1 /*
2  * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3  *
4  * Copyright (C) 2014 Marvell
5  *
6  * Marcin Wojtas <mw@semihalf.com>
7  *
8  * U-Boot version:
9  * Copyright (C) 2016-2017 Stefan Roese <sr@denx.de>
10  *
11  * This file is licensed under the terms of the GNU General Public
12  * License version 2. This program is licensed "as is" without any
13  * warranty of any kind, whether express or implied.
14  */
15 
16 #include <common.h>
17 #include <cpu_func.h>
18 #include <dm.h>
19 #include <asm/cache.h>
20 #include <asm/global_data.h>
21 #include <dm/device-internal.h>
22 #include <dm/device_compat.h>
23 #include <dm/devres.h>
24 #include <dm/lists.h>
25 #include <net.h>
26 #include <netdev.h>
27 #include <config.h>
28 #include <malloc.h>
29 #include <asm/io.h>
30 #include <linux/bitops.h>
31 #include <linux/bug.h>
32 #include <linux/delay.h>
33 #include <linux/err.h>
34 #include <linux/errno.h>
35 #include <phy.h>
36 #include <miiphy.h>
37 #include <watchdog.h>
38 #include <asm/arch/cpu.h>
39 #include <asm/arch/soc.h>
40 #include <linux/compat.h>
41 #include <linux/libfdt.h>
42 #include <linux/mbus.h>
43 #include <asm-generic/gpio.h>
44 #include <fdt_support.h>
45 #include <linux/mdio.h>
46 
47 DECLARE_GLOBAL_DATA_PTR;
48 
49 #define __verify_pcpu_ptr(ptr)						\
50 do {									\
51 	const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL;	\
52 	(void)__vpp_verify;						\
53 } while (0)
54 
55 #define VERIFY_PERCPU_PTR(__p)						\
56 ({									\
57 	__verify_pcpu_ptr(__p);						\
58 	(typeof(*(__p)) __kernel __force *)(__p);			\
59 })
60 
61 #define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
62 #define smp_processor_id()	0
63 #define num_present_cpus()	1
64 #define for_each_present_cpu(cpu)			\
65 	for ((cpu) = 0; (cpu) < 1; (cpu)++)
66 
67 #define NET_SKB_PAD	max(32, MVPP2_CPU_D_CACHE_LINE_SIZE)
68 
69 #define CONFIG_NR_CPUS		1
70 
71 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
72 #define WRAP			(2 + ETH_HLEN + 4 + 32)
73 #define MTU			1500
74 #define RX_BUFFER_SIZE		(ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
75 
76 /* RX Fifo Registers */
77 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port)	(0x00 + 4 * (port))
78 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port)	(0x20 + 4 * (port))
79 #define MVPP2_RX_MIN_PKT_SIZE_REG		0x60
80 #define MVPP2_RX_FIFO_INIT_REG			0x64
81 
82 /* RX DMA Top Registers */
83 #define MVPP2_RX_CTRL_REG(port)			(0x140 + 4 * (port))
84 #define     MVPP2_RX_LOW_LATENCY_PKT_SIZE(s)	(((s) & 0xfff) << 16)
85 #define     MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK	BIT(31)
86 #define MVPP2_POOL_BUF_SIZE_REG(pool)		(0x180 + 4 * (pool))
87 #define     MVPP2_POOL_BUF_SIZE_OFFSET		5
88 #define MVPP2_RXQ_CONFIG_REG(rxq)		(0x800 + 4 * (rxq))
89 #define     MVPP2_SNOOP_PKT_SIZE_MASK		0x1ff
90 #define     MVPP2_SNOOP_BUF_HDR_MASK		BIT(9)
91 #define     MVPP2_RXQ_POOL_SHORT_OFFS		20
92 #define     MVPP21_RXQ_POOL_SHORT_MASK		0x700000
93 #define     MVPP22_RXQ_POOL_SHORT_MASK		0xf00000
94 #define     MVPP2_RXQ_POOL_LONG_OFFS		24
95 #define     MVPP21_RXQ_POOL_LONG_MASK		0x7000000
96 #define     MVPP22_RXQ_POOL_LONG_MASK		0xf000000
97 #define     MVPP2_RXQ_PACKET_OFFSET_OFFS	28
98 #define     MVPP2_RXQ_PACKET_OFFSET_MASK	0x70000000
99 #define     MVPP2_RXQ_DISABLE_MASK		BIT(31)
100 
101 /* Parser Registers */
102 #define MVPP2_PRS_INIT_LOOKUP_REG		0x1000
103 #define     MVPP2_PRS_PORT_LU_MAX		0xf
104 #define     MVPP2_PRS_PORT_LU_MASK(port)	(0xff << ((port) * 4))
105 #define     MVPP2_PRS_PORT_LU_VAL(port, val)	((val) << ((port) * 4))
106 #define MVPP2_PRS_INIT_OFFS_REG(port)		(0x1004 + ((port) & 4))
107 #define     MVPP2_PRS_INIT_OFF_MASK(port)	(0x3f << (((port) % 4) * 8))
108 #define     MVPP2_PRS_INIT_OFF_VAL(port, val)	((val) << (((port) % 4) * 8))
109 #define MVPP2_PRS_MAX_LOOP_REG(port)		(0x100c + ((port) & 4))
110 #define     MVPP2_PRS_MAX_LOOP_MASK(port)	(0xff << (((port) % 4) * 8))
111 #define     MVPP2_PRS_MAX_LOOP_VAL(port, val)	((val) << (((port) % 4) * 8))
112 #define MVPP2_PRS_TCAM_IDX_REG			0x1100
113 #define MVPP2_PRS_TCAM_DATA_REG(idx)		(0x1104 + (idx) * 4)
114 #define     MVPP2_PRS_TCAM_INV_MASK		BIT(31)
115 #define MVPP2_PRS_SRAM_IDX_REG			0x1200
116 #define MVPP2_PRS_SRAM_DATA_REG(idx)		(0x1204 + (idx) * 4)
117 #define MVPP2_PRS_TCAM_CTRL_REG			0x1230
118 #define     MVPP2_PRS_TCAM_EN_MASK		BIT(0)
119 
120 /* Classifier Registers */
121 #define MVPP2_CLS_MODE_REG			0x1800
122 #define     MVPP2_CLS_MODE_ACTIVE_MASK		BIT(0)
123 #define MVPP2_CLS_PORT_WAY_REG			0x1810
124 #define     MVPP2_CLS_PORT_WAY_MASK(port)	(1 << (port))
125 #define MVPP2_CLS_LKP_INDEX_REG			0x1814
126 #define     MVPP2_CLS_LKP_INDEX_WAY_OFFS	6
127 #define MVPP2_CLS_LKP_TBL_REG			0x1818
128 #define     MVPP2_CLS_LKP_TBL_RXQ_MASK		0xff
129 #define     MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK	BIT(25)
130 #define MVPP2_CLS_FLOW_INDEX_REG		0x1820
131 #define MVPP2_CLS_FLOW_TBL0_REG			0x1824
132 #define MVPP2_CLS_FLOW_TBL1_REG			0x1828
133 #define MVPP2_CLS_FLOW_TBL2_REG			0x182c
134 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port)	(0x1980 + ((port) * 4))
135 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS	3
136 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK	0x7
137 #define MVPP2_CLS_SWFWD_P2HQ_REG(port)		(0x19b0 + ((port) * 4))
138 #define MVPP2_CLS_SWFWD_PCTRL_REG		0x19d0
139 #define     MVPP2_CLS_SWFWD_PCTRL_MASK(port)	(1 << (port))
140 
141 /* Descriptor Manager Top Registers */
142 #define MVPP2_RXQ_NUM_REG			0x2040
143 #define MVPP2_RXQ_DESC_ADDR_REG			0x2044
144 #define     MVPP22_DESC_ADDR_OFFS		8
145 #define MVPP2_RXQ_DESC_SIZE_REG			0x2048
146 #define     MVPP2_RXQ_DESC_SIZE_MASK		0x3ff0
147 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq)	(0x3000 + 4 * (rxq))
148 #define     MVPP2_RXQ_NUM_PROCESSED_OFFSET	0
149 #define     MVPP2_RXQ_NUM_NEW_OFFSET		16
150 #define MVPP2_RXQ_STATUS_REG(rxq)		(0x3400 + 4 * (rxq))
151 #define     MVPP2_RXQ_OCCUPIED_MASK		0x3fff
152 #define     MVPP2_RXQ_NON_OCCUPIED_OFFSET	16
153 #define     MVPP2_RXQ_NON_OCCUPIED_MASK		0x3fff0000
154 #define MVPP2_RXQ_THRESH_REG			0x204c
155 #define     MVPP2_OCCUPIED_THRESH_OFFSET	0
156 #define     MVPP2_OCCUPIED_THRESH_MASK		0x3fff
157 #define MVPP2_RXQ_INDEX_REG			0x2050
158 #define MVPP2_TXQ_NUM_REG			0x2080
159 #define MVPP2_TXQ_DESC_ADDR_REG			0x2084
160 #define MVPP2_TXQ_DESC_SIZE_REG			0x2088
161 #define     MVPP2_TXQ_DESC_SIZE_MASK		0x3ff0
162 #define MVPP2_AGGR_TXQ_UPDATE_REG		0x2090
163 #define MVPP2_TXQ_THRESH_REG			0x2094
164 #define     MVPP2_TRANSMITTED_THRESH_OFFSET	16
165 #define     MVPP2_TRANSMITTED_THRESH_MASK	0x3fff0000
166 #define MVPP2_TXQ_INDEX_REG			0x2098
167 #define MVPP2_TXQ_PREF_BUF_REG			0x209c
168 #define     MVPP2_PREF_BUF_PTR(desc)		((desc) & 0xfff)
169 #define     MVPP2_PREF_BUF_SIZE_4		(BIT(12) | BIT(13))
170 #define     MVPP2_PREF_BUF_SIZE_16		(BIT(12) | BIT(14))
171 #define     MVPP2_PREF_BUF_THRESH(val)		((val) << 17)
172 #define     MVPP2_TXQ_DRAIN_EN_MASK		BIT(31)
173 #define MVPP2_TXQ_PENDING_REG			0x20a0
174 #define     MVPP2_TXQ_PENDING_MASK		0x3fff
175 #define MVPP2_TXQ_INT_STATUS_REG		0x20a4
176 #define MVPP2_TXQ_SENT_REG(txq)			(0x3c00 + 4 * (txq))
177 #define     MVPP2_TRANSMITTED_COUNT_OFFSET	16
178 #define     MVPP2_TRANSMITTED_COUNT_MASK	0x3fff0000
179 #define MVPP2_TXQ_RSVD_REQ_REG			0x20b0
180 #define     MVPP2_TXQ_RSVD_REQ_Q_OFFSET		16
181 #define MVPP2_TXQ_RSVD_RSLT_REG			0x20b4
182 #define     MVPP2_TXQ_RSVD_RSLT_MASK		0x3fff
183 #define MVPP2_TXQ_RSVD_CLR_REG			0x20b8
184 #define     MVPP2_TXQ_RSVD_CLR_OFFSET		16
185 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu)	(0x2100 + 4 * (cpu))
186 #define     MVPP22_AGGR_TXQ_DESC_ADDR_OFFS	8
187 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu)	(0x2140 + 4 * (cpu))
188 #define     MVPP2_AGGR_TXQ_DESC_SIZE_MASK	0x3ff0
189 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu)		(0x2180 + 4 * (cpu))
190 #define     MVPP2_AGGR_TXQ_PENDING_MASK		0x3fff
191 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu)		(0x21c0 + 4 * (cpu))
192 
193 /* MBUS bridge registers */
194 #define MVPP2_WIN_BASE(w)			(0x4000 + ((w) << 2))
195 #define MVPP2_WIN_SIZE(w)			(0x4020 + ((w) << 2))
196 #define MVPP2_WIN_REMAP(w)			(0x4040 + ((w) << 2))
197 #define MVPP2_BASE_ADDR_ENABLE			0x4060
198 
199 /* AXI Bridge Registers */
200 #define MVPP22_AXI_BM_WR_ATTR_REG		0x4100
201 #define MVPP22_AXI_BM_RD_ATTR_REG		0x4104
202 #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG	0x4110
203 #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG	0x4114
204 #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG	0x4118
205 #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG	0x411c
206 #define MVPP22_AXI_RX_DATA_WR_ATTR_REG		0x4120
207 #define MVPP22_AXI_TX_DATA_RD_ATTR_REG		0x4130
208 #define MVPP22_AXI_RD_NORMAL_CODE_REG		0x4150
209 #define MVPP22_AXI_RD_SNOOP_CODE_REG		0x4154
210 #define MVPP22_AXI_WR_NORMAL_CODE_REG		0x4160
211 #define MVPP22_AXI_WR_SNOOP_CODE_REG		0x4164
212 
213 /* Values for AXI Bridge registers */
214 #define MVPP22_AXI_ATTR_CACHE_OFFS		0
215 #define MVPP22_AXI_ATTR_DOMAIN_OFFS		12
216 
217 #define MVPP22_AXI_CODE_CACHE_OFFS		0
218 #define MVPP22_AXI_CODE_DOMAIN_OFFS		4
219 
220 #define MVPP22_AXI_CODE_CACHE_NON_CACHE		0x3
221 #define MVPP22_AXI_CODE_CACHE_WR_CACHE		0x7
222 #define MVPP22_AXI_CODE_CACHE_RD_CACHE		0xb
223 
224 #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM	2
225 #define MVPP22_AXI_CODE_DOMAIN_SYSTEM		3
226 
227 /* Interrupt Cause and Mask registers */
228 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq)		(0x5200 + 4 * (rxq))
229 #define MVPP21_ISR_RXQ_GROUP_REG(rxq)		(0x5400 + 4 * (rxq))
230 
231 #define MVPP22_ISR_RXQ_GROUP_INDEX_REG          0x5400
232 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
233 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK   0x380
234 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7
235 
236 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
237 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK   0x380
238 
239 #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG     0x5404
240 #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK    0x1f
241 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK      0xf00
242 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET    8
243 
244 #define MVPP2_ISR_ENABLE_REG(port)		(0x5420 + 4 * (port))
245 #define     MVPP2_ISR_ENABLE_INTERRUPT(mask)	((mask) & 0xffff)
246 #define     MVPP2_ISR_DISABLE_INTERRUPT(mask)	(((mask) << 16) & 0xffff0000)
247 #define MVPP2_ISR_RX_TX_CAUSE_REG(port)		(0x5480 + 4 * (port))
248 #define     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
249 #define     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK	0xff0000
250 #define     MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK	BIT(24)
251 #define     MVPP2_CAUSE_FCS_ERR_MASK		BIT(25)
252 #define     MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK	BIT(26)
253 #define     MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK	BIT(29)
254 #define     MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK	BIT(30)
255 #define     MVPP2_CAUSE_MISC_SUM_MASK		BIT(31)
256 #define MVPP2_ISR_RX_TX_MASK_REG(port)		(0x54a0 + 4 * (port))
257 #define MVPP2_ISR_PON_RX_TX_MASK_REG		0x54bc
258 #define     MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
259 #define     MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK	0x3fc00000
260 #define     MVPP2_PON_CAUSE_MISC_SUM_MASK		BIT(31)
261 #define MVPP2_ISR_MISC_CAUSE_REG		0x55b0
262 
263 /* Buffer Manager registers */
264 #define MVPP2_BM_POOL_BASE_REG(pool)		(0x6000 + ((pool) * 4))
265 #define     MVPP2_BM_POOL_BASE_ADDR_MASK	0xfffff80
266 #define MVPP2_BM_POOL_SIZE_REG(pool)		(0x6040 + ((pool) * 4))
267 #define     MVPP2_BM_POOL_SIZE_MASK		0xfff0
268 #define MVPP2_BM_POOL_READ_PTR_REG(pool)	(0x6080 + ((pool) * 4))
269 #define     MVPP2_BM_POOL_GET_READ_PTR_MASK	0xfff0
270 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool)	(0x60c0 + ((pool) * 4))
271 #define     MVPP2_BM_POOL_PTRS_NUM_MASK		0xfff0
272 #define MVPP2_BM_BPPI_READ_PTR_REG(pool)	(0x6100 + ((pool) * 4))
273 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool)	(0x6140 + ((pool) * 4))
274 #define     MVPP2_BM_BPPI_PTR_NUM_MASK		0x7ff
275 #define     MVPP2_BM_BPPI_PREFETCH_FULL_MASK	BIT(16)
276 #define MVPP2_BM_POOL_CTRL_REG(pool)		(0x6200 + ((pool) * 4))
277 #define     MVPP2_BM_START_MASK			BIT(0)
278 #define     MVPP2_BM_STOP_MASK			BIT(1)
279 #define     MVPP2_BM_STATE_MASK			BIT(4)
280 #define     MVPP2_BM_LOW_THRESH_OFFS		8
281 #define     MVPP2_BM_LOW_THRESH_MASK		0x7f00
282 #define     MVPP2_BM_LOW_THRESH_VALUE(val)	((val) << \
283 						MVPP2_BM_LOW_THRESH_OFFS)
284 #define     MVPP2_BM_HIGH_THRESH_OFFS		16
285 #define     MVPP2_BM_HIGH_THRESH_MASK		0x7f0000
286 #define     MVPP2_BM_HIGH_THRESH_VALUE(val)	((val) << \
287 						MVPP2_BM_HIGH_THRESH_OFFS)
288 #define MVPP2_BM_INTR_CAUSE_REG(pool)		(0x6240 + ((pool) * 4))
289 #define     MVPP2_BM_RELEASED_DELAY_MASK	BIT(0)
290 #define     MVPP2_BM_ALLOC_FAILED_MASK		BIT(1)
291 #define     MVPP2_BM_BPPE_EMPTY_MASK		BIT(2)
292 #define     MVPP2_BM_BPPE_FULL_MASK		BIT(3)
293 #define     MVPP2_BM_AVAILABLE_BP_LOW_MASK	BIT(4)
294 #define MVPP2_BM_INTR_MASK_REG(pool)		(0x6280 + ((pool) * 4))
295 #define MVPP2_BM_PHY_ALLOC_REG(pool)		(0x6400 + ((pool) * 4))
296 #define     MVPP2_BM_PHY_ALLOC_GRNTD_MASK	BIT(0)
297 #define MVPP2_BM_VIRT_ALLOC_REG			0x6440
298 #define MVPP2_BM_ADDR_HIGH_ALLOC		0x6444
299 #define     MVPP2_BM_ADDR_HIGH_PHYS_MASK	0xff
300 #define     MVPP2_BM_ADDR_HIGH_VIRT_MASK	0xff00
301 #define     MVPP2_BM_ADDR_HIGH_VIRT_SHIFT	8
302 #define MVPP2_BM_PHY_RLS_REG(pool)		(0x6480 + ((pool) * 4))
303 #define     MVPP2_BM_PHY_RLS_MC_BUFF_MASK	BIT(0)
304 #define     MVPP2_BM_PHY_RLS_PRIO_EN_MASK	BIT(1)
305 #define     MVPP2_BM_PHY_RLS_GRNTD_MASK		BIT(2)
306 #define MVPP2_BM_VIRT_RLS_REG			0x64c0
307 #define MVPP21_BM_MC_RLS_REG			0x64c4
308 #define     MVPP2_BM_MC_ID_MASK			0xfff
309 #define     MVPP2_BM_FORCE_RELEASE_MASK		BIT(12)
310 #define MVPP22_BM_ADDR_HIGH_RLS_REG		0x64c4
311 #define     MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK	0xff
312 #define	    MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK	0xff00
313 #define     MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT	8
314 #define MVPP22_BM_MC_RLS_REG			0x64d4
315 #define MVPP22_BM_POOL_BASE_HIGH_REG		0x6310
316 #define MVPP22_BM_POOL_BASE_HIGH_MASK		0xff
317 
318 /* TX Scheduler registers */
319 #define MVPP2_TXP_SCHED_PORT_INDEX_REG		0x8000
320 #define MVPP2_TXP_SCHED_Q_CMD_REG		0x8004
321 #define     MVPP2_TXP_SCHED_ENQ_MASK		0xff
322 #define     MVPP2_TXP_SCHED_DISQ_OFFSET		8
323 #define MVPP2_TXP_SCHED_CMD_1_REG		0x8010
324 #define MVPP2_TXP_SCHED_PERIOD_REG		0x8018
325 #define MVPP2_TXP_SCHED_MTU_REG			0x801c
326 #define     MVPP2_TXP_MTU_MAX			0x7FFFF
327 #define MVPP2_TXP_SCHED_REFILL_REG		0x8020
328 #define     MVPP2_TXP_REFILL_TOKENS_ALL_MASK	0x7ffff
329 #define     MVPP2_TXP_REFILL_PERIOD_ALL_MASK	0x3ff00000
330 #define     MVPP2_TXP_REFILL_PERIOD_MASK(v)	((v) << 20)
331 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG		0x8024
332 #define     MVPP2_TXP_TOKEN_SIZE_MAX		0xffffffff
333 #define MVPP2_TXQ_SCHED_REFILL_REG(q)		(0x8040 + ((q) << 2))
334 #define     MVPP2_TXQ_REFILL_TOKENS_ALL_MASK	0x7ffff
335 #define     MVPP2_TXQ_REFILL_PERIOD_ALL_MASK	0x3ff00000
336 #define     MVPP2_TXQ_REFILL_PERIOD_MASK(v)	((v) << 20)
337 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q)	(0x8060 + ((q) << 2))
338 #define     MVPP2_TXQ_TOKEN_SIZE_MAX		0x7fffffff
339 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q)	(0x8080 + ((q) << 2))
340 #define     MVPP2_TXQ_TOKEN_CNTR_MAX		0xffffffff
341 
342 /* TX general registers */
343 #define MVPP2_TX_SNOOP_REG			0x8800
344 #define MVPP2_TX_PORT_FLUSH_REG			0x8810
345 #define     MVPP2_TX_PORT_FLUSH_MASK(port)	(1 << (port))
346 
347 /* LMS registers */
348 #define MVPP2_SRC_ADDR_MIDDLE			0x24
349 #define MVPP2_SRC_ADDR_HIGH			0x28
350 #define MVPP2_PHY_AN_CFG0_REG			0x34
351 #define     MVPP2_PHY_AN_STOP_SMI0_MASK		BIT(7)
352 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG	0x305c
353 #define     MVPP2_EXT_GLOBAL_CTRL_DEFAULT	0x27
354 
355 /* Per-port registers */
356 #define MVPP2_GMAC_CTRL_0_REG			0x0
357 #define      MVPP2_GMAC_PORT_EN_MASK		BIT(0)
358 #define      MVPP2_GMAC_PORT_TYPE_MASK		BIT(1)
359 #define      MVPP2_GMAC_MAX_RX_SIZE_OFFS	2
360 #define      MVPP2_GMAC_MAX_RX_SIZE_MASK	0x7ffc
361 #define      MVPP2_GMAC_MIB_CNTR_EN_MASK	BIT(15)
362 #define MVPP2_GMAC_CTRL_1_REG			0x4
363 #define      MVPP2_GMAC_PERIODIC_XON_EN_MASK	BIT(1)
364 #define      MVPP2_GMAC_GMII_LB_EN_MASK		BIT(5)
365 #define      MVPP2_GMAC_PCS_LB_EN_BIT		6
366 #define      MVPP2_GMAC_PCS_LB_EN_MASK		BIT(6)
367 #define      MVPP2_GMAC_SA_LOW_OFFS		7
368 #define MVPP2_GMAC_CTRL_2_REG			0x8
369 #define      MVPP2_GMAC_INBAND_AN_MASK		BIT(0)
370 #define      MVPP2_GMAC_SGMII_MODE_MASK		BIT(0)
371 #define      MVPP2_GMAC_PCS_ENABLE_MASK		BIT(3)
372 #define      MVPP2_GMAC_PORT_RGMII_MASK		BIT(4)
373 #define      MVPP2_GMAC_PORT_DIS_PADING_MASK	BIT(5)
374 #define      MVPP2_GMAC_PORT_RESET_MASK		BIT(6)
375 #define      MVPP2_GMAC_CLK_125_BYPS_EN_MASK	BIT(9)
376 #define MVPP2_GMAC_AUTONEG_CONFIG		0xc
377 #define      MVPP2_GMAC_FORCE_LINK_DOWN		BIT(0)
378 #define      MVPP2_GMAC_FORCE_LINK_PASS		BIT(1)
379 #define      MVPP2_GMAC_EN_PCS_AN		BIT(2)
380 #define      MVPP2_GMAC_AN_BYPASS_EN		BIT(3)
381 #define      MVPP2_GMAC_CONFIG_MII_SPEED	BIT(5)
382 #define      MVPP2_GMAC_CONFIG_GMII_SPEED	BIT(6)
383 #define      MVPP2_GMAC_AN_SPEED_EN		BIT(7)
384 #define      MVPP2_GMAC_FC_ADV_EN		BIT(9)
385 #define      MVPP2_GMAC_EN_FC_AN		BIT(11)
386 #define      MVPP2_GMAC_CONFIG_FULL_DUPLEX	BIT(12)
387 #define      MVPP2_GMAC_AN_DUPLEX_EN		BIT(13)
388 #define      MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG	BIT(15)
389 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG		0x1c
390 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS	6
391 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK	0x1fc0
392 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v)	(((v) << 6) & \
393 					MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
394 #define MVPP2_GMAC_CTRL_4_REG			0x90
395 #define      MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK	BIT(0)
396 #define      MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK	BIT(5)
397 #define      MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK	BIT(6)
398 #define      MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK	BIT(7)
399 
400 /*
401  * Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
402  * relative to port->base.
403  */
404 
405 /* Port Mac Control0 */
406 #define MVPP22_XLG_CTRL0_REG			0x100
407 #define      MVPP22_XLG_PORT_EN			BIT(0)
408 #define      MVPP22_XLG_MAC_RESETN		BIT(1)
409 #define      MVPP22_XLG_RX_FC_EN		BIT(7)
410 #define      MVPP22_XLG_MIBCNT_DIS		BIT(13)
411 /* Port Mac Control1 */
412 #define MVPP22_XLG_CTRL1_REG			0x104
413 #define      MVPP22_XLG_MAX_RX_SIZE_OFFS	0
414 #define      MVPP22_XLG_MAX_RX_SIZE_MASK	0x1fff
415 /* Port Interrupt Mask */
416 #define MVPP22_XLG_INTERRUPT_MASK_REG		0x118
417 #define      MVPP22_XLG_INTERRUPT_LINK_CHANGE	BIT(1)
418 /* Port Mac Control3 */
419 #define MVPP22_XLG_CTRL3_REG			0x11c
420 #define      MVPP22_XLG_CTRL3_MACMODESELECT_MASK	(7 << 13)
421 #define      MVPP22_XLG_CTRL3_MACMODESELECT_GMAC	(0 << 13)
422 #define      MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC	(1 << 13)
423 /* Port Mac Control4 */
424 #define MVPP22_XLG_CTRL4_REG			0x184
425 #define      MVPP22_XLG_FORWARD_802_3X_FC_EN	BIT(5)
426 #define      MVPP22_XLG_FORWARD_PFC_EN		BIT(6)
427 #define      MVPP22_XLG_MODE_DMA_1G		BIT(12)
428 #define      MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK	BIT(14)
429 
430 /* XPCS registers */
431 
432 /* Global Configuration 0 */
433 #define MVPP22_XPCS_GLOBAL_CFG_0_REG		0x0
434 #define      MVPP22_XPCS_PCSRESET		BIT(0)
435 #define      MVPP22_XPCS_PCSMODE_OFFS		3
436 #define      MVPP22_XPCS_PCSMODE_MASK		(0x3 << \
437 						 MVPP22_XPCS_PCSMODE_OFFS)
438 #define      MVPP22_XPCS_LANEACTIVE_OFFS	5
439 #define      MVPP22_XPCS_LANEACTIVE_MASK	(0x3 << \
440 						 MVPP22_XPCS_LANEACTIVE_OFFS)
441 
442 /* MPCS registers */
443 
444 #define PCS40G_COMMON_CONTROL			0x14
445 #define      FORWARD_ERROR_CORRECTION_MASK	BIT(10)
446 
447 #define PCS_CLOCK_RESET				0x14c
448 #define      TX_SD_CLK_RESET_MASK		BIT(0)
449 #define      RX_SD_CLK_RESET_MASK		BIT(1)
450 #define      MAC_CLK_RESET_MASK			BIT(2)
451 #define      CLK_DIVISION_RATIO_OFFS		4
452 #define      CLK_DIVISION_RATIO_MASK		(0x7 << CLK_DIVISION_RATIO_OFFS)
453 #define      CLK_DIV_PHASE_SET_MASK		BIT(11)
454 
455 /* System Soft Reset 1 */
456 #define GOP_SOFT_RESET_1_REG			0x108
457 #define     NETC_GOP_SOFT_RESET_OFFS		6
458 #define     NETC_GOP_SOFT_RESET_MASK		(0x1 << \
459 						 NETC_GOP_SOFT_RESET_OFFS)
460 
461 /* Ports Control 0 */
462 #define NETCOMP_PORTS_CONTROL_0_REG		0x110
463 #define     NETC_BUS_WIDTH_SELECT_OFFS		1
464 #define     NETC_BUS_WIDTH_SELECT_MASK		(0x1 << \
465 						 NETC_BUS_WIDTH_SELECT_OFFS)
466 #define     NETC_GIG_RX_DATA_SAMPLE_OFFS	29
467 #define     NETC_GIG_RX_DATA_SAMPLE_MASK	(0x1 << \
468 						 NETC_GIG_RX_DATA_SAMPLE_OFFS)
469 #define     NETC_CLK_DIV_PHASE_OFFS		31
470 #define     NETC_CLK_DIV_PHASE_MASK		(0x1 << NETC_CLK_DIV_PHASE_OFFS)
471 /* Ports Control 1 */
472 #define NETCOMP_PORTS_CONTROL_1_REG		0x114
473 #define     NETC_PORTS_ACTIVE_OFFSET(p)		(0 + p)
474 #define     NETC_PORTS_ACTIVE_MASK(p)		(0x1 << \
475 						 NETC_PORTS_ACTIVE_OFFSET(p))
476 #define     NETC_PORT_GIG_RF_RESET_OFFS(p)	(28 + p)
477 #define     NETC_PORT_GIG_RF_RESET_MASK(p)	(0x1 << \
478 						 NETC_PORT_GIG_RF_RESET_OFFS(p))
479 #define NETCOMP_CONTROL_0_REG			0x120
480 #define     NETC_GBE_PORT0_SGMII_MODE_OFFS	0
481 #define     NETC_GBE_PORT0_SGMII_MODE_MASK	(0x1 << \
482 						 NETC_GBE_PORT0_SGMII_MODE_OFFS)
483 #define     NETC_GBE_PORT1_SGMII_MODE_OFFS	1
484 #define     NETC_GBE_PORT1_SGMII_MODE_MASK	(0x1 << \
485 						 NETC_GBE_PORT1_SGMII_MODE_OFFS)
486 #define     NETC_GBE_PORT1_MII_MODE_OFFS	2
487 #define     NETC_GBE_PORT1_MII_MODE_MASK	(0x1 << \
488 						 NETC_GBE_PORT1_MII_MODE_OFFS)
489 
490 #define MVPP22_SMI_MISC_CFG_REG			(MVPP22_SMI + 0x04)
491 #define      MVPP22_SMI_POLLING_EN		BIT(10)
492 
493 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK	0xff
494 
495 /* Descriptor ring Macros */
496 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
497 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
498 
499 /* PP2.2: SMI: 0x12a200 -> offset 0x1200 to iface_base */
500 #define MVPP22_SMI				0x1200
501 
502 /* Additional PPv2.2 offsets */
503 #define MVPP22_MPCS				0x007000
504 #define MVPP22_XPCS				0x007400
505 #define MVPP22_PORT_BASE			0x007e00
506 #define MVPP22_PORT_OFFSET			0x001000
507 #define MVPP22_RFU1				0x318000
508 
509 /* Maximum number of ports */
510 #define MVPP22_GOP_MAC_NUM			4
511 
512 /* Sets the field located at the specified in data */
513 #define MVPP2_RGMII_TX_FIFO_MIN_TH		0x41
514 #define MVPP2_SGMII_TX_FIFO_MIN_TH		0x5
515 #define MVPP2_SGMII2_5_TX_FIFO_MIN_TH		0xb
516 
517 /* Net Complex */
518 enum mv_netc_topology {
519 	MV_NETC_GE_MAC2_SGMII		=	BIT(0),
520 	MV_NETC_GE_MAC2_RGMII		=	BIT(1),
521 	MV_NETC_GE_MAC3_SGMII		=	BIT(2),
522 	MV_NETC_GE_MAC3_RGMII		=	BIT(3),
523 };
524 
525 enum mv_netc_phase {
526 	MV_NETC_FIRST_PHASE,
527 	MV_NETC_SECOND_PHASE,
528 };
529 
530 enum mv_netc_sgmii_xmi_mode {
531 	MV_NETC_GBE_SGMII,
532 	MV_NETC_GBE_XMII,
533 };
534 
535 enum mv_netc_mii_mode {
536 	MV_NETC_GBE_RGMII,
537 	MV_NETC_GBE_MII,
538 };
539 
540 enum mv_netc_lanes {
541 	MV_NETC_LANE_23,
542 	MV_NETC_LANE_45,
543 };
544 
545 /* Various constants */
546 
547 /* Coalescing */
548 #define MVPP2_TXDONE_COAL_PKTS_THRESH	15
549 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS	1000000UL
550 #define MVPP2_RX_COAL_PKTS		32
551 #define MVPP2_RX_COAL_USEC		100
552 
553 /* The two bytes Marvell header. Either contains a special value used
554  * by Marvell switches when a specific hardware mode is enabled (not
555  * supported by this driver) or is filled automatically by zeroes on
556  * the RX side. Those two bytes being at the front of the Ethernet
557  * header, they allow to have the IP header aligned on a 4 bytes
558  * boundary automatically: the hardware skips those two bytes on its
559  * own.
560  */
561 #define MVPP2_MH_SIZE			2
562 #define MVPP2_ETH_TYPE_LEN		2
563 #define MVPP2_PPPOE_HDR_SIZE		8
564 #define MVPP2_VLAN_TAG_LEN		4
565 
566 /* Lbtd 802.3 type */
567 #define MVPP2_IP_LBDT_TYPE		0xfffa
568 
569 #define MVPP2_CPU_D_CACHE_LINE_SIZE	32
570 #define MVPP2_TX_CSUM_MAX_SIZE		9800
571 
572 /* Timeout constants */
573 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC	1000
574 #define MVPP2_TX_PENDING_TIMEOUT_MSEC	1000
575 
576 #define MVPP2_TX_MTU_MAX		0x7ffff
577 
578 /* Maximum number of T-CONTs of PON port */
579 #define MVPP2_MAX_TCONT			16
580 
581 /* Maximum number of supported ports */
582 #define MVPP2_MAX_PORTS			4
583 
584 /* Maximum number of TXQs used by single port */
585 #define MVPP2_MAX_TXQ			8
586 
587 /* Default number of TXQs in use */
588 #define MVPP2_DEFAULT_TXQ		1
589 
590 /* Default number of RXQs in use */
591 #define MVPP2_DEFAULT_RXQ		1
592 #define CONFIG_MV_ETH_RXQ		8	/* increment by 8 */
593 
594 /* Max number of Rx descriptors */
595 #define MVPP2_MAX_RXD			16
596 
597 /* Max number of Tx descriptors */
598 #define MVPP2_MAX_TXD			16
599 
600 /* Amount of Tx descriptors that can be reserved at once by CPU */
601 #define MVPP2_CPU_DESC_CHUNK		16
602 
603 /* Max number of Tx descriptors in each aggregated queue */
604 #define MVPP2_AGGR_TXQ_SIZE		16
605 
606 /* Descriptor aligned size */
607 #define MVPP2_DESC_ALIGNED_SIZE		32
608 
609 /* Descriptor alignment mask */
610 #define MVPP2_TX_DESC_ALIGN		(MVPP2_DESC_ALIGNED_SIZE - 1)
611 
612 /* RX FIFO constants */
613 #define MVPP21_RX_FIFO_PORT_DATA_SIZE		0x2000
614 #define MVPP21_RX_FIFO_PORT_ATTR_SIZE		0x80
615 #define MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE	0x8000
616 #define MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE	0x2000
617 #define MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE	0x1000
618 #define MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE	0x200
619 #define MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE	0x80
620 #define MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE	0x40
621 #define MVPP2_RX_FIFO_PORT_MIN_PKT		0x80
622 
623 /* TX general registers */
624 #define MVPP22_TX_FIFO_SIZE_REG(eth_tx_port)	(0x8860 + ((eth_tx_port) << 2))
625 #define MVPP22_TX_FIFO_SIZE_MASK		0xf
626 
627 /* TX FIFO constants */
628 #define MVPP2_TX_FIFO_DATA_SIZE_10KB		0xa
629 #define MVPP2_TX_FIFO_DATA_SIZE_3KB		0x3
630 
631 /* RX buffer constants */
632 #define MVPP2_SKB_SHINFO_SIZE \
633 	0
634 
635 #define MVPP2_RX_PKT_SIZE(mtu) \
636 	ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
637 	      ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
638 
639 #define MVPP2_RX_BUF_SIZE(pkt_size)	((pkt_size) + NET_SKB_PAD)
640 #define MVPP2_RX_TOTAL_SIZE(buf_size)	((buf_size) + MVPP2_SKB_SHINFO_SIZE)
641 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
642 	((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
643 
644 #define MVPP2_BIT_TO_BYTE(bit)		((bit) / 8)
645 
646 /* IPv6 max L3 address size */
647 #define MVPP2_MAX_L3_ADDR_SIZE		16
648 
649 /* Port flags */
650 #define MVPP2_F_LOOPBACK		BIT(0)
651 
652 /* Marvell tag types */
653 enum mvpp2_tag_type {
654 	MVPP2_TAG_TYPE_NONE = 0,
655 	MVPP2_TAG_TYPE_MH   = 1,
656 	MVPP2_TAG_TYPE_DSA  = 2,
657 	MVPP2_TAG_TYPE_EDSA = 3,
658 	MVPP2_TAG_TYPE_VLAN = 4,
659 	MVPP2_TAG_TYPE_LAST = 5
660 };
661 
662 /* Parser constants */
663 #define MVPP2_PRS_TCAM_SRAM_SIZE	256
664 #define MVPP2_PRS_TCAM_WORDS		6
665 #define MVPP2_PRS_SRAM_WORDS		4
666 #define MVPP2_PRS_FLOW_ID_SIZE		64
667 #define MVPP2_PRS_FLOW_ID_MASK		0x3f
668 #define MVPP2_PRS_TCAM_ENTRY_INVALID	1
669 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT	BIT(5)
670 #define MVPP2_PRS_IPV4_HEAD		0x40
671 #define MVPP2_PRS_IPV4_HEAD_MASK	0xf0
672 #define MVPP2_PRS_IPV4_MC		0xe0
673 #define MVPP2_PRS_IPV4_MC_MASK		0xf0
674 #define MVPP2_PRS_IPV4_BC_MASK		0xff
675 #define MVPP2_PRS_IPV4_IHL		0x5
676 #define MVPP2_PRS_IPV4_IHL_MASK		0xf
677 #define MVPP2_PRS_IPV6_MC		0xff
678 #define MVPP2_PRS_IPV6_MC_MASK		0xff
679 #define MVPP2_PRS_IPV6_HOP_MASK		0xff
680 #define MVPP2_PRS_TCAM_PROTO_MASK	0xff
681 #define MVPP2_PRS_TCAM_PROTO_MASK_L	0x3f
682 #define MVPP2_PRS_DBL_VLANS_MAX		100
683 
684 /* Tcam structure:
685  * - lookup ID - 4 bits
686  * - port ID - 1 byte
687  * - additional information - 1 byte
688  * - header data - 8 bytes
689  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
690  */
691 #define MVPP2_PRS_AI_BITS			8
692 #define MVPP2_PRS_PORT_MASK			0xff
693 #define MVPP2_PRS_LU_MASK			0xf
694 #define MVPP2_PRS_TCAM_DATA_BYTE(offs)		\
695 				    (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
696 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)	\
697 					      (((offs) * 2) - ((offs) % 2)  + 2)
698 #define MVPP2_PRS_TCAM_AI_BYTE			16
699 #define MVPP2_PRS_TCAM_PORT_BYTE		17
700 #define MVPP2_PRS_TCAM_LU_BYTE			20
701 #define MVPP2_PRS_TCAM_EN_OFFS(offs)		((offs) + 2)
702 #define MVPP2_PRS_TCAM_INV_WORD			5
703 /* Tcam entries ID */
704 #define MVPP2_PE_DROP_ALL		0
705 #define MVPP2_PE_FIRST_FREE_TID		1
706 #define MVPP2_PE_LAST_FREE_TID		(MVPP2_PRS_TCAM_SRAM_SIZE - 31)
707 #define MVPP2_PE_IP6_EXT_PROTO_UN	(MVPP2_PRS_TCAM_SRAM_SIZE - 30)
708 #define MVPP2_PE_MAC_MC_IP6		(MVPP2_PRS_TCAM_SRAM_SIZE - 29)
709 #define MVPP2_PE_IP6_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 28)
710 #define MVPP2_PE_IP4_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 27)
711 #define MVPP2_PE_LAST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 26)
712 #define MVPP2_PE_FIRST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 19)
713 #define MVPP2_PE_EDSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 18)
714 #define MVPP2_PE_EDSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 17)
715 #define MVPP2_PE_DSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 16)
716 #define MVPP2_PE_DSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 15)
717 #define MVPP2_PE_ETYPE_EDSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 14)
718 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 13)
719 #define MVPP2_PE_ETYPE_DSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 12)
720 #define MVPP2_PE_ETYPE_DSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 11)
721 #define MVPP2_PE_MH_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 10)
722 #define MVPP2_PE_DSA_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 9)
723 #define MVPP2_PE_IP6_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 8)
724 #define MVPP2_PE_IP4_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 7)
725 #define MVPP2_PE_ETH_TYPE_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 6)
726 #define MVPP2_PE_VLAN_DBL		(MVPP2_PRS_TCAM_SRAM_SIZE - 5)
727 #define MVPP2_PE_VLAN_NONE		(MVPP2_PRS_TCAM_SRAM_SIZE - 4)
728 #define MVPP2_PE_MAC_MC_ALL		(MVPP2_PRS_TCAM_SRAM_SIZE - 3)
729 #define MVPP2_PE_MAC_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 2)
730 #define MVPP2_PE_MAC_NON_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 1)
731 
732 /* Sram structure
733  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
734  */
735 #define MVPP2_PRS_SRAM_RI_OFFS			0
736 #define MVPP2_PRS_SRAM_RI_WORD			0
737 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS		32
738 #define MVPP2_PRS_SRAM_RI_CTRL_WORD		1
739 #define MVPP2_PRS_SRAM_RI_CTRL_BITS		32
740 #define MVPP2_PRS_SRAM_SHIFT_OFFS		64
741 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT		72
742 #define MVPP2_PRS_SRAM_UDF_OFFS			73
743 #define MVPP2_PRS_SRAM_UDF_BITS			8
744 #define MVPP2_PRS_SRAM_UDF_MASK			0xff
745 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT		81
746 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS		82
747 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK		0x7
748 #define MVPP2_PRS_SRAM_UDF_TYPE_L3		1
749 #define MVPP2_PRS_SRAM_UDF_TYPE_L4		4
750 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS	85
751 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK	0x3
752 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD		1
753 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD	2
754 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD	3
755 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS		87
756 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS		2
757 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK		0x3
758 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD		0
759 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD	2
760 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD	3
761 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS		89
762 #define MVPP2_PRS_SRAM_AI_OFFS			90
763 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS		98
764 #define MVPP2_PRS_SRAM_AI_CTRL_BITS		8
765 #define MVPP2_PRS_SRAM_AI_MASK			0xff
766 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS		106
767 #define MVPP2_PRS_SRAM_NEXT_LU_MASK		0xf
768 #define MVPP2_PRS_SRAM_LU_DONE_BIT		110
769 #define MVPP2_PRS_SRAM_LU_GEN_BIT		111
770 
771 /* Sram result info bits assignment */
772 #define MVPP2_PRS_RI_MAC_ME_MASK		0x1
773 #define MVPP2_PRS_RI_DSA_MASK			0x2
774 #define MVPP2_PRS_RI_VLAN_MASK			(BIT(2) | BIT(3))
775 #define MVPP2_PRS_RI_VLAN_NONE			0x0
776 #define MVPP2_PRS_RI_VLAN_SINGLE		BIT(2)
777 #define MVPP2_PRS_RI_VLAN_DOUBLE		BIT(3)
778 #define MVPP2_PRS_RI_VLAN_TRIPLE		(BIT(2) | BIT(3))
779 #define MVPP2_PRS_RI_CPU_CODE_MASK		0x70
780 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC		BIT(4)
781 #define MVPP2_PRS_RI_L2_CAST_MASK		(BIT(9) | BIT(10))
782 #define MVPP2_PRS_RI_L2_UCAST			0x0
783 #define MVPP2_PRS_RI_L2_MCAST			BIT(9)
784 #define MVPP2_PRS_RI_L2_BCAST			BIT(10)
785 #define MVPP2_PRS_RI_PPPOE_MASK			0x800
786 #define MVPP2_PRS_RI_L3_PROTO_MASK		(BIT(12) | BIT(13) | BIT(14))
787 #define MVPP2_PRS_RI_L3_UN			0x0
788 #define MVPP2_PRS_RI_L3_IP4			BIT(12)
789 #define MVPP2_PRS_RI_L3_IP4_OPT			BIT(13)
790 #define MVPP2_PRS_RI_L3_IP4_OTHER		(BIT(12) | BIT(13))
791 #define MVPP2_PRS_RI_L3_IP6			BIT(14)
792 #define MVPP2_PRS_RI_L3_IP6_EXT			(BIT(12) | BIT(14))
793 #define MVPP2_PRS_RI_L3_ARP			(BIT(13) | BIT(14))
794 #define MVPP2_PRS_RI_L3_ADDR_MASK		(BIT(15) | BIT(16))
795 #define MVPP2_PRS_RI_L3_UCAST			0x0
796 #define MVPP2_PRS_RI_L3_MCAST			BIT(15)
797 #define MVPP2_PRS_RI_L3_BCAST			(BIT(15) | BIT(16))
798 #define MVPP2_PRS_RI_IP_FRAG_MASK		0x20000
799 #define MVPP2_PRS_RI_UDF3_MASK			0x300000
800 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL		BIT(21)
801 #define MVPP2_PRS_RI_L4_PROTO_MASK		0x1c00000
802 #define MVPP2_PRS_RI_L4_TCP			BIT(22)
803 #define MVPP2_PRS_RI_L4_UDP			BIT(23)
804 #define MVPP2_PRS_RI_L4_OTHER			(BIT(22) | BIT(23))
805 #define MVPP2_PRS_RI_UDF7_MASK			0x60000000
806 #define MVPP2_PRS_RI_UDF7_IP6_LITE		BIT(29)
807 #define MVPP2_PRS_RI_DROP_MASK			0x80000000
808 
809 /* Sram additional info bits assignment */
810 #define MVPP2_PRS_IPV4_DIP_AI_BIT		BIT(0)
811 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT		BIT(0)
812 #define MVPP2_PRS_IPV6_EXT_AI_BIT		BIT(1)
813 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT		BIT(2)
814 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT	BIT(3)
815 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT		BIT(4)
816 #define MVPP2_PRS_SINGLE_VLAN_AI		0
817 #define MVPP2_PRS_DBL_VLAN_AI_BIT		BIT(7)
818 
819 /* DSA/EDSA type */
820 #define MVPP2_PRS_TAGGED		true
821 #define MVPP2_PRS_UNTAGGED		false
822 #define MVPP2_PRS_EDSA			true
823 #define MVPP2_PRS_DSA			false
824 
825 /* MAC entries, shadow udf */
826 enum mvpp2_prs_udf {
827 	MVPP2_PRS_UDF_MAC_DEF,
828 	MVPP2_PRS_UDF_MAC_RANGE,
829 	MVPP2_PRS_UDF_L2_DEF,
830 	MVPP2_PRS_UDF_L2_DEF_COPY,
831 	MVPP2_PRS_UDF_L2_USER,
832 };
833 
834 /* Lookup ID */
835 enum mvpp2_prs_lookup {
836 	MVPP2_PRS_LU_MH,
837 	MVPP2_PRS_LU_MAC,
838 	MVPP2_PRS_LU_DSA,
839 	MVPP2_PRS_LU_VLAN,
840 	MVPP2_PRS_LU_L2,
841 	MVPP2_PRS_LU_PPPOE,
842 	MVPP2_PRS_LU_IP4,
843 	MVPP2_PRS_LU_IP6,
844 	MVPP2_PRS_LU_FLOWS,
845 	MVPP2_PRS_LU_LAST,
846 };
847 
848 /* L3 cast enum */
849 enum mvpp2_prs_l3_cast {
850 	MVPP2_PRS_L3_UNI_CAST,
851 	MVPP2_PRS_L3_MULTI_CAST,
852 	MVPP2_PRS_L3_BROAD_CAST
853 };
854 
855 /* Classifier constants */
856 #define MVPP2_CLS_FLOWS_TBL_SIZE	512
857 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS	3
858 #define MVPP2_CLS_LKP_TBL_SIZE		64
859 
860 /* BM constants */
861 #define MVPP2_BM_POOLS_NUM		1
862 #define MVPP2_BM_LONG_BUF_NUM		16
863 #define MVPP2_BM_SHORT_BUF_NUM		16
864 #define MVPP2_BM_POOL_SIZE_MAX		(16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
865 #define MVPP2_BM_POOL_PTR_ALIGN		128
866 #define MVPP2_BM_SWF_LONG_POOL(port)	0
867 
868 /* BM cookie (32 bits) definition */
869 #define MVPP2_BM_COOKIE_POOL_OFFS	8
870 #define MVPP2_BM_COOKIE_CPU_OFFS	24
871 
872 /* BM short pool packet size
873  * These value assure that for SWF the total number
874  * of bytes allocated for each buffer will be 512
875  */
876 #define MVPP2_BM_SHORT_PKT_SIZE		MVPP2_RX_MAX_PKT_SIZE(512)
877 
878 enum mvpp2_bm_type {
879 	MVPP2_BM_FREE,
880 	MVPP2_BM_SWF_LONG,
881 	MVPP2_BM_SWF_SHORT
882 };
883 
884 /* Definitions */
885 
886 /* Shared Packet Processor resources */
887 struct mvpp2 {
888 	/* Shared registers' base addresses */
889 	void __iomem *base;
890 	void __iomem *lms_base;
891 	void __iomem *iface_base;
892 
893 	void __iomem *mpcs_base;
894 	void __iomem *xpcs_base;
895 	void __iomem *rfu1_base;
896 
897 	u32 netc_config;
898 
899 	/* List of pointers to port structures */
900 	struct mvpp2_port **port_list;
901 
902 	/* Aggregated TXQs */
903 	struct mvpp2_tx_queue *aggr_txqs;
904 
905 	/* BM pools */
906 	struct mvpp2_bm_pool *bm_pools;
907 
908 	/* PRS shadow table */
909 	struct mvpp2_prs_shadow *prs_shadow;
910 	/* PRS auxiliary table for double vlan entries control */
911 	bool *prs_double_vlans;
912 
913 	/* Tclk value */
914 	u32 tclk;
915 
916 	/* HW version */
917 	enum { MVPP21, MVPP22 } hw_version;
918 
919 	/* Maximum number of RXQs per port */
920 	unsigned int max_port_rxqs;
921 
922 	int probe_done;
923 	u8 num_ports;
924 };
925 
926 struct mvpp2_pcpu_stats {
927 	u64	rx_packets;
928 	u64	rx_bytes;
929 	u64	tx_packets;
930 	u64	tx_bytes;
931 };
932 
933 struct mvpp2_port {
934 	u8 id;
935 
936 	/* Index of the port from the "group of ports" complex point
937 	 * of view
938 	 */
939 	int gop_id;
940 
941 	int irq;
942 
943 	struct mvpp2 *priv;
944 
945 	/* Per-port registers' base address */
946 	void __iomem *base;
947 
948 	struct mvpp2_rx_queue **rxqs;
949 	struct mvpp2_tx_queue **txqs;
950 
951 	int pkt_size;
952 
953 	u32 pending_cause_rx;
954 
955 	/* Per-CPU port control */
956 	struct mvpp2_port_pcpu __percpu *pcpu;
957 
958 	/* Flags */
959 	unsigned long flags;
960 
961 	u16 tx_ring_size;
962 	u16 rx_ring_size;
963 	struct mvpp2_pcpu_stats __percpu *stats;
964 
965 	struct phy_device *phy_dev;
966 	phy_interface_t phy_interface;
967 	int phyaddr;
968 	struct udevice *mdio_dev;
969 	struct mii_dev *bus;
970 #if CONFIG_IS_ENABLED(DM_GPIO)
971 	struct gpio_desc phy_reset_gpio;
972 	struct gpio_desc phy_tx_disable_gpio;
973 #endif
974 	int init;
975 	unsigned int link;
976 	unsigned int duplex;
977 	unsigned int speed;
978 
979 	struct mvpp2_bm_pool *pool_long;
980 	struct mvpp2_bm_pool *pool_short;
981 
982 	/* Index of first port's physical RXQ */
983 	u8 first_rxq;
984 
985 	u8 dev_addr[ETH_ALEN];
986 };
987 
988 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
989  * layout of the transmit and reception DMA descriptors, and their
990  * layout is therefore defined by the hardware design
991  */
992 
993 #define MVPP2_TXD_L3_OFF_SHIFT		0
994 #define MVPP2_TXD_IP_HLEN_SHIFT		8
995 #define MVPP2_TXD_L4_CSUM_FRAG		BIT(13)
996 #define MVPP2_TXD_L4_CSUM_NOT		BIT(14)
997 #define MVPP2_TXD_IP_CSUM_DISABLE	BIT(15)
998 #define MVPP2_TXD_PADDING_DISABLE	BIT(23)
999 #define MVPP2_TXD_L4_UDP		BIT(24)
1000 #define MVPP2_TXD_L3_IP6		BIT(26)
1001 #define MVPP2_TXD_L_DESC		BIT(28)
1002 #define MVPP2_TXD_F_DESC		BIT(29)
1003 
1004 #define MVPP2_RXD_ERR_SUMMARY		BIT(15)
1005 #define MVPP2_RXD_ERR_CODE_MASK		(BIT(13) | BIT(14))
1006 #define MVPP2_RXD_ERR_CRC		0x0
1007 #define MVPP2_RXD_ERR_OVERRUN		BIT(13)
1008 #define MVPP2_RXD_ERR_RESOURCE		(BIT(13) | BIT(14))
1009 #define MVPP2_RXD_BM_POOL_ID_OFFS	16
1010 #define MVPP2_RXD_BM_POOL_ID_MASK	(BIT(16) | BIT(17) | BIT(18))
1011 #define MVPP2_RXD_HWF_SYNC		BIT(21)
1012 #define MVPP2_RXD_L4_CSUM_OK		BIT(22)
1013 #define MVPP2_RXD_IP4_HEADER_ERR	BIT(24)
1014 #define MVPP2_RXD_L4_TCP		BIT(25)
1015 #define MVPP2_RXD_L4_UDP		BIT(26)
1016 #define MVPP2_RXD_L3_IP4		BIT(28)
1017 #define MVPP2_RXD_L3_IP6		BIT(30)
1018 #define MVPP2_RXD_BUF_HDR		BIT(31)
1019 
1020 /* HW TX descriptor for PPv2.1 */
1021 struct mvpp21_tx_desc {
1022 	u32 command;		/* Options used by HW for packet transmitting.*/
1023 	u8  packet_offset;	/* the offset from the buffer beginning	*/
1024 	u8  phys_txq;		/* destination queue ID			*/
1025 	u16 data_size;		/* data size of transmitted packet in bytes */
1026 	u32 buf_dma_addr;	/* physical addr of transmitted buffer	*/
1027 	u32 buf_cookie;		/* cookie for access to TX buffer in tx path */
1028 	u32 reserved1[3];	/* hw_cmd (for future use, BM, PON, PNC) */
1029 	u32 reserved2;		/* reserved (for future use)		*/
1030 };
1031 
1032 /* HW RX descriptor for PPv2.1 */
1033 struct mvpp21_rx_desc {
1034 	u32 status;		/* info about received packet		*/
1035 	u16 reserved1;		/* parser_info (for future use, PnC)	*/
1036 	u16 data_size;		/* size of received packet in bytes	*/
1037 	u32 buf_dma_addr;	/* physical address of the buffer	*/
1038 	u32 buf_cookie;		/* cookie for access to RX buffer in rx path */
1039 	u16 reserved2;		/* gem_port_id (for future use, PON)	*/
1040 	u16 reserved3;		/* csum_l4 (for future use, PnC)	*/
1041 	u8  reserved4;		/* bm_qset (for future use, BM)		*/
1042 	u8  reserved5;
1043 	u16 reserved6;		/* classify_info (for future use, PnC)	*/
1044 	u32 reserved7;		/* flow_id (for future use, PnC) */
1045 	u32 reserved8;
1046 };
1047 
1048 /* HW TX descriptor for PPv2.2 */
1049 struct mvpp22_tx_desc {
1050 	u32 command;
1051 	u8  packet_offset;
1052 	u8  phys_txq;
1053 	u16 data_size;
1054 	u64 reserved1;
1055 	u64 buf_dma_addr_ptp;
1056 	u64 buf_cookie_misc;
1057 };
1058 
1059 /* HW RX descriptor for PPv2.2 */
1060 struct mvpp22_rx_desc {
1061 	u32 status;
1062 	u16 reserved1;
1063 	u16 data_size;
1064 	u32 reserved2;
1065 	u32 reserved3;
1066 	u64 buf_dma_addr_key_hash;
1067 	u64 buf_cookie_misc;
1068 };
1069 
1070 /* Opaque type used by the driver to manipulate the HW TX and RX
1071  * descriptors
1072  */
1073 struct mvpp2_tx_desc {
1074 	union {
1075 		struct mvpp21_tx_desc pp21;
1076 		struct mvpp22_tx_desc pp22;
1077 	};
1078 };
1079 
1080 struct mvpp2_rx_desc {
1081 	union {
1082 		struct mvpp21_rx_desc pp21;
1083 		struct mvpp22_rx_desc pp22;
1084 	};
1085 };
1086 
1087 /* Per-CPU Tx queue control */
1088 struct mvpp2_txq_pcpu {
1089 	int cpu;
1090 
1091 	/* Number of Tx DMA descriptors in the descriptor ring */
1092 	int size;
1093 
1094 	/* Number of currently used Tx DMA descriptor in the
1095 	 * descriptor ring
1096 	 */
1097 	int count;
1098 
1099 	/* Number of Tx DMA descriptors reserved for each CPU */
1100 	int reserved_num;
1101 
1102 	/* Index of last TX DMA descriptor that was inserted */
1103 	int txq_put_index;
1104 
1105 	/* Index of the TX DMA descriptor to be cleaned up */
1106 	int txq_get_index;
1107 };
1108 
1109 struct mvpp2_tx_queue {
1110 	/* Physical number of this Tx queue */
1111 	u8 id;
1112 
1113 	/* Logical number of this Tx queue */
1114 	u8 log_id;
1115 
1116 	/* Number of Tx DMA descriptors in the descriptor ring */
1117 	int size;
1118 
1119 	/* Number of currently used Tx DMA descriptor in the descriptor ring */
1120 	int count;
1121 
1122 	/* Per-CPU control of physical Tx queues */
1123 	struct mvpp2_txq_pcpu __percpu *pcpu;
1124 
1125 	u32 done_pkts_coal;
1126 
1127 	/* Virtual address of thex Tx DMA descriptors array */
1128 	struct mvpp2_tx_desc *descs;
1129 
1130 	/* DMA address of the Tx DMA descriptors array */
1131 	dma_addr_t descs_dma;
1132 
1133 	/* Index of the last Tx DMA descriptor */
1134 	int last_desc;
1135 
1136 	/* Index of the next Tx DMA descriptor to process */
1137 	int next_desc_to_proc;
1138 };
1139 
1140 struct mvpp2_rx_queue {
1141 	/* RX queue number, in the range 0-31 for physical RXQs */
1142 	u8 id;
1143 
1144 	/* Num of rx descriptors in the rx descriptor ring */
1145 	int size;
1146 
1147 	u32 pkts_coal;
1148 	u32 time_coal;
1149 
1150 	/* Virtual address of the RX DMA descriptors array */
1151 	struct mvpp2_rx_desc *descs;
1152 
1153 	/* DMA address of the RX DMA descriptors array */
1154 	dma_addr_t descs_dma;
1155 
1156 	/* Index of the last RX DMA descriptor */
1157 	int last_desc;
1158 
1159 	/* Index of the next RX DMA descriptor to process */
1160 	int next_desc_to_proc;
1161 
1162 	/* ID of port to which physical RXQ is mapped */
1163 	int port;
1164 
1165 	/* Port's logic RXQ number to which physical RXQ is mapped */
1166 	int logic_rxq;
1167 };
1168 
1169 union mvpp2_prs_tcam_entry {
1170 	u32 word[MVPP2_PRS_TCAM_WORDS];
1171 	u8  byte[MVPP2_PRS_TCAM_WORDS * 4];
1172 };
1173 
1174 union mvpp2_prs_sram_entry {
1175 	u32 word[MVPP2_PRS_SRAM_WORDS];
1176 	u8  byte[MVPP2_PRS_SRAM_WORDS * 4];
1177 };
1178 
1179 struct mvpp2_prs_entry {
1180 	u32 index;
1181 	union mvpp2_prs_tcam_entry tcam;
1182 	union mvpp2_prs_sram_entry sram;
1183 };
1184 
1185 struct mvpp2_prs_shadow {
1186 	bool valid;
1187 	bool finish;
1188 
1189 	/* Lookup ID */
1190 	int lu;
1191 
1192 	/* User defined offset */
1193 	int udf;
1194 
1195 	/* Result info */
1196 	u32 ri;
1197 	u32 ri_mask;
1198 };
1199 
1200 struct mvpp2_cls_flow_entry {
1201 	u32 index;
1202 	u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
1203 };
1204 
1205 struct mvpp2_cls_lookup_entry {
1206 	u32 lkpid;
1207 	u32 way;
1208 	u32 data;
1209 };
1210 
1211 struct mvpp2_bm_pool {
1212 	/* Pool number in the range 0-7 */
1213 	int id;
1214 	enum mvpp2_bm_type type;
1215 
1216 	/* Buffer Pointers Pool External (BPPE) size */
1217 	int size;
1218 	/* Number of buffers for this pool */
1219 	int buf_num;
1220 	/* Pool buffer size */
1221 	int buf_size;
1222 	/* Packet size */
1223 	int pkt_size;
1224 
1225 	/* BPPE virtual base address */
1226 	unsigned long *virt_addr;
1227 	/* BPPE DMA base address */
1228 	dma_addr_t dma_addr;
1229 
1230 	/* Ports using BM pool */
1231 	u32 port_map;
1232 };
1233 
1234 /* Static declaractions */
1235 
1236 /* Number of RXQs used by single port */
1237 static int rxq_number = MVPP2_DEFAULT_RXQ;
1238 /* Number of TXQs used by single port */
1239 static int txq_number = MVPP2_DEFAULT_TXQ;
1240 
1241 static int base_id;
1242 
1243 #define MVPP2_DRIVER_NAME "mvpp2"
1244 #define MVPP2_DRIVER_VERSION "1.0"
1245 
1246 /*
1247  * U-Boot internal data, mostly uncached buffers for descriptors and data
1248  */
1249 struct buffer_location {
1250 	struct mvpp2_tx_desc *aggr_tx_descs;
1251 	struct mvpp2_tx_desc *tx_descs;
1252 	struct mvpp2_rx_desc *rx_descs;
1253 	unsigned long *bm_pool[MVPP2_BM_POOLS_NUM];
1254 	unsigned long *rx_buffer[MVPP2_BM_LONG_BUF_NUM];
1255 	int first_rxq;
1256 };
1257 
1258 /*
1259  * All 4 interfaces use the same global buffer, since only one interface
1260  * can be enabled at once
1261  */
1262 static struct buffer_location buffer_loc;
1263 static int buffer_loc_init;
1264 
1265 /*
1266  * Page table entries are set to 1MB, or multiples of 1MB
1267  * (not < 1MB). driver uses less bd's so use 1MB bdspace.
1268  */
1269 #define BD_SPACE	(1 << 20)
1270 
1271 /* Utility/helper methods */
1272 
mvpp2_write(struct mvpp2 * priv,u32 offset,u32 data)1273 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
1274 {
1275 	writel(data, priv->base + offset);
1276 }
1277 
mvpp2_read(struct mvpp2 * priv,u32 offset)1278 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
1279 {
1280 	return readl(priv->base + offset);
1281 }
1282 
mvpp2_txdesc_dma_addr_set(struct mvpp2_port * port,struct mvpp2_tx_desc * tx_desc,dma_addr_t dma_addr)1283 static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
1284 				      struct mvpp2_tx_desc *tx_desc,
1285 				      dma_addr_t dma_addr)
1286 {
1287 	if (port->priv->hw_version == MVPP21) {
1288 		tx_desc->pp21.buf_dma_addr = dma_addr;
1289 	} else {
1290 		u64 val = (u64)dma_addr;
1291 
1292 		tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
1293 		tx_desc->pp22.buf_dma_addr_ptp |= val;
1294 	}
1295 }
1296 
mvpp2_txdesc_size_set(struct mvpp2_port * port,struct mvpp2_tx_desc * tx_desc,size_t size)1297 static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
1298 				  struct mvpp2_tx_desc *tx_desc,
1299 				  size_t size)
1300 {
1301 	if (port->priv->hw_version == MVPP21)
1302 		tx_desc->pp21.data_size = size;
1303 	else
1304 		tx_desc->pp22.data_size = size;
1305 }
1306 
mvpp2_txdesc_txq_set(struct mvpp2_port * port,struct mvpp2_tx_desc * tx_desc,unsigned int txq)1307 static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
1308 				 struct mvpp2_tx_desc *tx_desc,
1309 				 unsigned int txq)
1310 {
1311 	if (port->priv->hw_version == MVPP21)
1312 		tx_desc->pp21.phys_txq = txq;
1313 	else
1314 		tx_desc->pp22.phys_txq = txq;
1315 }
1316 
mvpp2_txdesc_cmd_set(struct mvpp2_port * port,struct mvpp2_tx_desc * tx_desc,unsigned int command)1317 static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
1318 				 struct mvpp2_tx_desc *tx_desc,
1319 				 unsigned int command)
1320 {
1321 	if (port->priv->hw_version == MVPP21)
1322 		tx_desc->pp21.command = command;
1323 	else
1324 		tx_desc->pp22.command = command;
1325 }
1326 
mvpp2_txdesc_offset_set(struct mvpp2_port * port,struct mvpp2_tx_desc * tx_desc,unsigned int offset)1327 static void mvpp2_txdesc_offset_set(struct mvpp2_port *port,
1328 				    struct mvpp2_tx_desc *tx_desc,
1329 				    unsigned int offset)
1330 {
1331 	if (port->priv->hw_version == MVPP21)
1332 		tx_desc->pp21.packet_offset = offset;
1333 	else
1334 		tx_desc->pp22.packet_offset = offset;
1335 }
1336 
mvpp2_rxdesc_dma_addr_get(struct mvpp2_port * port,struct mvpp2_rx_desc * rx_desc)1337 static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
1338 					    struct mvpp2_rx_desc *rx_desc)
1339 {
1340 	if (port->priv->hw_version == MVPP21)
1341 		return rx_desc->pp21.buf_dma_addr;
1342 	else
1343 		return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
1344 }
1345 
mvpp2_rxdesc_cookie_get(struct mvpp2_port * port,struct mvpp2_rx_desc * rx_desc)1346 static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
1347 					     struct mvpp2_rx_desc *rx_desc)
1348 {
1349 	if (port->priv->hw_version == MVPP21)
1350 		return rx_desc->pp21.buf_cookie;
1351 	else
1352 		return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
1353 }
1354 
mvpp2_rxdesc_size_get(struct mvpp2_port * port,struct mvpp2_rx_desc * rx_desc)1355 static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
1356 				    struct mvpp2_rx_desc *rx_desc)
1357 {
1358 	if (port->priv->hw_version == MVPP21)
1359 		return rx_desc->pp21.data_size;
1360 	else
1361 		return rx_desc->pp22.data_size;
1362 }
1363 
mvpp2_rxdesc_status_get(struct mvpp2_port * port,struct mvpp2_rx_desc * rx_desc)1364 static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
1365 				   struct mvpp2_rx_desc *rx_desc)
1366 {
1367 	if (port->priv->hw_version == MVPP21)
1368 		return rx_desc->pp21.status;
1369 	else
1370 		return rx_desc->pp22.status;
1371 }
1372 
mvpp2_txq_inc_get(struct mvpp2_txq_pcpu * txq_pcpu)1373 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
1374 {
1375 	txq_pcpu->txq_get_index++;
1376 	if (txq_pcpu->txq_get_index == txq_pcpu->size)
1377 		txq_pcpu->txq_get_index = 0;
1378 }
1379 
1380 /* Get number of physical egress port */
mvpp2_egress_port(struct mvpp2_port * port)1381 static inline int mvpp2_egress_port(struct mvpp2_port *port)
1382 {
1383 	return MVPP2_MAX_TCONT + port->id;
1384 }
1385 
1386 /* Get number of physical TXQ */
mvpp2_txq_phys(int port,int txq)1387 static inline int mvpp2_txq_phys(int port, int txq)
1388 {
1389 	return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1390 }
1391 
1392 /* Parser configuration routines */
1393 
1394 /* Update parser tcam and sram hw entries */
mvpp2_prs_hw_write(struct mvpp2 * priv,struct mvpp2_prs_entry * pe)1395 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1396 {
1397 	int i;
1398 
1399 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1400 		return -EINVAL;
1401 
1402 	/* Clear entry invalidation bit */
1403 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1404 
1405 	/* Write tcam index - indirect access */
1406 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1407 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1408 		mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1409 
1410 	/* Write sram index - indirect access */
1411 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1412 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1413 		mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1414 
1415 	return 0;
1416 }
1417 
1418 /* Read tcam entry from hw */
mvpp2_prs_hw_read(struct mvpp2 * priv,struct mvpp2_prs_entry * pe)1419 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1420 {
1421 	int i;
1422 
1423 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1424 		return -EINVAL;
1425 
1426 	/* Write tcam index - indirect access */
1427 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1428 
1429 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1430 			      MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1431 	if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1432 		return MVPP2_PRS_TCAM_ENTRY_INVALID;
1433 
1434 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1435 		pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1436 
1437 	/* Write sram index - indirect access */
1438 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1439 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1440 		pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1441 
1442 	return 0;
1443 }
1444 
1445 /* Invalidate tcam hw entry */
mvpp2_prs_hw_inv(struct mvpp2 * priv,int index)1446 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1447 {
1448 	/* Write index - indirect access */
1449 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1450 	mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1451 		    MVPP2_PRS_TCAM_INV_MASK);
1452 }
1453 
1454 /* Enable shadow table entry and set its lookup ID */
mvpp2_prs_shadow_set(struct mvpp2 * priv,int index,int lu)1455 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1456 {
1457 	priv->prs_shadow[index].valid = true;
1458 	priv->prs_shadow[index].lu = lu;
1459 }
1460 
1461 /* Update ri fields in shadow table entry */
mvpp2_prs_shadow_ri_set(struct mvpp2 * priv,int index,unsigned int ri,unsigned int ri_mask)1462 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1463 				    unsigned int ri, unsigned int ri_mask)
1464 {
1465 	priv->prs_shadow[index].ri_mask = ri_mask;
1466 	priv->prs_shadow[index].ri = ri;
1467 }
1468 
1469 /* Update lookup field in tcam sw entry */
mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry * pe,unsigned int lu)1470 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1471 {
1472 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1473 
1474 	pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1475 	pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1476 }
1477 
1478 /* Update mask for single port in tcam sw entry */
mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry * pe,unsigned int port,bool add)1479 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1480 				    unsigned int port, bool add)
1481 {
1482 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1483 
1484 	if (add)
1485 		pe->tcam.byte[enable_off] &= ~(1 << port);
1486 	else
1487 		pe->tcam.byte[enable_off] |= 1 << port;
1488 }
1489 
1490 /* Update port map in tcam sw entry */
mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry * pe,unsigned int ports)1491 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1492 					unsigned int ports)
1493 {
1494 	unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1495 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1496 
1497 	pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1498 	pe->tcam.byte[enable_off] &= ~port_mask;
1499 	pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1500 }
1501 
1502 /* Obtain port map from tcam sw entry */
mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry * pe)1503 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1504 {
1505 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1506 
1507 	return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1508 }
1509 
1510 /* Set byte of data and its enable bits in tcam sw entry */
mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry * pe,unsigned int offs,unsigned char byte,unsigned char enable)1511 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1512 					 unsigned int offs, unsigned char byte,
1513 					 unsigned char enable)
1514 {
1515 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1516 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1517 }
1518 
1519 /* Get byte of data and its enable bits from tcam sw entry */
mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry * pe,unsigned int offs,unsigned char * byte,unsigned char * enable)1520 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1521 					 unsigned int offs, unsigned char *byte,
1522 					 unsigned char *enable)
1523 {
1524 	*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1525 	*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1526 }
1527 
1528 /* Set ethertype in tcam sw entry */
mvpp2_prs_match_etype(struct mvpp2_prs_entry * pe,int offset,unsigned short ethertype)1529 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1530 				  unsigned short ethertype)
1531 {
1532 	mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1533 	mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1534 }
1535 
1536 /* Set bits in sram sw entry */
mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry * pe,int bit_num,int val)1537 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1538 				    int val)
1539 {
1540 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1541 }
1542 
1543 /* Clear bits in sram sw entry */
mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry * pe,int bit_num,int val)1544 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1545 				      int val)
1546 {
1547 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1548 }
1549 
1550 /* Update ri bits in sram sw entry */
mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry * pe,unsigned int bits,unsigned int mask)1551 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1552 				     unsigned int bits, unsigned int mask)
1553 {
1554 	unsigned int i;
1555 
1556 	for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1557 		int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1558 
1559 		if (!(mask & BIT(i)))
1560 			continue;
1561 
1562 		if (bits & BIT(i))
1563 			mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1564 		else
1565 			mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1566 
1567 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1568 	}
1569 }
1570 
1571 /* Update ai bits in sram sw entry */
mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry * pe,unsigned int bits,unsigned int mask)1572 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1573 				     unsigned int bits, unsigned int mask)
1574 {
1575 	unsigned int i;
1576 	int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1577 
1578 	for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1579 
1580 		if (!(mask & BIT(i)))
1581 			continue;
1582 
1583 		if (bits & BIT(i))
1584 			mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1585 		else
1586 			mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1587 
1588 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1589 	}
1590 }
1591 
1592 /* Read ai bits from sram sw entry */
mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry * pe)1593 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1594 {
1595 	u8 bits;
1596 	int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1597 	int ai_en_off = ai_off + 1;
1598 	int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1599 
1600 	bits = (pe->sram.byte[ai_off] >> ai_shift) |
1601 	       (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1602 
1603 	return bits;
1604 }
1605 
1606 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1607  * lookup interation
1608  */
mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry * pe,unsigned int lu)1609 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1610 				       unsigned int lu)
1611 {
1612 	int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1613 
1614 	mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1615 				  MVPP2_PRS_SRAM_NEXT_LU_MASK);
1616 	mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1617 }
1618 
1619 /* In the sram sw entry set sign and value of the next lookup offset
1620  * and the offset value generated to the classifier
1621  */
mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry * pe,int shift,unsigned int op)1622 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1623 				     unsigned int op)
1624 {
1625 	/* Set sign */
1626 	if (shift < 0) {
1627 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1628 		shift = 0 - shift;
1629 	} else {
1630 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1631 	}
1632 
1633 	/* Set value */
1634 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1635 							   (unsigned char)shift;
1636 
1637 	/* Reset and set operation */
1638 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1639 				  MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1640 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1641 
1642 	/* Set base offset as current */
1643 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1644 }
1645 
1646 /* In the sram sw entry set sign and value of the user defined offset
1647  * generated to the classifier
1648  */
mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry * pe,unsigned int type,int offset,unsigned int op)1649 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1650 				      unsigned int type, int offset,
1651 				      unsigned int op)
1652 {
1653 	/* Set sign */
1654 	if (offset < 0) {
1655 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1656 		offset = 0 - offset;
1657 	} else {
1658 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1659 	}
1660 
1661 	/* Set value */
1662 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1663 				  MVPP2_PRS_SRAM_UDF_MASK);
1664 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1665 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1666 					MVPP2_PRS_SRAM_UDF_BITS)] &=
1667 	      ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1668 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1669 					MVPP2_PRS_SRAM_UDF_BITS)] |=
1670 				(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1671 
1672 	/* Set offset type */
1673 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1674 				  MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1675 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1676 
1677 	/* Set offset operation */
1678 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1679 				  MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1680 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1681 
1682 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1683 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1684 					     ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1685 				    (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1686 
1687 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1688 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1689 			     (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1690 
1691 	/* Set base offset as current */
1692 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1693 }
1694 
1695 /* Find parser flow entry */
mvpp2_prs_flow_find(struct mvpp2 * priv,int flow)1696 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1697 {
1698 	struct mvpp2_prs_entry *pe;
1699 	int tid;
1700 
1701 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1702 	if (!pe)
1703 		return NULL;
1704 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1705 
1706 	/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1707 	for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1708 		u8 bits;
1709 
1710 		if (!priv->prs_shadow[tid].valid ||
1711 		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1712 			continue;
1713 
1714 		pe->index = tid;
1715 		mvpp2_prs_hw_read(priv, pe);
1716 		bits = mvpp2_prs_sram_ai_get(pe);
1717 
1718 		/* Sram store classification lookup ID in AI bits [5:0] */
1719 		if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1720 			return pe;
1721 	}
1722 	kfree(pe);
1723 
1724 	return NULL;
1725 }
1726 
1727 /* Return first free tcam index, seeking from start to end */
mvpp2_prs_tcam_first_free(struct mvpp2 * priv,unsigned char start,unsigned char end)1728 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1729 				     unsigned char end)
1730 {
1731 	int tid;
1732 
1733 	if (start > end)
1734 		swap(start, end);
1735 
1736 	if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1737 		end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1738 
1739 	for (tid = start; tid <= end; tid++) {
1740 		if (!priv->prs_shadow[tid].valid)
1741 			return tid;
1742 	}
1743 
1744 	return -EINVAL;
1745 }
1746 
1747 /* Enable/disable dropping all mac da's */
mvpp2_prs_mac_drop_all_set(struct mvpp2 * priv,int port,bool add)1748 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1749 {
1750 	struct mvpp2_prs_entry pe;
1751 
1752 	if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1753 		/* Entry exist - update port only */
1754 		pe.index = MVPP2_PE_DROP_ALL;
1755 		mvpp2_prs_hw_read(priv, &pe);
1756 	} else {
1757 		/* Entry doesn't exist - create new */
1758 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1759 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1760 		pe.index = MVPP2_PE_DROP_ALL;
1761 
1762 		/* Non-promiscuous mode for all ports - DROP unknown packets */
1763 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1764 					 MVPP2_PRS_RI_DROP_MASK);
1765 
1766 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1767 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1768 
1769 		/* Update shadow table */
1770 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1771 
1772 		/* Mask all ports */
1773 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1774 	}
1775 
1776 	/* Update port mask */
1777 	mvpp2_prs_tcam_port_set(&pe, port, add);
1778 
1779 	mvpp2_prs_hw_write(priv, &pe);
1780 }
1781 
1782 /* Set port to promiscuous mode */
mvpp2_prs_mac_promisc_set(struct mvpp2 * priv,int port,bool add)1783 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1784 {
1785 	struct mvpp2_prs_entry pe;
1786 
1787 	/* Promiscuous mode - Accept unknown packets */
1788 
1789 	if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1790 		/* Entry exist - update port only */
1791 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1792 		mvpp2_prs_hw_read(priv, &pe);
1793 	} else {
1794 		/* Entry doesn't exist - create new */
1795 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1796 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1797 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1798 
1799 		/* Continue - set next lookup */
1800 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1801 
1802 		/* Set result info bits */
1803 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1804 					 MVPP2_PRS_RI_L2_CAST_MASK);
1805 
1806 		/* Shift to ethertype */
1807 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1808 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1809 
1810 		/* Mask all ports */
1811 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1812 
1813 		/* Update shadow table */
1814 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1815 	}
1816 
1817 	/* Update port mask */
1818 	mvpp2_prs_tcam_port_set(&pe, port, add);
1819 
1820 	mvpp2_prs_hw_write(priv, &pe);
1821 }
1822 
1823 /* Accept multicast */
mvpp2_prs_mac_multi_set(struct mvpp2 * priv,int port,int index,bool add)1824 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1825 				    bool add)
1826 {
1827 	struct mvpp2_prs_entry pe;
1828 	unsigned char da_mc;
1829 
1830 	/* Ethernet multicast address first byte is
1831 	 * 0x01 for IPv4 and 0x33 for IPv6
1832 	 */
1833 	da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1834 
1835 	if (priv->prs_shadow[index].valid) {
1836 		/* Entry exist - update port only */
1837 		pe.index = index;
1838 		mvpp2_prs_hw_read(priv, &pe);
1839 	} else {
1840 		/* Entry doesn't exist - create new */
1841 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1842 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1843 		pe.index = index;
1844 
1845 		/* Continue - set next lookup */
1846 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1847 
1848 		/* Set result info bits */
1849 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1850 					 MVPP2_PRS_RI_L2_CAST_MASK);
1851 
1852 		/* Update tcam entry data first byte */
1853 		mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1854 
1855 		/* Shift to ethertype */
1856 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1857 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1858 
1859 		/* Mask all ports */
1860 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1861 
1862 		/* Update shadow table */
1863 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1864 	}
1865 
1866 	/* Update port mask */
1867 	mvpp2_prs_tcam_port_set(&pe, port, add);
1868 
1869 	mvpp2_prs_hw_write(priv, &pe);
1870 }
1871 
1872 /* Parser per-port initialization */
mvpp2_prs_hw_port_init(struct mvpp2 * priv,int port,int lu_first,int lu_max,int offset)1873 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
1874 				   int lu_max, int offset)
1875 {
1876 	u32 val;
1877 
1878 	/* Set lookup ID */
1879 	val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
1880 	val &= ~MVPP2_PRS_PORT_LU_MASK(port);
1881 	val |=  MVPP2_PRS_PORT_LU_VAL(port, lu_first);
1882 	mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
1883 
1884 	/* Set maximum number of loops for packet received from port */
1885 	val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
1886 	val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
1887 	val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
1888 	mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
1889 
1890 	/* Set initial offset for packet header extraction for the first
1891 	 * searching loop
1892 	 */
1893 	val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
1894 	val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
1895 	val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
1896 	mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
1897 }
1898 
1899 /* Default flow entries initialization for all ports */
mvpp2_prs_def_flow_init(struct mvpp2 * priv)1900 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
1901 {
1902 	struct mvpp2_prs_entry pe;
1903 	int port;
1904 
1905 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
1906 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1907 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1908 		pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
1909 
1910 		/* Mask all ports */
1911 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1912 
1913 		/* Set flow ID*/
1914 		mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
1915 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
1916 
1917 		/* Update shadow table and hw entry */
1918 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
1919 		mvpp2_prs_hw_write(priv, &pe);
1920 	}
1921 }
1922 
1923 /* Set default entry for Marvell Header field */
mvpp2_prs_mh_init(struct mvpp2 * priv)1924 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
1925 {
1926 	struct mvpp2_prs_entry pe;
1927 
1928 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1929 
1930 	pe.index = MVPP2_PE_MH_DEFAULT;
1931 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
1932 	mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
1933 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1934 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
1935 
1936 	/* Unmask all ports */
1937 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1938 
1939 	/* Update shadow table and hw entry */
1940 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
1941 	mvpp2_prs_hw_write(priv, &pe);
1942 }
1943 
1944 /* Set default entires (place holder) for promiscuous, non-promiscuous and
1945  * multicast MAC addresses
1946  */
mvpp2_prs_mac_init(struct mvpp2 * priv)1947 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
1948 {
1949 	struct mvpp2_prs_entry pe;
1950 
1951 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1952 
1953 	/* Non-promiscuous mode for all ports - DROP unknown packets */
1954 	pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
1955 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1956 
1957 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1958 				 MVPP2_PRS_RI_DROP_MASK);
1959 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1960 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1961 
1962 	/* Unmask all ports */
1963 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1964 
1965 	/* Update shadow table and hw entry */
1966 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1967 	mvpp2_prs_hw_write(priv, &pe);
1968 
1969 	/* place holders only - no ports */
1970 	mvpp2_prs_mac_drop_all_set(priv, 0, false);
1971 	mvpp2_prs_mac_promisc_set(priv, 0, false);
1972 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
1973 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
1974 }
1975 
1976 /* Match basic ethertypes */
mvpp2_prs_etype_init(struct mvpp2 * priv)1977 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
1978 {
1979 	struct mvpp2_prs_entry pe;
1980 	int tid;
1981 
1982 	/* Ethertype: PPPoE */
1983 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1984 					MVPP2_PE_LAST_FREE_TID);
1985 	if (tid < 0)
1986 		return tid;
1987 
1988 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1989 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1990 	pe.index = tid;
1991 
1992 	mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES);
1993 
1994 	mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
1995 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1996 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
1997 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
1998 				 MVPP2_PRS_RI_PPPOE_MASK);
1999 
2000 	/* Update shadow table and hw entry */
2001 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2002 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2003 	priv->prs_shadow[pe.index].finish = false;
2004 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2005 				MVPP2_PRS_RI_PPPOE_MASK);
2006 	mvpp2_prs_hw_write(priv, &pe);
2007 
2008 	/* Ethertype: ARP */
2009 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2010 					MVPP2_PE_LAST_FREE_TID);
2011 	if (tid < 0)
2012 		return tid;
2013 
2014 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2015 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2016 	pe.index = tid;
2017 
2018 	mvpp2_prs_match_etype(&pe, 0, PROT_ARP);
2019 
2020 	/* Generate flow in the next iteration*/
2021 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2022 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2023 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2024 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2025 	/* Set L3 offset */
2026 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2027 				  MVPP2_ETH_TYPE_LEN,
2028 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2029 
2030 	/* Update shadow table and hw entry */
2031 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2032 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2033 	priv->prs_shadow[pe.index].finish = true;
2034 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2035 				MVPP2_PRS_RI_L3_PROTO_MASK);
2036 	mvpp2_prs_hw_write(priv, &pe);
2037 
2038 	/* Ethertype: LBTD */
2039 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2040 					MVPP2_PE_LAST_FREE_TID);
2041 	if (tid < 0)
2042 		return tid;
2043 
2044 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2045 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2046 	pe.index = tid;
2047 
2048 	mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2049 
2050 	/* Generate flow in the next iteration*/
2051 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2052 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2053 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2054 				 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2055 				 MVPP2_PRS_RI_CPU_CODE_MASK |
2056 				 MVPP2_PRS_RI_UDF3_MASK);
2057 	/* Set L3 offset */
2058 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2059 				  MVPP2_ETH_TYPE_LEN,
2060 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2061 
2062 	/* Update shadow table and hw entry */
2063 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2064 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2065 	priv->prs_shadow[pe.index].finish = true;
2066 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2067 				MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2068 				MVPP2_PRS_RI_CPU_CODE_MASK |
2069 				MVPP2_PRS_RI_UDF3_MASK);
2070 	mvpp2_prs_hw_write(priv, &pe);
2071 
2072 	/* Ethertype: IPv4 without options */
2073 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2074 					MVPP2_PE_LAST_FREE_TID);
2075 	if (tid < 0)
2076 		return tid;
2077 
2078 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2079 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2080 	pe.index = tid;
2081 
2082 	mvpp2_prs_match_etype(&pe, 0, PROT_IP);
2083 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2084 				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2085 				     MVPP2_PRS_IPV4_HEAD_MASK |
2086 				     MVPP2_PRS_IPV4_IHL_MASK);
2087 
2088 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2089 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2090 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2091 	/* Skip eth_type + 4 bytes of IP header */
2092 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2093 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2094 	/* Set L3 offset */
2095 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2096 				  MVPP2_ETH_TYPE_LEN,
2097 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2098 
2099 	/* Update shadow table and hw entry */
2100 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2101 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2102 	priv->prs_shadow[pe.index].finish = false;
2103 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2104 				MVPP2_PRS_RI_L3_PROTO_MASK);
2105 	mvpp2_prs_hw_write(priv, &pe);
2106 
2107 	/* Ethertype: IPv4 with options */
2108 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2109 					MVPP2_PE_LAST_FREE_TID);
2110 	if (tid < 0)
2111 		return tid;
2112 
2113 	pe.index = tid;
2114 
2115 	/* Clear tcam data before updating */
2116 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2117 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2118 
2119 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2120 				     MVPP2_PRS_IPV4_HEAD,
2121 				     MVPP2_PRS_IPV4_HEAD_MASK);
2122 
2123 	/* Clear ri before updating */
2124 	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2125 	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2126 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2127 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2128 
2129 	/* Update shadow table and hw entry */
2130 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2131 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2132 	priv->prs_shadow[pe.index].finish = false;
2133 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2134 				MVPP2_PRS_RI_L3_PROTO_MASK);
2135 	mvpp2_prs_hw_write(priv, &pe);
2136 
2137 	/* Ethertype: IPv6 without options */
2138 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2139 					MVPP2_PE_LAST_FREE_TID);
2140 	if (tid < 0)
2141 		return tid;
2142 
2143 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2144 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2145 	pe.index = tid;
2146 
2147 	mvpp2_prs_match_etype(&pe, 0, PROT_IPV6);
2148 
2149 	/* Skip DIP of IPV6 header */
2150 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2151 				 MVPP2_MAX_L3_ADDR_SIZE,
2152 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2153 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2154 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2155 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2156 	/* Set L3 offset */
2157 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2158 				  MVPP2_ETH_TYPE_LEN,
2159 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2160 
2161 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2162 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2163 	priv->prs_shadow[pe.index].finish = false;
2164 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2165 				MVPP2_PRS_RI_L3_PROTO_MASK);
2166 	mvpp2_prs_hw_write(priv, &pe);
2167 
2168 	/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2169 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2170 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2171 	pe.index = MVPP2_PE_ETH_TYPE_UN;
2172 
2173 	/* Unmask all ports */
2174 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2175 
2176 	/* Generate flow in the next iteration*/
2177 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2178 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2179 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2180 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2181 	/* Set L3 offset even it's unknown L3 */
2182 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2183 				  MVPP2_ETH_TYPE_LEN,
2184 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2185 
2186 	/* Update shadow table and hw entry */
2187 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2188 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2189 	priv->prs_shadow[pe.index].finish = true;
2190 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2191 				MVPP2_PRS_RI_L3_PROTO_MASK);
2192 	mvpp2_prs_hw_write(priv, &pe);
2193 
2194 	return 0;
2195 }
2196 
2197 /* Parser default initialization */
mvpp2_prs_default_init(struct udevice * dev,struct mvpp2 * priv)2198 static int mvpp2_prs_default_init(struct udevice *dev,
2199 				  struct mvpp2 *priv)
2200 {
2201 	int err, index, i;
2202 
2203 	/* Enable tcam table */
2204 	mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2205 
2206 	/* Clear all tcam and sram entries */
2207 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2208 		mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2209 		for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2210 			mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2211 
2212 		mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2213 		for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2214 			mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2215 	}
2216 
2217 	/* Invalidate all tcam entries */
2218 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2219 		mvpp2_prs_hw_inv(priv, index);
2220 
2221 	priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2222 					sizeof(struct mvpp2_prs_shadow),
2223 					GFP_KERNEL);
2224 	if (!priv->prs_shadow)
2225 		return -ENOMEM;
2226 
2227 	/* Always start from lookup = 0 */
2228 	for (index = 0; index < MVPP2_MAX_PORTS; index++)
2229 		mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2230 				       MVPP2_PRS_PORT_LU_MAX, 0);
2231 
2232 	mvpp2_prs_def_flow_init(priv);
2233 
2234 	mvpp2_prs_mh_init(priv);
2235 
2236 	mvpp2_prs_mac_init(priv);
2237 
2238 	err = mvpp2_prs_etype_init(priv);
2239 	if (err)
2240 		return err;
2241 
2242 	return 0;
2243 }
2244 
2245 /* Compare MAC DA with tcam entry data */
mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry * pe,const u8 * da,unsigned char * mask)2246 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2247 				       const u8 *da, unsigned char *mask)
2248 {
2249 	unsigned char tcam_byte, tcam_mask;
2250 	int index;
2251 
2252 	for (index = 0; index < ETH_ALEN; index++) {
2253 		mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2254 		if (tcam_mask != mask[index])
2255 			return false;
2256 
2257 		if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2258 			return false;
2259 	}
2260 
2261 	return true;
2262 }
2263 
2264 /* Find tcam entry with matched pair <MAC DA, port> */
2265 static struct mvpp2_prs_entry *
mvpp2_prs_mac_da_range_find(struct mvpp2 * priv,int pmap,const u8 * da,unsigned char * mask,int udf_type)2266 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2267 			    unsigned char *mask, int udf_type)
2268 {
2269 	struct mvpp2_prs_entry *pe;
2270 	int tid;
2271 
2272 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2273 	if (!pe)
2274 		return NULL;
2275 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2276 
2277 	/* Go through the all entires with MVPP2_PRS_LU_MAC */
2278 	for (tid = MVPP2_PE_FIRST_FREE_TID;
2279 	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
2280 		unsigned int entry_pmap;
2281 
2282 		if (!priv->prs_shadow[tid].valid ||
2283 		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
2284 		    (priv->prs_shadow[tid].udf != udf_type))
2285 			continue;
2286 
2287 		pe->index = tid;
2288 		mvpp2_prs_hw_read(priv, pe);
2289 		entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
2290 
2291 		if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
2292 		    entry_pmap == pmap)
2293 			return pe;
2294 	}
2295 	kfree(pe);
2296 
2297 	return NULL;
2298 }
2299 
2300 /* Update parser's mac da entry */
mvpp2_prs_mac_da_accept(struct mvpp2 * priv,int port,const u8 * da,bool add)2301 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
2302 				   const u8 *da, bool add)
2303 {
2304 	struct mvpp2_prs_entry *pe;
2305 	unsigned int pmap, len, ri;
2306 	unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2307 	int tid;
2308 
2309 	/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
2310 	pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
2311 					 MVPP2_PRS_UDF_MAC_DEF);
2312 
2313 	/* No such entry */
2314 	if (!pe) {
2315 		if (!add)
2316 			return 0;
2317 
2318 		/* Create new TCAM entry */
2319 		/* Find first range mac entry*/
2320 		for (tid = MVPP2_PE_FIRST_FREE_TID;
2321 		     tid <= MVPP2_PE_LAST_FREE_TID; tid++)
2322 			if (priv->prs_shadow[tid].valid &&
2323 			    (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
2324 			    (priv->prs_shadow[tid].udf ==
2325 						       MVPP2_PRS_UDF_MAC_RANGE))
2326 				break;
2327 
2328 		/* Go through the all entries from first to last */
2329 		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2330 						tid - 1);
2331 		if (tid < 0)
2332 			return tid;
2333 
2334 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2335 		if (!pe)
2336 			return -1;
2337 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2338 		pe->index = tid;
2339 
2340 		/* Mask all ports */
2341 		mvpp2_prs_tcam_port_map_set(pe, 0);
2342 	}
2343 
2344 	/* Update port mask */
2345 	mvpp2_prs_tcam_port_set(pe, port, add);
2346 
2347 	/* Invalidate the entry if no ports are left enabled */
2348 	pmap = mvpp2_prs_tcam_port_map_get(pe);
2349 	if (pmap == 0) {
2350 		if (add) {
2351 			kfree(pe);
2352 			return -1;
2353 		}
2354 		mvpp2_prs_hw_inv(priv, pe->index);
2355 		priv->prs_shadow[pe->index].valid = false;
2356 		kfree(pe);
2357 		return 0;
2358 	}
2359 
2360 	/* Continue - set next lookup */
2361 	mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
2362 
2363 	/* Set match on DA */
2364 	len = ETH_ALEN;
2365 	while (len--)
2366 		mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
2367 
2368 	/* Set result info bits */
2369 	ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
2370 
2371 	mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2372 				 MVPP2_PRS_RI_MAC_ME_MASK);
2373 	mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2374 				MVPP2_PRS_RI_MAC_ME_MASK);
2375 
2376 	/* Shift to ethertype */
2377 	mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
2378 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2379 
2380 	/* Update shadow table and hw entry */
2381 	priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
2382 	mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
2383 	mvpp2_prs_hw_write(priv, pe);
2384 
2385 	kfree(pe);
2386 
2387 	return 0;
2388 }
2389 
mvpp2_prs_update_mac_da(struct mvpp2_port * port,const u8 * da)2390 static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da)
2391 {
2392 	int err;
2393 
2394 	/* Remove old parser entry */
2395 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr,
2396 				      false);
2397 	if (err)
2398 		return err;
2399 
2400 	/* Add new parser entry */
2401 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
2402 	if (err)
2403 		return err;
2404 
2405 	/* Set addr in the device */
2406 	memcpy(port->dev_addr, da, ETH_ALEN);
2407 
2408 	return 0;
2409 }
2410 
2411 /* Set prs flow for the port */
mvpp2_prs_def_flow(struct mvpp2_port * port)2412 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
2413 {
2414 	struct mvpp2_prs_entry *pe;
2415 	int tid;
2416 
2417 	pe = mvpp2_prs_flow_find(port->priv, port->id);
2418 
2419 	/* Such entry not exist */
2420 	if (!pe) {
2421 		/* Go through the all entires from last to first */
2422 		tid = mvpp2_prs_tcam_first_free(port->priv,
2423 						MVPP2_PE_LAST_FREE_TID,
2424 					       MVPP2_PE_FIRST_FREE_TID);
2425 		if (tid < 0)
2426 			return tid;
2427 
2428 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2429 		if (!pe)
2430 			return -ENOMEM;
2431 
2432 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
2433 		pe->index = tid;
2434 
2435 		/* Set flow ID*/
2436 		mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
2437 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2438 
2439 		/* Update shadow table */
2440 		mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
2441 	}
2442 
2443 	mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
2444 	mvpp2_prs_hw_write(port->priv, pe);
2445 	kfree(pe);
2446 
2447 	return 0;
2448 }
2449 
2450 /* Classifier configuration routines */
2451 
2452 /* Update classification flow table registers */
mvpp2_cls_flow_write(struct mvpp2 * priv,struct mvpp2_cls_flow_entry * fe)2453 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
2454 				 struct mvpp2_cls_flow_entry *fe)
2455 {
2456 	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
2457 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG,  fe->data[0]);
2458 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG,  fe->data[1]);
2459 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG,  fe->data[2]);
2460 }
2461 
2462 /* Update classification lookup table register */
mvpp2_cls_lookup_write(struct mvpp2 * priv,struct mvpp2_cls_lookup_entry * le)2463 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
2464 				   struct mvpp2_cls_lookup_entry *le)
2465 {
2466 	u32 val;
2467 
2468 	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
2469 	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
2470 	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
2471 }
2472 
2473 /* Classifier default initialization */
mvpp2_cls_init(struct mvpp2 * priv)2474 static void mvpp2_cls_init(struct mvpp2 *priv)
2475 {
2476 	struct mvpp2_cls_lookup_entry le;
2477 	struct mvpp2_cls_flow_entry fe;
2478 	int index;
2479 
2480 	/* Enable classifier */
2481 	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
2482 
2483 	/* Clear classifier flow table */
2484 	memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
2485 	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
2486 		fe.index = index;
2487 		mvpp2_cls_flow_write(priv, &fe);
2488 	}
2489 
2490 	/* Clear classifier lookup table */
2491 	le.data = 0;
2492 	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
2493 		le.lkpid = index;
2494 		le.way = 0;
2495 		mvpp2_cls_lookup_write(priv, &le);
2496 
2497 		le.way = 1;
2498 		mvpp2_cls_lookup_write(priv, &le);
2499 	}
2500 }
2501 
mvpp2_cls_port_config(struct mvpp2_port * port)2502 static void mvpp2_cls_port_config(struct mvpp2_port *port)
2503 {
2504 	struct mvpp2_cls_lookup_entry le;
2505 	u32 val;
2506 
2507 	/* Set way for the port */
2508 	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
2509 	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
2510 	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
2511 
2512 	/* Pick the entry to be accessed in lookup ID decoding table
2513 	 * according to the way and lkpid.
2514 	 */
2515 	le.lkpid = port->id;
2516 	le.way = 0;
2517 	le.data = 0;
2518 
2519 	/* Set initial CPU queue for receiving packets */
2520 	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
2521 	le.data |= port->first_rxq;
2522 
2523 	/* Disable classification engines */
2524 	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
2525 
2526 	/* Update lookup ID table entry */
2527 	mvpp2_cls_lookup_write(port->priv, &le);
2528 }
2529 
2530 /* Set CPU queue number for oversize packets */
mvpp2_cls_oversize_rxq_set(struct mvpp2_port * port)2531 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
2532 {
2533 	u32 val;
2534 
2535 	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
2536 		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
2537 
2538 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
2539 		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
2540 
2541 	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
2542 	val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
2543 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
2544 }
2545 
2546 /* Buffer Manager configuration routines */
2547 
2548 /* Create pool */
mvpp2_bm_pool_create(struct udevice * dev,struct mvpp2 * priv,struct mvpp2_bm_pool * bm_pool,int size)2549 static int mvpp2_bm_pool_create(struct udevice *dev,
2550 				struct mvpp2 *priv,
2551 				struct mvpp2_bm_pool *bm_pool, int size)
2552 {
2553 	u32 val;
2554 
2555 	/* Number of buffer pointers must be a multiple of 16, as per
2556 	 * hardware constraints
2557 	 */
2558 	if (!IS_ALIGNED(size, 16))
2559 		return -EINVAL;
2560 
2561 	bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id];
2562 	bm_pool->dma_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id];
2563 	if (!bm_pool->virt_addr)
2564 		return -ENOMEM;
2565 
2566 	if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
2567 			MVPP2_BM_POOL_PTR_ALIGN)) {
2568 		dev_err(dev, "BM pool %d is not %d bytes aligned\n",
2569 			bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
2570 		return -ENOMEM;
2571 	}
2572 
2573 	mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
2574 		    lower_32_bits(bm_pool->dma_addr));
2575 	if (priv->hw_version == MVPP22)
2576 		mvpp2_write(priv, MVPP22_BM_POOL_BASE_HIGH_REG,
2577 			    (upper_32_bits(bm_pool->dma_addr) &
2578 			    MVPP22_BM_POOL_BASE_HIGH_MASK));
2579 	mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
2580 
2581 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2582 	val |= MVPP2_BM_START_MASK;
2583 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2584 
2585 	bm_pool->type = MVPP2_BM_FREE;
2586 	bm_pool->size = size;
2587 	bm_pool->pkt_size = 0;
2588 	bm_pool->buf_num = 0;
2589 
2590 	return 0;
2591 }
2592 
2593 /* Set pool buffer size */
mvpp2_bm_pool_bufsize_set(struct mvpp2 * priv,struct mvpp2_bm_pool * bm_pool,int buf_size)2594 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
2595 				      struct mvpp2_bm_pool *bm_pool,
2596 				      int buf_size)
2597 {
2598 	u32 val;
2599 
2600 	bm_pool->buf_size = buf_size;
2601 
2602 	val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
2603 	mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
2604 }
2605 
2606 /* Free all buffers from the pool */
mvpp2_bm_bufs_free(struct udevice * dev,struct mvpp2 * priv,struct mvpp2_bm_pool * bm_pool)2607 static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv,
2608 			       struct mvpp2_bm_pool *bm_pool)
2609 {
2610 	int i;
2611 
2612 	for (i = 0; i < bm_pool->buf_num; i++) {
2613 		/* Allocate buffer back from the buffer manager */
2614 		mvpp2_read(priv, MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
2615 	}
2616 
2617 	bm_pool->buf_num = 0;
2618 }
2619 
2620 /* Cleanup pool */
mvpp2_bm_pool_destroy(struct udevice * dev,struct mvpp2 * priv,struct mvpp2_bm_pool * bm_pool)2621 static int mvpp2_bm_pool_destroy(struct udevice *dev,
2622 				 struct mvpp2 *priv,
2623 				 struct mvpp2_bm_pool *bm_pool)
2624 {
2625 	u32 val;
2626 
2627 	mvpp2_bm_bufs_free(dev, priv, bm_pool);
2628 	if (bm_pool->buf_num) {
2629 		dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id);
2630 		return 0;
2631 	}
2632 
2633 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2634 	val |= MVPP2_BM_STOP_MASK;
2635 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2636 
2637 	return 0;
2638 }
2639 
mvpp2_bm_pools_init(struct udevice * dev,struct mvpp2 * priv)2640 static int mvpp2_bm_pools_init(struct udevice *dev,
2641 			       struct mvpp2 *priv)
2642 {
2643 	int i, err, size;
2644 	struct mvpp2_bm_pool *bm_pool;
2645 
2646 	/* Create all pools with maximum size */
2647 	size = MVPP2_BM_POOL_SIZE_MAX;
2648 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2649 		bm_pool = &priv->bm_pools[i];
2650 		bm_pool->id = i;
2651 		err = mvpp2_bm_pool_create(dev, priv, bm_pool, size);
2652 		if (err)
2653 			goto err_unroll_pools;
2654 		mvpp2_bm_pool_bufsize_set(priv, bm_pool, RX_BUFFER_SIZE);
2655 	}
2656 	return 0;
2657 
2658 err_unroll_pools:
2659 	dev_err(dev, "failed to create BM pool %d, size %d\n", i, size);
2660 	for (i = i - 1; i >= 0; i--)
2661 		mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
2662 	return err;
2663 }
2664 
mvpp2_bm_init(struct udevice * dev,struct mvpp2 * priv)2665 static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv)
2666 {
2667 	int i, err;
2668 
2669 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2670 		/* Mask BM all interrupts */
2671 		mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
2672 		/* Clear BM cause register */
2673 		mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
2674 	}
2675 
2676 	/* Allocate and initialize BM pools */
2677 	priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM,
2678 				     sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
2679 	if (!priv->bm_pools)
2680 		return -ENOMEM;
2681 
2682 	err = mvpp2_bm_pools_init(dev, priv);
2683 	if (err < 0)
2684 		return err;
2685 	return 0;
2686 }
2687 
2688 /* Attach long pool to rxq */
mvpp2_rxq_long_pool_set(struct mvpp2_port * port,int lrxq,int long_pool)2689 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
2690 				    int lrxq, int long_pool)
2691 {
2692 	u32 val, mask;
2693 	int prxq;
2694 
2695 	/* Get queue physical ID */
2696 	prxq = port->rxqs[lrxq]->id;
2697 
2698 	if (port->priv->hw_version == MVPP21)
2699 		mask = MVPP21_RXQ_POOL_LONG_MASK;
2700 	else
2701 		mask = MVPP22_RXQ_POOL_LONG_MASK;
2702 
2703 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
2704 	val &= ~mask;
2705 	val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
2706 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
2707 }
2708 
2709 /* Set pool number in a BM cookie */
mvpp2_bm_cookie_pool_set(u32 cookie,int pool)2710 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
2711 {
2712 	u32 bm;
2713 
2714 	bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
2715 	bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
2716 
2717 	return bm;
2718 }
2719 
2720 /* Get pool number from a BM cookie */
mvpp2_bm_cookie_pool_get(unsigned long cookie)2721 static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie)
2722 {
2723 	return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
2724 }
2725 
2726 /* Release buffer to BM */
mvpp2_bm_pool_put(struct mvpp2_port * port,int pool,dma_addr_t buf_dma_addr,unsigned long buf_phys_addr)2727 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
2728 				     dma_addr_t buf_dma_addr,
2729 				     unsigned long buf_phys_addr)
2730 {
2731 	if (port->priv->hw_version == MVPP22) {
2732 		u32 val = 0;
2733 
2734 		if (sizeof(dma_addr_t) == 8)
2735 			val |= upper_32_bits(buf_dma_addr) &
2736 				MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
2737 
2738 		if (sizeof(phys_addr_t) == 8)
2739 			val |= (upper_32_bits(buf_phys_addr)
2740 				<< MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
2741 				MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
2742 
2743 		mvpp2_write(port->priv, MVPP22_BM_ADDR_HIGH_RLS_REG, val);
2744 	}
2745 
2746 	/* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
2747 	 * returned in the "cookie" field of the RX
2748 	 * descriptor. Instead of storing the virtual address, we
2749 	 * store the physical address
2750 	 */
2751 	mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
2752 	mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
2753 }
2754 
2755 /* Refill BM pool */
mvpp2_pool_refill(struct mvpp2_port * port,u32 bm,dma_addr_t dma_addr,phys_addr_t phys_addr)2756 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
2757 			      dma_addr_t dma_addr,
2758 			      phys_addr_t phys_addr)
2759 {
2760 	int pool = mvpp2_bm_cookie_pool_get(bm);
2761 
2762 	mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
2763 }
2764 
2765 /* Allocate buffers for the pool */
mvpp2_bm_bufs_add(struct mvpp2_port * port,struct mvpp2_bm_pool * bm_pool,int buf_num)2766 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
2767 			     struct mvpp2_bm_pool *bm_pool, int buf_num)
2768 {
2769 	int i;
2770 
2771 	if (buf_num < 0 ||
2772 	    (buf_num + bm_pool->buf_num > bm_pool->size)) {
2773 		dev_err(port->phy_dev->dev,
2774 			"cannot allocate %d buffers for pool %d\n", buf_num,
2775 			bm_pool->id);
2776 		return 0;
2777 	}
2778 
2779 	for (i = 0; i < buf_num; i++) {
2780 		mvpp2_bm_pool_put(port, bm_pool->id,
2781 				  (dma_addr_t)buffer_loc.rx_buffer[i],
2782 				  (unsigned long)buffer_loc.rx_buffer[i]);
2783 
2784 	}
2785 
2786 	/* Update BM driver with number of buffers added to pool */
2787 	bm_pool->buf_num += i;
2788 
2789 	return i;
2790 }
2791 
2792 /* Notify the driver that BM pool is being used as specific type and return the
2793  * pool pointer on success
2794  */
2795 static struct mvpp2_bm_pool *
mvpp2_bm_pool_use(struct mvpp2_port * port,int pool,enum mvpp2_bm_type type,int pkt_size)2796 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
2797 		  int pkt_size)
2798 {
2799 	struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
2800 	int num;
2801 
2802 	if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
2803 		dev_err(port->phy_dev->dev, "mixing pool types is forbidden\n");
2804 		return NULL;
2805 	}
2806 
2807 	if (new_pool->type == MVPP2_BM_FREE)
2808 		new_pool->type = type;
2809 
2810 	/* Allocate buffers in case BM pool is used as long pool, but packet
2811 	 * size doesn't match MTU or BM pool hasn't being used yet
2812 	 */
2813 	if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
2814 	    (new_pool->pkt_size == 0)) {
2815 		int pkts_num;
2816 
2817 		/* Set default buffer number or free all the buffers in case
2818 		 * the pool is not empty
2819 		 */
2820 		pkts_num = new_pool->buf_num;
2821 		if (pkts_num == 0)
2822 			pkts_num = type == MVPP2_BM_SWF_LONG ?
2823 				   MVPP2_BM_LONG_BUF_NUM :
2824 				   MVPP2_BM_SHORT_BUF_NUM;
2825 		else
2826 			mvpp2_bm_bufs_free(NULL,
2827 					   port->priv, new_pool);
2828 
2829 		new_pool->pkt_size = pkt_size;
2830 
2831 		/* Allocate buffers for this pool */
2832 		num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
2833 		if (num != pkts_num) {
2834 			dev_err(port->phy_dev->dev,
2835 				"pool %d: %d of %d allocated\n", new_pool->id,
2836 				num, pkts_num);
2837 			return NULL;
2838 		}
2839 	}
2840 
2841 	return new_pool;
2842 }
2843 
2844 /* Initialize pools for swf */
mvpp2_swf_bm_pool_init(struct mvpp2_port * port)2845 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
2846 {
2847 	int rxq;
2848 
2849 	if (!port->pool_long) {
2850 		port->pool_long =
2851 		       mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
2852 					 MVPP2_BM_SWF_LONG,
2853 					 port->pkt_size);
2854 		if (!port->pool_long)
2855 			return -ENOMEM;
2856 
2857 		port->pool_long->port_map |= (1 << port->id);
2858 
2859 		for (rxq = 0; rxq < rxq_number; rxq++)
2860 			mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
2861 	}
2862 
2863 	return 0;
2864 }
2865 
2866 /* Port configuration routines */
2867 
mvpp2_port_mii_set(struct mvpp2_port * port)2868 static void mvpp2_port_mii_set(struct mvpp2_port *port)
2869 {
2870 	u32 val;
2871 
2872 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2873 
2874 	switch (port->phy_interface) {
2875 	case PHY_INTERFACE_MODE_SGMII:
2876 	case PHY_INTERFACE_MODE_SGMII_2500:
2877 		val |= MVPP2_GMAC_INBAND_AN_MASK;
2878 		break;
2879 	case PHY_INTERFACE_MODE_1000BASEX:
2880 	case PHY_INTERFACE_MODE_2500BASEX:
2881 		val &= ~MVPP2_GMAC_INBAND_AN_MASK;
2882 		break;
2883 	case PHY_INTERFACE_MODE_RGMII:
2884 	case PHY_INTERFACE_MODE_RGMII_ID:
2885 		val |= MVPP2_GMAC_PORT_RGMII_MASK;
2886 	default:
2887 		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
2888 	}
2889 
2890 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2891 }
2892 
mvpp2_port_fc_adv_enable(struct mvpp2_port * port)2893 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
2894 {
2895 	u32 val;
2896 
2897 	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2898 	val |= MVPP2_GMAC_FC_ADV_EN;
2899 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2900 }
2901 
mvpp2_port_enable(struct mvpp2_port * port)2902 static void mvpp2_port_enable(struct mvpp2_port *port)
2903 {
2904 	u32 val;
2905 
2906 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2907 	val |= MVPP2_GMAC_PORT_EN_MASK;
2908 	val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
2909 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2910 }
2911 
mvpp2_port_disable(struct mvpp2_port * port)2912 static void mvpp2_port_disable(struct mvpp2_port *port)
2913 {
2914 	u32 val;
2915 
2916 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2917 	val &= ~(MVPP2_GMAC_PORT_EN_MASK);
2918 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2919 }
2920 
2921 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
mvpp2_port_periodic_xon_disable(struct mvpp2_port * port)2922 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
2923 {
2924 	u32 val;
2925 
2926 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
2927 		    ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
2928 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2929 }
2930 
2931 /* Configure loopback port */
mvpp2_port_loopback_set(struct mvpp2_port * port)2932 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
2933 {
2934 	u32 val;
2935 
2936 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
2937 
2938 	if (port->speed == 1000)
2939 		val |= MVPP2_GMAC_GMII_LB_EN_MASK;
2940 	else
2941 		val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
2942 
2943 	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII ||
2944 	    port->phy_interface == PHY_INTERFACE_MODE_SGMII_2500 ||
2945 	    port->phy_interface == PHY_INTERFACE_MODE_1000BASEX ||
2946 	    port->phy_interface == PHY_INTERFACE_MODE_2500BASEX)
2947 		val |= MVPP2_GMAC_PCS_LB_EN_MASK;
2948 	else
2949 		val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
2950 
2951 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2952 }
2953 
mvpp2_port_reset(struct mvpp2_port * port)2954 static void mvpp2_port_reset(struct mvpp2_port *port)
2955 {
2956 	u32 val;
2957 
2958 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2959 		    ~MVPP2_GMAC_PORT_RESET_MASK;
2960 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2961 
2962 	while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2963 	       MVPP2_GMAC_PORT_RESET_MASK)
2964 		continue;
2965 }
2966 
2967 /* Change maximum receive size of the port */
mvpp2_gmac_max_rx_size_set(struct mvpp2_port * port)2968 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
2969 {
2970 	u32 val;
2971 
2972 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2973 	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
2974 	val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
2975 		    MVPP2_GMAC_MAX_RX_SIZE_OFFS);
2976 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2977 }
2978 
2979 /* PPv2.2 GoP/GMAC config */
2980 
2981 /* Set the MAC to reset or exit from reset */
gop_gmac_reset(struct mvpp2_port * port,int reset)2982 static int gop_gmac_reset(struct mvpp2_port *port, int reset)
2983 {
2984 	u32 val;
2985 
2986 	/* read - modify - write */
2987 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2988 	if (reset)
2989 		val |= MVPP2_GMAC_PORT_RESET_MASK;
2990 	else
2991 		val &= ~MVPP2_GMAC_PORT_RESET_MASK;
2992 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2993 
2994 	return 0;
2995 }
2996 
2997 /*
2998  * gop_gpcs_mode_cfg
2999  *
3000  * Configure port to working with Gig PCS or don't.
3001  */
gop_gpcs_mode_cfg(struct mvpp2_port * port,int en)3002 static int gop_gpcs_mode_cfg(struct mvpp2_port *port, int en)
3003 {
3004 	u32 val;
3005 
3006 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3007 	if (en)
3008 		val |= MVPP2_GMAC_PCS_ENABLE_MASK;
3009 	else
3010 		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
3011 	/* enable / disable PCS on this port */
3012 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3013 
3014 	return 0;
3015 }
3016 
gop_bypass_clk_cfg(struct mvpp2_port * port,int en)3017 static int gop_bypass_clk_cfg(struct mvpp2_port *port, int en)
3018 {
3019 	u32 val;
3020 
3021 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3022 	if (en)
3023 		val |= MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
3024 	else
3025 		val &= ~MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
3026 	/* enable / disable PCS on this port */
3027 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3028 
3029 	return 0;
3030 }
3031 
gop_gmac_sgmii2_5_cfg(struct mvpp2_port * port)3032 static void gop_gmac_sgmii2_5_cfg(struct mvpp2_port *port)
3033 {
3034 	u32 val, thresh;
3035 
3036 	/*
3037 	 * Configure minimal level of the Tx FIFO before the lower part
3038 	 * starts to read a packet
3039 	 */
3040 	thresh = MVPP2_SGMII2_5_TX_FIFO_MIN_TH;
3041 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3042 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3043 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3044 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3045 
3046 	/* Disable bypass of sync module */
3047 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3048 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3049 	/* configure DP clock select according to mode */
3050 	val |= MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3051 	/* configure QSGMII bypass according to mode */
3052 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3053 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3054 
3055 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3056 	/*
3057 	 * Configure GIG MAC to SGMII mode connected to a fiber
3058 	 * transceiver
3059 	 */
3060 	val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
3061 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3062 
3063 	/* configure AN 0x9268 */
3064 	val = MVPP2_GMAC_EN_PCS_AN |
3065 		MVPP2_GMAC_AN_BYPASS_EN |
3066 		MVPP2_GMAC_CONFIG_MII_SPEED  |
3067 		MVPP2_GMAC_CONFIG_GMII_SPEED     |
3068 		MVPP2_GMAC_FC_ADV_EN    |
3069 		MVPP2_GMAC_CONFIG_FULL_DUPLEX |
3070 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3071 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3072 }
3073 
gop_gmac_sgmii_cfg(struct mvpp2_port * port)3074 static void gop_gmac_sgmii_cfg(struct mvpp2_port *port)
3075 {
3076 	u32 val, thresh;
3077 
3078 	/*
3079 	 * Configure minimal level of the Tx FIFO before the lower part
3080 	 * starts to read a packet
3081 	 */
3082 	thresh = MVPP2_SGMII_TX_FIFO_MIN_TH;
3083 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3084 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3085 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3086 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3087 
3088 	/* Disable bypass of sync module */
3089 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3090 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3091 	/* configure DP clock select according to mode */
3092 	val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3093 	/* configure QSGMII bypass according to mode */
3094 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3095 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3096 
3097 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3098 	/* configure GIG MAC to SGMII mode */
3099 	val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
3100 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3101 
3102 	/* configure AN */
3103 	val = MVPP2_GMAC_EN_PCS_AN |
3104 		MVPP2_GMAC_AN_BYPASS_EN |
3105 		MVPP2_GMAC_AN_SPEED_EN  |
3106 		MVPP2_GMAC_EN_FC_AN     |
3107 		MVPP2_GMAC_AN_DUPLEX_EN |
3108 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3109 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3110 }
3111 
gop_gmac_2500basex_cfg(struct mvpp2_port * port)3112 static void gop_gmac_2500basex_cfg(struct mvpp2_port *port)
3113 {
3114 	u32 val, thresh;
3115 
3116 	/*
3117 	 * Configure minimal level of the Tx FIFO before the lower part
3118 	 * starts to read a packet
3119 	 */
3120 	thresh = MVPP2_SGMII2_5_TX_FIFO_MIN_TH;
3121 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3122 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3123 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3124 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3125 
3126 	/* Disable bypass of sync module */
3127 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3128 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3129 	/* configure DP clock select according to mode */
3130 	val |= MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3131 	/* configure QSGMII bypass according to mode */
3132 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3133 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3134 
3135 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3136 	/*
3137 	 * Configure GIG MAC to 2500Base-X mode connected to a fiber
3138 	 * transceiver
3139 	 */
3140 	val |= MVPP2_GMAC_PORT_TYPE_MASK;
3141 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3142 
3143 	/* In 2500BaseX mode, we can't negotiate speed
3144 	 * and we do not want InBand autoneg
3145 	 * bypass enabled (link interrupt storm risk
3146 	 * otherwise).
3147 	 */
3148 	val = MVPP2_GMAC_AN_BYPASS_EN |
3149 		MVPP2_GMAC_EN_PCS_AN |
3150 		MVPP2_GMAC_CONFIG_GMII_SPEED  |
3151 		MVPP2_GMAC_CONFIG_FULL_DUPLEX |
3152 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3153 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3154 }
3155 
gop_gmac_1000basex_cfg(struct mvpp2_port * port)3156 static void gop_gmac_1000basex_cfg(struct mvpp2_port *port)
3157 {
3158 	u32 val, thresh;
3159 
3160 	/*
3161 	 * Configure minimal level of the Tx FIFO before the lower part
3162 	 * starts to read a packet
3163 	 */
3164 	thresh = MVPP2_SGMII_TX_FIFO_MIN_TH;
3165 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3166 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3167 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3168 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3169 
3170 	/* Disable bypass of sync module */
3171 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3172 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3173 	/* configure DP clock select according to mode */
3174 	val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3175 	/* configure QSGMII bypass according to mode */
3176 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3177 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3178 
3179 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3180 	/* configure GIG MAC to 1000BASEX mode */
3181 	val |= MVPP2_GMAC_PORT_TYPE_MASK;
3182 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3183 
3184 	/* In 1000BaseX mode, we can't negotiate speed (it's
3185 	 * only 1000), and we do not want InBand autoneg
3186 	 * bypass enabled (link interrupt storm risk
3187 	 * otherwise).
3188 	 */
3189 	val = MVPP2_GMAC_AN_BYPASS_EN |
3190 		MVPP2_GMAC_EN_PCS_AN |
3191 		MVPP2_GMAC_CONFIG_GMII_SPEED  |
3192 		MVPP2_GMAC_CONFIG_FULL_DUPLEX |
3193 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3194 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3195 }
3196 
gop_gmac_rgmii_cfg(struct mvpp2_port * port)3197 static void gop_gmac_rgmii_cfg(struct mvpp2_port *port)
3198 {
3199 	u32 val, thresh;
3200 
3201 	/*
3202 	 * Configure minimal level of the Tx FIFO before the lower part
3203 	 * starts to read a packet
3204 	 */
3205 	thresh = MVPP2_RGMII_TX_FIFO_MIN_TH;
3206 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3207 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3208 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3209 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3210 
3211 	/* Disable bypass of sync module */
3212 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3213 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3214 	/* configure DP clock select according to mode */
3215 	val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3216 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3217 	val |= MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK;
3218 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3219 
3220 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3221 	/* configure GIG MAC to SGMII mode */
3222 	val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
3223 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3224 
3225 	/* configure AN 0xb8e8 */
3226 	val = MVPP2_GMAC_AN_BYPASS_EN |
3227 		MVPP2_GMAC_AN_SPEED_EN   |
3228 		MVPP2_GMAC_EN_FC_AN      |
3229 		MVPP2_GMAC_AN_DUPLEX_EN  |
3230 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3231 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3232 }
3233 
3234 /* Set the internal mux's to the required MAC in the GOP */
gop_gmac_mode_cfg(struct mvpp2_port * port)3235 static int gop_gmac_mode_cfg(struct mvpp2_port *port)
3236 {
3237 	u32 val;
3238 
3239 	/* Set TX FIFO thresholds */
3240 	switch (port->phy_interface) {
3241 	case PHY_INTERFACE_MODE_SGMII:
3242 		gop_gmac_sgmii_cfg(port);
3243 		break;
3244 	case PHY_INTERFACE_MODE_SGMII_2500:
3245 		gop_gmac_sgmii2_5_cfg(port);
3246 		break;
3247 	case PHY_INTERFACE_MODE_1000BASEX:
3248 		gop_gmac_1000basex_cfg(port);
3249 		break;
3250 
3251 	case PHY_INTERFACE_MODE_2500BASEX:
3252 		gop_gmac_2500basex_cfg(port);
3253 		break;
3254 
3255 	case PHY_INTERFACE_MODE_RGMII:
3256 	case PHY_INTERFACE_MODE_RGMII_ID:
3257 		gop_gmac_rgmii_cfg(port);
3258 		break;
3259 
3260 	default:
3261 		return -1;
3262 	}
3263 
3264 	/* Jumbo frame support - 0x1400*2= 0x2800 bytes */
3265 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3266 	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3267 	val |= 0x1400 << MVPP2_GMAC_MAX_RX_SIZE_OFFS;
3268 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3269 
3270 	/* PeriodicXonEn disable */
3271 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3272 	val &= ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3273 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3274 
3275 	return 0;
3276 }
3277 
gop_xlg_2_gig_mac_cfg(struct mvpp2_port * port)3278 static void gop_xlg_2_gig_mac_cfg(struct mvpp2_port *port)
3279 {
3280 	u32 val;
3281 
3282 	/* relevant only for MAC0 (XLG0 and GMAC0) */
3283 	if (port->gop_id > 0)
3284 		return;
3285 
3286 	/* configure 1Gig MAC mode */
3287 	val = readl(port->base + MVPP22_XLG_CTRL3_REG);
3288 	val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
3289 	val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
3290 	writel(val, port->base + MVPP22_XLG_CTRL3_REG);
3291 }
3292 
gop_gpcs_reset(struct mvpp2_port * port,int reset)3293 static int gop_gpcs_reset(struct mvpp2_port *port, int reset)
3294 {
3295 	u32 val;
3296 
3297 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3298 	if (reset)
3299 		val &= ~MVPP2_GMAC_SGMII_MODE_MASK;
3300 	else
3301 		val |= MVPP2_GMAC_SGMII_MODE_MASK;
3302 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3303 
3304 	return 0;
3305 }
3306 
gop_mpcs_mode(struct mvpp2_port * port)3307 static int gop_mpcs_mode(struct mvpp2_port *port)
3308 {
3309 	u32 val;
3310 
3311 	/* configure PCS40G COMMON CONTROL */
3312 	val = readl(port->priv->mpcs_base + port->gop_id * MVPP22_PORT_OFFSET +
3313 		    PCS40G_COMMON_CONTROL);
3314 	val &= ~FORWARD_ERROR_CORRECTION_MASK;
3315 	writel(val, port->priv->mpcs_base + port->gop_id * MVPP22_PORT_OFFSET +
3316 	       PCS40G_COMMON_CONTROL);
3317 
3318 	/* configure PCS CLOCK RESET */
3319 	val = readl(port->priv->mpcs_base + port->gop_id * MVPP22_PORT_OFFSET +
3320 		    PCS_CLOCK_RESET);
3321 	val &= ~CLK_DIVISION_RATIO_MASK;
3322 	val |= 1 << CLK_DIVISION_RATIO_OFFS;
3323 	writel(val, port->priv->mpcs_base + port->gop_id * MVPP22_PORT_OFFSET +
3324 	       PCS_CLOCK_RESET);
3325 
3326 	val &= ~CLK_DIV_PHASE_SET_MASK;
3327 	val |= MAC_CLK_RESET_MASK;
3328 	val |= RX_SD_CLK_RESET_MASK;
3329 	val |= TX_SD_CLK_RESET_MASK;
3330 	writel(val, port->priv->mpcs_base + port->gop_id * MVPP22_PORT_OFFSET +
3331 	       PCS_CLOCK_RESET);
3332 
3333 	return 0;
3334 }
3335 
3336 /* Set the internal mux's to the required MAC in the GOP */
gop_xlg_mac_mode_cfg(struct mvpp2_port * port,int num_of_act_lanes)3337 static int gop_xlg_mac_mode_cfg(struct mvpp2_port *port, int num_of_act_lanes)
3338 {
3339 	u32 val;
3340 
3341 	/* configure 10G MAC mode */
3342 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3343 	val |= MVPP22_XLG_RX_FC_EN;
3344 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3345 
3346 	val = readl(port->base + MVPP22_XLG_CTRL3_REG);
3347 	val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
3348 	val |= MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC;
3349 	writel(val, port->base + MVPP22_XLG_CTRL3_REG);
3350 
3351 	/* read - modify - write */
3352 	val = readl(port->base + MVPP22_XLG_CTRL4_REG);
3353 	val &= ~MVPP22_XLG_MODE_DMA_1G;
3354 	val |= MVPP22_XLG_FORWARD_PFC_EN;
3355 	val |= MVPP22_XLG_FORWARD_802_3X_FC_EN;
3356 	val &= ~MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK;
3357 	writel(val, port->base + MVPP22_XLG_CTRL4_REG);
3358 
3359 	/* Jumbo frame support: 0x1400 * 2 = 0x2800 bytes */
3360 	val = readl(port->base + MVPP22_XLG_CTRL1_REG);
3361 	val &= ~MVPP22_XLG_MAX_RX_SIZE_MASK;
3362 	val |= 0x1400 << MVPP22_XLG_MAX_RX_SIZE_OFFS;
3363 	writel(val, port->base + MVPP22_XLG_CTRL1_REG);
3364 
3365 	/* unmask link change interrupt */
3366 	val = readl(port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
3367 	val |= MVPP22_XLG_INTERRUPT_LINK_CHANGE;
3368 	val |= 1; /* unmask summary bit */
3369 	writel(val, port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
3370 
3371 	return 0;
3372 }
3373 
3374 /* Set the MAC to reset or exit from reset */
gop_xlg_mac_reset(struct mvpp2_port * port,int reset)3375 static int gop_xlg_mac_reset(struct mvpp2_port *port, int reset)
3376 {
3377 	u32 val;
3378 
3379 	/* read - modify - write */
3380 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3381 	if (reset)
3382 		val &= ~MVPP22_XLG_MAC_RESETN;
3383 	else
3384 		val |= MVPP22_XLG_MAC_RESETN;
3385 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3386 
3387 	return 0;
3388 }
3389 
3390 /*
3391  * gop_port_init
3392  *
3393  * Init physical port. Configures the port mode and all it's elements
3394  * accordingly.
3395  * Does not verify that the selected mode/port number is valid at the
3396  * core level.
3397  */
gop_port_init(struct mvpp2_port * port)3398 static int gop_port_init(struct mvpp2_port *port)
3399 {
3400 	int mac_num = port->gop_id;
3401 	int num_of_act_lanes;
3402 
3403 	if (mac_num >= MVPP22_GOP_MAC_NUM) {
3404 		log_err("illegal port number %d", mac_num);
3405 		return -1;
3406 	}
3407 
3408 	switch (port->phy_interface) {
3409 	case PHY_INTERFACE_MODE_RGMII:
3410 	case PHY_INTERFACE_MODE_RGMII_ID:
3411 		gop_gmac_reset(port, 1);
3412 
3413 		/* configure PCS */
3414 		gop_gpcs_mode_cfg(port, 0);
3415 		gop_bypass_clk_cfg(port, 1);
3416 
3417 		/* configure MAC */
3418 		gop_gmac_mode_cfg(port);
3419 		/* pcs unreset */
3420 		gop_gpcs_reset(port, 0);
3421 
3422 		/* mac unreset */
3423 		gop_gmac_reset(port, 0);
3424 		break;
3425 
3426 	case PHY_INTERFACE_MODE_SGMII:
3427 	case PHY_INTERFACE_MODE_SGMII_2500:
3428 	case PHY_INTERFACE_MODE_1000BASEX:
3429 	case PHY_INTERFACE_MODE_2500BASEX:
3430 		/* configure PCS */
3431 		gop_gpcs_mode_cfg(port, 1);
3432 
3433 		/* configure MAC */
3434 		gop_gmac_mode_cfg(port);
3435 		/* select proper Mac mode */
3436 		gop_xlg_2_gig_mac_cfg(port);
3437 
3438 		/* pcs unreset */
3439 		gop_gpcs_reset(port, 0);
3440 		/* mac unreset */
3441 		gop_gmac_reset(port, 0);
3442 		break;
3443 
3444 	case PHY_INTERFACE_MODE_SFI:
3445 		num_of_act_lanes = 2;
3446 		mac_num = 0;
3447 		/* configure PCS */
3448 		gop_mpcs_mode(port);
3449 		/* configure MAC */
3450 		gop_xlg_mac_mode_cfg(port, num_of_act_lanes);
3451 
3452 		/* mac unreset */
3453 		gop_xlg_mac_reset(port, 0);
3454 		break;
3455 
3456 	default:
3457 		log_err("Requested port mode (%d) not supported\n",
3458 			port->phy_interface);
3459 		return -1;
3460 	}
3461 
3462 	return 0;
3463 }
3464 
gop_xlg_mac_port_enable(struct mvpp2_port * port,int enable)3465 static void gop_xlg_mac_port_enable(struct mvpp2_port *port, int enable)
3466 {
3467 	u32 val;
3468 
3469 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3470 	if (enable) {
3471 		/* Enable port and MIB counters update */
3472 		val |= MVPP22_XLG_PORT_EN;
3473 		val &= ~MVPP22_XLG_MIBCNT_DIS;
3474 	} else {
3475 		/* Disable port */
3476 		val &= ~MVPP22_XLG_PORT_EN;
3477 	}
3478 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3479 }
3480 
gop_port_enable(struct mvpp2_port * port,int enable)3481 static void gop_port_enable(struct mvpp2_port *port, int enable)
3482 {
3483 	switch (port->phy_interface) {
3484 	case PHY_INTERFACE_MODE_RGMII:
3485 	case PHY_INTERFACE_MODE_RGMII_ID:
3486 	case PHY_INTERFACE_MODE_SGMII:
3487 	case PHY_INTERFACE_MODE_SGMII_2500:
3488 	case PHY_INTERFACE_MODE_1000BASEX:
3489 	case PHY_INTERFACE_MODE_2500BASEX:
3490 		if (enable)
3491 			mvpp2_port_enable(port);
3492 		else
3493 			mvpp2_port_disable(port);
3494 		break;
3495 
3496 	case PHY_INTERFACE_MODE_SFI:
3497 		gop_xlg_mac_port_enable(port, enable);
3498 
3499 		break;
3500 	default:
3501 		log_err("%s: Wrong port mode (%d)\n", __func__,
3502 			port->phy_interface);
3503 		return;
3504 	}
3505 }
3506 
3507 /* RFU1 functions */
gop_rfu1_read(struct mvpp2 * priv,u32 offset)3508 static inline u32 gop_rfu1_read(struct mvpp2 *priv, u32 offset)
3509 {
3510 	return readl(priv->rfu1_base + offset);
3511 }
3512 
gop_rfu1_write(struct mvpp2 * priv,u32 offset,u32 data)3513 static inline void gop_rfu1_write(struct mvpp2 *priv, u32 offset, u32 data)
3514 {
3515 	writel(data, priv->rfu1_base + offset);
3516 }
3517 
mvpp2_netc_cfg_create(int gop_id,phy_interface_t phy_type)3518 static u32 mvpp2_netc_cfg_create(int gop_id, phy_interface_t phy_type)
3519 {
3520 	u32 val = 0;
3521 
3522 	if (gop_id == 2) {
3523 		if (phy_type == PHY_INTERFACE_MODE_SGMII ||
3524 		    phy_type == PHY_INTERFACE_MODE_SGMII_2500 ||
3525 		    phy_type == PHY_INTERFACE_MODE_1000BASEX ||
3526 		    phy_type == PHY_INTERFACE_MODE_2500BASEX)
3527 			val |= MV_NETC_GE_MAC2_SGMII;
3528 		else if (phy_type == PHY_INTERFACE_MODE_RGMII ||
3529 			 phy_type == PHY_INTERFACE_MODE_RGMII_ID)
3530 			val |= MV_NETC_GE_MAC2_RGMII;
3531 	}
3532 
3533 	if (gop_id == 3) {
3534 		if (phy_type == PHY_INTERFACE_MODE_SGMII ||
3535 		    phy_type == PHY_INTERFACE_MODE_SGMII_2500 ||
3536 		    phy_type == PHY_INTERFACE_MODE_1000BASEX ||
3537 		    phy_type == PHY_INTERFACE_MODE_2500BASEX)
3538 			val |= MV_NETC_GE_MAC3_SGMII;
3539 		else if (phy_type == PHY_INTERFACE_MODE_RGMII ||
3540 			 phy_type == PHY_INTERFACE_MODE_RGMII_ID)
3541 			val |= MV_NETC_GE_MAC3_RGMII;
3542 	}
3543 
3544 	return val;
3545 }
3546 
gop_netc_active_port(struct mvpp2 * priv,int gop_id,u32 val)3547 static void gop_netc_active_port(struct mvpp2 *priv, int gop_id, u32 val)
3548 {
3549 	u32 reg;
3550 
3551 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
3552 	reg &= ~(NETC_PORTS_ACTIVE_MASK(gop_id));
3553 
3554 	val <<= NETC_PORTS_ACTIVE_OFFSET(gop_id);
3555 	val &= NETC_PORTS_ACTIVE_MASK(gop_id);
3556 
3557 	reg |= val;
3558 
3559 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
3560 }
3561 
gop_netc_mii_mode(struct mvpp2 * priv,int gop_id,u32 val)3562 static void gop_netc_mii_mode(struct mvpp2 *priv, int gop_id, u32 val)
3563 {
3564 	u32 reg;
3565 
3566 	reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
3567 	reg &= ~NETC_GBE_PORT1_MII_MODE_MASK;
3568 
3569 	val <<= NETC_GBE_PORT1_MII_MODE_OFFS;
3570 	val &= NETC_GBE_PORT1_MII_MODE_MASK;
3571 
3572 	reg |= val;
3573 
3574 	gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
3575 }
3576 
gop_netc_gop_reset(struct mvpp2 * priv,u32 val)3577 static void gop_netc_gop_reset(struct mvpp2 *priv, u32 val)
3578 {
3579 	u32 reg;
3580 
3581 	reg = gop_rfu1_read(priv, GOP_SOFT_RESET_1_REG);
3582 	reg &= ~NETC_GOP_SOFT_RESET_MASK;
3583 
3584 	val <<= NETC_GOP_SOFT_RESET_OFFS;
3585 	val &= NETC_GOP_SOFT_RESET_MASK;
3586 
3587 	reg |= val;
3588 
3589 	gop_rfu1_write(priv, GOP_SOFT_RESET_1_REG, reg);
3590 }
3591 
gop_netc_gop_clock_logic_set(struct mvpp2 * priv,u32 val)3592 static void gop_netc_gop_clock_logic_set(struct mvpp2 *priv, u32 val)
3593 {
3594 	u32 reg;
3595 
3596 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3597 	reg &= ~NETC_CLK_DIV_PHASE_MASK;
3598 
3599 	val <<= NETC_CLK_DIV_PHASE_OFFS;
3600 	val &= NETC_CLK_DIV_PHASE_MASK;
3601 
3602 	reg |= val;
3603 
3604 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3605 }
3606 
gop_netc_port_rf_reset(struct mvpp2 * priv,int gop_id,u32 val)3607 static void gop_netc_port_rf_reset(struct mvpp2 *priv, int gop_id, u32 val)
3608 {
3609 	u32 reg;
3610 
3611 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
3612 	reg &= ~(NETC_PORT_GIG_RF_RESET_MASK(gop_id));
3613 
3614 	val <<= NETC_PORT_GIG_RF_RESET_OFFS(gop_id);
3615 	val &= NETC_PORT_GIG_RF_RESET_MASK(gop_id);
3616 
3617 	reg |= val;
3618 
3619 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
3620 }
3621 
gop_netc_gbe_sgmii_mode_select(struct mvpp2 * priv,int gop_id,u32 val)3622 static void gop_netc_gbe_sgmii_mode_select(struct mvpp2 *priv, int gop_id,
3623 					   u32 val)
3624 {
3625 	u32 reg, mask, offset;
3626 
3627 	if (gop_id == 2) {
3628 		mask = NETC_GBE_PORT0_SGMII_MODE_MASK;
3629 		offset = NETC_GBE_PORT0_SGMII_MODE_OFFS;
3630 	} else {
3631 		mask = NETC_GBE_PORT1_SGMII_MODE_MASK;
3632 		offset = NETC_GBE_PORT1_SGMII_MODE_OFFS;
3633 	}
3634 	reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
3635 	reg &= ~mask;
3636 
3637 	val <<= offset;
3638 	val &= mask;
3639 
3640 	reg |= val;
3641 
3642 	gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
3643 }
3644 
gop_netc_bus_width_select(struct mvpp2 * priv,u32 val)3645 static void gop_netc_bus_width_select(struct mvpp2 *priv, u32 val)
3646 {
3647 	u32 reg;
3648 
3649 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3650 	reg &= ~NETC_BUS_WIDTH_SELECT_MASK;
3651 
3652 	val <<= NETC_BUS_WIDTH_SELECT_OFFS;
3653 	val &= NETC_BUS_WIDTH_SELECT_MASK;
3654 
3655 	reg |= val;
3656 
3657 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3658 }
3659 
gop_netc_sample_stages_timing(struct mvpp2 * priv,u32 val)3660 static void gop_netc_sample_stages_timing(struct mvpp2 *priv, u32 val)
3661 {
3662 	u32 reg;
3663 
3664 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3665 	reg &= ~NETC_GIG_RX_DATA_SAMPLE_MASK;
3666 
3667 	val <<= NETC_GIG_RX_DATA_SAMPLE_OFFS;
3668 	val &= NETC_GIG_RX_DATA_SAMPLE_MASK;
3669 
3670 	reg |= val;
3671 
3672 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3673 }
3674 
gop_netc_mac_to_xgmii(struct mvpp2 * priv,int gop_id,enum mv_netc_phase phase)3675 static void gop_netc_mac_to_xgmii(struct mvpp2 *priv, int gop_id,
3676 				  enum mv_netc_phase phase)
3677 {
3678 	switch (phase) {
3679 	case MV_NETC_FIRST_PHASE:
3680 		/* Set Bus Width to HB mode = 1 */
3681 		gop_netc_bus_width_select(priv, 1);
3682 		/* Select RGMII mode */
3683 		gop_netc_gbe_sgmii_mode_select(priv, gop_id, MV_NETC_GBE_XMII);
3684 		break;
3685 
3686 	case MV_NETC_SECOND_PHASE:
3687 		/* De-assert the relevant port HB reset */
3688 		gop_netc_port_rf_reset(priv, gop_id, 1);
3689 		break;
3690 	}
3691 }
3692 
gop_netc_mac_to_sgmii(struct mvpp2 * priv,int gop_id,enum mv_netc_phase phase)3693 static void gop_netc_mac_to_sgmii(struct mvpp2 *priv, int gop_id,
3694 				  enum mv_netc_phase phase)
3695 {
3696 	switch (phase) {
3697 	case MV_NETC_FIRST_PHASE:
3698 		/* Set Bus Width to HB mode = 1 */
3699 		gop_netc_bus_width_select(priv, 1);
3700 		/* Select SGMII mode */
3701 		if (gop_id >= 1) {
3702 			gop_netc_gbe_sgmii_mode_select(priv, gop_id,
3703 						       MV_NETC_GBE_SGMII);
3704 		}
3705 
3706 		/* Configure the sample stages */
3707 		gop_netc_sample_stages_timing(priv, 0);
3708 		/* Configure the ComPhy Selector */
3709 		/* gop_netc_com_phy_selector_config(netComplex); */
3710 		break;
3711 
3712 	case MV_NETC_SECOND_PHASE:
3713 		/* De-assert the relevant port HB reset */
3714 		gop_netc_port_rf_reset(priv, gop_id, 1);
3715 		break;
3716 	}
3717 }
3718 
gop_netc_init(struct mvpp2 * priv,enum mv_netc_phase phase)3719 static int gop_netc_init(struct mvpp2 *priv, enum mv_netc_phase phase)
3720 {
3721 	u32 c = priv->netc_config;
3722 
3723 	if (c & MV_NETC_GE_MAC2_SGMII)
3724 		gop_netc_mac_to_sgmii(priv, 2, phase);
3725 	else if (c & MV_NETC_GE_MAC2_RGMII)
3726 		gop_netc_mac_to_xgmii(priv, 2, phase);
3727 
3728 	if (c & MV_NETC_GE_MAC3_SGMII) {
3729 		gop_netc_mac_to_sgmii(priv, 3, phase);
3730 	} else {
3731 		gop_netc_mac_to_xgmii(priv, 3, phase);
3732 		if (c & MV_NETC_GE_MAC3_RGMII)
3733 			gop_netc_mii_mode(priv, 3, MV_NETC_GBE_RGMII);
3734 		else
3735 			gop_netc_mii_mode(priv, 3, MV_NETC_GBE_MII);
3736 	}
3737 
3738 	/* Activate gop ports 0, 2, 3 */
3739 	gop_netc_active_port(priv, 0, 1);
3740 	gop_netc_active_port(priv, 2, 1);
3741 	gop_netc_active_port(priv, 3, 1);
3742 
3743 	if (phase == MV_NETC_SECOND_PHASE) {
3744 		/* Enable the GOP internal clock logic */
3745 		gop_netc_gop_clock_logic_set(priv, 1);
3746 		/* De-assert GOP unit reset */
3747 		gop_netc_gop_reset(priv, 1);
3748 	}
3749 
3750 	return 0;
3751 }
3752 
3753 /* Set defaults to the MVPP2 port */
mvpp2_defaults_set(struct mvpp2_port * port)3754 static void mvpp2_defaults_set(struct mvpp2_port *port)
3755 {
3756 	int tx_port_num, val, queue, ptxq, lrxq;
3757 
3758 	if (port->priv->hw_version == MVPP21) {
3759 		/* Configure port to loopback if needed */
3760 		if (port->flags & MVPP2_F_LOOPBACK)
3761 			mvpp2_port_loopback_set(port);
3762 
3763 		/* Update TX FIFO MIN Threshold */
3764 		val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3765 		val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3766 		/* Min. TX threshold must be less than minimal packet length */
3767 		val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3768 		writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3769 	}
3770 
3771 	/* Disable Legacy WRR, Disable EJP, Release from reset */
3772 	tx_port_num = mvpp2_egress_port(port);
3773 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3774 		    tx_port_num);
3775 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3776 
3777 	/* Close bandwidth for all queues */
3778 	for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3779 		ptxq = mvpp2_txq_phys(port->id, queue);
3780 		mvpp2_write(port->priv,
3781 			    MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3782 	}
3783 
3784 	/* Set refill period to 1 usec, refill tokens
3785 	 * and bucket size to maximum
3786 	 */
3787 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8);
3788 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3789 	val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3790 	val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3791 	val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3792 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3793 	val = MVPP2_TXP_TOKEN_SIZE_MAX;
3794 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3795 
3796 	/* Set MaximumLowLatencyPacketSize value to 256 */
3797 	mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3798 		    MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3799 		    MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3800 
3801 	/* Enable Rx cache snoop */
3802 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3803 		queue = port->rxqs[lrxq]->id;
3804 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3805 		val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3806 			   MVPP2_SNOOP_BUF_HDR_MASK;
3807 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3808 	}
3809 }
3810 
3811 /* Enable/disable receiving packets */
mvpp2_ingress_enable(struct mvpp2_port * port)3812 static void mvpp2_ingress_enable(struct mvpp2_port *port)
3813 {
3814 	u32 val;
3815 	int lrxq, queue;
3816 
3817 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3818 		queue = port->rxqs[lrxq]->id;
3819 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3820 		val &= ~MVPP2_RXQ_DISABLE_MASK;
3821 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3822 	}
3823 }
3824 
mvpp2_ingress_disable(struct mvpp2_port * port)3825 static void mvpp2_ingress_disable(struct mvpp2_port *port)
3826 {
3827 	u32 val;
3828 	int lrxq, queue;
3829 
3830 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3831 		queue = port->rxqs[lrxq]->id;
3832 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3833 		val |= MVPP2_RXQ_DISABLE_MASK;
3834 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3835 	}
3836 }
3837 
3838 /* Enable transmit via physical egress queue
3839  * - HW starts take descriptors from DRAM
3840  */
mvpp2_egress_enable(struct mvpp2_port * port)3841 static void mvpp2_egress_enable(struct mvpp2_port *port)
3842 {
3843 	u32 qmap;
3844 	int queue;
3845 	int tx_port_num = mvpp2_egress_port(port);
3846 
3847 	/* Enable all initialized TXs. */
3848 	qmap = 0;
3849 	for (queue = 0; queue < txq_number; queue++) {
3850 		struct mvpp2_tx_queue *txq = port->txqs[queue];
3851 
3852 		if (txq->descs != NULL)
3853 			qmap |= (1 << queue);
3854 	}
3855 
3856 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3857 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
3858 }
3859 
3860 /* Disable transmit via physical egress queue
3861  * - HW doesn't take descriptors from DRAM
3862  */
mvpp2_egress_disable(struct mvpp2_port * port)3863 static void mvpp2_egress_disable(struct mvpp2_port *port)
3864 {
3865 	u32 reg_data;
3866 	int delay;
3867 	int tx_port_num = mvpp2_egress_port(port);
3868 
3869 	/* Issue stop command for active channels only */
3870 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3871 	reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
3872 		    MVPP2_TXP_SCHED_ENQ_MASK;
3873 	if (reg_data != 0)
3874 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
3875 			    (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
3876 
3877 	/* Wait for all Tx activity to terminate. */
3878 	delay = 0;
3879 	do {
3880 		if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
3881 			dev_warn(port->phy_dev->dev,
3882 				 "Tx stop timed out, status=0x%08x\n",
3883 				 reg_data);
3884 			break;
3885 		}
3886 		mdelay(1);
3887 		delay++;
3888 
3889 		/* Check port TX Command register that all
3890 		 * Tx queues are stopped
3891 		 */
3892 		reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
3893 	} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
3894 }
3895 
3896 /* Rx descriptors helper methods */
3897 
3898 /* Get number of Rx descriptors occupied by received packets */
3899 static inline int
mvpp2_rxq_received(struct mvpp2_port * port,int rxq_id)3900 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
3901 {
3902 	u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
3903 
3904 	return val & MVPP2_RXQ_OCCUPIED_MASK;
3905 }
3906 
3907 /* Update Rx queue status with the number of occupied and available
3908  * Rx descriptor slots.
3909  */
3910 static inline void
mvpp2_rxq_status_update(struct mvpp2_port * port,int rxq_id,int used_count,int free_count)3911 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
3912 			int used_count, int free_count)
3913 {
3914 	/* Decrement the number of used descriptors and increment count
3915 	 * increment the number of free descriptors.
3916 	 */
3917 	u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
3918 
3919 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
3920 }
3921 
3922 /* Get pointer to next RX descriptor to be processed by SW */
3923 static inline struct mvpp2_rx_desc *
mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue * rxq)3924 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
3925 {
3926 	int rx_desc = rxq->next_desc_to_proc;
3927 
3928 	rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
3929 	prefetch(rxq->descs + rxq->next_desc_to_proc);
3930 	return rxq->descs + rx_desc;
3931 }
3932 
3933 /* Set rx queue offset */
mvpp2_rxq_offset_set(struct mvpp2_port * port,int prxq,int offset)3934 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
3935 				 int prxq, int offset)
3936 {
3937 	u32 val;
3938 
3939 	/* Convert offset from bytes to units of 32 bytes */
3940 	offset = offset >> 5;
3941 
3942 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3943 	val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
3944 
3945 	/* Offset is in */
3946 	val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
3947 		    MVPP2_RXQ_PACKET_OFFSET_MASK);
3948 
3949 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3950 }
3951 
3952 /* Obtain BM cookie information from descriptor */
mvpp2_bm_cookie_build(struct mvpp2_port * port,struct mvpp2_rx_desc * rx_desc)3953 static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port,
3954 				 struct mvpp2_rx_desc *rx_desc)
3955 {
3956 	int cpu = smp_processor_id();
3957 	int pool;
3958 
3959 	pool = (mvpp2_rxdesc_status_get(port, rx_desc) &
3960 		MVPP2_RXD_BM_POOL_ID_MASK) >>
3961 		MVPP2_RXD_BM_POOL_ID_OFFS;
3962 
3963 	return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
3964 	       ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
3965 }
3966 
3967 /* Tx descriptors helper methods */
3968 
3969 /* Get number of Tx descriptors waiting to be transmitted by HW */
mvpp2_txq_pend_desc_num_get(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)3970 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
3971 				       struct mvpp2_tx_queue *txq)
3972 {
3973 	u32 val;
3974 
3975 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3976 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
3977 
3978 	return val & MVPP2_TXQ_PENDING_MASK;
3979 }
3980 
3981 /* Get pointer to next Tx descriptor to be processed (send) by HW */
3982 static struct mvpp2_tx_desc *
mvpp2_txq_next_desc_get(struct mvpp2_tx_queue * txq)3983 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
3984 {
3985 	int tx_desc = txq->next_desc_to_proc;
3986 
3987 	txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
3988 	return txq->descs + tx_desc;
3989 }
3990 
3991 /* Update HW with number of aggregated Tx descriptors to be sent */
mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port * port,int pending)3992 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
3993 {
3994 	/* aggregated access - relevant TXQ number is written in TX desc */
3995 	mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
3996 }
3997 
3998 /* Get number of sent descriptors and decrement counter.
3999  * The number of sent descriptors is returned.
4000  * Per-CPU access
4001  */
mvpp2_txq_sent_desc_proc(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)4002 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
4003 					   struct mvpp2_tx_queue *txq)
4004 {
4005 	u32 val;
4006 
4007 	/* Reading status reg resets transmitted descriptor counter */
4008 	val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
4009 
4010 	return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
4011 		MVPP2_TRANSMITTED_COUNT_OFFSET;
4012 }
4013 
mvpp2_txq_sent_counter_clear(void * arg)4014 static void mvpp2_txq_sent_counter_clear(void *arg)
4015 {
4016 	struct mvpp2_port *port = arg;
4017 	int queue;
4018 
4019 	for (queue = 0; queue < txq_number; queue++) {
4020 		int id = port->txqs[queue]->id;
4021 
4022 		mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
4023 	}
4024 }
4025 
4026 /* Set max sizes for Tx queues */
mvpp2_txp_max_tx_size_set(struct mvpp2_port * port)4027 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
4028 {
4029 	u32	val, size, mtu;
4030 	int	txq, tx_port_num;
4031 
4032 	mtu = port->pkt_size * 8;
4033 	if (mtu > MVPP2_TXP_MTU_MAX)
4034 		mtu = MVPP2_TXP_MTU_MAX;
4035 
4036 	/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
4037 	mtu = 3 * mtu;
4038 
4039 	/* Indirect access to registers */
4040 	tx_port_num = mvpp2_egress_port(port);
4041 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4042 
4043 	/* Set MTU */
4044 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
4045 	val &= ~MVPP2_TXP_MTU_MAX;
4046 	val |= mtu;
4047 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
4048 
4049 	/* TXP token size and all TXQs token size must be larger that MTU */
4050 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
4051 	size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
4052 	if (size < mtu) {
4053 		size = mtu;
4054 		val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
4055 		val |= size;
4056 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4057 	}
4058 
4059 	for (txq = 0; txq < txq_number; txq++) {
4060 		val = mvpp2_read(port->priv,
4061 				 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4062 		size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4063 
4064 		if (size < mtu) {
4065 			size = mtu;
4066 			val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4067 			val |= size;
4068 			mvpp2_write(port->priv,
4069 				    MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4070 				    val);
4071 		}
4072 	}
4073 }
4074 
4075 /* Free Tx queue skbuffs */
mvpp2_txq_bufs_free(struct mvpp2_port * port,struct mvpp2_tx_queue * txq,struct mvpp2_txq_pcpu * txq_pcpu,int num)4076 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4077 				struct mvpp2_tx_queue *txq,
4078 				struct mvpp2_txq_pcpu *txq_pcpu, int num)
4079 {
4080 	int i;
4081 
4082 	for (i = 0; i < num; i++)
4083 		mvpp2_txq_inc_get(txq_pcpu);
4084 }
4085 
mvpp2_get_rx_queue(struct mvpp2_port * port,u32 cause)4086 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4087 							u32 cause)
4088 {
4089 	int queue = fls(cause) - 1;
4090 
4091 	return port->rxqs[queue];
4092 }
4093 
mvpp2_get_tx_queue(struct mvpp2_port * port,u32 cause)4094 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4095 							u32 cause)
4096 {
4097 	int queue = fls(cause) - 1;
4098 
4099 	return port->txqs[queue];
4100 }
4101 
4102 /* Rx/Tx queue initialization/cleanup methods */
4103 
4104 /* Allocate and initialize descriptors for aggr TXQ */
mvpp2_aggr_txq_init(struct udevice * dev,struct mvpp2_tx_queue * aggr_txq,int desc_num,int cpu,struct mvpp2 * priv)4105 static int mvpp2_aggr_txq_init(struct udevice *dev,
4106 			       struct mvpp2_tx_queue *aggr_txq,
4107 			       int desc_num, int cpu,
4108 			       struct mvpp2 *priv)
4109 {
4110 	u32 txq_dma;
4111 
4112 	/* Allocate memory for TX descriptors */
4113 	aggr_txq->descs = buffer_loc.aggr_tx_descs;
4114 	aggr_txq->descs_dma = (dma_addr_t)buffer_loc.aggr_tx_descs;
4115 	if (!aggr_txq->descs)
4116 		return -ENOMEM;
4117 
4118 	/* Make sure descriptor address is cache line size aligned  */
4119 	BUG_ON(aggr_txq->descs !=
4120 	       PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4121 
4122 	aggr_txq->last_desc = aggr_txq->size - 1;
4123 
4124 	/* Aggr TXQ no reset WA */
4125 	aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4126 						 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4127 
4128 	/* Set Tx descriptors queue starting address indirect
4129 	 * access
4130 	 */
4131 	if (priv->hw_version == MVPP21)
4132 		txq_dma = aggr_txq->descs_dma;
4133 	else
4134 		txq_dma = aggr_txq->descs_dma >>
4135 			MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
4136 
4137 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
4138 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4139 
4140 	return 0;
4141 }
4142 
4143 /* Create a specified Rx queue */
mvpp2_rxq_init(struct mvpp2_port * port,struct mvpp2_rx_queue * rxq)4144 static int mvpp2_rxq_init(struct mvpp2_port *port,
4145 			  struct mvpp2_rx_queue *rxq)
4146 
4147 {
4148 	u32 rxq_dma;
4149 
4150 	rxq->size = port->rx_ring_size;
4151 
4152 	/* Allocate memory for RX descriptors */
4153 	rxq->descs = buffer_loc.rx_descs;
4154 	rxq->descs_dma = (dma_addr_t)buffer_loc.rx_descs;
4155 	if (!rxq->descs)
4156 		return -ENOMEM;
4157 
4158 	BUG_ON(rxq->descs !=
4159 	       PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4160 
4161 	rxq->last_desc = rxq->size - 1;
4162 
4163 	/* Zero occupied and non-occupied counters - direct access */
4164 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4165 
4166 	/* Set Rx descriptors queue starting address - indirect access */
4167 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4168 	if (port->priv->hw_version == MVPP21)
4169 		rxq_dma = rxq->descs_dma;
4170 	else
4171 		rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
4172 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
4173 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4174 	mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4175 
4176 	/* Set Offset */
4177 	mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4178 
4179 	/* Add number of descriptors ready for receiving packets */
4180 	mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4181 
4182 	return 0;
4183 }
4184 
4185 /* Push packets received by the RXQ to BM pool */
mvpp2_rxq_drop_pkts(struct mvpp2_port * port,struct mvpp2_rx_queue * rxq)4186 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4187 				struct mvpp2_rx_queue *rxq)
4188 {
4189 	int rx_received, i;
4190 
4191 	rx_received = mvpp2_rxq_received(port, rxq->id);
4192 	if (!rx_received)
4193 		return;
4194 
4195 	for (i = 0; i < rx_received; i++) {
4196 		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4197 		u32 bm = mvpp2_bm_cookie_build(port, rx_desc);
4198 
4199 		mvpp2_pool_refill(port, bm,
4200 				  mvpp2_rxdesc_dma_addr_get(port, rx_desc),
4201 				  mvpp2_rxdesc_cookie_get(port, rx_desc));
4202 	}
4203 	mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4204 }
4205 
4206 /* Cleanup Rx queue */
mvpp2_rxq_deinit(struct mvpp2_port * port,struct mvpp2_rx_queue * rxq)4207 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4208 			     struct mvpp2_rx_queue *rxq)
4209 {
4210 	mvpp2_rxq_drop_pkts(port, rxq);
4211 
4212 	rxq->descs             = NULL;
4213 	rxq->last_desc         = 0;
4214 	rxq->next_desc_to_proc = 0;
4215 	rxq->descs_dma         = 0;
4216 
4217 	/* Clear Rx descriptors queue starting address and size;
4218 	 * free descriptor number
4219 	 */
4220 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4221 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4222 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4223 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4224 }
4225 
4226 /* Create and initialize a Tx queue */
mvpp2_txq_init(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)4227 static int mvpp2_txq_init(struct mvpp2_port *port,
4228 			  struct mvpp2_tx_queue *txq)
4229 {
4230 	u32 val;
4231 	int cpu, desc, desc_per_txq, tx_port_num;
4232 	struct mvpp2_txq_pcpu *txq_pcpu;
4233 
4234 	txq->size = port->tx_ring_size;
4235 
4236 	/* Allocate memory for Tx descriptors */
4237 	txq->descs = buffer_loc.tx_descs;
4238 	txq->descs_dma = (dma_addr_t)buffer_loc.tx_descs;
4239 	if (!txq->descs)
4240 		return -ENOMEM;
4241 
4242 	/* Make sure descriptor address is cache line size aligned  */
4243 	BUG_ON(txq->descs !=
4244 	       PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4245 
4246 	txq->last_desc = txq->size - 1;
4247 
4248 	/* Set Tx descriptors queue starting address - indirect access */
4249 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4250 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_dma);
4251 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4252 					     MVPP2_TXQ_DESC_SIZE_MASK);
4253 	mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4254 	mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4255 		    txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4256 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4257 	val &= ~MVPP2_TXQ_PENDING_MASK;
4258 	mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4259 
4260 	/* Calculate base address in prefetch buffer. We reserve 16 descriptors
4261 	 * for each existing TXQ.
4262 	 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4263 	 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4264 	 */
4265 	desc_per_txq = 16;
4266 	desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4267 	       (txq->log_id * desc_per_txq);
4268 
4269 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4270 		    MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4271 		    MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
4272 
4273 	/* WRR / EJP configuration - indirect access */
4274 	tx_port_num = mvpp2_egress_port(port);
4275 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4276 
4277 	val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4278 	val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4279 	val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4280 	val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4281 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4282 
4283 	val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4284 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4285 		    val);
4286 
4287 	for_each_present_cpu(cpu) {
4288 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4289 		txq_pcpu->size = txq->size;
4290 	}
4291 
4292 	return 0;
4293 }
4294 
4295 /* Free allocated TXQ resources */
mvpp2_txq_deinit(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)4296 static void mvpp2_txq_deinit(struct mvpp2_port *port,
4297 			     struct mvpp2_tx_queue *txq)
4298 {
4299 	txq->descs             = NULL;
4300 	txq->last_desc         = 0;
4301 	txq->next_desc_to_proc = 0;
4302 	txq->descs_dma         = 0;
4303 
4304 	/* Set minimum bandwidth for disabled TXQs */
4305 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4306 
4307 	/* Set Tx descriptors queue starting address and size */
4308 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4309 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4310 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4311 }
4312 
4313 /* Cleanup Tx ports */
mvpp2_txq_clean(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)4314 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4315 {
4316 	struct mvpp2_txq_pcpu *txq_pcpu;
4317 	int delay, pending, cpu;
4318 	u32 val;
4319 
4320 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4321 	val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4322 	val |= MVPP2_TXQ_DRAIN_EN_MASK;
4323 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4324 
4325 	/* The napi queue has been stopped so wait for all packets
4326 	 * to be transmitted.
4327 	 */
4328 	delay = 0;
4329 	do {
4330 		if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4331 			dev_warn(port->phy_dev->dev,
4332 				 "port %d: cleaning queue %d timed out\n",
4333 				 port->id, txq->log_id);
4334 			break;
4335 		}
4336 		mdelay(1);
4337 		delay++;
4338 
4339 		pending = mvpp2_txq_pend_desc_num_get(port, txq);
4340 	} while (pending);
4341 
4342 	val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4343 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4344 
4345 	for_each_present_cpu(cpu) {
4346 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4347 
4348 		/* Release all packets */
4349 		mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4350 
4351 		/* Reset queue */
4352 		txq_pcpu->count = 0;
4353 		txq_pcpu->txq_put_index = 0;
4354 		txq_pcpu->txq_get_index = 0;
4355 	}
4356 }
4357 
4358 /* Cleanup all Tx queues */
mvpp2_cleanup_txqs(struct mvpp2_port * port)4359 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4360 {
4361 	struct mvpp2_tx_queue *txq;
4362 	int queue;
4363 	u32 val;
4364 
4365 	val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4366 
4367 	/* Reset Tx ports and delete Tx queues */
4368 	val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4369 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4370 
4371 	for (queue = 0; queue < txq_number; queue++) {
4372 		txq = port->txqs[queue];
4373 		mvpp2_txq_clean(port, txq);
4374 		mvpp2_txq_deinit(port, txq);
4375 	}
4376 
4377 	mvpp2_txq_sent_counter_clear(port);
4378 
4379 	val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4380 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4381 }
4382 
4383 /* Cleanup all Rx queues */
mvpp2_cleanup_rxqs(struct mvpp2_port * port)4384 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4385 {
4386 	int queue;
4387 
4388 	for (queue = 0; queue < rxq_number; queue++)
4389 		mvpp2_rxq_deinit(port, port->rxqs[queue]);
4390 }
4391 
4392 /* Init all Rx queues for port */
mvpp2_setup_rxqs(struct mvpp2_port * port)4393 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4394 {
4395 	int queue, err;
4396 
4397 	for (queue = 0; queue < rxq_number; queue++) {
4398 		err = mvpp2_rxq_init(port, port->rxqs[queue]);
4399 		if (err)
4400 			goto err_cleanup;
4401 	}
4402 	return 0;
4403 
4404 err_cleanup:
4405 	mvpp2_cleanup_rxqs(port);
4406 	return err;
4407 }
4408 
4409 /* Init all tx queues for port */
mvpp2_setup_txqs(struct mvpp2_port * port)4410 static int mvpp2_setup_txqs(struct mvpp2_port *port)
4411 {
4412 	struct mvpp2_tx_queue *txq;
4413 	int queue, err;
4414 
4415 	for (queue = 0; queue < txq_number; queue++) {
4416 		txq = port->txqs[queue];
4417 		err = mvpp2_txq_init(port, txq);
4418 		if (err)
4419 			goto err_cleanup;
4420 	}
4421 
4422 	mvpp2_txq_sent_counter_clear(port);
4423 	return 0;
4424 
4425 err_cleanup:
4426 	mvpp2_cleanup_txqs(port);
4427 	return err;
4428 }
4429 
4430 /* Adjust link */
mvpp2_link_event(struct mvpp2_port * port)4431 static void mvpp2_link_event(struct mvpp2_port *port)
4432 {
4433 	struct phy_device *phydev = port->phy_dev;
4434 	int status_change = 0;
4435 	u32 val;
4436 
4437 	if (phydev->link) {
4438 		if ((port->speed != phydev->speed) ||
4439 		    (port->duplex != phydev->duplex)) {
4440 			u32 val;
4441 
4442 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4443 			val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4444 				 MVPP2_GMAC_CONFIG_GMII_SPEED |
4445 				 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4446 				 MVPP2_GMAC_AN_SPEED_EN |
4447 				 MVPP2_GMAC_AN_DUPLEX_EN);
4448 
4449 			if (phydev->duplex)
4450 				val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4451 
4452 			if (phydev->speed == SPEED_1000 ||
4453 			    phydev->speed == 2500)
4454 				val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4455 			else if (phydev->speed == SPEED_100)
4456 				val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4457 
4458 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4459 
4460 			port->duplex = phydev->duplex;
4461 			port->speed  = phydev->speed;
4462 		}
4463 	}
4464 
4465 	if (phydev->link != port->link) {
4466 		if (!phydev->link) {
4467 			port->duplex = -1;
4468 			port->speed = 0;
4469 		}
4470 
4471 		port->link = phydev->link;
4472 		status_change = 1;
4473 	}
4474 
4475 	if (status_change) {
4476 		if (phydev->link) {
4477 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4478 			val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4479 				MVPP2_GMAC_FORCE_LINK_DOWN);
4480 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4481 			mvpp2_egress_enable(port);
4482 			mvpp2_ingress_enable(port);
4483 		} else {
4484 			mvpp2_ingress_disable(port);
4485 			mvpp2_egress_disable(port);
4486 		}
4487 	}
4488 }
4489 
4490 /* Main RX/TX processing routines */
4491 
4492 /* Display more error info */
mvpp2_rx_error(struct mvpp2_port * port,struct mvpp2_rx_desc * rx_desc)4493 static void mvpp2_rx_error(struct mvpp2_port *port,
4494 			   struct mvpp2_rx_desc *rx_desc)
4495 {
4496 	u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
4497 	size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
4498 
4499 	switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4500 	case MVPP2_RXD_ERR_CRC:
4501 		dev_err(port->phy_dev->dev,
4502 			"bad rx status %08x (crc error), size=%zu\n", status,
4503 			sz);
4504 		break;
4505 	case MVPP2_RXD_ERR_OVERRUN:
4506 		dev_err(port->phy_dev->dev,
4507 			"bad rx status %08x (overrun error), size=%zu\n",
4508 			status, sz);
4509 		break;
4510 	case MVPP2_RXD_ERR_RESOURCE:
4511 		dev_err(port->phy_dev->dev,
4512 			"bad rx status %08x (resource error), size=%zu\n",
4513 			status, sz);
4514 		break;
4515 	}
4516 }
4517 
4518 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
mvpp2_rx_refill(struct mvpp2_port * port,struct mvpp2_bm_pool * bm_pool,u32 bm,dma_addr_t dma_addr)4519 static int mvpp2_rx_refill(struct mvpp2_port *port,
4520 			   struct mvpp2_bm_pool *bm_pool,
4521 			   u32 bm, dma_addr_t dma_addr)
4522 {
4523 	mvpp2_pool_refill(port, bm, dma_addr, (unsigned long)dma_addr);
4524 	return 0;
4525 }
4526 
4527 /* Set hw internals when starting port */
mvpp2_start_dev(struct mvpp2_port * port)4528 static void mvpp2_start_dev(struct mvpp2_port *port)
4529 {
4530 	switch (port->phy_interface) {
4531 	case PHY_INTERFACE_MODE_RGMII:
4532 	case PHY_INTERFACE_MODE_RGMII_ID:
4533 	case PHY_INTERFACE_MODE_SGMII:
4534 	case PHY_INTERFACE_MODE_SGMII_2500:
4535 	case PHY_INTERFACE_MODE_1000BASEX:
4536 	case PHY_INTERFACE_MODE_2500BASEX:
4537 		mvpp2_gmac_max_rx_size_set(port);
4538 	default:
4539 		break;
4540 	}
4541 
4542 	mvpp2_txp_max_tx_size_set(port);
4543 
4544 	if (port->priv->hw_version == MVPP21)
4545 		mvpp2_port_enable(port);
4546 	else
4547 		gop_port_enable(port, 1);
4548 }
4549 
4550 /* Set hw internals when stopping port */
mvpp2_stop_dev(struct mvpp2_port * port)4551 static void mvpp2_stop_dev(struct mvpp2_port *port)
4552 {
4553 	/* Stop new packets from arriving to RXQs */
4554 	mvpp2_ingress_disable(port);
4555 
4556 	mvpp2_egress_disable(port);
4557 
4558 	if (port->priv->hw_version == MVPP21)
4559 		mvpp2_port_disable(port);
4560 	else
4561 		gop_port_enable(port, 0);
4562 }
4563 
mvpp2_phy_connect(struct udevice * dev,struct mvpp2_port * port)4564 static void mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port)
4565 {
4566 	struct phy_device *phy_dev;
4567 
4568 	if (!port->init || port->link == 0) {
4569 		phy_dev = dm_mdio_phy_connect(port->mdio_dev, port->phyaddr,
4570 					      dev, port->phy_interface);
4571 
4572 		/*
4573 		 * If the phy doesn't match with any existing u-boot drivers the
4574 		 * phy framework will connect it to generic one which
4575 		 * uid == 0xffffffff. In this case act as if the phy wouldn't be
4576 		 * declared in dts. Otherwise in case of 3310 (for which the
4577 		 * driver doesn't exist) the link will not be correctly
4578 		 * detected. Removing phy entry from dts in case of 3310 is not
4579 		 * an option because it is required for the phy_fw_down
4580 		 * procedure.
4581 		 */
4582 		if (phy_dev &&
4583 		    phy_dev->drv->uid == 0xffffffff) {/* Generic phy */
4584 			dev_warn(port->phy_dev->dev,
4585 				 "Marking phy as invalid, link will not be checked\n");
4586 			/* set phy_addr to invalid value */
4587 			port->phyaddr = PHY_MAX_ADDR;
4588 			mvpp2_egress_enable(port);
4589 			mvpp2_ingress_enable(port);
4590 
4591 			return;
4592 		}
4593 
4594 		port->phy_dev = phy_dev;
4595 		if (!phy_dev) {
4596 			dev_err(port->phy_dev->dev, "cannot connect to phy\n");
4597 			return;
4598 		}
4599 		phy_dev->supported &= PHY_GBIT_FEATURES;
4600 		phy_dev->advertising = phy_dev->supported;
4601 
4602 		port->phy_dev = phy_dev;
4603 		port->link    = 0;
4604 		port->duplex  = 0;
4605 		port->speed   = 0;
4606 
4607 		phy_config(phy_dev);
4608 		phy_startup(phy_dev);
4609 		if (!phy_dev->link)
4610 			printf("%s: No link\n", phy_dev->dev->name);
4611 		else
4612 			port->init = 1;
4613 	} else {
4614 		mvpp2_egress_enable(port);
4615 		mvpp2_ingress_enable(port);
4616 	}
4617 }
4618 
mvpp2_open(struct udevice * dev,struct mvpp2_port * port)4619 static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port)
4620 {
4621 	unsigned char mac_bcast[ETH_ALEN] = {
4622 			0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
4623 	int err;
4624 
4625 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
4626 	if (err) {
4627 		dev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
4628 		return err;
4629 	}
4630 	err = mvpp2_prs_mac_da_accept(port->priv, port->id,
4631 				      port->dev_addr, true);
4632 	if (err) {
4633 		dev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
4634 		return err;
4635 	}
4636 	err = mvpp2_prs_def_flow(port);
4637 	if (err) {
4638 		dev_err(dev, "mvpp2_prs_def_flow failed\n");
4639 		return err;
4640 	}
4641 
4642 	/* Allocate the Rx/Tx queues */
4643 	err = mvpp2_setup_rxqs(port);
4644 	if (err) {
4645 		dev_err(port->phy_dev->dev, "cannot allocate Rx queues\n");
4646 		return err;
4647 	}
4648 
4649 	err = mvpp2_setup_txqs(port);
4650 	if (err) {
4651 		dev_err(port->phy_dev->dev, "cannot allocate Tx queues\n");
4652 		return err;
4653 	}
4654 
4655 	if (port->phyaddr < PHY_MAX_ADDR) {
4656 		mvpp2_phy_connect(dev, port);
4657 		mvpp2_link_event(port);
4658 	} else {
4659 		mvpp2_egress_enable(port);
4660 		mvpp2_ingress_enable(port);
4661 	}
4662 
4663 	mvpp2_start_dev(port);
4664 
4665 	return 0;
4666 }
4667 
4668 /* No Device ops here in U-Boot */
4669 
4670 /* Driver initialization */
4671 
mvpp2_port_power_up(struct mvpp2_port * port)4672 static void mvpp2_port_power_up(struct mvpp2_port *port)
4673 {
4674 	struct mvpp2 *priv = port->priv;
4675 
4676 	/* On PPv2.2 the GoP / interface configuration has already been done */
4677 	if (priv->hw_version == MVPP21)
4678 		mvpp2_port_mii_set(port);
4679 	mvpp2_port_periodic_xon_disable(port);
4680 	if (priv->hw_version == MVPP21)
4681 		mvpp2_port_fc_adv_enable(port);
4682 	mvpp2_port_reset(port);
4683 }
4684 
4685 /* Initialize port HW */
mvpp2_port_init(struct udevice * dev,struct mvpp2_port * port)4686 static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port)
4687 {
4688 	struct mvpp2 *priv = port->priv;
4689 	struct mvpp2_txq_pcpu *txq_pcpu;
4690 	int queue, cpu, err;
4691 
4692 	if (port->first_rxq + rxq_number >
4693 	    MVPP2_MAX_PORTS * priv->max_port_rxqs)
4694 		return -EINVAL;
4695 
4696 	/* Disable port */
4697 	mvpp2_egress_disable(port);
4698 	if (priv->hw_version == MVPP21)
4699 		mvpp2_port_disable(port);
4700 	else
4701 		gop_port_enable(port, 0);
4702 
4703 	port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
4704 				  GFP_KERNEL);
4705 	if (!port->txqs)
4706 		return -ENOMEM;
4707 
4708 	/* Associate physical Tx queues to this port and initialize.
4709 	 * The mapping is predefined.
4710 	 */
4711 	for (queue = 0; queue < txq_number; queue++) {
4712 		int queue_phy_id = mvpp2_txq_phys(port->id, queue);
4713 		struct mvpp2_tx_queue *txq;
4714 
4715 		txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
4716 		if (!txq)
4717 			return -ENOMEM;
4718 
4719 		txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu),
4720 					 GFP_KERNEL);
4721 		if (!txq->pcpu)
4722 			return -ENOMEM;
4723 
4724 		txq->id = queue_phy_id;
4725 		txq->log_id = queue;
4726 		txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
4727 		for_each_present_cpu(cpu) {
4728 			txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4729 			txq_pcpu->cpu = cpu;
4730 		}
4731 
4732 		port->txqs[queue] = txq;
4733 	}
4734 
4735 	port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
4736 				  GFP_KERNEL);
4737 	if (!port->rxqs)
4738 		return -ENOMEM;
4739 
4740 	/* Allocate and initialize Rx queue for this port */
4741 	for (queue = 0; queue < rxq_number; queue++) {
4742 		struct mvpp2_rx_queue *rxq;
4743 
4744 		/* Map physical Rx queue to port's logical Rx queue */
4745 		rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
4746 		if (!rxq)
4747 			return -ENOMEM;
4748 		/* Map this Rx queue to a physical queue */
4749 		rxq->id = port->first_rxq + queue;
4750 		rxq->port = port->id;
4751 		rxq->logic_rxq = queue;
4752 
4753 		port->rxqs[queue] = rxq;
4754 	}
4755 
4756 
4757 	/* Create Rx descriptor rings */
4758 	for (queue = 0; queue < rxq_number; queue++) {
4759 		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
4760 
4761 		rxq->size = port->rx_ring_size;
4762 		rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
4763 		rxq->time_coal = MVPP2_RX_COAL_USEC;
4764 	}
4765 
4766 	mvpp2_ingress_disable(port);
4767 
4768 	/* Port default configuration */
4769 	mvpp2_defaults_set(port);
4770 
4771 	/* Port's classifier configuration */
4772 	mvpp2_cls_oversize_rxq_set(port);
4773 	mvpp2_cls_port_config(port);
4774 
4775 	/* Provide an initial Rx packet size */
4776 	port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN);
4777 
4778 	/* Initialize pools for swf */
4779 	err = mvpp2_swf_bm_pool_init(port);
4780 	if (err)
4781 		return err;
4782 
4783 	return 0;
4784 }
4785 
phy_info_parse(struct udevice * dev,struct mvpp2_port * port)4786 static int phy_info_parse(struct udevice *dev, struct mvpp2_port *port)
4787 {
4788 	int port_node = dev_of_offset(dev);
4789 	const char *phy_mode_str;
4790 	int phy_node;
4791 	u32 id;
4792 	u32 phyaddr = 0;
4793 	int phy_mode = -1;
4794 	int fixed_link = 0;
4795 	int ret;
4796 
4797 	phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy");
4798 	fixed_link = fdt_subnode_offset(gd->fdt_blob, port_node, "fixed-link");
4799 
4800 	if (phy_node > 0) {
4801 		int parent;
4802 
4803 		if (fixed_link != -FDT_ERR_NOTFOUND) {
4804 			/* phy_addr is set to invalid value for fixed links */
4805 			phyaddr = PHY_MAX_ADDR;
4806 		} else {
4807 			phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node,
4808 						 "reg", 0);
4809 			if (phyaddr < 0) {
4810 				dev_err(dev, "could not find phy address\n");
4811 				return -1;
4812 			}
4813 		}
4814 		parent = fdt_parent_offset(gd->fdt_blob, phy_node);
4815 		ret = uclass_get_device_by_of_offset(UCLASS_MDIO, parent,
4816 						     &port->mdio_dev);
4817 		if (ret)
4818 			return ret;
4819 	} else {
4820 		/* phy_addr is set to invalid value */
4821 		phyaddr = PHY_MAX_ADDR;
4822 	}
4823 
4824 	phy_mode_str = fdt_getprop(gd->fdt_blob, port_node, "phy-mode", NULL);
4825 	if (phy_mode_str)
4826 		phy_mode = phy_get_interface_by_name(phy_mode_str);
4827 	if (phy_mode == -1) {
4828 		dev_err(dev, "incorrect phy mode\n");
4829 		return -EINVAL;
4830 	}
4831 
4832 	id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1);
4833 	if (id == -1) {
4834 		dev_err(dev, "missing port-id value\n");
4835 		return -EINVAL;
4836 	}
4837 
4838 #if CONFIG_IS_ENABLED(DM_GPIO)
4839 	gpio_request_by_name(dev, "phy-reset-gpios", 0,
4840 			     &port->phy_reset_gpio, GPIOD_IS_OUT);
4841 	gpio_request_by_name(dev, "marvell,sfp-tx-disable-gpio", 0,
4842 			     &port->phy_tx_disable_gpio, GPIOD_IS_OUT);
4843 #endif
4844 
4845 	port->id = id;
4846 	if (port->priv->hw_version == MVPP21)
4847 		port->first_rxq = port->id * rxq_number;
4848 	else
4849 		port->first_rxq = port->id * port->priv->max_port_rxqs;
4850 	port->phy_interface = phy_mode;
4851 	port->phyaddr = phyaddr;
4852 
4853 	return 0;
4854 }
4855 
4856 #if CONFIG_IS_ENABLED(DM_GPIO)
4857 /* Port GPIO initialization */
mvpp2_gpio_init(struct mvpp2_port * port)4858 static void mvpp2_gpio_init(struct mvpp2_port *port)
4859 {
4860 	if (dm_gpio_is_valid(&port->phy_reset_gpio)) {
4861 		dm_gpio_set_value(&port->phy_reset_gpio, 1);
4862 		mdelay(10);
4863 		dm_gpio_set_value(&port->phy_reset_gpio, 0);
4864 	}
4865 
4866 	if (dm_gpio_is_valid(&port->phy_tx_disable_gpio))
4867 		dm_gpio_set_value(&port->phy_tx_disable_gpio, 0);
4868 }
4869 #endif
4870 
4871 /* Ports initialization */
mvpp2_port_probe(struct udevice * dev,struct mvpp2_port * port,int port_node,struct mvpp2 * priv)4872 static int mvpp2_port_probe(struct udevice *dev,
4873 			    struct mvpp2_port *port,
4874 			    int port_node,
4875 			    struct mvpp2 *priv)
4876 {
4877 	int err;
4878 
4879 	port->tx_ring_size = MVPP2_MAX_TXD;
4880 	port->rx_ring_size = MVPP2_MAX_RXD;
4881 
4882 	err = mvpp2_port_init(dev, port);
4883 	if (err < 0) {
4884 		dev_err(dev, "failed to init port %d\n", port->id);
4885 		return err;
4886 	}
4887 	mvpp2_port_power_up(port);
4888 
4889 #if CONFIG_IS_ENABLED(DM_GPIO)
4890 	mvpp2_gpio_init(port);
4891 #endif
4892 
4893 	priv->port_list[port->id] = port;
4894 	priv->num_ports++;
4895 	return 0;
4896 }
4897 
4898 /* Initialize decoding windows */
mvpp2_conf_mbus_windows(const struct mbus_dram_target_info * dram,struct mvpp2 * priv)4899 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
4900 				    struct mvpp2 *priv)
4901 {
4902 	u32 win_enable;
4903 	int i;
4904 
4905 	for (i = 0; i < 6; i++) {
4906 		mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
4907 		mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
4908 
4909 		if (i < 4)
4910 			mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
4911 	}
4912 
4913 	win_enable = 0;
4914 
4915 	for (i = 0; i < dram->num_cs; i++) {
4916 		const struct mbus_dram_window *cs = dram->cs + i;
4917 
4918 		mvpp2_write(priv, MVPP2_WIN_BASE(i),
4919 			    (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
4920 			    dram->mbus_dram_target_id);
4921 
4922 		mvpp2_write(priv, MVPP2_WIN_SIZE(i),
4923 			    (cs->size - 1) & 0xffff0000);
4924 
4925 		win_enable |= (1 << i);
4926 	}
4927 
4928 	mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
4929 }
4930 
4931 /* Initialize Rx FIFO's */
mvpp2_rx_fifo_init(struct mvpp2 * priv)4932 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
4933 {
4934 	int port;
4935 
4936 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
4937 		if (priv->hw_version == MVPP22) {
4938 			if (port == 0) {
4939 				mvpp2_write(priv,
4940 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4941 					    MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE);
4942 				mvpp2_write(priv,
4943 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4944 					    MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE);
4945 			} else if (port == 1) {
4946 				mvpp2_write(priv,
4947 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4948 					    MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE);
4949 				mvpp2_write(priv,
4950 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4951 					    MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE);
4952 			} else {
4953 				mvpp2_write(priv,
4954 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4955 					    MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE);
4956 				mvpp2_write(priv,
4957 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4958 					    MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE);
4959 			}
4960 		} else {
4961 			mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4962 				    MVPP21_RX_FIFO_PORT_DATA_SIZE);
4963 			mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4964 				    MVPP21_RX_FIFO_PORT_ATTR_SIZE);
4965 		}
4966 	}
4967 
4968 	mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
4969 		    MVPP2_RX_FIFO_PORT_MIN_PKT);
4970 	mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
4971 }
4972 
4973 /* Initialize Tx FIFO's */
mvpp2_tx_fifo_init(struct mvpp2 * priv)4974 static void mvpp2_tx_fifo_init(struct mvpp2 *priv)
4975 {
4976 	int port, val;
4977 
4978 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
4979 		/* Port 0 supports 10KB TX FIFO */
4980 		if (port == 0) {
4981 			val = MVPP2_TX_FIFO_DATA_SIZE_10KB &
4982 				MVPP22_TX_FIFO_SIZE_MASK;
4983 		} else {
4984 			val = MVPP2_TX_FIFO_DATA_SIZE_3KB &
4985 				MVPP22_TX_FIFO_SIZE_MASK;
4986 		}
4987 		mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), val);
4988 	}
4989 }
4990 
mvpp2_axi_init(struct mvpp2 * priv)4991 static void mvpp2_axi_init(struct mvpp2 *priv)
4992 {
4993 	u32 val, rdval, wrval;
4994 
4995 	mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
4996 
4997 	/* AXI Bridge Configuration */
4998 
4999 	rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
5000 		<< MVPP22_AXI_ATTR_CACHE_OFFS;
5001 	rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
5002 		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
5003 
5004 	wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
5005 		<< MVPP22_AXI_ATTR_CACHE_OFFS;
5006 	wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
5007 		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
5008 
5009 	/* BM */
5010 	mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
5011 	mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
5012 
5013 	/* Descriptors */
5014 	mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
5015 	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
5016 	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
5017 	mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
5018 
5019 	/* Buffer Data */
5020 	mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
5021 	mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
5022 
5023 	val = MVPP22_AXI_CODE_CACHE_NON_CACHE
5024 		<< MVPP22_AXI_CODE_CACHE_OFFS;
5025 	val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
5026 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
5027 	mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
5028 	mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
5029 
5030 	val = MVPP22_AXI_CODE_CACHE_RD_CACHE
5031 		<< MVPP22_AXI_CODE_CACHE_OFFS;
5032 	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
5033 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
5034 
5035 	mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
5036 
5037 	val = MVPP22_AXI_CODE_CACHE_WR_CACHE
5038 		<< MVPP22_AXI_CODE_CACHE_OFFS;
5039 	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
5040 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
5041 
5042 	mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
5043 }
5044 
5045 /* Initialize network controller common part HW */
mvpp2_init(struct udevice * dev,struct mvpp2 * priv)5046 static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv)
5047 {
5048 	const struct mbus_dram_target_info *dram_target_info;
5049 	int err, i;
5050 	u32 val;
5051 
5052 	/* Checks for hardware constraints (U-Boot uses only one rxq) */
5053 	if ((rxq_number > priv->max_port_rxqs) ||
5054 	    (txq_number > MVPP2_MAX_TXQ)) {
5055 		dev_err(dev, "invalid queue size parameter\n");
5056 		return -EINVAL;
5057 	}
5058 
5059 	if (priv->hw_version == MVPP22)
5060 		mvpp2_axi_init(priv);
5061 	else {
5062 		/* MBUS windows configuration */
5063 		dram_target_info = mvebu_mbus_dram_info();
5064 		if (dram_target_info)
5065 			mvpp2_conf_mbus_windows(dram_target_info, priv);
5066 	}
5067 
5068 	if (priv->hw_version == MVPP21) {
5069 		/* Disable HW PHY polling */
5070 		val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
5071 		val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
5072 		writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
5073 	} else {
5074 		/* Enable HW PHY polling */
5075 		val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
5076 		val |= MVPP22_SMI_POLLING_EN;
5077 		writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
5078 	}
5079 
5080 	/* Allocate and initialize aggregated TXQs */
5081 	priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(),
5082 				       sizeof(struct mvpp2_tx_queue),
5083 				       GFP_KERNEL);
5084 	if (!priv->aggr_txqs)
5085 		return -ENOMEM;
5086 
5087 	for_each_present_cpu(i) {
5088 		priv->aggr_txqs[i].id = i;
5089 		priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
5090 		err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i],
5091 					  MVPP2_AGGR_TXQ_SIZE, i, priv);
5092 		if (err < 0)
5093 			return err;
5094 	}
5095 
5096 	/* Rx Fifo Init */
5097 	mvpp2_rx_fifo_init(priv);
5098 
5099 	/* Tx Fifo Init */
5100 	if (priv->hw_version == MVPP22)
5101 		mvpp2_tx_fifo_init(priv);
5102 
5103 	if (priv->hw_version == MVPP21)
5104 		writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
5105 		       priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
5106 
5107 	/* Allow cache snoop when transmiting packets */
5108 	mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
5109 
5110 	/* Buffer Manager initialization */
5111 	err = mvpp2_bm_init(dev, priv);
5112 	if (err < 0)
5113 		return err;
5114 
5115 	/* Parser default initialization */
5116 	err = mvpp2_prs_default_init(dev, priv);
5117 	if (err < 0)
5118 		return err;
5119 
5120 	/* Classifier default initialization */
5121 	mvpp2_cls_init(priv);
5122 
5123 	return 0;
5124 }
5125 
mvpp2_recv(struct udevice * dev,int flags,uchar ** packetp)5126 static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp)
5127 {
5128 	struct mvpp2_port *port = dev_get_priv(dev);
5129 	struct mvpp2_rx_desc *rx_desc;
5130 	struct mvpp2_bm_pool *bm_pool;
5131 	dma_addr_t dma_addr;
5132 	u32 bm, rx_status;
5133 	int pool, rx_bytes, err;
5134 	int rx_received;
5135 	struct mvpp2_rx_queue *rxq;
5136 	u8 *data;
5137 
5138 	if (port->phyaddr < PHY_MAX_ADDR)
5139 		if (!port->phy_dev->link)
5140 			return 0;
5141 
5142 	/* Process RX packets */
5143 	rxq = port->rxqs[0];
5144 
5145 	/* Get number of received packets and clamp the to-do */
5146 	rx_received = mvpp2_rxq_received(port, rxq->id);
5147 
5148 	/* Return if no packets are received */
5149 	if (!rx_received)
5150 		return 0;
5151 
5152 	rx_desc = mvpp2_rxq_next_desc_get(rxq);
5153 	rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
5154 	rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
5155 	rx_bytes -= MVPP2_MH_SIZE;
5156 	dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
5157 
5158 	bm = mvpp2_bm_cookie_build(port, rx_desc);
5159 	pool = mvpp2_bm_cookie_pool_get(bm);
5160 	bm_pool = &port->priv->bm_pools[pool];
5161 
5162 	/* In case of an error, release the requested buffer pointer
5163 	 * to the Buffer Manager. This request process is controlled
5164 	 * by the hardware, and the information about the buffer is
5165 	 * comprised by the RX descriptor.
5166 	 */
5167 	if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5168 		mvpp2_rx_error(port, rx_desc);
5169 		/* Return the buffer to the pool */
5170 		mvpp2_pool_refill(port, bm, dma_addr, dma_addr);
5171 		return 0;
5172 	}
5173 
5174 	err = mvpp2_rx_refill(port, bm_pool, bm, dma_addr);
5175 	if (err) {
5176 		dev_err(port->phy_dev->dev, "failed to refill BM pools\n");
5177 		return 0;
5178 	}
5179 
5180 	/* Update Rx queue management counters */
5181 	mb();
5182 	mvpp2_rxq_status_update(port, rxq->id, 1, 1);
5183 
5184 	/* give packet to stack - skip on first n bytes */
5185 	data = (u8 *)dma_addr + 2 + 32;
5186 
5187 	if (rx_bytes <= 0)
5188 		return 0;
5189 
5190 	/*
5191 	 * No cache invalidation needed here, since the rx_buffer's are
5192 	 * located in a uncached memory region
5193 	 */
5194 	*packetp = data;
5195 
5196 	return rx_bytes;
5197 }
5198 
mvpp2_send(struct udevice * dev,void * packet,int length)5199 static int mvpp2_send(struct udevice *dev, void *packet, int length)
5200 {
5201 	struct mvpp2_port *port = dev_get_priv(dev);
5202 	struct mvpp2_tx_queue *txq, *aggr_txq;
5203 	struct mvpp2_tx_desc *tx_desc;
5204 	int tx_done;
5205 	int timeout;
5206 
5207 	if (port->phyaddr < PHY_MAX_ADDR)
5208 		if (!port->phy_dev->link)
5209 			return 0;
5210 
5211 	txq = port->txqs[0];
5212 	aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5213 
5214 	/* Get a descriptor for the first part of the packet */
5215 	tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5216 	mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
5217 	mvpp2_txdesc_size_set(port, tx_desc, length);
5218 	mvpp2_txdesc_offset_set(port, tx_desc,
5219 				(dma_addr_t)packet & MVPP2_TX_DESC_ALIGN);
5220 	mvpp2_txdesc_dma_addr_set(port, tx_desc,
5221 				  (dma_addr_t)packet & ~MVPP2_TX_DESC_ALIGN);
5222 	/* First and Last descriptor */
5223 	mvpp2_txdesc_cmd_set(port, tx_desc,
5224 			     MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE
5225 			     | MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC);
5226 
5227 	/* Flush tx data */
5228 	flush_dcache_range((unsigned long)packet,
5229 			   (unsigned long)packet + ALIGN(length, PKTALIGN));
5230 
5231 	/* Enable transmit */
5232 	mb();
5233 	mvpp2_aggr_txq_pend_desc_add(port, 1);
5234 
5235 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
5236 
5237 	timeout = 0;
5238 	do {
5239 		if (timeout++ > 10000) {
5240 			printf("timeout: packet not sent from aggregated to phys TXQ\n");
5241 			return 0;
5242 		}
5243 		tx_done = mvpp2_txq_pend_desc_num_get(port, txq);
5244 	} while (tx_done);
5245 
5246 	timeout = 0;
5247 	do {
5248 		if (timeout++ > 10000) {
5249 			printf("timeout: packet not sent\n");
5250 			return 0;
5251 		}
5252 		tx_done = mvpp2_txq_sent_desc_proc(port, txq);
5253 	} while (!tx_done);
5254 
5255 	return 0;
5256 }
5257 
mvpp2_start(struct udevice * dev)5258 static int mvpp2_start(struct udevice *dev)
5259 {
5260 	struct eth_pdata *pdata = dev_get_plat(dev);
5261 	struct mvpp2_port *port = dev_get_priv(dev);
5262 
5263 	/* Load current MAC address */
5264 	memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN);
5265 
5266 	/* Reconfigure parser accept the original MAC address */
5267 	mvpp2_prs_update_mac_da(port, port->dev_addr);
5268 
5269 	switch (port->phy_interface) {
5270 	case PHY_INTERFACE_MODE_RGMII:
5271 	case PHY_INTERFACE_MODE_RGMII_ID:
5272 	case PHY_INTERFACE_MODE_SGMII:
5273 	case PHY_INTERFACE_MODE_SGMII_2500:
5274 	case PHY_INTERFACE_MODE_1000BASEX:
5275 	case PHY_INTERFACE_MODE_2500BASEX:
5276 		mvpp2_port_power_up(port);
5277 	default:
5278 		break;
5279 	}
5280 
5281 	mvpp2_open(dev, port);
5282 
5283 	return 0;
5284 }
5285 
mvpp2_stop(struct udevice * dev)5286 static void mvpp2_stop(struct udevice *dev)
5287 {
5288 	struct mvpp2_port *port = dev_get_priv(dev);
5289 
5290 	mvpp2_stop_dev(port);
5291 	mvpp2_cleanup_rxqs(port);
5292 	mvpp2_cleanup_txqs(port);
5293 }
5294 
mvpp2_write_hwaddr(struct udevice * dev)5295 static int mvpp2_write_hwaddr(struct udevice *dev)
5296 {
5297 	struct mvpp2_port *port = dev_get_priv(dev);
5298 
5299 	return mvpp2_prs_update_mac_da(port, port->dev_addr);
5300 }
5301 
mvpp2_base_probe(struct udevice * dev)5302 static int mvpp2_base_probe(struct udevice *dev)
5303 {
5304 	struct mvpp2 *priv = dev_get_priv(dev);
5305 	void *bd_space;
5306 	u32 size = 0;
5307 	int i;
5308 
5309 	/* Save hw-version */
5310 	priv->hw_version = dev_get_driver_data(dev);
5311 
5312 	/*
5313 	 * U-Boot special buffer handling:
5314 	 *
5315 	 * Allocate buffer area for descs and rx_buffers. This is only
5316 	 * done once for all interfaces. As only one interface can
5317 	 * be active. Make this area DMA-safe by disabling the D-cache
5318 	 */
5319 
5320 	if (!buffer_loc_init) {
5321 		/* Align buffer area for descs and rx_buffers to 1MiB */
5322 		bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
5323 		mmu_set_region_dcache_behaviour((unsigned long)bd_space,
5324 						BD_SPACE, DCACHE_OFF);
5325 
5326 		buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space;
5327 		size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE;
5328 
5329 		buffer_loc.tx_descs =
5330 			(struct mvpp2_tx_desc *)((unsigned long)bd_space + size);
5331 		size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE;
5332 
5333 		buffer_loc.rx_descs =
5334 			(struct mvpp2_rx_desc *)((unsigned long)bd_space + size);
5335 		size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE;
5336 
5337 		for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
5338 			buffer_loc.bm_pool[i] =
5339 				(unsigned long *)((unsigned long)bd_space + size);
5340 			if (priv->hw_version == MVPP21)
5341 				size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u32);
5342 			else
5343 				size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u64);
5344 		}
5345 
5346 		for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) {
5347 			buffer_loc.rx_buffer[i] =
5348 				(unsigned long *)((unsigned long)bd_space + size);
5349 			size += RX_BUFFER_SIZE;
5350 		}
5351 
5352 		/* Clear the complete area so that all descriptors are cleared */
5353 		memset(bd_space, 0, size);
5354 
5355 		buffer_loc_init = 1;
5356 	}
5357 
5358 	/* Save base addresses for later use */
5359 	priv->base = (void *)devfdt_get_addr_index(dev, 0);
5360 	if (IS_ERR(priv->base))
5361 		return PTR_ERR(priv->base);
5362 
5363 	if (priv->hw_version == MVPP21) {
5364 		priv->lms_base = (void *)devfdt_get_addr_index(dev, 1);
5365 		if (IS_ERR(priv->lms_base))
5366 			return PTR_ERR(priv->lms_base);
5367 	} else {
5368 		priv->iface_base = (void *)devfdt_get_addr_index(dev, 1);
5369 		if (IS_ERR(priv->iface_base))
5370 			return PTR_ERR(priv->iface_base);
5371 
5372 		/* Store common base addresses for all ports */
5373 		priv->mpcs_base = priv->iface_base + MVPP22_MPCS;
5374 		priv->xpcs_base = priv->iface_base + MVPP22_XPCS;
5375 		priv->rfu1_base = priv->iface_base + MVPP22_RFU1;
5376 	}
5377 
5378 	if (priv->hw_version == MVPP21)
5379 		priv->max_port_rxqs = 8;
5380 	else
5381 		priv->max_port_rxqs = 32;
5382 
5383 	return 0;
5384 }
5385 
mvpp2_probe(struct udevice * dev)5386 static int mvpp2_probe(struct udevice *dev)
5387 {
5388 	struct mvpp2_port *port = dev_get_priv(dev);
5389 	struct mvpp2 *priv = dev_get_priv(dev->parent);
5390 	int err;
5391 
5392 	/* Only call the probe function for the parent once */
5393 	if (!priv->probe_done)
5394 		err = mvpp2_base_probe(dev->parent);
5395 
5396 	port->priv = priv;
5397 
5398 	err = phy_info_parse(dev, port);
5399 	if (err)
5400 		return err;
5401 
5402 	/*
5403 	 * We need the port specific io base addresses at this stage, since
5404 	 * gop_port_init() accesses these registers
5405 	 */
5406 	if (priv->hw_version == MVPP21) {
5407 		int priv_common_regs_num = 2;
5408 
5409 		port->base = (void __iomem *)devfdt_get_addr_index(
5410 			dev->parent, priv_common_regs_num + port->id);
5411 		if (IS_ERR(port->base))
5412 			return PTR_ERR(port->base);
5413 	} else {
5414 		port->gop_id = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
5415 					      "gop-port-id", -1);
5416 		if (port->id == -1) {
5417 			dev_err(dev, "missing gop-port-id value\n");
5418 			return -EINVAL;
5419 		}
5420 
5421 		port->base = priv->iface_base + MVPP22_PORT_BASE +
5422 			port->gop_id * MVPP22_PORT_OFFSET;
5423 
5424 		/* GoP Init */
5425 		gop_port_init(port);
5426 	}
5427 
5428 	if (!priv->probe_done) {
5429 		/* Initialize network controller */
5430 		err = mvpp2_init(dev, priv);
5431 		if (err < 0) {
5432 			dev_err(dev, "failed to initialize controller\n");
5433 			return err;
5434 		}
5435 		priv->num_ports = 0;
5436 		priv->probe_done = 1;
5437 	}
5438 
5439 	err = mvpp2_port_probe(dev, port, dev_of_offset(dev), priv);
5440 	if (err)
5441 		return err;
5442 
5443 	if (priv->hw_version == MVPP22) {
5444 		priv->netc_config |= mvpp2_netc_cfg_create(port->gop_id,
5445 							   port->phy_interface);
5446 
5447 		/* Netcomplex configurations for all ports */
5448 		gop_netc_init(priv, MV_NETC_FIRST_PHASE);
5449 		gop_netc_init(priv, MV_NETC_SECOND_PHASE);
5450 	}
5451 
5452 	return 0;
5453 }
5454 
5455 /*
5456  * Empty BM pool and stop its activity before the OS is started
5457  */
mvpp2_remove(struct udevice * dev)5458 static int mvpp2_remove(struct udevice *dev)
5459 {
5460 	struct mvpp2_port *port = dev_get_priv(dev);
5461 	struct mvpp2 *priv = port->priv;
5462 	int i;
5463 
5464 	priv->num_ports--;
5465 
5466 	if (priv->num_ports)
5467 		return 0;
5468 
5469 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++)
5470 		mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
5471 
5472 	return 0;
5473 }
5474 
5475 static const struct eth_ops mvpp2_ops = {
5476 	.start		= mvpp2_start,
5477 	.send		= mvpp2_send,
5478 	.recv		= mvpp2_recv,
5479 	.stop		= mvpp2_stop,
5480 	.write_hwaddr	= mvpp2_write_hwaddr
5481 };
5482 
5483 static struct driver mvpp2_driver = {
5484 	.name	= "mvpp2",
5485 	.id	= UCLASS_ETH,
5486 	.probe	= mvpp2_probe,
5487 	.remove = mvpp2_remove,
5488 	.ops	= &mvpp2_ops,
5489 	.priv_auto	= sizeof(struct mvpp2_port),
5490 	.plat_auto	= sizeof(struct eth_pdata),
5491 	.flags	= DM_FLAG_ACTIVE_DMA,
5492 };
5493 
5494 /*
5495  * Use a MISC device to bind the n instances (child nodes) of the
5496  * network base controller in UCLASS_ETH.
5497  */
mvpp2_base_bind(struct udevice * parent)5498 static int mvpp2_base_bind(struct udevice *parent)
5499 {
5500 	const void *blob = gd->fdt_blob;
5501 	int node = dev_of_offset(parent);
5502 	struct uclass_driver *drv;
5503 	struct udevice *dev;
5504 	struct eth_pdata *plat;
5505 	char *name;
5506 	int subnode;
5507 	u32 id;
5508 	int base_id_add;
5509 
5510 	/* Lookup eth driver */
5511 	drv = lists_uclass_lookup(UCLASS_ETH);
5512 	if (!drv) {
5513 		puts("Cannot find eth driver\n");
5514 		return -ENOENT;
5515 	}
5516 
5517 	base_id_add = base_id;
5518 
5519 	fdt_for_each_subnode(subnode, blob, node) {
5520 		/* Increment base_id for all subnodes, also the disabled ones */
5521 		base_id++;
5522 
5523 		/* Skip disabled ports */
5524 		if (!fdtdec_get_is_enabled(blob, subnode))
5525 			continue;
5526 
5527 		plat = calloc(1, sizeof(*plat));
5528 		if (!plat)
5529 			return -ENOMEM;
5530 
5531 		id = fdtdec_get_int(blob, subnode, "port-id", -1);
5532 		id += base_id_add;
5533 
5534 		name = calloc(1, 16);
5535 		if (!name) {
5536 			free(plat);
5537 			return -ENOMEM;
5538 		}
5539 		sprintf(name, "mvpp2-%d", id);
5540 
5541 		/* Create child device UCLASS_ETH and bind it */
5542 		device_bind(parent, &mvpp2_driver, name, plat,
5543 			    offset_to_ofnode(subnode), &dev);
5544 	}
5545 
5546 	return 0;
5547 }
5548 
5549 static const struct udevice_id mvpp2_ids[] = {
5550 	{
5551 		.compatible = "marvell,armada-375-pp2",
5552 		.data = MVPP21,
5553 	},
5554 	{
5555 		.compatible = "marvell,armada-7k-pp22",
5556 		.data = MVPP22,
5557 	},
5558 	{ }
5559 };
5560 
5561 U_BOOT_DRIVER(mvpp2_base) = {
5562 	.name	= "mvpp2_base",
5563 	.id	= UCLASS_MISC,
5564 	.of_match = mvpp2_ids,
5565 	.bind	= mvpp2_base_bind,
5566 	.priv_auto	= sizeof(struct mvpp2),
5567 };
5568