsigned char enable,unsigned i2c_num)528 int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
529 {
530 	u32 target;
531 
532 	if (i2c_num >= 4)
533 		return -EINVAL;
534 
535 	if (enable) {
536 		clock_enable(CCGR_I2C1 + i2c_num, 0);
537 
538 		/* Set i2c root clock to PLL_SYS_MAIN_120M_CLK */
539 
540 		target = CLK_ROOT_ON |
541 			 I2C1_CLK_ROOT_FROM_PLL_SYS_MAIN_120M_CLK |
542 			 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
543 			 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
544 		clock_set_target_val(I2C1_CLK_ROOT + i2c_num, target);
545 
546 		clock_enable(CCGR_I2C1 + i2c_num, 1);
547 	} else {
548 		clock_enable(CCGR_I2C1 + i2c_num, 0);
549 	}
550 
551 	return 0;
552 }
553 #endif
554 
init_clk_esdhc(void)555 static void init_clk_esdhc(void)
556 {
557 	u32 target;
558 
559 	/* disable the clock gate first */
560 	clock_enable(CCGR_USDHC1, 0);
561 	clock_enable(CCGR_USDHC2, 0);
562 	clock_enable(CCGR_USDHC3, 0);
563 
564 	/* 196: 392/2 */
565 	target = CLK_ROOT_ON | USDHC1_CLK_ROOT_FROM_PLL_SYS_PFD0_392M_CLK |
566 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
567 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
568 	clock_set_target_val(USDHC1_CLK_ROOT, target);
569 
570 	target = CLK_ROOT_ON | USDHC1_CLK_ROOT_FROM_PLL_SYS_PFD0_392M_CLK |
571 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
572 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
573 	clock_set_target_val(USDHC2_CLK_ROOT, target);
574 
575 	target = CLK_ROOT_ON | USDHC1_CLK_ROOT_FROM_PLL_SYS_PFD0_392M_CLK |
576 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
577 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
578 	clock_set_target_val(USDHC3_CLK_ROOT, target);
579 
580 	/* enable the clock gate */
581 	clock_enable(CCGR_USDHC1, 1);
582 	clock_enable(CCGR_USDHC2, 1);
583 	clock_enable(CCGR_USDHC3, 1);
584 }
585 
init_clk_uart(void)586 static void init_clk_uart(void)
587 {
588 	u32 target;
589 
590 	/* disable the clock gate first */
591 	clock_enable(CCGR_UART1, 0);
592 	clock_enable(CCGR_UART2, 0);
593 	clock_enable(CCGR_UART3, 0);
594 	clock_enable(CCGR_UART4, 0);
595 	clock_enable(CCGR_UART5, 0);
596 	clock_enable(CCGR_UART6, 0);
597 	clock_enable(CCGR_UART7, 0);
598 
599 	/* 24Mhz */
600 	target = CLK_ROOT_ON | UART1_CLK_ROOT_FROM_OSC_24M_CLK |
601 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
602 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
603 	clock_set_target_val(UART1_CLK_ROOT, target);
604 
605 	target = CLK_ROOT_ON | UART2_CLK_ROOT_FROM_OSC_24M_CLK |
606 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
607 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
608 	clock_set_target_val(UART2_CLK_ROOT, target);
609 
610 	target = CLK_ROOT_ON | UART3_CLK_ROOT_FROM_OSC_24M_CLK |
611 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
612 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
613 	clock_set_target_val(UART3_CLK_ROOT, target);
614 
615 	target = CLK_ROOT_ON | UART4_CLK_ROOT_FROM_OSC_24M_CLK |
616 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
617 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
618 	clock_set_target_val(UART4_CLK_ROOT, target);
619 
620 	target = CLK_ROOT_ON | UART5_CLK_ROOT_FROM_OSC_24M_CLK |
621 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
622 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
623 	clock_set_target_val(UART5_CLK_ROOT, target);
624 
625 	target = CLK_ROOT_ON | UART6_CLK_ROOT_FROM_OSC_24M_CLK |
626 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
627 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
628 	clock_set_target_val(UART6_CLK_ROOT, target);
629 
630 	target = CLK_ROOT_ON | UART7_CLK_ROOT_FROM_OSC_24M_CLK |
631 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
632 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
633 	clock_set_target_val(UART7_CLK_ROOT, target);
634 
635 	/* enable the clock gate */
636 	clock_enable(CCGR_UART1, 1);
637 	clock_enable(CCGR_UART2, 1);
638 	clock_enable(CCGR_UART3, 1);
639 	clock_enable(CCGR_UART4, 1);
640 	clock_enable(CCGR_UART5, 1);
641 	clock_enable(CCGR_UART6, 1);
642 	clock_enable(CCGR_UART7, 1);
643 }
644 
init_clk_weim(void)645 static void init_clk_weim(void)
646 {
647 	u32 target;
648 
649 	/* disable the clock gate first */
650 	clock_enable(CCGR_WEIM, 0);
651 
652 	/* 120Mhz */
653 	target = CLK_ROOT_ON | EIM_CLK_ROOT_FROM_PLL_SYS_MAIN_120M_CLK |
654 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
655 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
656 	clock_set_target_val(EIM_CLK_ROOT, target);
657 
658 	/* enable the clock gate */
659 	clock_enable(CCGR_WEIM, 1);
660 }
661 
init_clk_ecspi(void)662 static void init_clk_ecspi(void)
663 {
664 	u32 target;
665 
666 	/* disable the clock gate first */
667 	clock_enable(CCGR_ECSPI1, 0);
668 	clock_enable(CCGR_ECSPI2, 0);
669 	clock_enable(CCGR_ECSPI3, 0);
670 	clock_enable(CCGR_ECSPI4, 0);
671 
672 	/* 60Mhz: 240/4 */
673 	target = CLK_ROOT_ON | ECSPI1_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK |
674 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
675 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
676 	clock_set_target_val(ECSPI1_CLK_ROOT, target);
677 
678 	target = CLK_ROOT_ON | ECSPI2_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK |
679 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
680 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
681 	clock_set_target_val(ECSPI2_CLK_ROOT, target);
682 
683 	target = CLK_ROOT_ON | ECSPI3_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK |
684 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
685 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
686 	clock_set_target_val(ECSPI3_CLK_ROOT, target);
687 
688 	target = CLK_ROOT_ON | ECSPI4_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK |
689 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
690 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
691 	clock_set_target_val(ECSPI4_CLK_ROOT, target);
692 
693 	/* enable the clock gate */
694 	clock_enable(CCGR_ECSPI1, 1);
695 	clock_enable(CCGR_ECSPI2, 1);
696 	clock_enable(CCGR_ECSPI3, 1);
697 	clock_enable(CCGR_ECSPI4, 1);
698 }
699 
init_clk_wdog(void)700 static void init_clk_wdog(void)
701 {
702 	u32 target;
703 
704 	/* disable the clock gate first */
705 	clock_enable(CCGR_WDOG1, 0);
706 	clock_enable(CCGR_WDOG2, 0);
707 	clock_enable(CCGR_WDOG3, 0);
708 	clock_enable(CCGR_WDOG4, 0);
709 
710 	/* 24Mhz */
711 	target = CLK_ROOT_ON | WDOG_CLK_ROOT_FROM_OSC_24M_CLK |
712 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
713 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
714 	clock_set_target_val(WDOG_CLK_ROOT, target);
715 
716 	/* enable the clock gate */
717 	clock_enable(CCGR_WDOG1, 1);
718 	clock_enable(CCGR_WDOG2, 1);
719 	clock_enable(CCGR_WDOG3, 1);
720 	clock_enable(CCGR_WDOG4, 1);
721 }
722 
723 #ifdef CONFIG_MXC_EPDC
init_clk_epdc(void)724 static void init_clk_epdc(void)
725 {
726 	u32 target;
727 
728 	/* disable the clock gate first */
729 	clock_enable(CCGR_EPDC, 0);
730 
731 	/* 24Mhz */
732 	target = CLK_ROOT_ON | EPDC_PIXEL_CLK_ROOT_FROM_PLL_SYS_MAIN_480M_CLK |
733 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
734 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV12);
735 	clock_set_target_val(EPDC_PIXEL_CLK_ROOT, target);
736 
737 	/* enable the clock gate */
738 	clock_enable(CCGR_EPDC, 1);
739 }
740 #endif
741 
enable_pll_enet(void)742 static int enable_pll_enet(void)
743 {
744 	u32 reg;
745 	s32 timeout = 100000;
746 
747 	reg = readl(&ccm_anatop->pll_enet);
748 	/* If pll_enet powered up, no need to set it again */
749 	if (reg & ANADIG_PLL_ENET_PWDN_MASK) {
750 		reg &= ~ANADIG_PLL_ENET_PWDN_MASK;
751 		writel(reg, &ccm_anatop->pll_enet);
752 
753 		while (timeout--) {
754 			if (readl(&ccm_anatop->pll_enet) & ANADIG_PLL_LOCK)
755 				break;
756 		}
757 
758 		if (timeout <= 0) {
759 			/* If timeout, we set pwdn for pll_enet. */
760 			reg |= ANADIG_PLL_ENET_PWDN_MASK;
761 			return -ETIME;
762 		}
763 	}
764 
765 	/* Clear bypass */
766 	writel(CCM_ANALOG_PLL_ENET_BYPASS_MASK, &ccm_anatop->pll_enet_clr);
767 
768 	writel((CCM_ANALOG_PLL_ENET_ENABLE_CLK_500MHZ_MASK
769 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_250MHZ_MASK
770 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_125MHZ_MASK
771 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_100MHZ_MASK
772 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_50MHZ_MASK
773 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_40MHZ_MASK
774 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_25MHZ_MASK),
775 	       &ccm_anatop->pll_enet_set);
776 
777 	return 0;
778 }
enable_pll_video(u32 pll_div,u32 pll_num,u32 pll_denom,u32 post_div)779 static int enable_pll_video(u32 pll_div, u32 pll_num, u32 pll_denom,
780 	u32 post_div)
781 {
782 	u32 reg = 0;
783 	ulong start;
784 
785 	debug("pll5 div = %d, num = %d, denom = %d\n",
786 		pll_div, pll_num, pll_denom);
787 
788 	/* Power up PLL5 video and disable its output */
789 	writel(CCM_ANALOG_PLL_VIDEO_CLR_ENABLE_CLK_MASK |
790 		CCM_ANALOG_PLL_VIDEO_CLR_POWERDOWN_MASK |
791 		CCM_ANALOG_PLL_VIDEO_CLR_BYPASS_MASK |
792 		CCM_ANALOG_PLL_VIDEO_CLR_DIV_SELECT_MASK |
793 		CCM_ANALOG_PLL_VIDEO_CLR_POST_DIV_SEL_MASK |
794 		CCM_ANALOG_PLL_VIDEO_CLR_TEST_DIV_SELECT_MASK,
795 		&ccm_anatop->pll_video_clr);
796 
797 	/* Set div, num and denom */
798 	switch (post_div) {
799 	case 1:
800 		writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
801 			CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x1) |
802 			CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x0),
803 			&ccm_anatop->pll_video_set);
804 		break;
805 	case 2:
806 		writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
807 			CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x0) |
808 			CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x0),
809 			&ccm_anatop->pll_video_set);
810 		break;
811 	case 3:
812 		writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
813 			CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x0) |
814 			CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x1),
815 			&ccm_anatop->pll_video_set);
816 		break;
817 	case 4:
818 		writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
819 			CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x0) |
820 			CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x3),
821 			&ccm_anatop->pll_video_set);
822 		break;
823 	case 0:
824 	default:
825 		writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
826 			CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x2) |
827 			CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x0),
828 			&ccm_anatop->pll_video_set);
829 		break;
830 	}
831 
832 	writel(CCM_ANALOG_PLL_VIDEO_NUM_A(pll_num),
833 		&ccm_anatop->pll_video_num);
834 
835 	writel(CCM_ANALOG_PLL_VIDEO_DENOM_B(pll_denom),
836 		&ccm_anatop->pll_video_denom);
837 
838 	/* Wait PLL5 lock */
839 	start = get_timer(0);	/* Get current timestamp */
840 
841 	do {
842 		reg = readl(&ccm_anatop->pll_video);
843 		if (reg & CCM_ANALOG_PLL_VIDEO_LOCK_MASK) {
844 			/* Enable PLL out */
845 			writel(CCM_ANALOG_PLL_VIDEO_CLR_ENABLE_CLK_MASK,
846 					&ccm_anatop->pll_video_set);
847 			return 0;
848 		}
849 	} while (get_timer(0) < (start + 10)); /* Wait 10ms */
850 
851 	printf("Lock PLL5 timeout\n");
852 
853 	return 1;
854 }
855 
set_clk_qspi(void)856 int set_clk_qspi(void)
857 {
858 	u32 target;
859 
860 	/* disable the clock gate first */
861 	clock_enable(CCGR_QSPI, 0);
862 
863 	/* 49M: 392/2/4 */
864 	target = CLK_ROOT_ON | QSPI_CLK_ROOT_FROM_PLL_SYS_PFD4_CLK |
865 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
866 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
867 	clock_set_target_val(QSPI_CLK_ROOT, target);
868 
869 	/* enable the clock gate */
870 	clock_enable(CCGR_QSPI, 1);
871 
872 	return 0;
873 }
874 
set_clk_nand(void)875 int set_clk_nand(void)
876 {
877 	u32 target;
878 
879 	/* disable the clock gate first */
880 	clock_enable(CCGR_RAWNAND, 0);
881 
882 	enable_pll_enet();
883 	/* 100: 500/5 */
884 	target = CLK_ROOT_ON | NAND_CLK_ROOT_FROM_PLL_ENET_MAIN_500M_CLK |
885 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
886 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV5);
887 	clock_set_target_val(NAND_CLK_ROOT, target);
888 
889 	/* enable the clock gate */
890 	clock_enable(CCGR_RAWNAND, 1);
891 
892 	return 0;
893 }
894 
mxs_set_lcdclk(uint32_t base_addr,uint32_t freq)895 void mxs_set_lcdclk(uint32_t base_addr, uint32_t freq)
896 {
897 	u32 hck = MXC_HCLK/1000;
898 	u32 min = hck * 27;
899 	u32 max = hck * 54;
900 	u32 temp, best = 0;
901 	u32 i, j, pred = 1, postd = 1;
902 	u32 pll_div, pll_num, pll_denom, post_div = 0;
903 	u32 target;
904 
905 	debug("mxs_set_lcdclk, freq = %d\n", freq);
906 
907 	clock_enable(CCGR_LCDIF, 0);
908 
909 	temp = (freq * 8 * 8);
910 	if (temp < min) {
911 		for (i = 1; i <= 4; i++) {
912 			if ((temp * (1 << i)) > min) {
913 				post_div = i;
914 				freq = (freq * (1 << i));
915 				break;
916 			}
917 		}
918 
919 		if (5 == i) {
920 			printf("Fail to set rate to %u kHz", freq);
921 			return;
922 		}
923 	}
924 
925 	for (i = 1; i <= 8; i++) {
926 		for (j = 1; j <= 8; j++) {
927 			temp = freq * i * j;
928 			if (temp > max || temp < min)
929 				continue;
930 
931 			if (best == 0 || temp < best) {
932 				best = temp;
933 				pred = i;
934 				postd = j;
935 			}
936 		}
937 	}
938 
939 	if (best == 0) {
940 		printf("Fail to set rate to %u kHz", freq);
941 		return;
942 	}
943 
944 	debug("best %d, pred = %d, postd = %d\n", best, pred, postd);
945 
946 	pll_div = best / hck;
947 	pll_denom = 1000000;
948 	pll_num = (best - hck * pll_div) * pll_denom / hck;
949 
950 	if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
951 		return;
952 
953 	target = CLK_ROOT_ON | LCDIF_PIXEL_CLK_ROOT_FROM_PLL_VIDEO_MAIN_CLK |
954 		 CLK_ROOT_PRE_DIV((pred - 1)) | CLK_ROOT_POST_DIV((postd - 1));
955 	clock_set_target_val(LCDIF_PIXEL_CLK_ROOT, target);
956 
957 	clock_enable(CCGR_LCDIF, 1);
958 }
959 
960 #ifdef CONFIG_FEC_MXC
set_clk_enet(enum enet_freq type)961 int set_clk_enet(enum enet_freq type)
962 {
963 	u32 target;
964 	int ret;
965 	u32 enet1_ref, enet2_ref;
966 
967 	/* disable the clock first */
968 	clock_enable(CCGR_ENET1, 0);
969 	clock_enable(CCGR_ENET2, 0);
970 
971 	switch (type) {
972 	case ENET_125MHZ:
973 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK;
974 		enet2_ref = ENET2_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK;
975 		break;
976 	case ENET_50MHZ:
977 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK;
978 		enet2_ref = ENET2_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK;
979 		break;
980 	case ENET_25MHZ:
981 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK;
982 		enet2_ref = ENET2_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK;
983 		break;
984 	default:
985 		return -EINVAL;
986 	}
987 
988 	ret = enable_pll_enet();
989 	if (ret != 0)
990 		return ret;
991 
992 	/* set enet axi clock 196M: 392/2 */
993 	target = CLK_ROOT_ON | ENET_AXI_CLK_ROOT_FROM_PLL_SYS_PFD4_CLK |
994 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
995 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
996 	clock_set_target_val(ENET_AXI_CLK_ROOT, target);
997 
998 	target = CLK_ROOT_ON | enet1_ref |
999 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
1000 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
1001 	clock_set_target_val(ENET1_REF_CLK_ROOT, target);
1002 
1003 	target = CLK_ROOT_ON | ENET1_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK |
1004 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
1005 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
1006 	clock_set_target_val(ENET1_TIME_CLK_ROOT, target);
1007 
1008 	target = CLK_ROOT_ON | enet2_ref |
1009 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
1010 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
1011 	clock_set_target_val(ENET2_REF_CLK_ROOT, target);
1012 
1013 	target = CLK_ROOT_ON | ENET2_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK |
1014 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
1015 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
1016 	clock_set_target_val(ENET2_TIME_CLK_ROOT, target);
1017 
1018 #ifdef CONFIG_FEC_MXC_25M_REF_CLK
1019 	target = CLK_ROOT_ON |
1020 		 ENET_PHY_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK |
1021 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
1022 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
1023 	clock_set_target_val(ENET_PHY_REF_CLK_ROOT, target);
1024 #endif
1025 	/* enable clock */
1026 	clock_enable(CCGR_ENET1, 1);
1027 	clock_enable(CCGR_ENET2, 1);
1028 
1029 	return 0;
1030 }
1031 #endif
1032 
1033 /* Configure PLL/PFD freq */
clock_init(void)1034 void clock_init(void)
1035 {
1036 /* Rom has enabled PLL_ARM, PLL_DDR, PLL_SYS, PLL_ENET
1037  *   In u-boot, we have to:
1038  *   1. Configure PFD3- PFD7 for freq we needed in u-boot
1039  *   2. Set clock root for peripherals (ip channel) used in u-boot but without set rate
1040  *       interface.  The clocks for these peripherals are enabled after this intialization.
1041  *   3. Other peripherals with set clock rate interface does not be set in this function.
1042  */
1043 	u32 reg;
1044 
1045 	/*
1046 	 * Configure PFD4 to 392M
1047 	 * 480M * 18 / 0x16 = 392M
1048 	 */
1049 	reg = readl(&ccm_anatop->pfd_480b);
1050 
1051 	reg &= ~(ANATOP_PFD480B_PFD4_FRAC_MASK |
1052 		 CCM_ANALOG_PFD_480B_PFD4_DIV1_CLKGATE_MASK);
1053 	reg |= ANATOP_PFD480B_PFD4_FRAC_392M_VAL;
1054 
1055 	writel(reg, &ccm_anatop->pfd_480b);
1056 
1057 	init_clk_esdhc();
1058 	init_clk_uart();
1059 	init_clk_weim();
1060 	init_clk_ecspi();
1061 	init_clk_wdog();
1062 #ifdef CONFIG_MXC_EPDC
1063 	init_clk_epdc();
1064 #endif
1065 
1066 	enable_usboh3_clk(1);
1067 
1068 	clock_enable(CCGR_SNVS, 1);
1069 
1070 #ifdef CONFIG_NAND_MXS
1071 	clock_enable(CCGR_RAWNAND, 1);
1072 #endif
1073 
1074 	if (IS_ENABLED(CONFIG_IMX_RDC)) {
1075 		clock_enable(CCGR_RDC, 1);
1076 		clock_enable(CCGR_SEMA1, 1);
1077 		clock_enable(CCGR_SEMA2, 1);
1078 	}
1079 }
1080 
1081 #ifdef CONFIG_IMX_HAB
hab_caam_clock_enable(unsigned char enable)1082 void hab_caam_clock_enable(unsigned char enable)
1083 {
1084 	if (enable)
1085 		clock_enable(CCGR_CAAM, 1);
1086 	else
1087 		clock_enable(CCGR_CAAM, 0);
1088 }
1089 #endif
1090 
1091 #ifdef CONFIG_MXC_EPDC
epdc_clock_enable(void)1092 void epdc_clock_enable(void)
1093 {
1094 	clock_enable(CCGR_EPDC, 1);
1095 }
epdc_clock_disable(void)1096 void epdc_clock_disable(void)
1097 {
1098 	clock_enable(CCGR_EPDC, 0);
1099 }
1100 #endif
1101 
1102 #ifndef CONFIG_SPL_BUILD
1103 /*
1104  * Dump some core clockes.
1105  */
do_mx7_showclocks(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1106 int do_mx7_showclocks(struct cmd_tbl *cmdtp, int flag, int argc,
1107 		      char *const argv[])
1108 {
1109 	u32 freq;
1110 	freq = decode_pll(PLL_CORE, MXC_HCLK);
1111 	printf("PLL_CORE    %8d MHz\n", freq / 1000000);
1112 	freq = decode_pll(PLL_SYS, MXC_HCLK);
1113 	printf("PLL_SYS    %8d MHz\n", freq / 1000000);
1114 	freq = decode_pll(PLL_ENET, MXC_HCLK);
1115 	printf("PLL_NET    %8d MHz\n", freq / 1000000);
1116 
1117 	printf("\n");
1118 
1119 	printf("IPG        %8u kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
1120 	printf("UART       %8u kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
1121 #ifdef CONFIG_MXC_SPI
1122 	printf("CSPI       %8u kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
1123 #endif
1124 	printf("AHB        %8u kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
1125 	printf("AXI        %8u kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
1126 	printf("DDR        %8u kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
1127 	printf("USDHC1     %8u kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
1128 	printf("USDHC2     %8u kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
1129 	printf("USDHC3     %8u kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
1130 
1131 	return 0;
1132 }
1133 
1134 U_BOOT_CMD(
1135 	clocks,	CONFIG_SYS_MAXARGS, 1, do_mx7_showclocks,
1136 	"display clocks",
1137 	""
1138 );
1139 #endif
1140