1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Marvell International Ltd.
4  */
5 
6 /*
7  * Simple allocate only memory allocator. Used to allocate memory at
8  * application start time.
9  */
10 
11 #include <asm/global_data.h>
12 
13 #include <linux/compat.h>
14 #include <linux/io.h>
15 #include <linux/types.h>
16 
17 #include <mach/octeon-model.h>
18 #include <mach/cvmx-bootmem.h>
19 #include <mach/cvmx-coremask.h>
20 #include <mach/cvmx-regs.h>
21 
22 DECLARE_GLOBAL_DATA_PTR;
23 
24 /**
25  * This is the physical location of a struct cvmx_bootmem_desc
26  * structure in Octeon's memory. Note that dues to addressing
27  * limits or runtime environment it might not be possible to
28  * create a C pointer to this structure.
29  */
30 static u64 cvmx_bootmem_desc_addr;
31 
32 /**
33  * This macro returns the size of a member of a structure.
34  * Logically it is the same as "sizeof(s::field)" in C++, but
35  * C lacks the "::" operator.
36  */
37 #define SIZEOF_FIELD(s, field) sizeof(((s *)NULL)->field)
38 
39 /**
40  * This macro returns a member of the struct cvmx_bootmem_desc
41  * structure. These members can't be directly addressed as
42  * they might be in memory not directly reachable. In the case
43  * where bootmem is compiled with LINUX_HOST, the structure
44  * itself might be located on a remote Octeon. The argument
45  * "field" is the member name of the struct cvmx_bootmem_desc to read.
46  * Regardless of the type of the field, the return type is always
47  * a u64.
48  */
49 #define CVMX_BOOTMEM_DESC_GET_FIELD(field)				\
50 	__cvmx_bootmem_desc_get(cvmx_bootmem_desc_addr,			\
51 				offsetof(struct cvmx_bootmem_desc, field), \
52 				SIZEOF_FIELD(struct cvmx_bootmem_desc, field))
53 
54 /**
55  * This macro writes a member of the struct cvmx_bootmem_desc
56  * structure. These members can't be directly addressed as
57  * they might be in memory not directly reachable. In the case
58  * where bootmem is compiled with LINUX_HOST, the structure
59  * itself might be located on a remote Octeon. The argument
60  * "field" is the member name of the struct cvmx_bootmem_desc to write.
61  */
62 #define CVMX_BOOTMEM_DESC_SET_FIELD(field, value)			\
63 	__cvmx_bootmem_desc_set(cvmx_bootmem_desc_addr,			\
64 				offsetof(struct cvmx_bootmem_desc, field), \
65 				SIZEOF_FIELD(struct cvmx_bootmem_desc, field), \
66 				value)
67 
68 /**
69  * This macro returns a member of the
70  * struct cvmx_bootmem_named_block_desc structure. These members can't
71  * be directly addressed as they might be in memory not directly
72  * reachable. In the case where bootmem is compiled with
73  * LINUX_HOST, the structure itself might be located on a remote
74  * Octeon. The argument "field" is the member name of the
75  * struct cvmx_bootmem_named_block_desc to read. Regardless of the type
76  * of the field, the return type is always a u64. The "addr"
77  * parameter is the physical address of the structure.
78  */
79 #define CVMX_BOOTMEM_NAMED_GET_FIELD(addr, field)			\
80 	__cvmx_bootmem_desc_get(addr,					\
81 		offsetof(struct cvmx_bootmem_named_block_desc,  field),	\
82 		SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field))
83 
84 /**
85  * This macro writes a member of the struct cvmx_bootmem_named_block_desc
86  * structure. These members can't be directly addressed as
87  * they might be in memory not directly reachable. In the case
88  * where bootmem is compiled with LINUX_HOST, the structure
89  * itself might be located on a remote Octeon. The argument
90  * "field" is the member name of the
91  * struct cvmx_bootmem_named_block_desc to write. The "addr" parameter
92  * is the physical address of the structure.
93  */
94 #define CVMX_BOOTMEM_NAMED_SET_FIELD(addr, field, value)		\
95 	__cvmx_bootmem_desc_set(addr,					\
96 		offsetof(struct cvmx_bootmem_named_block_desc, field),	\
97 		SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field), \
98 				value)
99 
100 /**
101  * This function is the implementation of the get macros defined
102  * for individual structure members. The argument are generated
103  * by the macros inorder to read only the needed memory.
104  *
105  * @param base   64bit physical address of the complete structure
106  * @param offset Offset from the beginning of the structure to the member being
107  *               accessed.
108  * @param size   Size of the structure member.
109  *
110  * @return Value of the structure member promoted into a u64.
111  */
__cvmx_bootmem_desc_get(u64 base,int offset,int size)112 static inline u64 __cvmx_bootmem_desc_get(u64 base, int offset,
113 					  int size)
114 {
115 	base = (1ull << 63) | (base + offset);
116 	switch (size) {
117 	case 4:
118 		return cvmx_read64_uint32(base);
119 	case 8:
120 		return cvmx_read64_uint64(base);
121 	default:
122 		return 0;
123 	}
124 }
125 
126 /**
127  * This function is the implementation of the set macros defined
128  * for individual structure members. The argument are generated
129  * by the macros in order to write only the needed memory.
130  *
131  * @param base   64bit physical address of the complete structure
132  * @param offset Offset from the beginning of the structure to the member being
133  *               accessed.
134  * @param size   Size of the structure member.
135  * @param value  Value to write into the structure
136  */
__cvmx_bootmem_desc_set(u64 base,int offset,int size,u64 value)137 static inline void __cvmx_bootmem_desc_set(u64 base, int offset, int size,
138 					   u64 value)
139 {
140 	base = (1ull << 63) | (base + offset);
141 	switch (size) {
142 	case 4:
143 		cvmx_write64_uint32(base, value);
144 		break;
145 	case 8:
146 		cvmx_write64_uint64(base, value);
147 		break;
148 	default:
149 		break;
150 	}
151 }
152 
153 /**
154  * This function returns the address of the bootmem descriptor lock.
155  *
156  * @return 64-bit address in KSEG0 of the bootmem descriptor block
157  */
__cvmx_bootmem_get_lock_addr(void)158 static inline u64 __cvmx_bootmem_get_lock_addr(void)
159 {
160 	return (1ull << 63) |
161 		(cvmx_bootmem_desc_addr + offsetof(struct cvmx_bootmem_desc, lock));
162 }
163 
164 /**
165  * This function retrieves the string name of a named block. It is
166  * more complicated than a simple memcpy() since the named block
167  * descriptor may not be directly accessible.
168  *
169  * @param addr   Physical address of the named block descriptor
170  * @param str    String to receive the named block string name
171  * @param len    Length of the string buffer, which must match the length
172  *               stored in the bootmem descriptor.
173  */
CVMX_BOOTMEM_NAMED_GET_NAME(u64 addr,char * str,int len)174 static void CVMX_BOOTMEM_NAMED_GET_NAME(u64 addr, char *str, int len)
175 {
176 	int l = len;
177 	char *ptr = str;
178 
179 	addr |= (1ull << 63);
180 	addr += offsetof(struct cvmx_bootmem_named_block_desc, name);
181 	while (l) {
182 		/*
183 		 * With big-endian in memory byte order, this gives uniform
184 		 * results for the CPU in either big or Little endian mode.
185 		 */
186 		u64 blob = cvmx_read64_uint64(addr);
187 		int sa = 56;
188 
189 		addr += sizeof(u64);
190 		while (l && sa >= 0) {
191 			*ptr++ = (char)(blob >> sa);
192 			l--;
193 			sa -= 8;
194 		}
195 	}
196 	str[len] = 0;
197 }
198 
199 /**
200  * This function stores the string name of a named block. It is
201  * more complicated than a simple memcpy() since the named block
202  * descriptor may not be directly accessible.
203  *
204  * @param addr   Physical address of the named block descriptor
205  * @param str    String to store into the named block string name
206  * @param len    Length of the string buffer, which must match the length
207  *               stored in the bootmem descriptor.
208  */
CVMX_BOOTMEM_NAMED_SET_NAME(u64 addr,const char * str,int len)209 void CVMX_BOOTMEM_NAMED_SET_NAME(u64 addr, const char *str, int len)
210 {
211 	int l = len;
212 
213 	addr |= (1ull << 63);
214 	addr += offsetof(struct cvmx_bootmem_named_block_desc, name);
215 
216 	while (l) {
217 		/*
218 		 * With big-endian in memory byte order, this gives uniform
219 		 * results for the CPU in either big or Little endian mode.
220 		 */
221 		u64 blob = 0;
222 		int sa = 56;
223 
224 		while (l && sa >= 0) {
225 			u64 c = (u8)(*str++);
226 
227 			l--;
228 			if (l == 0)
229 				c = 0;
230 			blob |= c << sa;
231 			sa -= 8;
232 		}
233 		cvmx_write64_uint64(addr, blob);
234 		addr += sizeof(u64);
235 	}
236 }
237 
238 /* See header file for descriptions of functions */
239 
240 /*
241  * Wrapper functions are provided for reading/writing the size and next block
242  * values as these may not be directly addressible (in 32 bit applications, for
243  * instance.)
244  *
245  * Offsets of data elements in bootmem list, must match
246  * struct cvmx_bootmem_block_header
247  */
248 #define NEXT_OFFSET 0
249 #define SIZE_OFFSET 8
250 
cvmx_bootmem_phy_set_size(u64 addr,u64 size)251 static void cvmx_bootmem_phy_set_size(u64 addr, u64 size)
252 {
253 	cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
254 }
255 
cvmx_bootmem_phy_set_next(u64 addr,u64 next)256 static void cvmx_bootmem_phy_set_next(u64 addr, u64 next)
257 {
258 	cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
259 }
260 
cvmx_bootmem_phy_get_size(u64 addr)261 static u64 cvmx_bootmem_phy_get_size(u64 addr)
262 {
263 	return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63));
264 }
265 
cvmx_bootmem_phy_get_next(u64 addr)266 static u64 cvmx_bootmem_phy_get_next(u64 addr)
267 {
268 	return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63));
269 }
270 
271 /**
272  * Check the version information on the bootmem descriptor
273  *
274  * @param exact_match
275  *               Exact major version to check against. A zero means
276  *               check that the version supports named blocks.
277  *
278  * @return Zero if the version is correct. Negative if the version is
279  *         incorrect. Failures also cause a message to be displayed.
280  */
__cvmx_bootmem_check_version(int exact_match)281 static int __cvmx_bootmem_check_version(int exact_match)
282 {
283 	int major_version;
284 
285 	major_version = CVMX_BOOTMEM_DESC_GET_FIELD(major_version);
286 	if ((major_version > 3) ||
287 	    (exact_match && major_version != exact_match)) {
288 		debug("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: 0x%llx\n",
289 		      major_version,
290 		      (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version),
291 		      CAST_ULL(cvmx_bootmem_desc_addr));
292 		return -1;
293 	} else {
294 		return 0;
295 	}
296 }
297 
298 /**
299  * Get the low level bootmem descriptor lock. If no locking
300  * is specified in the flags, then nothing is done.
301  *
302  * @param flags  CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
303  *               nothing. This is used to support nested bootmem calls.
304  */
__cvmx_bootmem_lock(u32 flags)305 static inline void __cvmx_bootmem_lock(u32 flags)
306 {
307 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) {
308 		/*
309 		 * Unfortunately we can't use the normal cvmx-spinlock code as
310 		 * the memory for the bootmem descriptor may be not accessible
311 		 * by a C pointer. We use a 64bit XKPHYS address to access the
312 		 * memory directly
313 		 */
314 		u64 lock_addr = (1ull << 63) |
315 			(cvmx_bootmem_desc_addr + offsetof(struct cvmx_bootmem_desc,
316 							   lock));
317 		unsigned int tmp;
318 
319 		__asm__ __volatile__(".set noreorder\n"
320 				     "1: ll   %[tmp], 0(%[addr])\n"
321 				     "   bnez %[tmp], 1b\n"
322 				     "   li   %[tmp], 1\n"
323 				     "   sc   %[tmp], 0(%[addr])\n"
324 				     "   beqz %[tmp], 1b\n"
325 				     "   nop\n"
326 				     ".set reorder\n"
327 				     : [tmp] "=&r"(tmp)
328 				     : [addr] "r"(lock_addr)
329 				     : "memory");
330 	}
331 }
332 
333 /**
334  * Release the low level bootmem descriptor lock. If no locking
335  * is specified in the flags, then nothing is done.
336  *
337  * @param flags  CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
338  *               nothing. This is used to support nested bootmem calls.
339  */
__cvmx_bootmem_unlock(u32 flags)340 static inline void __cvmx_bootmem_unlock(u32 flags)
341 {
342 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) {
343 		/*
344 		 * Unfortunately we can't use the normal cvmx-spinlock code as
345 		 * the memory for the bootmem descriptor may be not accessible
346 		 * by a C pointer. We use a 64bit XKPHYS address to access the
347 		 * memory directly
348 		 */
349 		u64 lock_addr = __cvmx_bootmem_get_lock_addr();
350 
351 		CVMX_SYNCW;
352 		__asm__ __volatile__("sw $0, 0(%[addr])\n"
353 				     : : [addr] "r"(lock_addr)
354 				     : "memory");
355 		CVMX_SYNCW;
356 	}
357 }
358 
359 /*
360  * Some of the cvmx-bootmem functions dealing with C pointers are not
361  * supported when we are compiling for CVMX_BUILD_FOR_LINUX_HOST. This
362  * ifndef removes these functions when they aren't needed.
363  *
364  * This functions takes an address range and adjusts it as necessary
365  * to match the ABI that is currently being used.  This is required to
366  * ensure that bootmem_alloc* functions only return valid pointers for
367  * 32 bit ABIs
368  */
__cvmx_validate_mem_range(u64 * min_addr_ptr,u64 * max_addr_ptr)369 static int __cvmx_validate_mem_range(u64 *min_addr_ptr,
370 				     u64 *max_addr_ptr)
371 {
372 	u64 max_phys = (1ull << 29) - 0x10;	/* KSEG0 */
373 
374 	*min_addr_ptr = min_t(u64, max_t(u64, *min_addr_ptr, 0x0), max_phys);
375 	if (!*max_addr_ptr) {
376 		*max_addr_ptr = max_phys;
377 	} else {
378 		*max_addr_ptr = max_t(u64, min_t(u64, *max_addr_ptr,
379 						 max_phys), 0x0);
380 	}
381 
382 	return 0;
383 }
384 
cvmx_bootmem_phy_alloc_range(u64 size,u64 alignment,u64 min_addr,u64 max_addr)385 u64 cvmx_bootmem_phy_alloc_range(u64 size, u64 alignment,
386 				 u64 min_addr, u64 max_addr)
387 {
388 	s64 address;
389 
390 	__cvmx_validate_mem_range(&min_addr, &max_addr);
391 	address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
392 					 alignment, 0);
393 	if (address > 0)
394 		return address;
395 	else
396 		return 0;
397 }
398 
cvmx_bootmem_alloc_range(u64 size,u64 alignment,u64 min_addr,u64 max_addr)399 void *cvmx_bootmem_alloc_range(u64 size, u64 alignment,
400 			       u64 min_addr, u64 max_addr)
401 {
402 	s64 address;
403 
404 	__cvmx_validate_mem_range(&min_addr, &max_addr);
405 	address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
406 					 alignment, 0);
407 
408 	if (address > 0)
409 		return cvmx_phys_to_ptr(address);
410 	else
411 		return NULL;
412 }
413 
cvmx_bootmem_alloc_address(u64 size,u64 address,u64 alignment)414 void *cvmx_bootmem_alloc_address(u64 size, u64 address,
415 				 u64 alignment)
416 {
417 	return cvmx_bootmem_alloc_range(size, alignment, address,
418 					address + size);
419 }
420 
cvmx_bootmem_alloc_node(u64 node,u64 size,u64 alignment)421 void *cvmx_bootmem_alloc_node(u64 node, u64 size, u64 alignment)
422 {
423 	return cvmx_bootmem_alloc_range(size, alignment,
424 					node << CVMX_NODE_MEM_SHIFT,
425 					((node + 1) << CVMX_NODE_MEM_SHIFT) - 1);
426 }
427 
cvmx_bootmem_alloc(u64 size,u64 alignment)428 void *cvmx_bootmem_alloc(u64 size, u64 alignment)
429 {
430 	return cvmx_bootmem_alloc_range(size, alignment, 0, 0);
431 }
432 
cvmx_bootmem_alloc_named_range_once(u64 size,u64 min_addr,u64 max_addr,u64 align,const char * name,void (* init)(void *))433 void *cvmx_bootmem_alloc_named_range_once(u64 size, u64 min_addr,
434 					  u64 max_addr, u64 align,
435 					  const char *name,
436 					  void (*init)(void *))
437 {
438 	u64 named_block_desc_addr;
439 	void *ptr;
440 	s64 addr;
441 
442 	__cvmx_bootmem_lock(0);
443 
444 	__cvmx_validate_mem_range(&min_addr, &max_addr);
445 	named_block_desc_addr =
446 		cvmx_bootmem_phy_named_block_find(name,
447 						  CVMX_BOOTMEM_FLAG_NO_LOCKING);
448 
449 	if (named_block_desc_addr) {
450 		addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_desc_addr,
451 						    base_addr);
452 		__cvmx_bootmem_unlock(0);
453 		return cvmx_phys_to_ptr(addr);
454 	}
455 
456 	addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
457 						  align, name,
458 						  CVMX_BOOTMEM_FLAG_NO_LOCKING);
459 
460 	if (addr < 0) {
461 		__cvmx_bootmem_unlock(0);
462 		return NULL;
463 	}
464 	ptr = cvmx_phys_to_ptr(addr);
465 
466 	if (init)
467 		init(ptr);
468 	else
469 		memset(ptr, 0, size);
470 
471 	__cvmx_bootmem_unlock(0);
472 	return ptr;
473 }
474 
cvmx_bootmem_alloc_named_range_flags(u64 size,u64 min_addr,u64 max_addr,u64 align,const char * name,u32 flags)475 void *cvmx_bootmem_alloc_named_range_flags(u64 size, u64 min_addr,
476 					   u64 max_addr, u64 align,
477 					   const char *name, u32 flags)
478 {
479 	s64 addr;
480 
481 	__cvmx_validate_mem_range(&min_addr, &max_addr);
482 	addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
483 						  align, name, flags);
484 	if (addr >= 0)
485 		return cvmx_phys_to_ptr(addr);
486 	else
487 		return NULL;
488 }
489 
cvmx_bootmem_alloc_named_range(u64 size,u64 min_addr,u64 max_addr,u64 align,const char * name)490 void *cvmx_bootmem_alloc_named_range(u64 size, u64 min_addr,
491 				     u64 max_addr, u64 align,
492 				     const char *name)
493 {
494 	return cvmx_bootmem_alloc_named_range_flags(size, min_addr, max_addr,
495 						    align, name, 0);
496 }
497 
cvmx_bootmem_alloc_named_address(u64 size,u64 address,const char * name)498 void *cvmx_bootmem_alloc_named_address(u64 size, u64 address,
499 				       const char *name)
500 {
501 	return cvmx_bootmem_alloc_named_range(size, address, address + size,
502 					      0, name);
503 }
504 
cvmx_bootmem_alloc_named(u64 size,u64 alignment,const char * name)505 void *cvmx_bootmem_alloc_named(u64 size, u64 alignment,
506 			       const char *name)
507 {
508 	return cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name);
509 }
510 
cvmx_bootmem_alloc_named_flags(u64 size,u64 alignment,const char * name,u32 flags)511 void *cvmx_bootmem_alloc_named_flags(u64 size, u64 alignment,
512 				     const char *name, u32 flags)
513 {
514 	return cvmx_bootmem_alloc_named_range_flags(size, 0, 0, alignment,
515 						    name, flags);
516 }
517 
cvmx_bootmem_free_named(const char * name)518 int cvmx_bootmem_free_named(const char *name)
519 {
520 	return cvmx_bootmem_phy_named_block_free(name, 0);
521 }
522 
523 /**
524  * Find a named block with flags
525  *
526  * @param name is the block name
527  * @param flags indicates the need to use locking during search
528  * @return pointer to named block descriptor
529  *
530  * Note: this function returns a pointer to a static structure,
531  * and is therefore not re-entrant.
532  * Making this function re-entrant will break backward compatibility.
533  */
534 const struct cvmx_bootmem_named_block_desc *
__cvmx_bootmem_find_named_block_flags(const char * name,u32 flags)535 __cvmx_bootmem_find_named_block_flags(const char *name, u32 flags)
536 {
537 	static struct cvmx_bootmem_named_block_desc desc;
538 	u64 named_addr = cvmx_bootmem_phy_named_block_find(name, flags);
539 
540 	if (named_addr) {
541 		desc.base_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr,
542 							      base_addr);
543 		desc.size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
544 		strncpy(desc.name, name, sizeof(desc.name));
545 		desc.name[sizeof(desc.name) - 1] = 0;
546 		return &desc;
547 	} else {
548 		return NULL;
549 	}
550 }
551 
552 const struct cvmx_bootmem_named_block_desc *
cvmx_bootmem_find_named_block(const char * name)553 cvmx_bootmem_find_named_block(const char *name)
554 {
555 	return __cvmx_bootmem_find_named_block_flags(name, 0);
556 }
557 
cvmx_bootmem_print_named(void)558 void cvmx_bootmem_print_named(void)
559 {
560 	cvmx_bootmem_phy_named_block_print();
561 }
562 
cvmx_bootmem_init(u64 mem_desc_addr)563 int cvmx_bootmem_init(u64 mem_desc_addr)
564 {
565 	if (!cvmx_bootmem_desc_addr)
566 		cvmx_bootmem_desc_addr = mem_desc_addr;
567 
568 	return 0;
569 }
570 
cvmx_bootmem_available_mem(u64 min_block_size)571 u64 cvmx_bootmem_available_mem(u64 min_block_size)
572 {
573 	return cvmx_bootmem_phy_available_mem(min_block_size);
574 }
575 
576 /*
577  * The cvmx_bootmem_phy* functions below return 64 bit physical
578  * addresses, and expose more features that the cvmx_bootmem_functions
579  * above.  These are required for full memory space access in 32 bit
580  * applications, as well as for using some advance features.  Most
581  * applications should not need to use these.
582  */
583 
cvmx_bootmem_phy_alloc(u64 req_size,u64 address_min,u64 address_max,u64 alignment,u32 flags)584 s64 cvmx_bootmem_phy_alloc(u64 req_size, u64 address_min,
585 			   u64 address_max, u64 alignment,
586 			   u32 flags)
587 {
588 	u64 head_addr, ent_addr, ent_size;
589 	u64 target_ent_addr = 0, target_prev_addr = 0;
590 	u64 target_size = ~0ull;
591 	u64 free_start, free_end;
592 	u64 next_addr, prev_addr = 0;
593 	u64 new_ent_addr = 0, new_ent_size;
594 	u64 desired_min_addr, usable_max;
595 	u64 align, align_mask;
596 
597 	debug("%s: req_size: 0x%llx, min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
598 	      __func__, CAST_ULL(req_size), CAST_ULL(address_min),
599 	      CAST_ULL(address_max), CAST_ULL(alignment));
600 
601 	if (__cvmx_bootmem_check_version(0))
602 		return -1;
603 
604 	/*
605 	 * Do a variety of checks to validate the arguments.  The
606 	 * allocator code will later assume that these checks have
607 	 * been made.  We validate that the requested constraints are
608 	 * not self-contradictory before we look through the list of
609 	 * available memory
610 	 */
611 
612 	/* 0 is not a valid req_size for this allocator */
613 	if (!req_size)
614 		return -1;
615 
616 	/* Round req_size up to multiple of minimum alignment bytes */
617 	req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
618 		~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
619 
620 	/* Make sure alignment is power of 2, and at least the minimum */
621 	for (align = CVMX_BOOTMEM_ALIGNMENT_SIZE;
622 	     align < (1ull << 48);
623 	     align <<= 1) {
624 		if (align >= alignment)
625 			break;
626 	}
627 
628 	align_mask = ~(align - 1);
629 
630 	/*
631 	 * Adjust address minimum based on requested alignment (round
632 	 * up to meet alignment).  Do this here so we can reject
633 	 * impossible requests up front. (NOP for address_min == 0)
634 	 */
635 	address_min = (address_min + (align - 1)) & align_mask;
636 
637 	/*
638 	 * Convert !0 address_min and 0 address_max to special case of
639 	 * range that specifies an exact memory block to allocate.  Do
640 	 * this before other checks and adjustments so that this
641 	 * tranformation will be validated
642 	 */
643 	if (address_min && !address_max)
644 		address_max = address_min + req_size;
645 	else if (!address_min && !address_max)
646 		address_max = ~0ull;	/* If no limits given, use max */
647 
648 	/*
649 	 * Reject inconsistent args.  We have adjusted these, so this
650 	 * may fail due to our internal changes even if this check
651 	 * would pass for the values the user supplied.
652 	 */
653 	if (req_size > address_max - address_min)
654 		return -1;
655 
656 	__cvmx_bootmem_lock(flags);
657 
658 	/* Walk through the list entries to find the right fit */
659 	head_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
660 
661 	for (ent_addr = head_addr;
662 	     ent_addr != 0ULL && ent_addr < address_max;
663 	     prev_addr = ent_addr,
664 		     ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) {
665 		/* Raw free block size */
666 		ent_size = cvmx_bootmem_phy_get_size(ent_addr);
667 		next_addr = cvmx_bootmem_phy_get_next(ent_addr);
668 
669 		/* Validate the free list ascending order */
670 		if (ent_size < CVMX_BOOTMEM_ALIGNMENT_SIZE ||
671 		    (next_addr && ent_addr > next_addr)) {
672 			debug("ERROR: %s: bad free list ent: %#llx, next: %#llx\n",
673 			      __func__, CAST_ULL(ent_addr),
674 			      CAST_ULL(next_addr));
675 			goto error_out;
676 		}
677 
678 		/* adjust free block edges for alignment */
679 		free_start = (ent_addr + align - 1) & align_mask;
680 		free_end = (ent_addr + ent_size) &  align_mask;
681 
682 		/* check that free block is large enough */
683 		if ((free_start + req_size) > free_end)
684 			continue;
685 
686 		/* check that desired start is within the free block */
687 		if (free_end < address_min || free_start > address_max)
688 			continue;
689 		if ((free_end - address_min) < req_size)
690 			continue;
691 		if ((address_max - free_start) < req_size)
692 			continue;
693 
694 		/* Found usebale free block */
695 		target_ent_addr = ent_addr;
696 		target_prev_addr = prev_addr;
697 		target_size = ent_size;
698 
699 		/* Continue looking for highest/best block that fits */
700 	}
701 
702 	/* Bail if the search has resulted in no eligible free blocks */
703 	if (target_ent_addr == 0) {
704 		debug("%s: eligible free block not found\n", __func__);
705 		goto error_out;
706 	}
707 
708 	/* Found the free block to allocate from */
709 	ent_addr = target_ent_addr;
710 	prev_addr = target_prev_addr;
711 	ent_size = target_size;
712 
713 	debug("%s: using free block at %#010llx size %#llx\n",
714 	      __func__, CAST_ULL(ent_addr), CAST_ULL(ent_size));
715 
716 	/* Always allocate from the end of a free block */
717 	usable_max = min_t(u64, address_max, ent_addr + ent_size);
718 	desired_min_addr = usable_max - req_size;
719 	desired_min_addr &= align_mask;
720 
721 	/* Split current free block into up to 3 free blocks */
722 
723 	/* Check for head room */
724 	if (desired_min_addr > ent_addr) {
725 		/* Create a new free block at the allocation address */
726 		new_ent_addr = desired_min_addr;
727 		new_ent_size = ent_size - (desired_min_addr - ent_addr);
728 
729 		cvmx_bootmem_phy_set_next(new_ent_addr,
730 					  cvmx_bootmem_phy_get_next(ent_addr));
731 		cvmx_bootmem_phy_set_size(new_ent_addr, new_ent_size);
732 
733 		/* Split out head room into a new free block */
734 		ent_size -= new_ent_size;
735 		cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
736 		cvmx_bootmem_phy_set_size(ent_addr, ent_size);
737 
738 		debug("%s: splitting head, addr %#llx size %#llx\n",
739 		      __func__, CAST_ULL(ent_addr), CAST_ULL(ent_size));
740 
741 		/* Make the allocation target the current free block */
742 		prev_addr = ent_addr;
743 		ent_addr = new_ent_addr;
744 		ent_size = new_ent_size;
745 	}
746 
747 	/* Check for tail room */
748 	if ((desired_min_addr + req_size) < (ent_addr + ent_size)) {
749 		new_ent_addr = ent_addr + req_size;
750 		new_ent_size = ent_size - req_size;
751 
752 		/* Create a new free block from tail room */
753 		cvmx_bootmem_phy_set_next(new_ent_addr,
754 					  cvmx_bootmem_phy_get_next(ent_addr));
755 		cvmx_bootmem_phy_set_size(new_ent_addr, new_ent_size);
756 
757 		debug("%s: splitting tail, addr %#llx size %#llx\n",
758 		      __func__, CAST_ULL(new_ent_addr), CAST_ULL(new_ent_size));
759 
760 		/* Adjust the current block to exclude tail room */
761 		ent_size = ent_size - new_ent_size;
762 		cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
763 		cvmx_bootmem_phy_set_size(ent_addr, ent_size);
764 	}
765 
766 	/* The current free block IS the allocation target */
767 	if (desired_min_addr != ent_addr || ent_size != req_size)
768 		debug("ERROR: %s: internal error - addr %#llx %#llx size %#llx %#llx\n",
769 		      __func__, CAST_ULL(desired_min_addr), CAST_ULL(ent_addr),
770 		      CAST_ULL(ent_size), CAST_ULL(req_size));
771 
772 	/* Remove the current free block from list */
773 	if (prev_addr) {
774 		cvmx_bootmem_phy_set_next(prev_addr,
775 					  cvmx_bootmem_phy_get_next(ent_addr));
776 	} else {
777 		/* head of list being returned, so update head ptr */
778 		CVMX_BOOTMEM_DESC_SET_FIELD(head_addr,
779 					    cvmx_bootmem_phy_get_next(ent_addr));
780 	}
781 
782 	__cvmx_bootmem_unlock(flags);
783 	debug("%s: allocated size: %#llx, at addr: %#010llx\n",
784 	      __func__,
785 	      CAST_ULL(req_size),
786 	      CAST_ULL(desired_min_addr));
787 
788 	return desired_min_addr;
789 
790 error_out:
791 	/* Requested memory not found or argument error */
792 	__cvmx_bootmem_unlock(flags);
793 	return -1;
794 }
795 
__cvmx_bootmem_phy_free(u64 phy_addr,u64 size,u32 flags)796 int __cvmx_bootmem_phy_free(u64 phy_addr, u64 size, u32 flags)
797 {
798 	u64 cur_addr;
799 	u64 prev_addr = 0;	/* zero is invalid */
800 	int retval = 0;
801 
802 	debug("%s addr: %#llx, size: %#llx\n", __func__,
803 	      CAST_ULL(phy_addr), CAST_ULL(size));
804 
805 	if (__cvmx_bootmem_check_version(0))
806 		return 0;
807 
808 	/* 0 is not a valid size for this allocator */
809 	if (!size || !phy_addr)
810 		return 0;
811 
812 	/* Round size up to mult of minimum alignment bytes */
813 	size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
814 		~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
815 
816 	__cvmx_bootmem_lock(flags);
817 	cur_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
818 	if (cur_addr == 0 || phy_addr < cur_addr) {
819 		/* add at front of list - special case with changing head ptr */
820 		if (cur_addr && phy_addr + size > cur_addr)
821 			goto bootmem_free_done;	/* error, overlapping section */
822 		else if (phy_addr + size == cur_addr) {
823 			/* Add to front of existing first block */
824 			cvmx_bootmem_phy_set_next(phy_addr,
825 						  cvmx_bootmem_phy_get_next(cur_addr));
826 			cvmx_bootmem_phy_set_size(phy_addr,
827 						  cvmx_bootmem_phy_get_size(cur_addr) + size);
828 			CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
829 
830 		} else {
831 			/* New block before first block */
832 			/* OK if cur_addr is 0 */
833 			cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
834 			cvmx_bootmem_phy_set_size(phy_addr, size);
835 			CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
836 		}
837 		retval = 1;
838 		goto bootmem_free_done;
839 	}
840 
841 	/* Find place in list to add block */
842 	while (cur_addr && phy_addr > cur_addr) {
843 		prev_addr = cur_addr;
844 		cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
845 	}
846 
847 	if (!cur_addr) {
848 		/*
849 		 * We have reached the end of the list, add on to end, checking
850 		 * to see if we need to combine with last block
851 		 */
852 		if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) {
853 			cvmx_bootmem_phy_set_size(prev_addr,
854 						  cvmx_bootmem_phy_get_size(prev_addr) + size);
855 		} else {
856 			cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
857 			cvmx_bootmem_phy_set_size(phy_addr, size);
858 			cvmx_bootmem_phy_set_next(phy_addr, 0);
859 		}
860 		retval = 1;
861 		goto bootmem_free_done;
862 	} else {
863 		/*
864 		 * insert between prev and cur nodes, checking for merge with
865 		 * either/both
866 		 */
867 		if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) {
868 			/* Merge with previous */
869 			cvmx_bootmem_phy_set_size(prev_addr,
870 						  cvmx_bootmem_phy_get_size(prev_addr) + size);
871 			if (phy_addr + size == cur_addr) {
872 				/* Also merge with current */
873 				cvmx_bootmem_phy_set_size(prev_addr,
874 							  cvmx_bootmem_phy_get_size(cur_addr) +
875 							  cvmx_bootmem_phy_get_size(prev_addr));
876 				cvmx_bootmem_phy_set_next(prev_addr,
877 							  cvmx_bootmem_phy_get_next(cur_addr));
878 			}
879 			retval = 1;
880 			goto bootmem_free_done;
881 		} else if (phy_addr + size == cur_addr) {
882 			/* Merge with current */
883 			cvmx_bootmem_phy_set_size(phy_addr,
884 						  cvmx_bootmem_phy_get_size(cur_addr) + size);
885 			cvmx_bootmem_phy_set_next(phy_addr,
886 						  cvmx_bootmem_phy_get_next(cur_addr));
887 			cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
888 			retval = 1;
889 			goto bootmem_free_done;
890 		}
891 
892 		/* It is a standalone block, add in between prev and cur */
893 		cvmx_bootmem_phy_set_size(phy_addr, size);
894 		cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
895 		cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
896 	}
897 	retval = 1;
898 
899 bootmem_free_done:
900 	__cvmx_bootmem_unlock(flags);
901 	return retval;
902 }
903 
cvmx_bootmem_phy_list_print(void)904 void cvmx_bootmem_phy_list_print(void)
905 {
906 	u64 addr;
907 
908 	addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
909 	printf("\n\n\nPrinting bootmem block list, descriptor: 0x%llx, head is 0x%llx\n",
910 	       CAST_ULL(cvmx_bootmem_desc_addr), CAST_ULL(addr));
911 	printf("Descriptor version: %d.%d\n",
912 	       (int)CVMX_BOOTMEM_DESC_GET_FIELD(major_version),
913 	       (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version));
914 	if (CVMX_BOOTMEM_DESC_GET_FIELD(major_version) > 3)
915 		debug("Warning: Bootmem descriptor version is newer than expected\n");
916 
917 	if (!addr)
918 		printf("mem list is empty!\n");
919 
920 	while (addr) {
921 		printf("Block address: 0x%08llx, size: 0x%08llx, next: 0x%08llx\n", CAST_ULL(addr),
922 		       CAST_ULL(cvmx_bootmem_phy_get_size(addr)),
923 		       CAST_ULL(cvmx_bootmem_phy_get_next(addr)));
924 		addr = cvmx_bootmem_phy_get_next(addr);
925 	}
926 	printf("\n\n");
927 }
928 
cvmx_bootmem_phy_available_mem(u64 min_block_size)929 u64 cvmx_bootmem_phy_available_mem(u64 min_block_size)
930 {
931 	u64 addr;
932 
933 	u64 available_mem = 0;
934 
935 	__cvmx_bootmem_lock(0);
936 	addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
937 	while (addr) {
938 		if (cvmx_bootmem_phy_get_size(addr) >= min_block_size)
939 			available_mem += cvmx_bootmem_phy_get_size(addr);
940 		addr = cvmx_bootmem_phy_get_next(addr);
941 	}
942 	__cvmx_bootmem_unlock(0);
943 	return available_mem;
944 }
945 
cvmx_bootmem_phy_named_block_find(const char * name,u32 flags)946 u64 cvmx_bootmem_phy_named_block_find(const char *name, u32 flags)
947 {
948 	u64 result = 0;
949 
950 	debug("%s: %s\n", __func__, name);
951 
952 	__cvmx_bootmem_lock(flags);
953 	if (!__cvmx_bootmem_check_version(3)) {
954 		int i;
955 		u64 named_block_array_addr =
956 			CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
957 		int num_blocks =
958 			CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
959 		int name_length =
960 			CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
961 		u64 named_addr = named_block_array_addr;
962 
963 		for (i = 0; i < num_blocks; i++) {
964 			u64 named_size =
965 				CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
966 			if (name && named_size) {
967 				char name_tmp[name_length + 1];
968 
969 				CVMX_BOOTMEM_NAMED_GET_NAME(named_addr,
970 							    name_tmp,
971 							    name_length);
972 				if (!strncmp(name, name_tmp, name_length)) {
973 					result = named_addr;
974 					break;
975 				}
976 			} else if (!name && !named_size) {
977 				result = named_addr;
978 				break;
979 			}
980 
981 			named_addr +=
982 				sizeof(struct cvmx_bootmem_named_block_desc);
983 		}
984 	}
985 	__cvmx_bootmem_unlock(flags);
986 	return result;
987 }
988 
cvmx_bootmem_phy_named_block_free(const char * name,u32 flags)989 int cvmx_bootmem_phy_named_block_free(const char *name, u32 flags)
990 {
991 	u64 named_block_addr;
992 
993 	if (__cvmx_bootmem_check_version(3))
994 		return 0;
995 
996 	debug("%s: %s\n", __func__, name);
997 
998 	/*
999 	 * Take lock here, as name lookup/block free/name free need to be
1000 	 * atomic
1001 	 */
1002 	__cvmx_bootmem_lock(flags);
1003 
1004 	named_block_addr = cvmx_bootmem_phy_named_block_find(name,
1005 							     CVMX_BOOTMEM_FLAG_NO_LOCKING);
1006 	if (named_block_addr) {
1007 		u64 named_addr =
1008 			CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr,
1009 						     base_addr);
1010 		u64 named_size =
1011 			CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
1012 
1013 		debug("%s: %s, base: 0x%llx, size: 0x%llx\n",
1014 		      __func__, name, CAST_ULL(named_addr),
1015 		      CAST_ULL(named_size));
1016 
1017 		__cvmx_bootmem_phy_free(named_addr, named_size,
1018 					CVMX_BOOTMEM_FLAG_NO_LOCKING);
1019 
1020 		/* Set size to zero to indicate block not used. */
1021 		CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_addr, size, 0);
1022 	}
1023 
1024 	__cvmx_bootmem_unlock(flags);
1025 	return !!named_block_addr;	/* 0 on failure, 1 on success */
1026 }
1027 
cvmx_bootmem_phy_named_block_alloc(u64 size,u64 min_addr,u64 max_addr,u64 alignment,const char * name,u32 flags)1028 s64 cvmx_bootmem_phy_named_block_alloc(u64 size, u64 min_addr,
1029 				       u64 max_addr,
1030 				       u64 alignment, const char *name,
1031 				       u32 flags)
1032 {
1033 	s64 addr_allocated;
1034 	u64 named_block_desc_addr;
1035 
1036 	debug("%s: size: 0x%llx, min: 0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n",
1037 	      __func__, CAST_ULL(size), CAST_ULL(min_addr), CAST_ULL(max_addr),
1038 	      CAST_ULL(alignment), name);
1039 
1040 	if (__cvmx_bootmem_check_version(3))
1041 		return -1;
1042 
1043 	/*
1044 	 * Take lock here, as name lookup/block alloc/name add need to be
1045 	 * atomic
1046 	 */
1047 	__cvmx_bootmem_lock(flags);
1048 
1049 	named_block_desc_addr =
1050 		cvmx_bootmem_phy_named_block_find(name, flags |
1051 						  CVMX_BOOTMEM_FLAG_NO_LOCKING);
1052 	if (named_block_desc_addr) {
1053 		__cvmx_bootmem_unlock(flags);
1054 		return -1;
1055 	}
1056 
1057 	/* Get pointer to first available named block descriptor */
1058 	named_block_desc_addr =
1059 		cvmx_bootmem_phy_named_block_find(NULL, flags |
1060 						  CVMX_BOOTMEM_FLAG_NO_LOCKING);
1061 	if (!named_block_desc_addr) {
1062 		__cvmx_bootmem_unlock(flags);
1063 		return -1;
1064 	}
1065 
1066 	/*
1067 	 * Round size up to mult of minimum alignment bytes
1068 	 * We need the actual size allocated to allow for blocks to be
1069 	 * coallesced when they are freed.  The alloc routine does the
1070 	 * same rounding up on all allocations.
1071 	 */
1072 	size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
1073 		~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
1074 
1075 	addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
1076 						alignment,
1077 						flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
1078 	if (addr_allocated >= 0) {
1079 		CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, base_addr,
1080 					     addr_allocated);
1081 		CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, size, size);
1082 		CVMX_BOOTMEM_NAMED_SET_NAME(named_block_desc_addr, name,
1083 					    CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len));
1084 	}
1085 
1086 	__cvmx_bootmem_unlock(flags);
1087 	return addr_allocated;
1088 }
1089 
cvmx_bootmem_phy_named_block_print(void)1090 void cvmx_bootmem_phy_named_block_print(void)
1091 {
1092 	int i;
1093 	int printed = 0;
1094 
1095 	u64 named_block_array_addr =
1096 		CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
1097 	int num_blocks = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
1098 	int name_length = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
1099 	u64 named_block_addr = named_block_array_addr;
1100 
1101 	debug("%s: desc addr: 0x%llx\n",
1102 	      __func__, CAST_ULL(cvmx_bootmem_desc_addr));
1103 
1104 	if (__cvmx_bootmem_check_version(3))
1105 		return;
1106 
1107 	printf("List of currently allocated named bootmem blocks:\n");
1108 	for (i = 0; i < num_blocks; i++) {
1109 		u64 named_size =
1110 			CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
1111 		if (named_size) {
1112 			char name_tmp[name_length + 1];
1113 			u64 named_addr =
1114 				CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr,
1115 							     base_addr);
1116 			CVMX_BOOTMEM_NAMED_GET_NAME(named_block_addr, name_tmp,
1117 						    name_length);
1118 			printed++;
1119 			printf("Name: %s, address: 0x%08llx, size: 0x%08llx, index: %d\n", name_tmp,
1120 			       CAST_ULL(named_addr),
1121 			       CAST_ULL(named_size), i);
1122 		}
1123 		named_block_addr +=
1124 			sizeof(struct cvmx_bootmem_named_block_desc);
1125 	}
1126 
1127 	if (!printed)
1128 		printf("No named bootmem blocks exist.\n");
1129 }
1130 
cvmx_bootmem_phy_mem_list_init(u64 mem_size,u32 low_reserved_bytes,struct cvmx_bootmem_desc * desc_buffer)1131 s64 cvmx_bootmem_phy_mem_list_init(u64 mem_size,
1132 				   u32 low_reserved_bytes,
1133 				   struct cvmx_bootmem_desc *desc_buffer)
1134 {
1135 	u64 cur_block_addr;
1136 	s64 addr;
1137 	int i;
1138 
1139 	debug("%s (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n",
1140 	      __func__, desc_buffer, CAST_ULL(cvmx_bootmem_desc_addr));
1141 
1142 	/*
1143 	 * Descriptor buffer needs to be in 32 bit addressable space to be
1144 	 * compatible with 32 bit applications
1145 	 */
1146 	if (!desc_buffer) {
1147 		debug("ERROR: no memory for cvmx_bootmem descriptor provided\n");
1148 		return 0;
1149 	}
1150 
1151 	if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
1152 		mem_size = OCTEON_MAX_PHY_MEM_SIZE;
1153 		debug("ERROR: requested memory size too large, truncating to maximum size\n");
1154 	}
1155 
1156 	if (cvmx_bootmem_desc_addr)
1157 		return 1;
1158 
1159 	/* Initialize cvmx pointer to descriptor */
1160 	cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer));
1161 
1162 	/* Fill the bootmem descriptor */
1163 	CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0);
1164 	CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0);
1165 	CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0);
1166 	CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER);
1167 	CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER);
1168 	CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0);
1169 	CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0);
1170 
1171 	/*
1172 	 * Set up global pointer to start of list, exclude low 64k for exception
1173 	 * vectors, space for global descriptor
1174 	 */
1175 	cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes);
1176 
1177 	if (mem_size <= OCTEON_DDR0_SIZE) {
1178 		__cvmx_bootmem_phy_free(cur_block_addr,
1179 					mem_size - low_reserved_bytes, 0);
1180 		goto frees_done;
1181 	}
1182 
1183 	__cvmx_bootmem_phy_free(cur_block_addr,
1184 				OCTEON_DDR0_SIZE - low_reserved_bytes, 0);
1185 
1186 	mem_size -= OCTEON_DDR0_SIZE;
1187 
1188 	/* Add DDR2 block next if present */
1189 	if (mem_size > OCTEON_DDR1_SIZE) {
1190 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
1191 		__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
1192 					mem_size - OCTEON_DDR1_SIZE, 0);
1193 	} else {
1194 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
1195 	}
1196 frees_done:
1197 
1198 	/* Initialize the named block structure */
1199 	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN);
1200 	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks,
1201 				    CVMX_BOOTMEM_NUM_NAMED_BLOCKS);
1202 	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0);
1203 
1204 	/* Allocate this near the top of the low 256 MBytes of memory */
1205 	addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
1206 				      sizeof(struct cvmx_bootmem_named_block_desc),
1207 				      0, 0x10000000, 0,
1208 				      CVMX_BOOTMEM_FLAG_END_ALLOC);
1209 	if (addr >= 0)
1210 		CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr);
1211 
1212 	debug("%s: named_block_array_addr: 0x%llx)\n",
1213 	      __func__, CAST_ULL(addr));
1214 
1215 	if (addr < 0) {
1216 		debug("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n");
1217 		return 0;
1218 	}
1219 
1220 	for (i = 0; i < CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++) {
1221 		CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0);
1222 		CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0);
1223 		addr += sizeof(struct cvmx_bootmem_named_block_desc);
1224 	}
1225 
1226 	return 1;
1227 }
1228 
cvmx_bootmem_phy_mem_list_init_multi(u8 node_mask,u32 mem_sizes[],u32 low_reserved_bytes,struct cvmx_bootmem_desc * desc_buffer)1229 s64 cvmx_bootmem_phy_mem_list_init_multi(u8 node_mask,
1230 					 u32 mem_sizes[],
1231 					 u32 low_reserved_bytes,
1232 					 struct cvmx_bootmem_desc *desc_buffer)
1233 {
1234 	u64 cur_block_addr;
1235 	u64 mem_size;
1236 	s64 addr;
1237 	int i;
1238 	int node;
1239 	u64 node_base;	/* Make u64 to reduce type casting */
1240 
1241 	mem_sizes[0] = gd->ram_size / (1024 * 1024);
1242 
1243 	debug("cvmx_bootmem_phy_mem_list_init (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n",
1244 	      desc_buffer, CAST_ULL(cvmx_bootmem_desc_addr));
1245 
1246 	/*
1247 	 * Descriptor buffer needs to be in 32 bit addressable space to be
1248 	 * compatible with 32 bit applications
1249 	 */
1250 	if (!desc_buffer) {
1251 		debug("ERROR: no memory for cvmx_bootmem descriptor provided\n");
1252 		return 0;
1253 	}
1254 
1255 	cvmx_coremask_for_each_node(node, node_mask) {
1256 		if ((mem_sizes[node] * 1024 * 1024) > OCTEON_MAX_PHY_MEM_SIZE) {
1257 			mem_sizes[node] = OCTEON_MAX_PHY_MEM_SIZE /
1258 				(1024 * 1024);
1259 			debug("ERROR node#%lld: requested memory size too large, truncating to maximum size\n",
1260 			      CAST_ULL(node));
1261 		}
1262 	}
1263 
1264 	if (cvmx_bootmem_desc_addr)
1265 		return 1;
1266 
1267 	/* Initialize cvmx pointer to descriptor */
1268 	cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer));
1269 
1270 	/* Fill the bootmem descriptor */
1271 	CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0);
1272 	CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0);
1273 	CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0);
1274 	CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER);
1275 	CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER);
1276 	CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0);
1277 	CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0);
1278 
1279 	cvmx_coremask_for_each_node(node, node_mask) {
1280 		if (node != 0)	/* do not reserve memory on remote nodes */
1281 			low_reserved_bytes = 0;
1282 
1283 		mem_size = (u64)mem_sizes[node] * (1024 * 1024); /* MBytes */
1284 
1285 		/*
1286 		 * Set up global pointer to start of list, exclude low 64k
1287 		 * for exception vectors, space for global descriptor
1288 		 */
1289 
1290 		node_base = (u64)node << CVMX_NODE_MEM_SHIFT;
1291 		cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes) |
1292 			node_base;
1293 
1294 		if (mem_size <= OCTEON_DDR0_SIZE) {
1295 			__cvmx_bootmem_phy_free(cur_block_addr,
1296 						mem_size - low_reserved_bytes,
1297 						0);
1298 			continue;
1299 		}
1300 
1301 		__cvmx_bootmem_phy_free(cur_block_addr,
1302 					OCTEON_DDR0_SIZE - low_reserved_bytes,
1303 					0);
1304 
1305 		mem_size -= OCTEON_DDR0_SIZE;
1306 
1307 		/* Add DDR2 block next if present */
1308 		if (mem_size > OCTEON_DDR1_SIZE) {
1309 			__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE |
1310 						node_base,
1311 						OCTEON_DDR1_SIZE, 0);
1312 			__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE |
1313 						node_base,
1314 						mem_size - OCTEON_DDR1_SIZE, 0);
1315 		} else {
1316 			__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE |
1317 						node_base,
1318 						mem_size, 0);
1319 		}
1320 	}
1321 
1322 	debug("%s: Initialize the named block\n", __func__);
1323 
1324 	/* Initialize the named block structure */
1325 	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN);
1326 	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks,
1327 				    CVMX_BOOTMEM_NUM_NAMED_BLOCKS);
1328 	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0);
1329 
1330 	/* Allocate this near the top of the low 256 MBytes of memory */
1331 	addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
1332 				      sizeof(struct cvmx_bootmem_named_block_desc),
1333 				      0, 0x10000000, 0,
1334 				      CVMX_BOOTMEM_FLAG_END_ALLOC);
1335 	if (addr >= 0)
1336 		CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr);
1337 
1338 	debug("cvmx_bootmem_phy_mem_list_init: named_block_array_addr: 0x%llx)\n",
1339 	      CAST_ULL(addr));
1340 
1341 	if (addr < 0) {
1342 		debug("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n");
1343 		return 0;
1344 	}
1345 
1346 	for (i = 0; i < CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++) {
1347 		CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0);
1348 		CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0);
1349 		addr += sizeof(struct cvmx_bootmem_named_block_desc);
1350 	}
1351 
1352 	// test-only: DEBUG ifdef???
1353 	cvmx_bootmem_phy_list_print();
1354 
1355 	return 1;
1356 }
1357 
cvmx_bootmem_reserve_memory(u64 start_addr,u64 size,const char * name,u32 flags)1358 int cvmx_bootmem_reserve_memory(u64 start_addr, u64 size,
1359 				const char *name, u32 flags)
1360 {
1361 	u64 addr;
1362 	int rc = 1;
1363 	static unsigned int block_num;
1364 	char block_name[CVMX_BOOTMEM_NAME_LEN];
1365 
1366 	debug("%s: start %#llx, size: %#llx, name: %s, flags:%#x)\n",
1367 	      __func__, CAST_ULL(start_addr), CAST_ULL(size), name, flags);
1368 
1369 	if (__cvmx_bootmem_check_version(3))
1370 		return 0;
1371 
1372 	addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
1373 	if (!addr)
1374 		return 0;
1375 
1376 	if (!name)
1377 		name = "__cvmx_bootmem_reserved";
1378 
1379 	while (addr && rc) {
1380 		u64 block_size = cvmx_bootmem_phy_get_size(addr);
1381 		u64 reserve_size = 0;
1382 
1383 		if (addr >= start_addr && addr < start_addr + size) {
1384 			reserve_size = size - (addr - start_addr);
1385 			if (block_size < reserve_size)
1386 				reserve_size = block_size;
1387 		} else if (start_addr > addr &&
1388 			   start_addr < (addr + block_size)) {
1389 			reserve_size = block_size - (start_addr - addr);
1390 		}
1391 
1392 		if (reserve_size) {
1393 			snprintf(block_name, sizeof(block_name),
1394 				 "%.32s_%012llx_%u",
1395 				 name, (unsigned long long)start_addr,
1396 				 (unsigned int)block_num);
1397 
1398 			debug("%s: Reserving 0x%llx bytes at address 0x%llx with name %s\n",
1399 			      __func__, CAST_ULL(reserve_size),
1400 			      CAST_ULL(addr), block_name);
1401 
1402 			if (cvmx_bootmem_phy_named_block_alloc(reserve_size,
1403 							       addr, 0, 0,
1404 							       block_name,
1405 							       flags) == -1) {
1406 				debug("%s: Failed to reserve 0x%llx bytes at address 0x%llx\n",
1407 				      __func__, CAST_ULL(reserve_size),
1408 				      (unsigned long long)addr);
1409 				rc = 0;
1410 				break;
1411 			}
1412 
1413 			debug("%s: Reserved 0x%llx bytes at address 0x%llx with name %s\n",
1414 			      __func__, CAST_ULL(reserve_size),
1415 			      CAST_ULL(addr), block_name);
1416 		}
1417 
1418 		addr = cvmx_bootmem_phy_get_next(addr);
1419 		block_num++;
1420 	}
1421 
1422 	return rc;
1423 }
1424 
cvmx_bootmem_lock(void)1425 void cvmx_bootmem_lock(void)
1426 {
1427 	__cvmx_bootmem_lock(0);
1428 }
1429 
cvmx_bootmem_unlock(void)1430 void cvmx_bootmem_unlock(void)
1431 {
1432 	__cvmx_bootmem_unlock(0);
1433 }
1434 
__cvmx_phys_addr_to_ptr(u64 phys,int size)1435 void *__cvmx_phys_addr_to_ptr(u64 phys, int size)
1436 {
1437 	void *tmp;
1438 
1439 	if (sizeof(void *) == 8) {
1440 		tmp = CASTPTR(void, CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, phys));
1441 	} else {
1442 		u32 phy32 = (u32)(phys & 0x7fffffffULL);
1443 
1444 		tmp = CASTPTR(void, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0,
1445 						   phy32));
1446 	}
1447 
1448 	return tmp;
1449 }
1450 
__cvmx_bootmem_internal_get_desc_ptr(void)1451 void *__cvmx_bootmem_internal_get_desc_ptr(void)
1452 {
1453 	return cvmx_phys_to_ptr(cvmx_bootmem_desc_addr);
1454 }
1455