1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5  *
6  * Copyright (C) 2005, Intec Automation Inc.
7  * Copyright (C) 2014, Freescale Semiconductor, Inc.
8  *
9  * Synced from Linux v4.19
10  */
11 
12 #include <common.h>
13 #include <log.h>
14 #include <watchdog.h>
15 #include <dm.h>
16 #include <dm/device_compat.h>
17 #include <dm/devres.h>
18 #include <linux/bitops.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/log2.h>
22 #include <linux/math64.h>
23 #include <linux/sizes.h>
24 
25 #include <linux/mtd/mtd.h>
26 #include <linux/mtd/spi-nor.h>
27 #include <spi-mem.h>
28 #include <spi.h>
29 
30 #include "sf_internal.h"
31 
32 /* Define max times to check status register before we give up. */
33 
34 /*
35  * For everything but full-chip erase; probably could be much smaller, but kept
36  * around for safety for now
37  */
38 
39 #define HZ					CONFIG_SYS_HZ
40 
41 #define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
42 
spi_nor_read_write_reg(struct spi_nor * nor,struct spi_mem_op * op,void * buf)43 static int spi_nor_read_write_reg(struct spi_nor *nor, struct spi_mem_op
44 		*op, void *buf)
45 {
46 	if (op->data.dir == SPI_MEM_DATA_IN)
47 		op->data.buf.in = buf;
48 	else
49 		op->data.buf.out = buf;
50 	return spi_mem_exec_op(nor->spi, op);
51 }
52 
spi_nor_read_reg(struct spi_nor * nor,u8 code,u8 * val,int len)53 static int spi_nor_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len)
54 {
55 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(code, 1),
56 					  SPI_MEM_OP_NO_ADDR,
57 					  SPI_MEM_OP_NO_DUMMY,
58 					  SPI_MEM_OP_DATA_IN(len, NULL, 1));
59 	int ret;
60 
61 	ret = spi_nor_read_write_reg(nor, &op, val);
62 	if (ret < 0)
63 		dev_dbg(nor->dev, "error %d reading %x\n", ret, code);
64 
65 	return ret;
66 }
67 
spi_nor_write_reg(struct spi_nor * nor,u8 opcode,u8 * buf,int len)68 static int spi_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
69 {
70 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 1),
71 					  SPI_MEM_OP_NO_ADDR,
72 					  SPI_MEM_OP_NO_DUMMY,
73 					  SPI_MEM_OP_DATA_OUT(len, NULL, 1));
74 
75 	return spi_nor_read_write_reg(nor, &op, buf);
76 }
77 
spi_nor_read_data(struct spi_nor * nor,loff_t from,size_t len,u_char * buf)78 static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
79 				 u_char *buf)
80 {
81 	struct spi_mem_op op =
82 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
83 				   SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
84 				   SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
85 				   SPI_MEM_OP_DATA_IN(len, buf, 1));
86 	size_t remaining = len;
87 	int ret;
88 
89 	/* get transfer protocols. */
90 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
91 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
92 	op.dummy.buswidth = op.addr.buswidth;
93 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
94 
95 	/* convert the dummy cycles to the number of bytes */
96 	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
97 
98 	while (remaining) {
99 		op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
100 		ret = spi_mem_adjust_op_size(nor->spi, &op);
101 		if (ret)
102 			return ret;
103 
104 		ret = spi_mem_exec_op(nor->spi, &op);
105 		if (ret)
106 			return ret;
107 
108 		op.addr.val += op.data.nbytes;
109 		remaining -= op.data.nbytes;
110 		op.data.buf.in += op.data.nbytes;
111 	}
112 
113 	return len;
114 }
115 
spi_nor_write_data(struct spi_nor * nor,loff_t to,size_t len,const u_char * buf)116 static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
117 				  const u_char *buf)
118 {
119 	struct spi_mem_op op =
120 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
121 				   SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
122 				   SPI_MEM_OP_NO_DUMMY,
123 				   SPI_MEM_OP_DATA_OUT(len, buf, 1));
124 	int ret;
125 
126 	/* get transfer protocols. */
127 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
128 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
129 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
130 
131 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
132 		op.addr.nbytes = 0;
133 
134 	ret = spi_mem_adjust_op_size(nor->spi, &op);
135 	if (ret)
136 		return ret;
137 	op.data.nbytes = len < op.data.nbytes ? len : op.data.nbytes;
138 
139 	ret = spi_mem_exec_op(nor->spi, &op);
140 	if (ret)
141 		return ret;
142 
143 	return op.data.nbytes;
144 }
145 
146 /*
147  * Read the status register, returning its value in the location
148  * Return the status register value.
149  * Returns negative if error occurred.
150  */
read_sr(struct spi_nor * nor)151 static int read_sr(struct spi_nor *nor)
152 {
153 	int ret;
154 	u8 val;
155 
156 	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
157 	if (ret < 0) {
158 		pr_debug("error %d reading SR\n", (int)ret);
159 		return ret;
160 	}
161 
162 	return val;
163 }
164 
165 /*
166  * Read the flag status register, returning its value in the location
167  * Return the status register value.
168  * Returns negative if error occurred.
169  */
read_fsr(struct spi_nor * nor)170 static int read_fsr(struct spi_nor *nor)
171 {
172 	int ret;
173 	u8 val;
174 
175 	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
176 	if (ret < 0) {
177 		pr_debug("error %d reading FSR\n", ret);
178 		return ret;
179 	}
180 
181 	return val;
182 }
183 
184 /*
185  * Read configuration register, returning its value in the
186  * location. Return the configuration register value.
187  * Returns negative if error occurred.
188  */
189 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
read_cr(struct spi_nor * nor)190 static int read_cr(struct spi_nor *nor)
191 {
192 	int ret;
193 	u8 val;
194 
195 	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
196 	if (ret < 0) {
197 		dev_dbg(nor->dev, "error %d reading CR\n", ret);
198 		return ret;
199 	}
200 
201 	return val;
202 }
203 #endif
204 
205 /*
206  * Write status register 1 byte
207  * Returns negative if error occurred.
208  */
write_sr(struct spi_nor * nor,u8 val)209 static int write_sr(struct spi_nor *nor, u8 val)
210 {
211 	nor->cmd_buf[0] = val;
212 	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
213 }
214 
215 /*
216  * Set write enable latch with Write Enable command.
217  * Returns negative if error occurred.
218  */
write_enable(struct spi_nor * nor)219 static int write_enable(struct spi_nor *nor)
220 {
221 	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
222 }
223 
224 /*
225  * Send write disable instruction to the chip.
226  */
write_disable(struct spi_nor * nor)227 static int write_disable(struct spi_nor *nor)
228 {
229 	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
230 }
231 
mtd_to_spi_nor(struct mtd_info * mtd)232 static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
233 {
234 	return mtd->priv;
235 }
236 
237 #ifndef CONFIG_SPI_FLASH_BAR
spi_nor_convert_opcode(u8 opcode,const u8 table[][2],size_t size)238 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
239 {
240 	size_t i;
241 
242 	for (i = 0; i < size; i++)
243 		if (table[i][0] == opcode)
244 			return table[i][1];
245 
246 	/* No conversion found, keep input op code. */
247 	return opcode;
248 }
249 
spi_nor_convert_3to4_read(u8 opcode)250 static u8 spi_nor_convert_3to4_read(u8 opcode)
251 {
252 	static const u8 spi_nor_3to4_read[][2] = {
253 		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
254 		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
255 		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
256 		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
257 		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
258 		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
259 		{ SPINOR_OP_READ_1_1_8,	SPINOR_OP_READ_1_1_8_4B },
260 		{ SPINOR_OP_READ_1_8_8,	SPINOR_OP_READ_1_8_8_4B },
261 
262 		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
263 		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
264 		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
265 	};
266 
267 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
268 				      ARRAY_SIZE(spi_nor_3to4_read));
269 }
270 
spi_nor_convert_3to4_program(u8 opcode)271 static u8 spi_nor_convert_3to4_program(u8 opcode)
272 {
273 	static const u8 spi_nor_3to4_program[][2] = {
274 		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
275 		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
276 		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
277 		{ SPINOR_OP_PP_1_1_8,	SPINOR_OP_PP_1_1_8_4B },
278 		{ SPINOR_OP_PP_1_8_8,	SPINOR_OP_PP_1_8_8_4B },
279 	};
280 
281 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
282 				      ARRAY_SIZE(spi_nor_3to4_program));
283 }
284 
spi_nor_convert_3to4_erase(u8 opcode)285 static u8 spi_nor_convert_3to4_erase(u8 opcode)
286 {
287 	static const u8 spi_nor_3to4_erase[][2] = {
288 		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
289 		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
290 		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
291 	};
292 
293 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
294 				      ARRAY_SIZE(spi_nor_3to4_erase));
295 }
296 
spi_nor_set_4byte_opcodes(struct spi_nor * nor,const struct flash_info * info)297 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
298 				      const struct flash_info *info)
299 {
300 	/* Do some manufacturer fixups first */
301 	switch (JEDEC_MFR(info)) {
302 	case SNOR_MFR_SPANSION:
303 		/* No small sector erase for 4-byte command set */
304 		nor->erase_opcode = SPINOR_OP_SE;
305 		nor->mtd.erasesize = info->sector_size;
306 		break;
307 
308 	default:
309 		break;
310 	}
311 
312 	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
313 	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
314 	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
315 }
316 #endif /* !CONFIG_SPI_FLASH_BAR */
317 
318 /* Enable/disable 4-byte addressing mode. */
set_4byte(struct spi_nor * nor,const struct flash_info * info,int enable)319 static int set_4byte(struct spi_nor *nor, const struct flash_info *info,
320 		     int enable)
321 {
322 	int status;
323 	bool need_wren = false;
324 	u8 cmd;
325 
326 	switch (JEDEC_MFR(info)) {
327 	case SNOR_MFR_ST:
328 	case SNOR_MFR_MICRON:
329 		/* Some Micron need WREN command; all will accept it */
330 		need_wren = true;
331 	case SNOR_MFR_ISSI:
332 	case SNOR_MFR_MACRONIX:
333 	case SNOR_MFR_WINBOND:
334 		if (need_wren)
335 			write_enable(nor);
336 
337 		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
338 		status = nor->write_reg(nor, cmd, NULL, 0);
339 		if (need_wren)
340 			write_disable(nor);
341 
342 		if (!status && !enable &&
343 		    JEDEC_MFR(info) == SNOR_MFR_WINBOND) {
344 			/*
345 			 * On Winbond W25Q256FV, leaving 4byte mode causes
346 			 * the Extended Address Register to be set to 1, so all
347 			 * 3-byte-address reads come from the second 16M.
348 			 * We must clear the register to enable normal behavior.
349 			 */
350 			write_enable(nor);
351 			nor->cmd_buf[0] = 0;
352 			nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
353 			write_disable(nor);
354 		}
355 
356 		return status;
357 	default:
358 		/* Spansion style */
359 		nor->cmd_buf[0] = enable << 7;
360 		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
361 	}
362 }
363 
spi_nor_sr_ready(struct spi_nor * nor)364 static int spi_nor_sr_ready(struct spi_nor *nor)
365 {
366 	int sr = read_sr(nor);
367 
368 	if (sr < 0)
369 		return sr;
370 
371 	if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
372 		if (sr & SR_E_ERR)
373 			dev_dbg(nor->dev, "Erase Error occurred\n");
374 		else
375 			dev_dbg(nor->dev, "Programming Error occurred\n");
376 
377 		nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
378 		return -EIO;
379 	}
380 
381 	return !(sr & SR_WIP);
382 }
383 
spi_nor_fsr_ready(struct spi_nor * nor)384 static int spi_nor_fsr_ready(struct spi_nor *nor)
385 {
386 	int fsr = read_fsr(nor);
387 
388 	if (fsr < 0)
389 		return fsr;
390 
391 	if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
392 		if (fsr & FSR_E_ERR)
393 			dev_err(nor->dev, "Erase operation failed.\n");
394 		else
395 			dev_err(nor->dev, "Program operation failed.\n");
396 
397 		if (fsr & FSR_PT_ERR)
398 			dev_err(nor->dev,
399 				"Attempted to modify a protected sector.\n");
400 
401 		nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
402 		return -EIO;
403 	}
404 
405 	return fsr & FSR_READY;
406 }
407 
spi_nor_ready(struct spi_nor * nor)408 static int spi_nor_ready(struct spi_nor *nor)
409 {
410 	int sr, fsr;
411 
412 	sr = spi_nor_sr_ready(nor);
413 	if (sr < 0)
414 		return sr;
415 	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
416 	if (fsr < 0)
417 		return fsr;
418 	return sr && fsr;
419 }
420 
421 /*
422  * Service routine to read status register until ready, or timeout occurs.
423  * Returns non-zero if error.
424  */
spi_nor_wait_till_ready_with_timeout(struct spi_nor * nor,unsigned long timeout)425 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
426 						unsigned long timeout)
427 {
428 	unsigned long timebase;
429 	int ret;
430 
431 	timebase = get_timer(0);
432 
433 	while (get_timer(timebase) < timeout) {
434 		ret = spi_nor_ready(nor);
435 		if (ret < 0)
436 			return ret;
437 		if (ret)
438 			return 0;
439 	}
440 
441 	dev_err(nor->dev, "flash operation timed out\n");
442 
443 	return -ETIMEDOUT;
444 }
445 
spi_nor_wait_till_ready(struct spi_nor * nor)446 static int spi_nor_wait_till_ready(struct spi_nor *nor)
447 {
448 	return spi_nor_wait_till_ready_with_timeout(nor,
449 						    DEFAULT_READY_WAIT_JIFFIES);
450 }
451 
452 #ifdef CONFIG_SPI_FLASH_BAR
453 /*
454  * This "clean_bar" is necessary in a situation when one was accessing
455  * spi flash memory > 16 MiB by using Bank Address Register's BA24 bit.
456  *
457  * After it the BA24 bit shall be cleared to allow access to correct
458  * memory region after SW reset (by calling "reset" command).
459  *
460  * Otherwise, the BA24 bit may be left set and then after reset, the
461  * ROM would read/write/erase SPL from 16 MiB * bank_sel address.
462  */
clean_bar(struct spi_nor * nor)463 static int clean_bar(struct spi_nor *nor)
464 {
465 	u8 cmd, bank_sel = 0;
466 
467 	if (nor->bank_curr == 0)
468 		return 0;
469 	cmd = nor->bank_write_cmd;
470 	nor->bank_curr = 0;
471 	write_enable(nor);
472 
473 	return nor->write_reg(nor, cmd, &bank_sel, 1);
474 }
475 
write_bar(struct spi_nor * nor,u32 offset)476 static int write_bar(struct spi_nor *nor, u32 offset)
477 {
478 	u8 cmd, bank_sel;
479 	int ret;
480 
481 	bank_sel = offset / SZ_16M;
482 	if (bank_sel == nor->bank_curr)
483 		goto bar_end;
484 
485 	cmd = nor->bank_write_cmd;
486 	write_enable(nor);
487 	ret = nor->write_reg(nor, cmd, &bank_sel, 1);
488 	if (ret < 0) {
489 		debug("SF: fail to write bank register\n");
490 		return ret;
491 	}
492 
493 bar_end:
494 	nor->bank_curr = bank_sel;
495 	return nor->bank_curr;
496 }
497 
read_bar(struct spi_nor * nor,const struct flash_info * info)498 static int read_bar(struct spi_nor *nor, const struct flash_info *info)
499 {
500 	u8 curr_bank = 0;
501 	int ret;
502 
503 	switch (JEDEC_MFR(info)) {
504 	case SNOR_MFR_SPANSION:
505 		nor->bank_read_cmd = SPINOR_OP_BRRD;
506 		nor->bank_write_cmd = SPINOR_OP_BRWR;
507 		break;
508 	default:
509 		nor->bank_read_cmd = SPINOR_OP_RDEAR;
510 		nor->bank_write_cmd = SPINOR_OP_WREAR;
511 	}
512 
513 	ret = nor->read_reg(nor, nor->bank_read_cmd,
514 				    &curr_bank, 1);
515 	if (ret) {
516 		debug("SF: fail to read bank addr register\n");
517 		return ret;
518 	}
519 	nor->bank_curr = curr_bank;
520 
521 	return 0;
522 }
523 #endif
524 
525 /*
526  * Initiate the erasure of a single sector
527  */
spi_nor_erase_sector(struct spi_nor * nor,u32 addr)528 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
529 {
530 	struct spi_mem_op op =
531 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
532 			   SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
533 			   SPI_MEM_OP_NO_DUMMY,
534 			   SPI_MEM_OP_NO_DATA);
535 
536 	if (nor->erase)
537 		return nor->erase(nor, addr);
538 
539 	/*
540 	 * Default implementation, if driver doesn't have a specialized HW
541 	 * control
542 	 */
543 	return spi_mem_exec_op(nor->spi, &op);
544 }
545 
546 /*
547  * Erase an address range on the nor chip.  The address range may extend
548  * one or more erase sectors.  Return an error is there is a problem erasing.
549  */
spi_nor_erase(struct mtd_info * mtd,struct erase_info * instr)550 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
551 {
552 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
553 	u32 addr, len, rem;
554 	int ret;
555 
556 	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
557 		(long long)instr->len);
558 
559 	if (!instr->len)
560 		return 0;
561 
562 	div_u64_rem(instr->len, mtd->erasesize, &rem);
563 	if (rem)
564 		return -EINVAL;
565 
566 	addr = instr->addr;
567 	len = instr->len;
568 
569 	while (len) {
570 		WATCHDOG_RESET();
571 #ifdef CONFIG_SPI_FLASH_BAR
572 		ret = write_bar(nor, addr);
573 		if (ret < 0)
574 			return ret;
575 #endif
576 		write_enable(nor);
577 
578 		ret = spi_nor_erase_sector(nor, addr);
579 		if (ret)
580 			goto erase_err;
581 
582 		addr += mtd->erasesize;
583 		len -= mtd->erasesize;
584 
585 		ret = spi_nor_wait_till_ready(nor);
586 		if (ret)
587 			goto erase_err;
588 	}
589 
590 erase_err:
591 #ifdef CONFIG_SPI_FLASH_BAR
592 	ret = clean_bar(nor);
593 #endif
594 	write_disable(nor);
595 
596 	return ret;
597 }
598 
599 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
600 /* Write status register and ensure bits in mask match written values */
write_sr_and_check(struct spi_nor * nor,u8 status_new,u8 mask)601 static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
602 {
603 	int ret;
604 
605 	write_enable(nor);
606 	ret = write_sr(nor, status_new);
607 	if (ret)
608 		return ret;
609 
610 	ret = spi_nor_wait_till_ready(nor);
611 	if (ret)
612 		return ret;
613 
614 	ret = read_sr(nor);
615 	if (ret < 0)
616 		return ret;
617 
618 	return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
619 }
620 
stm_get_locked_range(struct spi_nor * nor,u8 sr,loff_t * ofs,uint64_t * len)621 static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
622 				 uint64_t *len)
623 {
624 	struct mtd_info *mtd = &nor->mtd;
625 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
626 	int shift = ffs(mask) - 1;
627 	int pow;
628 
629 	if (!(sr & mask)) {
630 		/* No protection */
631 		*ofs = 0;
632 		*len = 0;
633 	} else {
634 		pow = ((sr & mask) ^ mask) >> shift;
635 		*len = mtd->size >> pow;
636 		if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
637 			*ofs = 0;
638 		else
639 			*ofs = mtd->size - *len;
640 	}
641 }
642 
643 /*
644  * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
645  * @locked is false); 0 otherwise
646  */
stm_check_lock_status_sr(struct spi_nor * nor,loff_t ofs,u64 len,u8 sr,bool locked)647 static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, u64 len,
648 				    u8 sr, bool locked)
649 {
650 	loff_t lock_offs;
651 	uint64_t lock_len;
652 
653 	if (!len)
654 		return 1;
655 
656 	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
657 
658 	if (locked)
659 		/* Requested range is a sub-range of locked range */
660 		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
661 	else
662 		/* Requested range does not overlap with locked range */
663 		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
664 }
665 
stm_is_locked_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr)666 static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
667 			    u8 sr)
668 {
669 	return stm_check_lock_status_sr(nor, ofs, len, sr, true);
670 }
671 
stm_is_unlocked_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr)672 static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
673 			      u8 sr)
674 {
675 	return stm_check_lock_status_sr(nor, ofs, len, sr, false);
676 }
677 
678 /*
679  * Lock a region of the flash. Compatible with ST Micro and similar flash.
680  * Supports the block protection bits BP{0,1,2} in the status register
681  * (SR). Does not support these features found in newer SR bitfields:
682  *   - SEC: sector/block protect - only handle SEC=0 (block protect)
683  *   - CMP: complement protect - only support CMP=0 (range is not complemented)
684  *
685  * Support for the following is provided conditionally for some flash:
686  *   - TB: top/bottom protect
687  *
688  * Sample table portion for 8MB flash (Winbond w25q64fw):
689  *
690  *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
691  *  --------------------------------------------------------------------------
692  *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
693  *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
694  *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
695  *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
696  *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
697  *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
698  *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
699  *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
700  *  ------|-------|-------|-------|-------|---------------|-------------------
701  *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
702  *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
703  *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
704  *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
705  *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
706  *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
707  *
708  * Returns negative on errors, 0 on success.
709  */
stm_lock(struct spi_nor * nor,loff_t ofs,uint64_t len)710 static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
711 {
712 	struct mtd_info *mtd = &nor->mtd;
713 	int status_old, status_new;
714 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
715 	u8 shift = ffs(mask) - 1, pow, val;
716 	loff_t lock_len;
717 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
718 	bool use_top;
719 
720 	status_old = read_sr(nor);
721 	if (status_old < 0)
722 		return status_old;
723 
724 	/* If nothing in our range is unlocked, we don't need to do anything */
725 	if (stm_is_locked_sr(nor, ofs, len, status_old))
726 		return 0;
727 
728 	/* If anything below us is unlocked, we can't use 'bottom' protection */
729 	if (!stm_is_locked_sr(nor, 0, ofs, status_old))
730 		can_be_bottom = false;
731 
732 	/* If anything above us is unlocked, we can't use 'top' protection */
733 	if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
734 			      status_old))
735 		can_be_top = false;
736 
737 	if (!can_be_bottom && !can_be_top)
738 		return -EINVAL;
739 
740 	/* Prefer top, if both are valid */
741 	use_top = can_be_top;
742 
743 	/* lock_len: length of region that should end up locked */
744 	if (use_top)
745 		lock_len = mtd->size - ofs;
746 	else
747 		lock_len = ofs + len;
748 
749 	/*
750 	 * Need smallest pow such that:
751 	 *
752 	 *   1 / (2^pow) <= (len / size)
753 	 *
754 	 * so (assuming power-of-2 size) we do:
755 	 *
756 	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
757 	 */
758 	pow = ilog2(mtd->size) - ilog2(lock_len);
759 	val = mask - (pow << shift);
760 	if (val & ~mask)
761 		return -EINVAL;
762 	/* Don't "lock" with no region! */
763 	if (!(val & mask))
764 		return -EINVAL;
765 
766 	status_new = (status_old & ~mask & ~SR_TB) | val;
767 
768 	/* Disallow further writes if WP pin is asserted */
769 	status_new |= SR_SRWD;
770 
771 	if (!use_top)
772 		status_new |= SR_TB;
773 
774 	/* Don't bother if they're the same */
775 	if (status_new == status_old)
776 		return 0;
777 
778 	/* Only modify protection if it will not unlock other areas */
779 	if ((status_new & mask) < (status_old & mask))
780 		return -EINVAL;
781 
782 	return write_sr_and_check(nor, status_new, mask);
783 }
784 
785 /*
786  * Unlock a region of the flash. See stm_lock() for more info
787  *
788  * Returns negative on errors, 0 on success.
789  */
stm_unlock(struct spi_nor * nor,loff_t ofs,uint64_t len)790 static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
791 {
792 	struct mtd_info *mtd = &nor->mtd;
793 	int status_old, status_new;
794 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
795 	u8 shift = ffs(mask) - 1, pow, val;
796 	loff_t lock_len;
797 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
798 	bool use_top;
799 
800 	status_old = read_sr(nor);
801 	if (status_old < 0)
802 		return status_old;
803 
804 	/* If nothing in our range is locked, we don't need to do anything */
805 	if (stm_is_unlocked_sr(nor, ofs, len, status_old))
806 		return 0;
807 
808 	/* If anything below us is locked, we can't use 'top' protection */
809 	if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
810 		can_be_top = false;
811 
812 	/* If anything above us is locked, we can't use 'bottom' protection */
813 	if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
814 				status_old))
815 		can_be_bottom = false;
816 
817 	if (!can_be_bottom && !can_be_top)
818 		return -EINVAL;
819 
820 	/* Prefer top, if both are valid */
821 	use_top = can_be_top;
822 
823 	/* lock_len: length of region that should remain locked */
824 	if (use_top)
825 		lock_len = mtd->size - (ofs + len);
826 	else
827 		lock_len = ofs;
828 
829 	/*
830 	 * Need largest pow such that:
831 	 *
832 	 *   1 / (2^pow) >= (len / size)
833 	 *
834 	 * so (assuming power-of-2 size) we do:
835 	 *
836 	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
837 	 */
838 	pow = ilog2(mtd->size) - order_base_2(lock_len);
839 	if (lock_len == 0) {
840 		val = 0; /* fully unlocked */
841 	} else {
842 		val = mask - (pow << shift);
843 		/* Some power-of-two sizes are not supported */
844 		if (val & ~mask)
845 			return -EINVAL;
846 	}
847 
848 	status_new = (status_old & ~mask & ~SR_TB) | val;
849 
850 	/* Don't protect status register if we're fully unlocked */
851 	if (lock_len == 0)
852 		status_new &= ~SR_SRWD;
853 
854 	if (!use_top)
855 		status_new |= SR_TB;
856 
857 	/* Don't bother if they're the same */
858 	if (status_new == status_old)
859 		return 0;
860 
861 	/* Only modify protection if it will not lock other areas */
862 	if ((status_new & mask) > (status_old & mask))
863 		return -EINVAL;
864 
865 	return write_sr_and_check(nor, status_new, mask);
866 }
867 
868 /*
869  * Check if a region of the flash is (completely) locked. See stm_lock() for
870  * more info.
871  *
872  * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
873  * negative on errors.
874  */
stm_is_locked(struct spi_nor * nor,loff_t ofs,uint64_t len)875 static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
876 {
877 	int status;
878 
879 	status = read_sr(nor);
880 	if (status < 0)
881 		return status;
882 
883 	return stm_is_locked_sr(nor, ofs, len, status);
884 }
885 #endif /* CONFIG_SPI_FLASH_STMICRO */
886 
spi_nor_read_id(struct spi_nor * nor)887 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
888 {
889 	int			tmp;
890 	u8			id[SPI_NOR_MAX_ID_LEN];
891 	const struct flash_info	*info;
892 
893 	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
894 	if (tmp < 0) {
895 		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
896 		return ERR_PTR(tmp);
897 	}
898 
899 	info = spi_nor_ids;
900 	for (; info->name; info++) {
901 		if (info->id_len) {
902 			if (!memcmp(info->id, id, info->id_len))
903 				return info;
904 		}
905 	}
906 
907 	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
908 		id[0], id[1], id[2]);
909 	return ERR_PTR(-ENODEV);
910 }
911 
spi_nor_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)912 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
913 			size_t *retlen, u_char *buf)
914 {
915 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
916 	int ret;
917 
918 	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
919 
920 	while (len) {
921 		loff_t addr = from;
922 		size_t read_len = len;
923 
924 #ifdef CONFIG_SPI_FLASH_BAR
925 		u32 remain_len;
926 
927 		ret = write_bar(nor, addr);
928 		if (ret < 0)
929 			return log_ret(ret);
930 		remain_len = (SZ_16M * (nor->bank_curr + 1)) - addr;
931 
932 		if (len < remain_len)
933 			read_len = len;
934 		else
935 			read_len = remain_len;
936 #endif
937 
938 		ret = nor->read(nor, addr, read_len, buf);
939 		if (ret == 0) {
940 			/* We shouldn't see 0-length reads */
941 			ret = -EIO;
942 			goto read_err;
943 		}
944 		if (ret < 0)
945 			goto read_err;
946 
947 		*retlen += ret;
948 		buf += ret;
949 		from += ret;
950 		len -= ret;
951 	}
952 	ret = 0;
953 
954 read_err:
955 #ifdef CONFIG_SPI_FLASH_BAR
956 	ret = clean_bar(nor);
957 #endif
958 	return ret;
959 }
960 
961 #ifdef CONFIG_SPI_FLASH_SST
962 /*
963  * sst26 flash series has its own block protection implementation:
964  * 4x   - 8  KByte blocks - read & write protection bits - upper addresses
965  * 1x   - 32 KByte blocks - write protection bits
966  * rest - 64 KByte blocks - write protection bits
967  * 1x   - 32 KByte blocks - write protection bits
968  * 4x   - 8  KByte blocks - read & write protection bits - lower addresses
969  *
970  * We'll support only per 64k lock/unlock so lower and upper 64 KByte region
971  * will be treated as single block.
972  */
973 #define SST26_BPR_8K_NUM		4
974 #define SST26_MAX_BPR_REG_LEN		(18 + 1)
975 #define SST26_BOUND_REG_SIZE		((32 + SST26_BPR_8K_NUM * 8) * SZ_1K)
976 
977 enum lock_ctl {
978 	SST26_CTL_LOCK,
979 	SST26_CTL_UNLOCK,
980 	SST26_CTL_CHECK
981 };
982 
sst26_process_bpr(u32 bpr_size,u8 * cmd,u32 bit,enum lock_ctl ctl)983 static bool sst26_process_bpr(u32 bpr_size, u8 *cmd, u32 bit, enum lock_ctl ctl)
984 {
985 	switch (ctl) {
986 	case SST26_CTL_LOCK:
987 		cmd[bpr_size - (bit / 8) - 1] |= BIT(bit % 8);
988 		break;
989 	case SST26_CTL_UNLOCK:
990 		cmd[bpr_size - (bit / 8) - 1] &= ~BIT(bit % 8);
991 		break;
992 	case SST26_CTL_CHECK:
993 		return !!(cmd[bpr_size - (bit / 8) - 1] & BIT(bit % 8));
994 	}
995 
996 	return false;
997 }
998 
999 /*
1000  * Lock, unlock or check lock status of the flash region of the flash (depending
1001  * on the lock_ctl value)
1002  */
sst26_lock_ctl(struct spi_nor * nor,loff_t ofs,uint64_t len,enum lock_ctl ctl)1003 static int sst26_lock_ctl(struct spi_nor *nor, loff_t ofs, uint64_t len, enum lock_ctl ctl)
1004 {
1005 	struct mtd_info *mtd = &nor->mtd;
1006 	u32 i, bpr_ptr, rptr_64k, lptr_64k, bpr_size;
1007 	bool lower_64k = false, upper_64k = false;
1008 	u8 bpr_buff[SST26_MAX_BPR_REG_LEN] = {};
1009 	int ret;
1010 
1011 	/* Check length and offset for 64k alignment */
1012 	if ((ofs & (SZ_64K - 1)) || (len & (SZ_64K - 1))) {
1013 		dev_err(nor->dev, "length or offset is not 64KiB allighned\n");
1014 		return -EINVAL;
1015 	}
1016 
1017 	if (ofs + len > mtd->size) {
1018 		dev_err(nor->dev, "range is more than device size: %#llx + %#llx > %#llx\n",
1019 			ofs, len, mtd->size);
1020 		return -EINVAL;
1021 	}
1022 
1023 	/* SST26 family has only 16 Mbit, 32 Mbit and 64 Mbit IC */
1024 	if (mtd->size != SZ_2M &&
1025 	    mtd->size != SZ_4M &&
1026 	    mtd->size != SZ_8M)
1027 		return -EINVAL;
1028 
1029 	bpr_size = 2 + (mtd->size / SZ_64K / 8);
1030 
1031 	ret = nor->read_reg(nor, SPINOR_OP_READ_BPR, bpr_buff, bpr_size);
1032 	if (ret < 0) {
1033 		dev_err(nor->dev, "fail to read block-protection register\n");
1034 		return ret;
1035 	}
1036 
1037 	rptr_64k = min_t(u32, ofs + len, mtd->size - SST26_BOUND_REG_SIZE);
1038 	lptr_64k = max_t(u32, ofs, SST26_BOUND_REG_SIZE);
1039 
1040 	upper_64k = ((ofs + len) > (mtd->size - SST26_BOUND_REG_SIZE));
1041 	lower_64k = (ofs < SST26_BOUND_REG_SIZE);
1042 
1043 	/* Lower bits in block-protection register are about 64k region */
1044 	bpr_ptr = lptr_64k / SZ_64K - 1;
1045 
1046 	/* Process 64K blocks region */
1047 	while (lptr_64k < rptr_64k) {
1048 		if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1049 			return EACCES;
1050 
1051 		bpr_ptr++;
1052 		lptr_64k += SZ_64K;
1053 	}
1054 
1055 	/* 32K and 8K region bits in BPR are after 64k region bits */
1056 	bpr_ptr = (mtd->size - 2 * SST26_BOUND_REG_SIZE) / SZ_64K;
1057 
1058 	/* Process lower 32K block region */
1059 	if (lower_64k)
1060 		if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1061 			return EACCES;
1062 
1063 	bpr_ptr++;
1064 
1065 	/* Process upper 32K block region */
1066 	if (upper_64k)
1067 		if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1068 			return EACCES;
1069 
1070 	bpr_ptr++;
1071 
1072 	/* Process lower 8K block regions */
1073 	for (i = 0; i < SST26_BPR_8K_NUM; i++) {
1074 		if (lower_64k)
1075 			if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1076 				return EACCES;
1077 
1078 		/* In 8K area BPR has both read and write protection bits */
1079 		bpr_ptr += 2;
1080 	}
1081 
1082 	/* Process upper 8K block regions */
1083 	for (i = 0; i < SST26_BPR_8K_NUM; i++) {
1084 		if (upper_64k)
1085 			if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1086 				return EACCES;
1087 
1088 		/* In 8K area BPR has both read and write protection bits */
1089 		bpr_ptr += 2;
1090 	}
1091 
1092 	/* If we check region status we don't need to write BPR back */
1093 	if (ctl == SST26_CTL_CHECK)
1094 		return 0;
1095 
1096 	ret = nor->write_reg(nor, SPINOR_OP_WRITE_BPR, bpr_buff, bpr_size);
1097 	if (ret < 0) {
1098 		dev_err(nor->dev, "fail to write block-protection register\n");
1099 		return ret;
1100 	}
1101 
1102 	return 0;
1103 }
1104 
sst26_unlock(struct spi_nor * nor,loff_t ofs,uint64_t len)1105 static int sst26_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1106 {
1107 	return sst26_lock_ctl(nor, ofs, len, SST26_CTL_UNLOCK);
1108 }
1109 
sst26_lock(struct spi_nor * nor,loff_t ofs,uint64_t len)1110 static int sst26_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1111 {
1112 	return sst26_lock_ctl(nor, ofs, len, SST26_CTL_LOCK);
1113 }
1114 
1115 /*
1116  * Returns EACCES (positive value) if region is locked, 0 if region is unlocked,
1117  * and negative on errors.
1118  */
sst26_is_locked(struct spi_nor * nor,loff_t ofs,uint64_t len)1119 static int sst26_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
1120 {
1121 	/*
1122 	 * is_locked function is used for check before reading or erasing flash
1123 	 * region, so offset and length might be not 64k allighned, so adjust
1124 	 * them to be 64k allighned as sst26_lock_ctl works only with 64k
1125 	 * allighned regions.
1126 	 */
1127 	ofs -= ofs & (SZ_64K - 1);
1128 	len = len & (SZ_64K - 1) ? (len & ~(SZ_64K - 1)) + SZ_64K : len;
1129 
1130 	return sst26_lock_ctl(nor, ofs, len, SST26_CTL_CHECK);
1131 }
1132 
sst_write_byteprogram(struct spi_nor * nor,loff_t to,size_t len,size_t * retlen,const u_char * buf)1133 static int sst_write_byteprogram(struct spi_nor *nor, loff_t to, size_t len,
1134 				 size_t *retlen, const u_char *buf)
1135 {
1136 	size_t actual;
1137 	int ret = 0;
1138 
1139 	for (actual = 0; actual < len; actual++) {
1140 		nor->program_opcode = SPINOR_OP_BP;
1141 
1142 		write_enable(nor);
1143 		/* write one byte. */
1144 		ret = nor->write(nor, to, 1, buf + actual);
1145 		if (ret < 0)
1146 			goto sst_write_err;
1147 		ret = spi_nor_wait_till_ready(nor);
1148 		if (ret)
1149 			goto sst_write_err;
1150 		to++;
1151 	}
1152 
1153 sst_write_err:
1154 	write_disable(nor);
1155 	return ret;
1156 }
1157 
sst_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1158 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
1159 		     size_t *retlen, const u_char *buf)
1160 {
1161 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1162 	struct spi_slave *spi = nor->spi;
1163 	size_t actual;
1164 	int ret;
1165 
1166 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1167 	if (spi->mode & SPI_TX_BYTE)
1168 		return sst_write_byteprogram(nor, to, len, retlen, buf);
1169 
1170 	write_enable(nor);
1171 
1172 	nor->sst_write_second = false;
1173 
1174 	actual = to % 2;
1175 	/* Start write from odd address. */
1176 	if (actual) {
1177 		nor->program_opcode = SPINOR_OP_BP;
1178 
1179 		/* write one byte. */
1180 		ret = nor->write(nor, to, 1, buf);
1181 		if (ret < 0)
1182 			goto sst_write_err;
1183 		ret = spi_nor_wait_till_ready(nor);
1184 		if (ret)
1185 			goto sst_write_err;
1186 	}
1187 	to += actual;
1188 
1189 	/* Write out most of the data here. */
1190 	for (; actual < len - 1; actual += 2) {
1191 		nor->program_opcode = SPINOR_OP_AAI_WP;
1192 
1193 		/* write two bytes. */
1194 		ret = nor->write(nor, to, 2, buf + actual);
1195 		if (ret < 0)
1196 			goto sst_write_err;
1197 		ret = spi_nor_wait_till_ready(nor);
1198 		if (ret)
1199 			goto sst_write_err;
1200 		to += 2;
1201 		nor->sst_write_second = true;
1202 	}
1203 	nor->sst_write_second = false;
1204 
1205 	write_disable(nor);
1206 	ret = spi_nor_wait_till_ready(nor);
1207 	if (ret)
1208 		goto sst_write_err;
1209 
1210 	/* Write out trailing byte if it exists. */
1211 	if (actual != len) {
1212 		write_enable(nor);
1213 
1214 		nor->program_opcode = SPINOR_OP_BP;
1215 		ret = nor->write(nor, to, 1, buf + actual);
1216 		if (ret < 0)
1217 			goto sst_write_err;
1218 		ret = spi_nor_wait_till_ready(nor);
1219 		if (ret)
1220 			goto sst_write_err;
1221 		write_disable(nor);
1222 		actual += 1;
1223 	}
1224 sst_write_err:
1225 	*retlen += actual;
1226 	return ret;
1227 }
1228 #endif
1229 /*
1230  * Write an address range to the nor chip.  Data must be written in
1231  * FLASH_PAGESIZE chunks.  The address range may be any size provided
1232  * it is within the physical boundaries.
1233  */
spi_nor_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1234 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
1235 	size_t *retlen, const u_char *buf)
1236 {
1237 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1238 	size_t page_offset, page_remain, i;
1239 	ssize_t ret;
1240 
1241 #ifdef CONFIG_SPI_FLASH_SST
1242 	/* sst nor chips use AAI word program */
1243 	if (nor->info->flags & SST_WRITE)
1244 		return sst_write(mtd, to, len, retlen, buf);
1245 #endif
1246 
1247 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1248 
1249 	if (!len)
1250 		return 0;
1251 
1252 	for (i = 0; i < len; ) {
1253 		ssize_t written;
1254 		loff_t addr = to + i;
1255 		WATCHDOG_RESET();
1256 
1257 		/*
1258 		 * If page_size is a power of two, the offset can be quickly
1259 		 * calculated with an AND operation. On the other cases we
1260 		 * need to do a modulus operation (more expensive).
1261 		 */
1262 		if (is_power_of_2(nor->page_size)) {
1263 			page_offset = addr & (nor->page_size - 1);
1264 		} else {
1265 			u64 aux = addr;
1266 
1267 			page_offset = do_div(aux, nor->page_size);
1268 		}
1269 		/* the size of data remaining on the first page */
1270 		page_remain = min_t(size_t,
1271 				    nor->page_size - page_offset, len - i);
1272 
1273 #ifdef CONFIG_SPI_FLASH_BAR
1274 		ret = write_bar(nor, addr);
1275 		if (ret < 0)
1276 			return ret;
1277 #endif
1278 		write_enable(nor);
1279 		ret = nor->write(nor, addr, page_remain, buf + i);
1280 		if (ret < 0)
1281 			goto write_err;
1282 		written = ret;
1283 
1284 		ret = spi_nor_wait_till_ready(nor);
1285 		if (ret)
1286 			goto write_err;
1287 		*retlen += written;
1288 		i += written;
1289 	}
1290 
1291 write_err:
1292 #ifdef CONFIG_SPI_FLASH_BAR
1293 	ret = clean_bar(nor);
1294 #endif
1295 	return ret;
1296 }
1297 
1298 #if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
1299 /**
1300  * macronix_quad_enable() - set QE bit in Status Register.
1301  * @nor:	pointer to a 'struct spi_nor'
1302  *
1303  * Set the Quad Enable (QE) bit in the Status Register.
1304  *
1305  * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
1306  *
1307  * Return: 0 on success, -errno otherwise.
1308  */
macronix_quad_enable(struct spi_nor * nor)1309 static int macronix_quad_enable(struct spi_nor *nor)
1310 {
1311 	int ret, val;
1312 
1313 	val = read_sr(nor);
1314 	if (val < 0)
1315 		return val;
1316 	if (val & SR_QUAD_EN_MX)
1317 		return 0;
1318 
1319 	write_enable(nor);
1320 
1321 	write_sr(nor, val | SR_QUAD_EN_MX);
1322 
1323 	ret = spi_nor_wait_till_ready(nor);
1324 	if (ret)
1325 		return ret;
1326 
1327 	ret = read_sr(nor);
1328 	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
1329 		dev_err(nor->dev, "Macronix Quad bit not set\n");
1330 		return -EINVAL;
1331 	}
1332 
1333 	return 0;
1334 }
1335 #endif
1336 
1337 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1338 /*
1339  * Write status Register and configuration register with 2 bytes
1340  * The first byte will be written to the status register, while the
1341  * second byte will be written to the configuration register.
1342  * Return negative if error occurred.
1343  */
write_sr_cr(struct spi_nor * nor,u8 * sr_cr)1344 static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
1345 {
1346 	int ret;
1347 
1348 	write_enable(nor);
1349 
1350 	ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
1351 	if (ret < 0) {
1352 		dev_dbg(nor->dev,
1353 			"error while writing configuration register\n");
1354 		return -EINVAL;
1355 	}
1356 
1357 	ret = spi_nor_wait_till_ready(nor);
1358 	if (ret) {
1359 		dev_dbg(nor->dev,
1360 			"timeout while writing configuration register\n");
1361 		return ret;
1362 	}
1363 
1364 	return 0;
1365 }
1366 
1367 /**
1368  * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
1369  * @nor:	pointer to a 'struct spi_nor'
1370  *
1371  * Set the Quad Enable (QE) bit in the Configuration Register.
1372  * This function should be used with QSPI memories supporting the Read
1373  * Configuration Register (35h) instruction.
1374  *
1375  * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1376  * memories.
1377  *
1378  * Return: 0 on success, -errno otherwise.
1379  */
spansion_read_cr_quad_enable(struct spi_nor * nor)1380 static int spansion_read_cr_quad_enable(struct spi_nor *nor)
1381 {
1382 	u8 sr_cr[2];
1383 	int ret;
1384 
1385 	/* Check current Quad Enable bit value. */
1386 	ret = read_cr(nor);
1387 	if (ret < 0) {
1388 		dev_dbg(nor->dev,
1389 			"error while reading configuration register\n");
1390 		return -EINVAL;
1391 	}
1392 
1393 	if (ret & CR_QUAD_EN_SPAN)
1394 		return 0;
1395 
1396 	sr_cr[1] = ret | CR_QUAD_EN_SPAN;
1397 
1398 	/* Keep the current value of the Status Register. */
1399 	ret = read_sr(nor);
1400 	if (ret < 0) {
1401 		dev_dbg(nor->dev, "error while reading status register\n");
1402 		return -EINVAL;
1403 	}
1404 	sr_cr[0] = ret;
1405 
1406 	ret = write_sr_cr(nor, sr_cr);
1407 	if (ret)
1408 		return ret;
1409 
1410 	/* Read back and check it. */
1411 	ret = read_cr(nor);
1412 	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1413 		dev_dbg(nor->dev, "Spansion Quad bit not set\n");
1414 		return -EINVAL;
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
1421 /**
1422  * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
1423  * @nor:	pointer to a 'struct spi_nor'
1424  *
1425  * Set the Quad Enable (QE) bit in the Configuration Register.
1426  * This function should be used with QSPI memories not supporting the Read
1427  * Configuration Register (35h) instruction.
1428  *
1429  * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1430  * memories.
1431  *
1432  * Return: 0 on success, -errno otherwise.
1433  */
spansion_no_read_cr_quad_enable(struct spi_nor * nor)1434 static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
1435 {
1436 	u8 sr_cr[2];
1437 	int ret;
1438 
1439 	/* Keep the current value of the Status Register. */
1440 	ret = read_sr(nor);
1441 	if (ret < 0) {
1442 		dev_dbg(nor->dev, "error while reading status register\n");
1443 		return -EINVAL;
1444 	}
1445 	sr_cr[0] = ret;
1446 	sr_cr[1] = CR_QUAD_EN_SPAN;
1447 
1448 	return write_sr_cr(nor, sr_cr);
1449 }
1450 
1451 #endif /* CONFIG_SPI_FLASH_SFDP_SUPPORT */
1452 #endif /* CONFIG_SPI_FLASH_SPANSION */
1453 
1454 struct spi_nor_read_command {
1455 	u8			num_mode_clocks;
1456 	u8			num_wait_states;
1457 	u8			opcode;
1458 	enum spi_nor_protocol	proto;
1459 };
1460 
1461 struct spi_nor_pp_command {
1462 	u8			opcode;
1463 	enum spi_nor_protocol	proto;
1464 };
1465 
1466 enum spi_nor_read_command_index {
1467 	SNOR_CMD_READ,
1468 	SNOR_CMD_READ_FAST,
1469 	SNOR_CMD_READ_1_1_1_DTR,
1470 
1471 	/* Dual SPI */
1472 	SNOR_CMD_READ_1_1_2,
1473 	SNOR_CMD_READ_1_2_2,
1474 	SNOR_CMD_READ_2_2_2,
1475 	SNOR_CMD_READ_1_2_2_DTR,
1476 
1477 	/* Quad SPI */
1478 	SNOR_CMD_READ_1_1_4,
1479 	SNOR_CMD_READ_1_4_4,
1480 	SNOR_CMD_READ_4_4_4,
1481 	SNOR_CMD_READ_1_4_4_DTR,
1482 
1483 	/* Octo SPI */
1484 	SNOR_CMD_READ_1_1_8,
1485 	SNOR_CMD_READ_1_8_8,
1486 	SNOR_CMD_READ_8_8_8,
1487 	SNOR_CMD_READ_1_8_8_DTR,
1488 
1489 	SNOR_CMD_READ_MAX
1490 };
1491 
1492 enum spi_nor_pp_command_index {
1493 	SNOR_CMD_PP,
1494 
1495 	/* Quad SPI */
1496 	SNOR_CMD_PP_1_1_4,
1497 	SNOR_CMD_PP_1_4_4,
1498 	SNOR_CMD_PP_4_4_4,
1499 
1500 	/* Octo SPI */
1501 	SNOR_CMD_PP_1_1_8,
1502 	SNOR_CMD_PP_1_8_8,
1503 	SNOR_CMD_PP_8_8_8,
1504 
1505 	SNOR_CMD_PP_MAX
1506 };
1507 
1508 struct spi_nor_flash_parameter {
1509 	u64				size;
1510 	u32				page_size;
1511 
1512 	struct spi_nor_hwcaps		hwcaps;
1513 	struct spi_nor_read_command	reads[SNOR_CMD_READ_MAX];
1514 	struct spi_nor_pp_command	page_programs[SNOR_CMD_PP_MAX];
1515 
1516 	int (*quad_enable)(struct spi_nor *nor);
1517 };
1518 
1519 static void
spi_nor_set_read_settings(struct spi_nor_read_command * read,u8 num_mode_clocks,u8 num_wait_states,u8 opcode,enum spi_nor_protocol proto)1520 spi_nor_set_read_settings(struct spi_nor_read_command *read,
1521 			  u8 num_mode_clocks,
1522 			  u8 num_wait_states,
1523 			  u8 opcode,
1524 			  enum spi_nor_protocol proto)
1525 {
1526 	read->num_mode_clocks = num_mode_clocks;
1527 	read->num_wait_states = num_wait_states;
1528 	read->opcode = opcode;
1529 	read->proto = proto;
1530 }
1531 
1532 static void
spi_nor_set_pp_settings(struct spi_nor_pp_command * pp,u8 opcode,enum spi_nor_protocol proto)1533 spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
1534 			u8 opcode,
1535 			enum spi_nor_protocol proto)
1536 {
1537 	pp->opcode = opcode;
1538 	pp->proto = proto;
1539 }
1540 
1541 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
1542 /*
1543  * Serial Flash Discoverable Parameters (SFDP) parsing.
1544  */
1545 
1546 /**
1547  * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
1548  * @nor:	pointer to a 'struct spi_nor'
1549  * @addr:	offset in the SFDP area to start reading data from
1550  * @len:	number of bytes to read
1551  * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
1552  *
1553  * Whatever the actual numbers of bytes for address and dummy cycles are
1554  * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
1555  * followed by a 3-byte address and 8 dummy clock cycles.
1556  *
1557  * Return: 0 on success, -errno otherwise.
1558  */
spi_nor_read_sfdp(struct spi_nor * nor,u32 addr,size_t len,void * buf)1559 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
1560 			     size_t len, void *buf)
1561 {
1562 	u8 addr_width, read_opcode, read_dummy;
1563 	int ret;
1564 
1565 	read_opcode = nor->read_opcode;
1566 	addr_width = nor->addr_width;
1567 	read_dummy = nor->read_dummy;
1568 
1569 	nor->read_opcode = SPINOR_OP_RDSFDP;
1570 	nor->addr_width = 3;
1571 	nor->read_dummy = 8;
1572 
1573 	while (len) {
1574 		ret = nor->read(nor, addr, len, (u8 *)buf);
1575 		if (!ret || ret > len) {
1576 			ret = -EIO;
1577 			goto read_err;
1578 		}
1579 		if (ret < 0)
1580 			goto read_err;
1581 
1582 		buf += ret;
1583 		addr += ret;
1584 		len -= ret;
1585 	}
1586 	ret = 0;
1587 
1588 read_err:
1589 	nor->read_opcode = read_opcode;
1590 	nor->addr_width = addr_width;
1591 	nor->read_dummy = read_dummy;
1592 
1593 	return ret;
1594 }
1595 
1596 struct sfdp_parameter_header {
1597 	u8		id_lsb;
1598 	u8		minor;
1599 	u8		major;
1600 	u8		length; /* in double words */
1601 	u8		parameter_table_pointer[3]; /* byte address */
1602 	u8		id_msb;
1603 };
1604 
1605 #define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
1606 #define SFDP_PARAM_HEADER_PTP(p) \
1607 	(((p)->parameter_table_pointer[2] << 16) | \
1608 	 ((p)->parameter_table_pointer[1] <<  8) | \
1609 	 ((p)->parameter_table_pointer[0] <<  0))
1610 
1611 #define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
1612 #define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
1613 #define SFDP_SST_ID		0x01bf	/* Manufacturer specific Table */
1614 
1615 #define SFDP_SIGNATURE		0x50444653U
1616 #define SFDP_JESD216_MAJOR	1
1617 #define SFDP_JESD216_MINOR	0
1618 #define SFDP_JESD216A_MINOR	5
1619 #define SFDP_JESD216B_MINOR	6
1620 
1621 struct sfdp_header {
1622 	u32		signature; /* Ox50444653U <=> "SFDP" */
1623 	u8		minor;
1624 	u8		major;
1625 	u8		nph; /* 0-base number of parameter headers */
1626 	u8		unused;
1627 
1628 	/* Basic Flash Parameter Table. */
1629 	struct sfdp_parameter_header	bfpt_header;
1630 };
1631 
1632 /* Basic Flash Parameter Table */
1633 
1634 /*
1635  * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
1636  * They are indexed from 1 but C arrays are indexed from 0.
1637  */
1638 #define BFPT_DWORD(i)		((i) - 1)
1639 #define BFPT_DWORD_MAX		16
1640 
1641 /* The first version of JESB216 defined only 9 DWORDs. */
1642 #define BFPT_DWORD_MAX_JESD216			9
1643 
1644 /* 1st DWORD. */
1645 #define BFPT_DWORD1_FAST_READ_1_1_2		BIT(16)
1646 #define BFPT_DWORD1_ADDRESS_BYTES_MASK		GENMASK(18, 17)
1647 #define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY	(0x0UL << 17)
1648 #define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4	(0x1UL << 17)
1649 #define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY	(0x2UL << 17)
1650 #define BFPT_DWORD1_DTR				BIT(19)
1651 #define BFPT_DWORD1_FAST_READ_1_2_2		BIT(20)
1652 #define BFPT_DWORD1_FAST_READ_1_4_4		BIT(21)
1653 #define BFPT_DWORD1_FAST_READ_1_1_4		BIT(22)
1654 
1655 /* 5th DWORD. */
1656 #define BFPT_DWORD5_FAST_READ_2_2_2		BIT(0)
1657 #define BFPT_DWORD5_FAST_READ_4_4_4		BIT(4)
1658 
1659 /* 11th DWORD. */
1660 #define BFPT_DWORD11_PAGE_SIZE_SHIFT		4
1661 #define BFPT_DWORD11_PAGE_SIZE_MASK		GENMASK(7, 4)
1662 
1663 /* 15th DWORD. */
1664 
1665 /*
1666  * (from JESD216 rev B)
1667  * Quad Enable Requirements (QER):
1668  * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
1669  *         reads based on instruction. DQ3/HOLD# functions are hold during
1670  *         instruction phase.
1671  * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
1672  *         two data bytes where bit 1 of the second byte is one.
1673  *         [...]
1674  *         Writing only one byte to the status register has the side-effect of
1675  *         clearing status register 2, including the QE bit. The 100b code is
1676  *         used if writing one byte to the status register does not modify
1677  *         status register 2.
1678  * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
1679  *         one data byte where bit 6 is one.
1680  *         [...]
1681  * - 011b: QE is bit 7 of status register 2. It is set via Write status
1682  *         register 2 instruction 3Eh with one data byte where bit 7 is one.
1683  *         [...]
1684  *         The status register 2 is read using instruction 3Fh.
1685  * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
1686  *         two data bytes where bit 1 of the second byte is one.
1687  *         [...]
1688  *         In contrast to the 001b code, writing one byte to the status
1689  *         register does not modify status register 2.
1690  * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
1691  *         Read Status instruction 05h. Status register2 is read using
1692  *         instruction 35h. QE is set via Writ Status instruction 01h with
1693  *         two data bytes where bit 1 of the second byte is one.
1694  *         [...]
1695  */
1696 #define BFPT_DWORD15_QER_MASK			GENMASK(22, 20)
1697 #define BFPT_DWORD15_QER_NONE			(0x0UL << 20) /* Micron */
1698 #define BFPT_DWORD15_QER_SR2_BIT1_BUGGY		(0x1UL << 20)
1699 #define BFPT_DWORD15_QER_SR1_BIT6		(0x2UL << 20) /* Macronix */
1700 #define BFPT_DWORD15_QER_SR2_BIT7		(0x3UL << 20)
1701 #define BFPT_DWORD15_QER_SR2_BIT1_NO_RD		(0x4UL << 20)
1702 #define BFPT_DWORD15_QER_SR2_BIT1		(0x5UL << 20) /* Spansion */
1703 
1704 struct sfdp_bfpt {
1705 	u32	dwords[BFPT_DWORD_MAX];
1706 };
1707 
1708 /* Fast Read settings. */
1709 
1710 static void
spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command * read,u16 half,enum spi_nor_protocol proto)1711 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
1712 				    u16 half,
1713 				    enum spi_nor_protocol proto)
1714 {
1715 	read->num_mode_clocks = (half >> 5) & 0x07;
1716 	read->num_wait_states = (half >> 0) & 0x1f;
1717 	read->opcode = (half >> 8) & 0xff;
1718 	read->proto = proto;
1719 }
1720 
1721 struct sfdp_bfpt_read {
1722 	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
1723 	u32			hwcaps;
1724 
1725 	/*
1726 	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
1727 	 * whether the Fast Read x-y-z command is supported.
1728 	 */
1729 	u32			supported_dword;
1730 	u32			supported_bit;
1731 
1732 	/*
1733 	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
1734 	 * encodes the op code, the number of mode clocks and the number of wait
1735 	 * states to be used by Fast Read x-y-z command.
1736 	 */
1737 	u32			settings_dword;
1738 	u32			settings_shift;
1739 
1740 	/* The SPI protocol for this Fast Read x-y-z command. */
1741 	enum spi_nor_protocol	proto;
1742 };
1743 
1744 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
1745 	/* Fast Read 1-1-2 */
1746 	{
1747 		SNOR_HWCAPS_READ_1_1_2,
1748 		BFPT_DWORD(1), BIT(16),	/* Supported bit */
1749 		BFPT_DWORD(4), 0,	/* Settings */
1750 		SNOR_PROTO_1_1_2,
1751 	},
1752 
1753 	/* Fast Read 1-2-2 */
1754 	{
1755 		SNOR_HWCAPS_READ_1_2_2,
1756 		BFPT_DWORD(1), BIT(20),	/* Supported bit */
1757 		BFPT_DWORD(4), 16,	/* Settings */
1758 		SNOR_PROTO_1_2_2,
1759 	},
1760 
1761 	/* Fast Read 2-2-2 */
1762 	{
1763 		SNOR_HWCAPS_READ_2_2_2,
1764 		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
1765 		BFPT_DWORD(6), 16,	/* Settings */
1766 		SNOR_PROTO_2_2_2,
1767 	},
1768 
1769 	/* Fast Read 1-1-4 */
1770 	{
1771 		SNOR_HWCAPS_READ_1_1_4,
1772 		BFPT_DWORD(1), BIT(22),	/* Supported bit */
1773 		BFPT_DWORD(3), 16,	/* Settings */
1774 		SNOR_PROTO_1_1_4,
1775 	},
1776 
1777 	/* Fast Read 1-4-4 */
1778 	{
1779 		SNOR_HWCAPS_READ_1_4_4,
1780 		BFPT_DWORD(1), BIT(21),	/* Supported bit */
1781 		BFPT_DWORD(3), 0,	/* Settings */
1782 		SNOR_PROTO_1_4_4,
1783 	},
1784 
1785 	/* Fast Read 4-4-4 */
1786 	{
1787 		SNOR_HWCAPS_READ_4_4_4,
1788 		BFPT_DWORD(5), BIT(4),	/* Supported bit */
1789 		BFPT_DWORD(7), 16,	/* Settings */
1790 		SNOR_PROTO_4_4_4,
1791 	},
1792 };
1793 
1794 struct sfdp_bfpt_erase {
1795 	/*
1796 	 * The half-word at offset <shift> in DWORD <dwoard> encodes the
1797 	 * op code and erase sector size to be used by Sector Erase commands.
1798 	 */
1799 	u32			dword;
1800 	u32			shift;
1801 };
1802 
1803 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
1804 	/* Erase Type 1 in DWORD8 bits[15:0] */
1805 	{BFPT_DWORD(8), 0},
1806 
1807 	/* Erase Type 2 in DWORD8 bits[31:16] */
1808 	{BFPT_DWORD(8), 16},
1809 
1810 	/* Erase Type 3 in DWORD9 bits[15:0] */
1811 	{BFPT_DWORD(9), 0},
1812 
1813 	/* Erase Type 4 in DWORD9 bits[31:16] */
1814 	{BFPT_DWORD(9), 16},
1815 };
1816 
1817 static int spi_nor_hwcaps_read2cmd(u32 hwcaps);
1818 
1819 /**
1820  * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
1821  * @nor:		pointer to a 'struct spi_nor'
1822  * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
1823  *			the Basic Flash Parameter Table length and version
1824  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
1825  *			filled
1826  *
1827  * The Basic Flash Parameter Table is the main and only mandatory table as
1828  * defined by the SFDP (JESD216) specification.
1829  * It provides us with the total size (memory density) of the data array and
1830  * the number of address bytes for Fast Read, Page Program and Sector Erase
1831  * commands.
1832  * For Fast READ commands, it also gives the number of mode clock cycles and
1833  * wait states (regrouped in the number of dummy clock cycles) for each
1834  * supported instruction op code.
1835  * For Page Program, the page size is now available since JESD216 rev A, however
1836  * the supported instruction op codes are still not provided.
1837  * For Sector Erase commands, this table stores the supported instruction op
1838  * codes and the associated sector sizes.
1839  * Finally, the Quad Enable Requirements (QER) are also available since JESD216
1840  * rev A. The QER bits encode the manufacturer dependent procedure to be
1841  * executed to set the Quad Enable (QE) bit in some internal register of the
1842  * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
1843  * sending any Quad SPI command to the memory. Actually, setting the QE bit
1844  * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
1845  * and IO3 hence enabling 4 (Quad) I/O lines.
1846  *
1847  * Return: 0 on success, -errno otherwise.
1848  */
spi_nor_parse_bfpt(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,struct spi_nor_flash_parameter * params)1849 static int spi_nor_parse_bfpt(struct spi_nor *nor,
1850 			      const struct sfdp_parameter_header *bfpt_header,
1851 			      struct spi_nor_flash_parameter *params)
1852 {
1853 	struct mtd_info *mtd = &nor->mtd;
1854 	struct sfdp_bfpt bfpt;
1855 	size_t len;
1856 	int i, cmd, err;
1857 	u32 addr;
1858 	u16 half;
1859 
1860 	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
1861 	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
1862 		return -EINVAL;
1863 
1864 	/* Read the Basic Flash Parameter Table. */
1865 	len = min_t(size_t, sizeof(bfpt),
1866 		    bfpt_header->length * sizeof(u32));
1867 	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
1868 	memset(&bfpt, 0, sizeof(bfpt));
1869 	err = spi_nor_read_sfdp(nor,  addr, len, &bfpt);
1870 	if (err < 0)
1871 		return err;
1872 
1873 	/* Fix endianness of the BFPT DWORDs. */
1874 	for (i = 0; i < BFPT_DWORD_MAX; i++)
1875 		bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);
1876 
1877 	/* Number of address bytes. */
1878 	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
1879 	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
1880 		nor->addr_width = 3;
1881 		break;
1882 
1883 	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
1884 		nor->addr_width = 4;
1885 		break;
1886 
1887 	default:
1888 		break;
1889 	}
1890 
1891 	/* Flash Memory Density (in bits). */
1892 	params->size = bfpt.dwords[BFPT_DWORD(2)];
1893 	if (params->size & BIT(31)) {
1894 		params->size &= ~BIT(31);
1895 
1896 		/*
1897 		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
1898 		 * bits is unlikely to exist so this error probably means
1899 		 * the BFPT we are reading is corrupted/wrong.
1900 		 */
1901 		if (params->size > 63)
1902 			return -EINVAL;
1903 
1904 		params->size = 1ULL << params->size;
1905 	} else {
1906 		params->size++;
1907 	}
1908 	params->size >>= 3; /* Convert to bytes. */
1909 
1910 	/* Fast Read settings. */
1911 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
1912 		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
1913 		struct spi_nor_read_command *read;
1914 
1915 		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
1916 			params->hwcaps.mask &= ~rd->hwcaps;
1917 			continue;
1918 		}
1919 
1920 		params->hwcaps.mask |= rd->hwcaps;
1921 		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
1922 		read = &params->reads[cmd];
1923 		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
1924 		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
1925 	}
1926 
1927 	/* Sector Erase settings. */
1928 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
1929 		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
1930 		u32 erasesize;
1931 		u8 opcode;
1932 
1933 		half = bfpt.dwords[er->dword] >> er->shift;
1934 		erasesize = half & 0xff;
1935 
1936 		/* erasesize == 0 means this Erase Type is not supported. */
1937 		if (!erasesize)
1938 			continue;
1939 
1940 		erasesize = 1U << erasesize;
1941 		opcode = (half >> 8) & 0xff;
1942 #ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
1943 		if (erasesize == SZ_4K) {
1944 			nor->erase_opcode = opcode;
1945 			mtd->erasesize = erasesize;
1946 			break;
1947 		}
1948 #endif
1949 		if (!mtd->erasesize || mtd->erasesize < erasesize) {
1950 			nor->erase_opcode = opcode;
1951 			mtd->erasesize = erasesize;
1952 		}
1953 	}
1954 
1955 	/* Stop here if not JESD216 rev A or later. */
1956 	if (bfpt_header->length < BFPT_DWORD_MAX)
1957 		return 0;
1958 
1959 	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
1960 	params->page_size = bfpt.dwords[BFPT_DWORD(11)];
1961 	params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
1962 	params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
1963 	params->page_size = 1U << params->page_size;
1964 
1965 	/* Quad Enable Requirements. */
1966 	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
1967 	case BFPT_DWORD15_QER_NONE:
1968 		params->quad_enable = NULL;
1969 		break;
1970 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1971 	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
1972 	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
1973 		params->quad_enable = spansion_no_read_cr_quad_enable;
1974 		break;
1975 #endif
1976 #if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
1977 	case BFPT_DWORD15_QER_SR1_BIT6:
1978 		params->quad_enable = macronix_quad_enable;
1979 		break;
1980 #endif
1981 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1982 	case BFPT_DWORD15_QER_SR2_BIT1:
1983 		params->quad_enable = spansion_read_cr_quad_enable;
1984 		break;
1985 #endif
1986 	default:
1987 		return -EINVAL;
1988 	}
1989 
1990 	return 0;
1991 }
1992 
1993 /**
1994  * spi_nor_parse_microchip_sfdp() - parse the Microchip manufacturer specific
1995  * SFDP table.
1996  * @nor:		pointer to a 'struct spi_nor'.
1997  * @param_header:	pointer to the SFDP parameter header.
1998  *
1999  * Return: 0 on success, -errno otherwise.
2000  */
2001 static int
spi_nor_parse_microchip_sfdp(struct spi_nor * nor,const struct sfdp_parameter_header * param_header)2002 spi_nor_parse_microchip_sfdp(struct spi_nor *nor,
2003 			     const struct sfdp_parameter_header *param_header)
2004 {
2005 	size_t size;
2006 	u32 addr;
2007 	int ret;
2008 
2009 	size = param_header->length * sizeof(u32);
2010 	addr = SFDP_PARAM_HEADER_PTP(param_header);
2011 
2012 	nor->manufacturer_sfdp = devm_kmalloc(nor->dev, size, GFP_KERNEL);
2013 	if (!nor->manufacturer_sfdp)
2014 		return -ENOMEM;
2015 
2016 	ret = spi_nor_read_sfdp(nor, addr, size, nor->manufacturer_sfdp);
2017 
2018 	return ret;
2019 }
2020 
2021 /**
2022  * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
2023  * @nor:		pointer to a 'struct spi_nor'
2024  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
2025  *			filled
2026  *
2027  * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
2028  * specification. This is a standard which tends to supported by almost all
2029  * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
2030  * runtime the main parameters needed to perform basic SPI flash operations such
2031  * as Fast Read, Page Program or Sector Erase commands.
2032  *
2033  * Return: 0 on success, -errno otherwise.
2034  */
spi_nor_parse_sfdp(struct spi_nor * nor,struct spi_nor_flash_parameter * params)2035 static int spi_nor_parse_sfdp(struct spi_nor *nor,
2036 			      struct spi_nor_flash_parameter *params)
2037 {
2038 	const struct sfdp_parameter_header *param_header, *bfpt_header;
2039 	struct sfdp_parameter_header *param_headers = NULL;
2040 	struct sfdp_header header;
2041 	size_t psize;
2042 	int i, err;
2043 
2044 	/* Get the SFDP header. */
2045 	err = spi_nor_read_sfdp(nor, 0, sizeof(header), &header);
2046 	if (err < 0)
2047 		return err;
2048 
2049 	/* Check the SFDP header version. */
2050 	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
2051 	    header.major != SFDP_JESD216_MAJOR)
2052 		return -EINVAL;
2053 
2054 	/*
2055 	 * Verify that the first and only mandatory parameter header is a
2056 	 * Basic Flash Parameter Table header as specified in JESD216.
2057 	 */
2058 	bfpt_header = &header.bfpt_header;
2059 	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
2060 	    bfpt_header->major != SFDP_JESD216_MAJOR)
2061 		return -EINVAL;
2062 
2063 	/*
2064 	 * Allocate memory then read all parameter headers with a single
2065 	 * Read SFDP command. These parameter headers will actually be parsed
2066 	 * twice: a first time to get the latest revision of the basic flash
2067 	 * parameter table, then a second time to handle the supported optional
2068 	 * tables.
2069 	 * Hence we read the parameter headers once for all to reduce the
2070 	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
2071 	 * because we don't need to keep these parameter headers: the allocated
2072 	 * memory is always released with kfree() before exiting this function.
2073 	 */
2074 	if (header.nph) {
2075 		psize = header.nph * sizeof(*param_headers);
2076 
2077 		param_headers = kmalloc(psize, GFP_KERNEL);
2078 		if (!param_headers)
2079 			return -ENOMEM;
2080 
2081 		err = spi_nor_read_sfdp(nor, sizeof(header),
2082 					psize, param_headers);
2083 		if (err < 0) {
2084 			dev_err(nor->dev,
2085 				"failed to read SFDP parameter headers\n");
2086 			goto exit;
2087 		}
2088 	}
2089 
2090 	/*
2091 	 * Check other parameter headers to get the latest revision of
2092 	 * the basic flash parameter table.
2093 	 */
2094 	for (i = 0; i < header.nph; i++) {
2095 		param_header = &param_headers[i];
2096 
2097 		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
2098 		    param_header->major == SFDP_JESD216_MAJOR &&
2099 		    (param_header->minor > bfpt_header->minor ||
2100 		     (param_header->minor == bfpt_header->minor &&
2101 		      param_header->length > bfpt_header->length)))
2102 			bfpt_header = param_header;
2103 	}
2104 
2105 	err = spi_nor_parse_bfpt(nor, bfpt_header, params);
2106 	if (err)
2107 		goto exit;
2108 
2109 	/* Parse other parameter headers. */
2110 	for (i = 0; i < header.nph; i++) {
2111 		param_header = &param_headers[i];
2112 
2113 		switch (SFDP_PARAM_HEADER_ID(param_header)) {
2114 		case SFDP_SECTOR_MAP_ID:
2115 			dev_info(nor->dev,
2116 				 "non-uniform erase sector maps are not supported yet.\n");
2117 			break;
2118 
2119 		case SFDP_SST_ID:
2120 			err = spi_nor_parse_microchip_sfdp(nor, param_header);
2121 			break;
2122 
2123 		default:
2124 			break;
2125 		}
2126 
2127 		if (err) {
2128 			dev_warn(nor->dev,
2129 				 "Failed to parse optional parameter table: %04x\n",
2130 				 SFDP_PARAM_HEADER_ID(param_header));
2131 			/*
2132 			 * Let's not drop all information we extracted so far
2133 			 * if optional table parsers fail. In case of failing,
2134 			 * each optional parser is responsible to roll back to
2135 			 * the previously known spi_nor data.
2136 			 */
2137 			err = 0;
2138 		}
2139 	}
2140 
2141 exit:
2142 	kfree(param_headers);
2143 	return err;
2144 }
2145 #else
spi_nor_parse_sfdp(struct spi_nor * nor,struct spi_nor_flash_parameter * params)2146 static int spi_nor_parse_sfdp(struct spi_nor *nor,
2147 			      struct spi_nor_flash_parameter *params)
2148 {
2149 	return -EINVAL;
2150 }
2151 #endif /* SPI_FLASH_SFDP_SUPPORT */
2152 
spi_nor_init_params(struct spi_nor * nor,const struct flash_info * info,struct spi_nor_flash_parameter * params)2153 static int spi_nor_init_params(struct spi_nor *nor,
2154 			       const struct flash_info *info,
2155 			       struct spi_nor_flash_parameter *params)
2156 {
2157 	/* Set legacy flash parameters as default. */
2158 	memset(params, 0, sizeof(*params));
2159 
2160 	/* Set SPI NOR sizes. */
2161 	params->size = info->sector_size * info->n_sectors;
2162 	params->page_size = info->page_size;
2163 
2164 	/* (Fast) Read settings. */
2165 	params->hwcaps.mask |= SNOR_HWCAPS_READ;
2166 	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
2167 				  0, 0, SPINOR_OP_READ,
2168 				  SNOR_PROTO_1_1_1);
2169 
2170 	if (!(info->flags & SPI_NOR_NO_FR)) {
2171 		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2172 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
2173 					  0, 8, SPINOR_OP_READ_FAST,
2174 					  SNOR_PROTO_1_1_1);
2175 	}
2176 
2177 	if (info->flags & SPI_NOR_DUAL_READ) {
2178 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2179 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
2180 					  0, 8, SPINOR_OP_READ_1_1_2,
2181 					  SNOR_PROTO_1_1_2);
2182 	}
2183 
2184 	if (info->flags & SPI_NOR_QUAD_READ) {
2185 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2186 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
2187 					  0, 8, SPINOR_OP_READ_1_1_4,
2188 					  SNOR_PROTO_1_1_4);
2189 	}
2190 
2191 	if (info->flags & SPI_NOR_OCTAL_READ) {
2192 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2193 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
2194 					  0, 8, SPINOR_OP_READ_1_1_8,
2195 					  SNOR_PROTO_1_1_8);
2196 	}
2197 
2198 	/* Page Program settings. */
2199 	params->hwcaps.mask |= SNOR_HWCAPS_PP;
2200 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
2201 				SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2202 
2203 	if (info->flags & SPI_NOR_QUAD_READ) {
2204 		params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
2205 		spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
2206 					SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
2207 	}
2208 
2209 	/* Select the procedure to set the Quad Enable bit. */
2210 	if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
2211 				   SNOR_HWCAPS_PP_QUAD)) {
2212 		switch (JEDEC_MFR(info)) {
2213 #if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
2214 		case SNOR_MFR_MACRONIX:
2215 		case SNOR_MFR_ISSI:
2216 			params->quad_enable = macronix_quad_enable;
2217 			break;
2218 #endif
2219 		case SNOR_MFR_ST:
2220 		case SNOR_MFR_MICRON:
2221 			break;
2222 
2223 		default:
2224 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
2225 			/* Kept only for backward compatibility purpose. */
2226 			params->quad_enable = spansion_read_cr_quad_enable;
2227 #endif
2228 			break;
2229 		}
2230 	}
2231 
2232 	/* Override the parameters with data read from SFDP tables. */
2233 	nor->addr_width = 0;
2234 	nor->mtd.erasesize = 0;
2235 	if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
2236 	    !(info->flags & SPI_NOR_SKIP_SFDP)) {
2237 		struct spi_nor_flash_parameter sfdp_params;
2238 
2239 		memcpy(&sfdp_params, params, sizeof(sfdp_params));
2240 		if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
2241 			nor->addr_width = 0;
2242 			nor->mtd.erasesize = 0;
2243 		} else {
2244 			memcpy(params, &sfdp_params, sizeof(*params));
2245 		}
2246 	}
2247 
2248 	return 0;
2249 }
2250 
spi_nor_hwcaps2cmd(u32 hwcaps,const int table[][2],size_t size)2251 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2252 {
2253 	size_t i;
2254 
2255 	for (i = 0; i < size; i++)
2256 		if (table[i][0] == (int)hwcaps)
2257 			return table[i][1];
2258 
2259 	return -EINVAL;
2260 }
2261 
spi_nor_hwcaps_read2cmd(u32 hwcaps)2262 static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2263 {
2264 	static const int hwcaps_read2cmd[][2] = {
2265 		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
2266 		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
2267 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
2268 		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
2269 		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
2270 		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
2271 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
2272 		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
2273 		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
2274 		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
2275 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
2276 		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
2277 		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
2278 		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
2279 		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
2280 	};
2281 
2282 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2283 				  ARRAY_SIZE(hwcaps_read2cmd));
2284 }
2285 
spi_nor_hwcaps_pp2cmd(u32 hwcaps)2286 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2287 {
2288 	static const int hwcaps_pp2cmd[][2] = {
2289 		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
2290 		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
2291 		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
2292 		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
2293 		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
2294 		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
2295 		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
2296 	};
2297 
2298 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2299 				  ARRAY_SIZE(hwcaps_pp2cmd));
2300 }
2301 
spi_nor_select_read(struct spi_nor * nor,const struct spi_nor_flash_parameter * params,u32 shared_hwcaps)2302 static int spi_nor_select_read(struct spi_nor *nor,
2303 			       const struct spi_nor_flash_parameter *params,
2304 			       u32 shared_hwcaps)
2305 {
2306 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2307 	const struct spi_nor_read_command *read;
2308 
2309 	if (best_match < 0)
2310 		return -EINVAL;
2311 
2312 	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2313 	if (cmd < 0)
2314 		return -EINVAL;
2315 
2316 	read = &params->reads[cmd];
2317 	nor->read_opcode = read->opcode;
2318 	nor->read_proto = read->proto;
2319 
2320 	/*
2321 	 * In the spi-nor framework, we don't need to make the difference
2322 	 * between mode clock cycles and wait state clock cycles.
2323 	 * Indeed, the value of the mode clock cycles is used by a QSPI
2324 	 * flash memory to know whether it should enter or leave its 0-4-4
2325 	 * (Continuous Read / XIP) mode.
2326 	 * eXecution In Place is out of the scope of the mtd sub-system.
2327 	 * Hence we choose to merge both mode and wait state clock cycles
2328 	 * into the so called dummy clock cycles.
2329 	 */
2330 	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2331 	return 0;
2332 }
2333 
spi_nor_select_pp(struct spi_nor * nor,const struct spi_nor_flash_parameter * params,u32 shared_hwcaps)2334 static int spi_nor_select_pp(struct spi_nor *nor,
2335 			     const struct spi_nor_flash_parameter *params,
2336 			     u32 shared_hwcaps)
2337 {
2338 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2339 	const struct spi_nor_pp_command *pp;
2340 
2341 	if (best_match < 0)
2342 		return -EINVAL;
2343 
2344 	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2345 	if (cmd < 0)
2346 		return -EINVAL;
2347 
2348 	pp = &params->page_programs[cmd];
2349 	nor->program_opcode = pp->opcode;
2350 	nor->write_proto = pp->proto;
2351 	return 0;
2352 }
2353 
spi_nor_select_erase(struct spi_nor * nor,const struct flash_info * info)2354 static int spi_nor_select_erase(struct spi_nor *nor,
2355 				const struct flash_info *info)
2356 {
2357 	struct mtd_info *mtd = &nor->mtd;
2358 
2359 	/* Do nothing if already configured from SFDP. */
2360 	if (mtd->erasesize)
2361 		return 0;
2362 
2363 #ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
2364 	/* prefer "small sector" erase if possible */
2365 	if (info->flags & SECT_4K) {
2366 		nor->erase_opcode = SPINOR_OP_BE_4K;
2367 		mtd->erasesize = 4096;
2368 	} else if (info->flags & SECT_4K_PMC) {
2369 		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
2370 		mtd->erasesize = 4096;
2371 	} else
2372 #endif
2373 	{
2374 		nor->erase_opcode = SPINOR_OP_SE;
2375 		mtd->erasesize = info->sector_size;
2376 	}
2377 	return 0;
2378 }
2379 
spi_nor_setup(struct spi_nor * nor,const struct flash_info * info,const struct spi_nor_flash_parameter * params,const struct spi_nor_hwcaps * hwcaps)2380 static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
2381 			 const struct spi_nor_flash_parameter *params,
2382 			 const struct spi_nor_hwcaps *hwcaps)
2383 {
2384 	u32 ignored_mask, shared_mask;
2385 	bool enable_quad_io;
2386 	int err;
2387 
2388 	/*
2389 	 * Keep only the hardware capabilities supported by both the SPI
2390 	 * controller and the SPI flash memory.
2391 	 */
2392 	shared_mask = hwcaps->mask & params->hwcaps.mask;
2393 
2394 	/* SPI n-n-n protocols are not supported yet. */
2395 	ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
2396 			SNOR_HWCAPS_READ_4_4_4 |
2397 			SNOR_HWCAPS_READ_8_8_8 |
2398 			SNOR_HWCAPS_PP_4_4_4 |
2399 			SNOR_HWCAPS_PP_8_8_8);
2400 	if (shared_mask & ignored_mask) {
2401 		dev_dbg(nor->dev,
2402 			"SPI n-n-n protocols are not supported yet.\n");
2403 		shared_mask &= ~ignored_mask;
2404 	}
2405 
2406 	/* Select the (Fast) Read command. */
2407 	err = spi_nor_select_read(nor, params, shared_mask);
2408 	if (err) {
2409 		dev_dbg(nor->dev,
2410 			"can't select read settings supported by both the SPI controller and memory.\n");
2411 		return err;
2412 	}
2413 
2414 	/* Select the Page Program command. */
2415 	err = spi_nor_select_pp(nor, params, shared_mask);
2416 	if (err) {
2417 		dev_dbg(nor->dev,
2418 			"can't select write settings supported by both the SPI controller and memory.\n");
2419 		return err;
2420 	}
2421 
2422 	/* Select the Sector Erase command. */
2423 	err = spi_nor_select_erase(nor, info);
2424 	if (err) {
2425 		dev_dbg(nor->dev,
2426 			"can't select erase settings supported by both the SPI controller and memory.\n");
2427 		return err;
2428 	}
2429 
2430 	/* Enable Quad I/O if needed. */
2431 	enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
2432 			  spi_nor_get_protocol_width(nor->write_proto) == 4);
2433 	if (enable_quad_io && params->quad_enable)
2434 		nor->quad_enable = params->quad_enable;
2435 	else
2436 		nor->quad_enable = NULL;
2437 
2438 	return 0;
2439 }
2440 
spi_nor_init(struct spi_nor * nor)2441 static int spi_nor_init(struct spi_nor *nor)
2442 {
2443 	int err;
2444 
2445 	/*
2446 	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
2447 	 * with the software protection bits set
2448 	 */
2449 	if (IS_ENABLED(CONFIG_SPI_FLASH_UNLOCK_ALL) &&
2450 	    (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
2451 	     JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
2452 	     JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
2453 	     nor->info->flags & SPI_NOR_HAS_LOCK)) {
2454 		write_enable(nor);
2455 		write_sr(nor, 0);
2456 		spi_nor_wait_till_ready(nor);
2457 	}
2458 
2459 	if (nor->quad_enable) {
2460 		err = nor->quad_enable(nor);
2461 		if (err) {
2462 			dev_dbg(nor->dev, "quad mode not supported\n");
2463 			return err;
2464 		}
2465 	}
2466 
2467 	if (nor->addr_width == 4 &&
2468 	    (JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION) &&
2469 	    !(nor->info->flags & SPI_NOR_4B_OPCODES)) {
2470 		/*
2471 		 * If the RESET# pin isn't hooked up properly, or the system
2472 		 * otherwise doesn't perform a reset command in the boot
2473 		 * sequence, it's impossible to 100% protect against unexpected
2474 		 * reboots (e.g., crashes). Warn the user (or hopefully, system
2475 		 * designer) that this is bad.
2476 		 */
2477 		if (nor->flags & SNOR_F_BROKEN_RESET)
2478 			debug("enabling reset hack; may not recover from unexpected reboots\n");
2479 		set_4byte(nor, nor->info, 1);
2480 	}
2481 
2482 	return 0;
2483 }
2484 
spi_nor_scan(struct spi_nor * nor)2485 int spi_nor_scan(struct spi_nor *nor)
2486 {
2487 	struct spi_nor_flash_parameter params;
2488 	const struct flash_info *info = NULL;
2489 	struct mtd_info *mtd = &nor->mtd;
2490 	struct spi_nor_hwcaps hwcaps = {
2491 		.mask = SNOR_HWCAPS_READ |
2492 			SNOR_HWCAPS_READ_FAST |
2493 			SNOR_HWCAPS_PP,
2494 	};
2495 	struct spi_slave *spi = nor->spi;
2496 	int ret;
2497 
2498 	/* Reset SPI protocol for all commands. */
2499 	nor->reg_proto = SNOR_PROTO_1_1_1;
2500 	nor->read_proto = SNOR_PROTO_1_1_1;
2501 	nor->write_proto = SNOR_PROTO_1_1_1;
2502 	nor->read = spi_nor_read_data;
2503 	nor->write = spi_nor_write_data;
2504 	nor->read_reg = spi_nor_read_reg;
2505 	nor->write_reg = spi_nor_write_reg;
2506 
2507 	if (spi->mode & SPI_RX_OCTAL) {
2508 		hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2509 
2510 		if (spi->mode & SPI_TX_OCTAL)
2511 			hwcaps.mask |= (SNOR_HWCAPS_READ_1_8_8 |
2512 					SNOR_HWCAPS_PP_1_1_8 |
2513 					SNOR_HWCAPS_PP_1_8_8);
2514 	} else if (spi->mode & SPI_RX_QUAD) {
2515 		hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2516 
2517 		if (spi->mode & SPI_TX_QUAD)
2518 			hwcaps.mask |= (SNOR_HWCAPS_READ_1_4_4 |
2519 					SNOR_HWCAPS_PP_1_1_4 |
2520 					SNOR_HWCAPS_PP_1_4_4);
2521 	} else if (spi->mode & SPI_RX_DUAL) {
2522 		hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2523 
2524 		if (spi->mode & SPI_TX_DUAL)
2525 			hwcaps.mask |= SNOR_HWCAPS_READ_1_2_2;
2526 	}
2527 
2528 	info = spi_nor_read_id(nor);
2529 	if (IS_ERR_OR_NULL(info))
2530 		return -ENOENT;
2531 	/* Parse the Serial Flash Discoverable Parameters table. */
2532 	ret = spi_nor_init_params(nor, info, &params);
2533 	if (ret)
2534 		return ret;
2535 
2536 	if (!mtd->name)
2537 		mtd->name = info->name;
2538 	mtd->priv = nor;
2539 	mtd->type = MTD_NORFLASH;
2540 	mtd->writesize = 1;
2541 	mtd->flags = MTD_CAP_NORFLASH;
2542 	mtd->size = params.size;
2543 	mtd->_erase = spi_nor_erase;
2544 	mtd->_read = spi_nor_read;
2545 	mtd->_write = spi_nor_write;
2546 
2547 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
2548 	/* NOR protection support for STmicro/Micron chips and similar */
2549 	if (JEDEC_MFR(info) == SNOR_MFR_ST ||
2550 	    JEDEC_MFR(info) == SNOR_MFR_MICRON ||
2551 	    JEDEC_MFR(info) == SNOR_MFR_SST ||
2552 			info->flags & SPI_NOR_HAS_LOCK) {
2553 		nor->flash_lock = stm_lock;
2554 		nor->flash_unlock = stm_unlock;
2555 		nor->flash_is_locked = stm_is_locked;
2556 	}
2557 #endif
2558 
2559 #ifdef CONFIG_SPI_FLASH_SST
2560 	/*
2561 	 * sst26 series block protection implementation differs from other
2562 	 * series.
2563 	 */
2564 	if (info->flags & SPI_NOR_HAS_SST26LOCK) {
2565 		nor->flash_lock = sst26_lock;
2566 		nor->flash_unlock = sst26_unlock;
2567 		nor->flash_is_locked = sst26_is_locked;
2568 	}
2569 #endif
2570 
2571 	if (info->flags & USE_FSR)
2572 		nor->flags |= SNOR_F_USE_FSR;
2573 	if (info->flags & SPI_NOR_HAS_TB)
2574 		nor->flags |= SNOR_F_HAS_SR_TB;
2575 	if (info->flags & NO_CHIP_ERASE)
2576 		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
2577 	if (info->flags & USE_CLSR)
2578 		nor->flags |= SNOR_F_USE_CLSR;
2579 
2580 	if (info->flags & SPI_NOR_NO_ERASE)
2581 		mtd->flags |= MTD_NO_ERASE;
2582 
2583 	nor->page_size = params.page_size;
2584 	mtd->writebufsize = nor->page_size;
2585 
2586 	/* Some devices cannot do fast-read, no matter what DT tells us */
2587 	if ((info->flags & SPI_NOR_NO_FR) || (spi->mode & SPI_RX_SLOW))
2588 		params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2589 
2590 	/*
2591 	 * Configure the SPI memory:
2592 	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
2593 	 * - set the number of dummy cycles (mode cycles + wait states).
2594 	 * - set the SPI protocols for register and memory accesses.
2595 	 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
2596 	 */
2597 	ret = spi_nor_setup(nor, info, &params, &hwcaps);
2598 	if (ret)
2599 		return ret;
2600 
2601 	if (nor->addr_width) {
2602 		/* already configured from SFDP */
2603 	} else if (info->addr_width) {
2604 		nor->addr_width = info->addr_width;
2605 	} else if (mtd->size > SZ_16M) {
2606 #ifndef CONFIG_SPI_FLASH_BAR
2607 		/* enable 4-byte addressing if the device exceeds 16MiB */
2608 		nor->addr_width = 4;
2609 		if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
2610 		    info->flags & SPI_NOR_4B_OPCODES)
2611 			spi_nor_set_4byte_opcodes(nor, info);
2612 #else
2613 	/* Configure the BAR - discover bank cmds and read current bank */
2614 	nor->addr_width = 3;
2615 	ret = read_bar(nor, info);
2616 	if (ret < 0)
2617 		return ret;
2618 #endif
2619 	} else {
2620 		nor->addr_width = 3;
2621 	}
2622 
2623 	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
2624 		dev_dbg(nor->dev, "address width is too large: %u\n",
2625 			nor->addr_width);
2626 		return -EINVAL;
2627 	}
2628 
2629 	/* Send all the required SPI flash commands to initialize device */
2630 	nor->info = info;
2631 	ret = spi_nor_init(nor);
2632 	if (ret)
2633 		return ret;
2634 
2635 	nor->name = mtd->name;
2636 	nor->size = mtd->size;
2637 	nor->erase_size = mtd->erasesize;
2638 	nor->sector_size = mtd->erasesize;
2639 
2640 #ifndef CONFIG_SPL_BUILD
2641 	printf("SF: Detected %s with page size ", nor->name);
2642 	print_size(nor->page_size, ", erase size ");
2643 	print_size(nor->erase_size, ", total ");
2644 	print_size(nor->size, "");
2645 	puts("\n");
2646 #endif
2647 
2648 	return 0;
2649 }
2650 
2651 /* U-Boot specific functions, need to extend MTD to support these */
spi_flash_cmd_get_sw_write_prot(struct spi_nor * nor)2652 int spi_flash_cmd_get_sw_write_prot(struct spi_nor *nor)
2653 {
2654 	int sr = read_sr(nor);
2655 
2656 	if (sr < 0)
2657 		return sr;
2658 
2659 	return (sr >> 2) & 7;
2660 }
2661